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Abstract

The aim of this work is to demonstrate the feasibility use of an Micro air vehicles (MAV) in order to power wirelessly an

electric system, for example, a sensor network, using low-cost and open-source elements. To achieve this objective, an

inductive system has been modelled and validated to power wirelessly a sensor node using a Crazyflie 2.0 as MAV. The

design of the inductive system must be small and light enough to fulfil the requirements of the Crazyflie. An inductive

model based on two resonant coils is presented. Several coils are defined to be tested using the most suitable resonant

configuration. Measurements are performed to validate the model and to select the most suitable coil. While attempting

to minimize the weight at transmitter’s side, on the receiver side it is intended to efficiently acquire and manage the

power obtained from the transmitter. In order to prove its feasibility, a temperature sensor node is used as demon-

strator. The experiment results show successfully energy transportation by MAV, and wireless power transfer for the

resonant configuration, being able to completely charge the node battery and to power the temperature sensor.
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Introduction

The applications of Micro air vehicles (MAV) are
growing every year. One of these applications is mea-
surement and monitoring.1–5 The MAVs can be used to
transport any type of payload, from parcels6 to sensors,7

mobile node sensors or to transport the data collected by
static sensor nodes.8 In this last scenario, sensor nodes
cannot communicate among them, hence, they need
assistance to send the measured data. The MAV can
pick up the data and transport to destination.
Furthermore, the MAV can transport others payloads,
as energy when the sensors are located in low-energy
environments or harsh environments, for instance, a
battery is inadequate in extremely hot environments,9

the sensor node can capture the energy carried by the
MAV. These nodes are non-battery sensor nodes. In
addition, the tendency is that they are low cost and
open source.10

Thus, the sensor network is composed of two node
types: a mobile node that integrates an MAV and sev-
eral static nodes containing the sensors. There are
many examples of applications that use this type of

networks: monitoring bridges,11 Internet of things,12

agriculture8 and many more.
In order to simplify the energy transfer from mobile

node to static node, a wireless transfer is used.
Although the idea of wireless power transfer (WPT)
began in 19th century, it is necessary to wait until the
early 1970s where experiments with RFID tags were
done by the U.S. government,13 and by the early
2000s the Professor She Yuen developed a charger to
provide resonant power transfer for small electronics.

Recently, in 2007, MIT researchers were able to
power a 60-W light bulb from a power source while
providing 40% efficiency over distance in excess of
2 m using resonant inductive coupling.14 Until that
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moment, the maximum transfer distances achieved
between transmitter and receiver were on centimeter
range scale. This event signified a turning point in
WPT systems. In July 2010, wireless charging technol-
ogy for portable electronic devices up to 5W reached
commercialization stage through launching the Qi
Standard by the Wireless Power Consortium,15 now
comprising more than 220 companies worldwide.

The main limitation for this energy transfer tech-
nique is the distance. It is only efficient for short dis-
tance. Instead of expending great resources to improve
the efficiency with large distances, it is much easier to
transport energy wherever is needed, shortening dis-
tance. MAVs can carry energy anywhere, reducing
the distance to values where this energy transfer tech-
nique is efficient.16–20 have several examples of this
application to sensor networks.

Different optimizations have been introduced. In
case of large node number, the optimization is oriented
to determine scheduling priority for charging requests
when multiple nodes are waiting for charging.21–23

Other optimization takes into account not only the dis-
tance but also the angle between the energy receiver
and the charger’s orientation.24 There are applications
in which the path medium is not air. For instance, in
the case of implanted devices, the tissue media introdu-
ces path losses.25 WPT systems using a resonant
frequency are more efficient that those do not use it.
It is possible to use a single frequency or multiple
frequencies.26

The ideal solution is to use large coils to obtain great
efficiency, but it is not possible to use in an MAV. The
main goal of this work is the study and development of
a small WPT system, adapted to the dimensions and
conditions imposed by the UAV, so that it does not
suffer major changes in its dynamics. Furthermore, this
work demonstrates the use of MAV for energy trans-
portation in order to shorten the distance for an effi-
cient WPT. This development is done using low-cost
and open-source components and devices.

In order to demonstrate that accomplish these con-
straints, an application has been developed. The system
architecture consists of several modules: MAV, energy
transmitter, energy receiver and sensor node, see
Figure 1. The energy transmitter and receiver modules
have been developed. The other modules are commercial
ones. Those modules are described in the next sections.

The design is easily adaptable to any other MAV
system with any other electric system.

WPT systems

WPT works by modulating the generated electric, mag-
netic or electromagnetic fields to transport power from
a transmitter towards a receiver at certain distance.

There are two main types: the near-field transfers and
the far-field transfers. The first one is divided into
capacitive and inductive couplings, and the second
one into propagating electromagnetic, microwave and
photo-electricity. Table 1 summarizes several charac-
teristics between near-field, nonradiative and far-field,
radiative techniques.

Efficiency is a desired characteristic, thus nonradia-
tive techniques, near-field, were selected. Capacitive
coupling was rejected because of safety issues related
to the necessity of a high-source voltage. Magnetic
fields interact so weakly with biological organisms, it
is also important for safety considerations.28

Model of resonant magnetic induction

A changing magnetic flux through a surface bounded
by a closed stationary loop of wire induces an electric
current in the wire. This current is also found in a static
magnetic field, when a changing magnetic flux is creat-
ed by a moving loop of wire through the surface
bounded by the wire itself.

The magnetic flux, 1m, through a surface is the
surface integral of the normal component of the mag-
netic field, ~B, passing through that surface. Our
system uses two loops: one to generate the magnetic
field (transmitter), the other where the current is
induced in it (receiver). In our case, these surfaces
are defined as the transmitter and receiver loops, see
Figure 2. These loops are formed by several turns,
forming coils. As magnetic field is proportional to
the number of field lines per area unit, the magnetic
flux is proportional to the number of field lines
through an area element.29 Since the coil surface is

Figure 1. Demonstrator system. It is composed of, from top to
bottom, an MAV, an energy transmitter, an energy receiver and a
sensor node.
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flat, has a constant area, A, and has several turns, N,
if we assume magnetic field is uniform in magnitude
and direction everywhere on the area, the magnetic
flux through the coil area is

1m ¼ B
~ � n̂A ¼ N B A cos h (1)

where h is the angle between the direction of B
~
and the

direction of the unit vector normal to the coil surface,
n̂, see Figure 2.

Equation (1) shows that flux can be modified alter-
ing B; A; N or h. A; N and h correspond to the coil
geometry. For an existent coil, it is easier to modify B
than the geometry. Thus, it is necessary to use alternat-
ing current (AC) that generates a magnetic field that
changes in time. The result of this variation of magnetic
flux is an electro motive force, e, induced along the path
that is equal in magnitude to the rate of change of the
magnetic flux through the surface. This is known as
Faraday’s law

e ¼ � d1m

dt
(2)

According to the Faraday’s law, the polarity of the
induced magnetic field is such that it produces a mag-
netic field that opposes the change which produces it.
Because of induced voltage and current are produced at
the secondary side, power is successfully transferred
from the primary to the secondary side. This is the
basic working principle of the inductive coupling.

Coreless transformer modelling

In order to study the coils to be used in the inductive
coupling, it is necessary to use an electric model of a
coil. It is made of copper wire, thus, the coil, in addi-
tion to inductive behaviour, has resistive and capacitive
behaviours; for this reason, the coil model used is com-
posed by an inductance, a resistance and a capacitance,
see Figure 3, left. The coil inductance L itself, the resis-
tance R is the effective resistance of the conductor of
the coil at the operating frequency. The capacitance C
accounts for the end-to-end and turn-to-turn stray
capacitance of the coil.30 This capacitance is due to
the fact that the inductor is made out of a coil of insu-
lated wire. Therefore, tiny capacitors are created
between the windings since there are two sections of
conductor separated by an insulator.

In our case, the capacitance is small enough and can
be neglected, thus the model is composed by an induc-
tance and a resistance, Figure 3, right.

Coil resistance R

At low frequencies (f< 200 kHz),31 the resistance
experiments a DC behaviour. Its value only depends
on the wire geometry and material. The DC resistance
of a metal conductor is given by

RDC ¼ q
l

S
(3)

where l is the wire length (m), S is the wire section (m2)
and q is the electrical resistivity of the metal material
(X�m). For copper, the most usual metal used,
is 1.68�10�8X�m.

When the frequency increases up to 200 kHz, some
effects appear that increase the wire resistance with the
frequency. The resistance behaves as an AC resistance
due to the skin-effect and proximity-effect.

Table 1. Comparison among the wireless power transfers.27

WPT system Frequency Directivity Range Efficiency

Capacitive coupling Low: Hz–MHz Weak Short High

Inductive coupling Low: Hz–MHz Weak Short High

Propagating electromagnetic Med.: MHz–GHz Medium Medium Medium

Microwave High: GHz–THz Strong Long Low

Photo-electricity High: >THz Strong Long Low

Note: Inductive coupling was selected, highlighted in bold.

⃗Transmi�er 
Coil 

Z 
Receiver 
Coil 

θ
∅

Figure 2. Magnetic field, ~B, lines from transmitter or primary
coil generate magnetic flux, 1m, on the receiver or second-
ary coil.

Figure 3. Coil circuit models.
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Skin-effect happens in all wire and cable. When the
signal is DC, the current uses the entire conductor, with
the same amount of current flowing in the inner part as
on the outer part of the wire. As the frequency is
increased, the current density is larger near the surface
of the conductor and decreases with greater depths in
the conductor. Consequently, the equivalent cross-
section decreases and the wire resistance is increased
with frequency. To quantify the skin-effect, the skin-
depth, d, is introduced. It is a measure of how far elec-
trical conduction takes place in a conductor and is a
function of frequency, no matter how thick the wire is

d ¼ 1ffiffiffiffiffiffiffiffiffiffi
pflr

p (4)

where r is the electrical conductivity (1/q) of the wire
material (S/m), f is the frequency (Hz) and l is the total
permeability in free space and in material (l¼ l0 � lm).

The resistance corresponding to skin-effect can be
calculated as

Rskin ¼ RDC
4d

d
(5)

where d is the diameter of the conductor.
Moreover, there is another phenomenon that

increases the resistance of a conductor when an AC is
applied. It is the proximity-effect. This effect is the
apparent resistance increment of the wire due to the
circulating current in the conductor caused by the alter-
nating flux of other nearby conductors. As a result,
more power losses appear in the windings. To quantify
the proximity-effect, the Dowell’s assumption32 is used

Rproximity ¼ RDC �W
�
sinh 2Wð Þ þ sin 2Wð Þ
cosh 2W� cos 2Wð Þ

þ 2

3
N2 � 1ð Þ sinh 2Wð Þ � sin 2Wð Þ

cosh 2Wþ cos 2Wð Þ
�

(6)

where N is the number of turns of the coil and W can be
obtained by

W ¼ 100d

2d

� � ffiffiffi
p

p
(7)

The total equivalent resistance is

REQ ¼ RDC þ Rskin þ Rproximity (8)

Coil inductance L

Inductors with solid-core provide better coupling than
air-core ones, but a limitation of our system is the

weight transported by the MAV. The primary coil is

wanted to go on a micro quadcopter, thus, air-core

coils are used instead of solid-core ones.
To calculate the coil inductance, Wheeler’s formula

can be used for air-cored inductor33

L ¼ KDN2 � 10�9 H½ � (9)

where K is a parameter that depends on the dimension

ratio (D/l) of the coil, where l is the length of the coil,

whose value is listed in appendix 11.A of Chen,33 D is

the diameter of the coil and N is the number of turns.

WPT modelling

The WPT comprises of two coils: a primary transmitter

coil (Tx) and a secondary receiver coil (Rx). The coils are

modelled with a resistance and an inductance as seen

above. Figure 4 shows this model that contains three

voltage generators: Vs is the generator of the power to

transmit; jxMi1 and jxMi2 take into account the mutual

inductance (M) of the coils. Furthermore, the model

includes the resistances and inductances of the coils

(R1, L1, R2 and L2) and the load resistance (RL) of the

device to be powered.
The influence of the secondary coil in the primary

one can be viewed as a reflected impedance (ZR). Its

value comprises the impedance of the secondary coil

and the mutual inductance

ZR ¼ x2M2

R2 þ RL þ jxL2
(10)

Figure 5 shows the equivalent circuit with the

reflected impedance. The power transferred to the

reflected impedance is given by

Pout ¼ V2
out

ZR
(11)

Figure 4. Primary and secondary coil models.

Figure 5. Equivalent circuit with reflected impedance.
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Vout can be calculated as

Vout ¼ Vs
ZR

Z1 þ ZR
(12)

where

Z1 ¼ R1 þ jxL1 (13)

then

Pout ¼ V2
S

ZR

R1 þ jxL1 þ ZRð Þ2 (14)

The maximum power transfer occurs when ZR¼Z1.
This result is a restrictive parameter since ZR depends
on the mutual inductance, which in turn depends on
the distance between the transmitter and receiver coil.
Thus, there is no a unique optimal value of Z1.

This system has an important energetic drawback:
secondary coil impedance is usually high; therefore,
when the power transferred to the load is intended to
be increased, the input voltage should be also
increased, provided that Pout is proportional to the
square of Vs. But this solution is not optimal because
it requires higher current amplitudes in the primary
coil, and therefore greater Joule losses.31 In order to
solve this disadvantage, resonance capacitors are added
to the primary and secondary circuits. They cancel (or
decrease notably) the large reactance of a coil by work-
ing at the resonant frequency. These capacitors allow
to reduce the current amplitudes and to improve the
efficiency of the coreless transformer. The intrinsic
capacitances of the coils (see Figure 3) are negligible,
but these capacitors are necessary in order to minimize
the large reactance of the coils. These capacitors have a
much higher capacity than the intrinsic capacities of
the coils.

A circuit containing an inductor and a capacitor has a
resonant frequency (f0). When this circuit works at that
frequency, the inductive and capacitive reactances are
equal in magnitude. Then they cancel and the resistance
only contributes to the impedance. This one has a mini-
mum value. Below that natural frequency, the resonance
circuit looks capacitive, since the impedance of the capac-
itor increases while inductive reactance decreases. Above
resonance frequency, the circuit behaves oppositely.

There are four resonant configurations, see Figure 6.
They are labelled as SS, SP, PS and PP. The first letter
indicates for the primary, the second one for the sec-
ondary. S or P indicates series or parallel for the capac-
itor. The generators taking into account the mutual
inductance of the coils (see Figure 4) are not repre-
sented in order to simplify the figure.

The input power Pin and the load power PL are

Pin ¼ Vs � Is � cosðuÞ (15)

PL ¼ I2L � RL (16)

where u is the phase between the input voltage, VS, and

the primary current, IS. Pin is multiplied by the power

factor, cos(u), which corresponds to compute the active

or consumable power.
In order to select the best topology, the efficiency

(g¼PL/Pin) and the output power is studied versus

the resonant frequency (f0).
Figure 7 shows the efficiency (g), left, and the output

power (PL), right, for all topologies. It can be seen that

the greater the efficiency, the lower the bandwidth.

