5,780 research outputs found

    Mobihealth: mobile health services based on body area networks

    Get PDF
    In this chapter we describe the concept of MobiHealth and the approach developed during the MobiHealth project (MobiHealth, 2002). The concept was to bring together the technologies of Body Area Networks (BANs), wireless broadband communications and wearable medical devices to provide mobile healthcare services for patients and health professionals. These technologies enable remote patient care services such as management of chronic conditions and detection of health emergencies. Because the patient is free to move anywhere whilst wearing the MobiHealth BAN, patient mobility is maximised. The vision is that patients can enjoy enhanced freedom and quality of life through avoidance or reduction of hospital stays. For the health services it means that pressure on overstretched hospital services can be alleviated

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    Real-Time Heart Pulse Monitoring Technique Using Wireless Sensor Network and Mobile Application

    Get PDF
    Wireless Sensor Networks (WSNs) for healthcare have emerged in the recent years. Wireless technology has been developed and used widely for different medical fields. This technology provides healthcare services for patients, especially who suffer from chronic diseases. Services such as catering continuous medical monitoring and get rid of disturbance caused by the sensor of instruments. Sensors are connected to a patient by wires and become bed-bound that less from the mobility of the patient. In this paper, proposed a real-time heart pulse monitoring system via conducted an electronic circuit architecture to measure Heart Pulse (HP) for patients and display heart pulse measuring via smartphone and computer over the network in real-time settings. In HP measuring application standpoint, using sensor technology to observe heart pulse by bringing the fingerprint to the sensor via used Arduino microcontroller with Ethernet shield to connect heart pulse circuit to the internet and send results to the web server and receive it anywhere. The proposed system provided the usability by the user (user-friendly) not only by the specialist. Also, it offered speed andresults accuracy, the highest availability with the user on an ongoing basis, and few cost

    Are low cost accountability, communications, and management systems for emergency first responders using 3G and 4G cellular technologies feasible?

    Get PDF
    Reliable, easily deployed communication networks are a necessity for emergency responders as the coordination of their efforts and their safety depend on it. As a volunteer firefighter, this researcher is aware of the shortcomings of the current communication technologies presently deployed, and the risks it poses to firefighters. Some studies have proposed deployment of sophisticated hybrid, mesh networks and mobile ad hoc networks that allow for location tracking, environment and personnel vital signs monitoring, and data communications. Unfortunately the cost of these systems and required training in use of the equipment inhibits their adoption and wide scale deployment across the nation\u27s emergency responder agencies. We are surrounded by secure, reliable cellular network technologies that meet our voice and data communication needs, yet current studies focus on building network infrastructures from the ground up and discussing how to address the security and performance issues of their proposed networks. This study proposes the use of the existing cellular network architecture already in place across the nation as a foundation to explore the feasibility of a low cost communication, management and accountability system utilizing 3G and 4G technologies and architecture

    WEIRD – Real Use Cases and Applications for the WiMAX Technology

    Get PDF
    IEEE 802.16/WiMAX is one of the most promising technologies for Broadband Wireless Access, both for fixed and mobile use. This paper presents the structure of some testbeds, set up in the framework of the European project WEIRD, about novel applications running on top of a WiMAX-based end-to-end architecture. The presented testbeds are based on real use case scenarios, including monitoring of impervious areas, tele-medicine and tele-hospitalization

    How the internet of things technology enhances emergency response operations

    Get PDF
    The Internet of Things (IoT) is a novel paradigm that connects the pervasive presence around us of a variety of things or objects to the Internet by using wireless/wired technologies to reach desired goals. