394 research outputs found

    A Review on Requirement of Wireless Sensor Network in Healthcare Applications

    Get PDF
    An assortment of uses depend on Wireless AdHoc and Sensor Networks (WASN) which has pulled in individuals from a wide number of regions demonstrating its utility extents from protection to farming, climate guaging to pre-fiasco discovery, geography to mineralogy, catastrophe alleviation frameworks to medicinal care, vehicle following to territory checking, and a considerable measure many. In the field of therapeutic sciences the uses of WASN are new however have left an incredible effect on the psyches of the two analysts and specialists. Medicinal determination and test examination like observing the patients, detecting exceptional and basic indications physically and rationally should be possible utilizing sensor systems for the therapeutic care. The potential restorative utilizations of WASN are 'Constant, nonstop patient observing', 'Home checking for interminable and elderly patients', 'Gathering of long haul databases of clinical information'. Alternate applications can be giving therapeutic supervision to individuals in remote zones and for detecting vast mischances, fires, fear based oppressor assaults and remote crucial sign checking facilitating the activity of specialists. In this paper we have attempted to make an overview of all the conceivable utilizations of WASN in the field of therapeutic Sciences

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery

    Optimizing Energy Efficiency in UAV-Based Wireless Communication Networks: A Comparative Analysis of TAODV and DSR Protocols using the Trust Score Algorithm for Signal Processing

    Get PDF
    This study presents a comprehensive analysis of energy efficiency optimization in signal processing algorithms for UAV-based wireless communication networks. Employing a multifaceted approach that integrates mathematical modeling, game theory analysis, and an array of testing methodologies, the research aims to address the critical challenge of enhancing communication protocol performance while minimizing energy consumption. Central to our investigation is the development and application of the Trust Score Algorithm (TSA), a novel quantitative tool designed to evaluate and compare the efficacy of various signal processing algorithms across multiple dimensions, including energy efficiency, reliability, adaptability, security, and latency. Through detailed comparative analysis and data visualization techniques, the study reveals that the Proposed_TAODV protocol significantly outperforms traditional TAODV and DSR protocols in several key metrics. These include throughput efficiency, end-to-end delay, and packet delivery ratio, particularly as the number of UAV nodes scales up. Such findings underscore the Proposed_TAODV protocol's superior stability and performance, advocating for its potential in improving the sustainability and effectiveness of UAV-based communication networks. The research methodology encompasses both theoretical and empirical testing phases, ranging from simulation-based analysis, to validate the performance of the signal processing algorithms under varied operational conditions. The results not only affirm the superior performance of the Proposed_TAODV protocol but also highlight the utility of the TSA in guiding the selection and optimization of signal processing algorithms for UAV networks

    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

    Get PDF
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G

    Cultural Contradictions of the Anytime, Anywhere Economy: Reframing Communication Technology

    Get PDF
    Technology-aided ubiquity and instantaneity have emerged as major goals of most information technology providers and of certain classes of users such as “road warriors”. New mobile technologies promise genie-in-a-bottle type near-magical qualities with anytime, anywhere access to information and services. While the complex science, systems, and economics of such technologies receive considerable attention from industry executives and researchers, the social and cultural aspects of these technologies attract less attention. This paper explores the oft-contradictory promises and pitfalls of anytime, anywhere technologies from a cultural standpoint. It makes suggestions for reinterpreting these technologies for greater human good

    InTEX22 Product Profiles

    Get PDF

    Design and Development of a Testbed Prototype for Cognitive Radio Transmission over TV White Space

    Get PDF
    Considering the ever-increasing demand and the associated high costs of wireless electromagnetic spectrum, technologies that can facilitate efficient spectrum utilization are of utmost importance. Cognitive radio (CR), in conjunction with TV White Spaces (TVWS), can be a viable solution, where unlicensed or secondary users can opportunistically use the not-currently-in-use, aka idle, TV channels registered to licensed or primary users. This thesis focuses on the design and development of a testbed prototype for real-time testing of secondary user transmission in TVWS. Once an unused TV channel has been identified, our system uses that idle channel for transmitting and receiving signals. The testbed is built on Universal Software Radio Peripheral (USRP) device powered by GNU Radio Software, Software Defined Radio (SDR) receptor, and Spectrum Analyser. The developed prototype splits a given TVWS channel into multiple small sub-channels and performs channel characterization through end-to-end transmission and reception of information carrying signals. The channel characteristics are presented through Bit Transfer Rate (BTR) and frequency spectrum results. The prototype also facilitates provisions for applying error correction coding as a mean of undertaking comparative performance testing

    Spectator 2010-01-20

    Get PDF

    Federated Sensor Network architectural design for the Internet of Things (IoT)

    Get PDF
    An information technology that can combine the physical world and virtual world is desired. The Internet of Things (IoT) is a concept system that uses Radio Frequency Identification (RFID), WSN and barcode scanners to sense and to detect physical objects and events. This information is shared with people on the Internet. With the announcement of the Smarter Planet concept by IBM, the problem of how to share this data was raised. However, the original design of WSN aims to provide environment monitoring and control within a small scale local network. It cannot meet the demands of the IoT because there is a lack of multi-connection functionality with other WSNs and upper level applications. As various standards of WSNs provide information for different purposes, a hybrid system that gives a complete answer by combining all of them could be promising for future IoT applications. This thesis is on the subject of `Federated Sensor Network' design and architectural development for the Internet of Things. A Federated Sensor Network (FSN) is a system that integrates WSNs and the Internet. Currently, methods of integrating WSNs and the Internet can follow one of three main directions: a Front-End Proxy solution, a Gateway solution or a TCP/IP Overlay solution. Architectures based on the ideas from all three directions are presented in this thesis; this forms a comprehensive body of research on possible Federated Sensor Network architecture designs. In addition, a fully compatible technology for the sensor network application, namely the Sensor Model Language (SensorML), has been reviewed and embedded into our FSN systems. The IoT as a new concept is also comprehensively described and the major technical issues discussed. Finally, a case study of the IoT in logistic management for emergency response is given. Proposed FSN architectures based on the Gateway solution are demonstrated through hardware implementation and lab tests. A demonstration of the 6LoWPAN enabled federated sensor network based on the TCP/IP Overlay solution presents a good result for the iNET localization and tracking project. All the tests of the designs have verified feasibility and achieve the target of the IoT concept
    • 

    corecore