From the results, it can be concluded that the best

topologies are SS and SP. PP topology has a better

efficiency than SS and SP at the resonant frequency,

but the output power is much lower.
It is not possible to determine the ideal operating

frequency without knowing many factors as coil sizes,

self-resonant frequency, efficiency, etc. Hence, it is

intended to determine the suitable frequency band

where the coils could work properly. The upper limit

is restricted by the maximum switching frequency of

the power driver used to drive the transmitter coil.

Other high frequency limitation is the coil self-

resonance frequency (fs) and the parasitic capacitance

of the coils (see Figure 3). Exciting the windings with a

frequency of about 10% fs ensure that the parasitic

capacitive effects will not influence the inductor imped-

ance values.34 Due to the fact that the experimental

results of fs are not higher than 30MHz, the upper

limit for maximal operating frequency is set to

be 3MHz.
For low frequencies, there are no restrictions, but

recommendations. The Wireless Power Consortium

suggests as admissible, quality factor, Q¼xL/R,

C1 R1 R 2       C2

RL

+

Vs
L 1        L2Is IL

C1          R1 R2
RL+

Vs
L 1        L2Is IL

R1

C1

R 2       C2+

Vs
L 1        L2

Is
IL

R1

C1

+

Vs

Is R2
RL

ILL 1        L2

C2

C2

(a) (b)

(c) (d)

Figure 6. Four resonant configurations. The generators of the
mutual inductance M, Figure 4, are not represented in order to
simplify the figure. (a) SS, (b) SP, (c) PS and (d) PP.
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values above 100 for WPT applications. To achieve the
desired Q factor, frequencies higher than 500 kHz are
typically needed.

Figure 8 shows the specific frequency band for coils’
diameters between 3 cm and 10 cm, which is the desired
order of magnitude of the coils due to drone size. The
vertical arrows indicate frequencies (MHz) used in dif-
ferent works with similar characteristics as ours.35–37

The selected frequency should be some units of Mega
Hertz. In our case, 1MHz was selected due to drone
size limitations, and it is easy and cheap to generate
using a quartz crystal, which is stable and permits a
narrow band.

Hardware design of WPT

As Figure 1 shows, the system is composed of an MAV,
a transmitter unit and a receiver unit.

MAV

One of the initial objectives of the project is the WPT
system outfitting on the micro quadcopter, remember
that one objective is the use of low-cost elements. The
inclusion of the quadcopter as an energy transporter
restricts transmitter and receiver sides because of the
weight and dimension. The coils must be designed
taking into account the constraints imposed by the drone.

The model used in this work is created by Bitcraze,
its second micro quadcopter version, named Crazyflie

2.0, see Figure 9. It is one of the smallest quadcopter in

the market. It is ideal for indoor and environments

with obstacles. It measures 9.2 cm from helix to helix

and weighs 27 g. It has a flight autonomy around 7min

at full thrust. Its maximum recommended payload

weight is 15 g, and it supports up to 42 g of weight at

take-off.
It has two microcontrollers. The main one is used to

execute the main application; it is a built-in ARMCortex-

M4 processor, STM32F405. This processor has a 32-bit

architecture and can work until 168MHz. The second

microcontroller is used to manage the power and the

radio. This is an ARM Cortex-M0 microprocessor,

nRF51822, that works at 32MHz. Furthermore, it has

an inertial measurement unit, MPU-9250, which is com-

posed of a gyroscope of three axes, an accelerometer of

three axes and a magnetometer of three axes. They pro-

vide 9 degrees of freedom. Additionally, it has a barom-

eter to measure atmospheric pressure, LPS25H, and a

temperature sensor.
The quadcopter has two modules: the quadcopter

itself, Figure 9 left, and an USB dongle, right, for

its control.

Figure 7. Efficiency, (g), left, and output power, (PL), right, versus the normalized resonant frequency.

0.2051            0.950                          2.08    Mosfet switching losses limit

1 2                            3   Frequency (MHz)

Lower limit 
Q factor

Figure 8 Frequency bands constrains. Frequency references:
0.2051MHz,35 0.950MHz,36 2.08MHz.37

Figure 9. Micro quadcopter Crazyflie, left, and USB
dongle, right.
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Crazyflie 2.0 is an open-source quadcopter. Its firm-

ware is based on FreeRTOS.38 It is an operating system

for embedded devices. Crazyflie 2.0 can be controlled

by three methods: from an Android device using an

application, from a PC using a Python application

that permits using a joystick and a Python library

that permits sending orders to the quadcopter.

Transmitter and the receiver circuits

The main feature of the WPT system lies on energy

conversion. Hence, the transmitter and the receiver cir-

cuits need power converters. Figure 10 shows the WPT

system architecture. The power stored in a battery is

conditioned for using by the transmitter coil. The

power captured by the receiver coil is conditioned

again for using by the load.

Coil characteristics

Typical shapes of WPT inductors include circular,

square, rectangular and all regular polygons. Circular

coils obtain a higher magnetic coupling than any other

shape. This can be explained by the distortion of the

field distribution around the corners of those shapes.39

Each conductor has a different electrical resistivity

which is an important parameter to define its DC and

AC resistance. The most common metal used is copper.

It is easy to obtain and it has a relatively low resistivity,

1.68� 10�8X�m. It is used as a wire of 0.59mm diam-

eter, with polymeric layer insulation, 1.4mm total

diameter, because of its ease to obtain.
The dimensions are restricted by the payload of the

MAV. Its maximum take-off weight is 42 g. The drone

will carry other devices than the coil, and therefore, we

limit the coil weight to 15 g. The coil radius is restricted

by the drone dimension to 5 cm maximum.
Three different coils were constructed to be tested to

select the best candidate. Table 2 shows the dimensions

of those coils. Model A corresponds to the maximum

size allowed by the drone. As we said above, midrange

WPT applications contain distances from coil diameter

up to 10 times the coil diameter.40 Thus, if we aspire to

transfer power up to 40 cm, at least a coil with 4 cm of

diameter is needed. This is the diameter of model B.

Model C corresponds to an intermediate size.
Both Tx and Rx coils were designed with the same

dimensions for each of models A, B and C. This

assumption simplifies computations and coil wind-

ing procedures.

Transmitting side

The transmitting subsystem is carried by the micro

quadcopter. It has a battery for its powering. In

order to simplify the system and avoiding increasing

the total weight, it was decided to use one battery to

give power to the transmitting coil and to the drone.

The battery voltage is 3.7V, and to increase power

without having to use large current, voltage was

increased. Figure 10 shows the different parts of the

transmitter power adapter. The DC–DC converter

raises from 3.7V to 12V. A switching regulator

(TPS61088) is used to raise the voltage. It has an effi-

ciency of about 92%.

Figure 10. WPT system architecture.

Table 2. Dimensions of coils.

Model name Turns Radius (cm) Mass (g)

A 8 5 13.4

B 19 2 14.1

C 10 4 13.5

Figure 11. Electric schematic of the transmitter module. It is
composed of a battery, a DC–DC converter, a DC–AC con-
verter, a power driver and the primary coil and capacitor.

Polo et al. 7



The DC–AC converter (HEF4069) is an oscillator

that prepares the voltage to attack the coil. It converts

the 12V DC to AC.
The power driver is used to increase the current

given to the coil. It is composed of Darlington transis-

tors (ULN2803A) and power resistors. In our case, this

current was 0.32A. The maximum given power to the

coil was around 3.8W.
Figure 11 shows the electric schematic of the trans-

mitter module. It is composed of the components

detailed above and the primary coil and capacitor.
Figure 12 shows the assembled transmitter circuit

containing the previous explained subsystems. It has

the appropriate dimension to fit the droid.

Receiving side

The receiving subsystem has to adapt the captured

power by the receiving coil. Figure 10 shows the differ-

ent parts of the transmitter power adapter. It rectifies

the received AC voltage to DC. It is composed of

Schottky diodes. They can switch at the working fre-

quency of 1MHz.
The DC voltage has to set it up to the desirable volt-

age level. A DC–DC boost converter (bq25504EVM) is

used to increase the voltage. Then it is stored in a stor-

age element for its use. The storage element can be a

battery or a capacitor. In our case, a capacitor was

chosen, of 140 mF.
Figure 13 shows the electric schematic of the receiver

module. It is composed of the components detailed

above and the secondary coil and capacitor, and the

sensor node. Figure 14 shows the assembled receiver

circuit containing the previous explained subsystems.
In order to demonstrate the system viability, a

simple wireless sensor node was selected: eZ430-

RF5000T. This device is a wireless developing tool

with an integrated temperature sensor. An eZ430-

RF5000T board is connected to the receiver and

wirelessly communicates with other board which is
Figure 12. Transmitter circuit, see Figure 10 transmitter side.
Top view, above, bottom view, below.

Figure 13. Electric schematic of the receiver module. It is composed of the secondary coil and capacitor, an AC–DC converter, a
DC–DC converter, a storage capacitor and the sensor node.
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connected via USB to a computer. The eZ430-
RF5000T measures the air temperature and sends it
to the board connected to the computer. The tempera-
ture is shown on the computer screen.

The eZ430-RF5000T consumption, when in active
mode, is about 270 mA. But it needs 21.2mA to wireless
communication. This current can be easily supplied by
the selected supercapacitor.

Experimental measurements

Several measurements have been done to test the pre-
vious designs.

Coil characteristics

Each coil is characterized by a resistance and an induc-
tance, see Figure 3. They have been measured using an
Agilent 4294A Precision Impedance Analyzer (40Hz–
110MHz). All voltage measurements are done using an
Agilent DSO3062A oscilloscope and several Agilent
N2862A probes. Figure 15 shows the measurement
setup with two coils of model C, the probes and the
oscilloscope.

Table 3 shows the measured and calculated values for
the three coil models, A, B and C, see Table 2. Tx is for
transmitter coils and Rx for receiver coils. Calculated
values are obtained using equations (8) and (9).

In order to select the proper coil model, several
measurements have been carried out using the various
configurations described above: SS and SP resonant
configurations, see Figure 6, using the different model
coils, see Table 2. The power is measured on the receiv-
er coil to select the best configuration. Table 4 shows
only several of the measures obtained in order to clarify
this selection.

The measurement setup is the following:

• Exciting voltage: 1 Vrms, correspond to Vs in
Figure 6.

• Frequency: 0.7 MHz, 1 MHz and 2 MHz. Only the
results for 1 MHz are shown in Table 4.

• Distance between coils: from 2.5 cm to 10 cm. Only
the results for 3.8 cm are shown in Table 4.

Table 4 shows that the best coil model is A, but C
has similar results, although slightly lower. Regarding
the resonant configuration, SP is better than SS. The A
model is better than the C model, but the first one is
larger, 10 cm in diameter, instead of 8 cm for C. This
smaller model is better for coupling to the quadcopter

Figure 14. Receiver circuit, see Figure 10 receiver side, left. eZ430-RF5000T board, right.

Figure 15. Coil measurement set-up.
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and it allows better flight control and less rolling.
Therefore, C coil and SP configuration are selected.

Figure 16 shows the power received and the efficien-
cy as a function of distance for SP topology and C
coils. It compares the theoretical power received calcu-
lated using equation (16) and the measured one. The
theoretical curve is higher than the experimental one
because the model does not take into account some
losses. It can be seen that, as expected, the smaller
the distance, the greater the power received.

Therefore, the drone should be placed as close as pos-

sible to improve the transfer of energy.

System performance

A test was carried out to determine the autonomy of

the micro quadcopter battery using the transmitter cir-

cuit coupled to the receiver, and charging the super

capacitor without the load installed. As it was seen

previously, the closer are the coils, the more efficient

is the energy transfer. The tests were done using differ-

ent distances between coils, from 2.5 cm to 7 cm. It is

difficult to maintain a quadcopter in static flight, and to

facilitate its positioning, it has pillars in order to main-

tain its position and avoid to waste battery energy

using the quadcopter engines. In order to perform the

tests, several pillars with different lengths were used. In

order to facilitate the landing, we can attach a small

camera to the UAV and a tag at the centre of the coil.

Then it is possible to land manually, looking for the

tag, or automatically using the Open CV library.41 The

full charging of the super capacitor in minimum time

was obtained at a distance of 2.5 cm, it was at 10min

with the micro quadcopter battery without being dis-

charged completely. Longer times were obtained with

larger distances: 4 cm was 26min, 6 cm 88min and 7 cm

2.5 h. The micro quadcopter’s battery is completely dis-

charged after 15min approximately, see Figure 17. The

horizontal dashed line indicates the voltage limit where

the inductive system is turned off. This limit corre-

sponds to the minimum voltage allowed by the regula-

tor to boost the voltage level to 12VDC.
The same test has been tested with the SS topology

and the charge time is increased over 14min. This test

experimentally confirms that the optimal topology to

use is the SP compensation topology.

Table 3. Measurements and calculations of resistance and
inductance for each model coil.

Coil model

Resistance (X) Inductance (mH)

Measured Calculated Measured Calculated

ATx 0.5639 0.6519 12.45 12.38

ARx 0.5916 0.6519 12.46 12.38

BTx 0.6071 0.6193 13.96 12.72

BRx 0.6380 0.6193 13.70 12.72

CTx 0.6704 0.6519 13.67 13.26

CRx 0.6286 0.6519 13.67 13.26

Note: The calculated values are obtained using equations (8) and (9).

Table 4. Power (mW) received on the secondary using different
resonant configuration and different coil model.

Coil model

Resonant

configuration A B C

SS 3.4 1.3 3

SP 6 2.6 5

Figure 16. Power received and efficiency vs. distance for SP topology and C coils.
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Figure 18 shows the experimental set-up for these

measurements. The quadcopter and the coils can be

seen on the lower right area. The transmitter coil is

located on the bottom part of the quadcopter in

order to facilitate magnetic coupling with the second-

ary coil; furthermore, this placement, on the lower part

of the quadcopter, facilitates its transportation and

improves the quadcopter stability.
The secondary coil is settled apart from the node

and receiver circuits; this layout permits a better cou-

pling with the primary coil and allows that the nodes

can have the adequate setting to correctly carry out the

measurements.
Behind them, there is a computer that has connected

a node. This node receives the data transmitter from

the emitter node, the one that is powered from the sec-

ondary coil. The computer screen shows the tempera-

ture received, and on the right there is a detail of the

temperature display.

Conclusions

This work demonstrates the feasibility of using a micro
quadcopter for wireless energy transfer using magnetic
induction to supply energy to a sensor node, using
open-source elements, resulting in a low-cost system.

The use of a resonant circuit is necessary to improve
the energy transfer efficiency. Three different coils and
four different circuits have been studied, simulated
and implemented. Measurements have confirmed the
results calculated.

Several conditioning circuits have been used to
adapt the energy saved in the micro quadcopter battery
to be transmitted by the coils, and then saved again in
the node supercapacitor in order to supply the sensor
node. Coil sizes and working frequency have been opti-
mized for using with the Crazyflie. Energy has been
transmitted from the Crazyflie to a sensor node.

Our system is capable to charge the super capacitor
in 10min, at 2.5 cm, using a coil of 4 cm of radius and
13.5 g of weight, allowing the node sensor to send the
temperature wirelessly.

This work shows the methodology and characteris-
tics that the coils and circuits must accomplish in order
to WPT and the MAV to transport the system.
All components are low-cost elements. Using these
directives, any other system can be designed, with any
other dimensions.
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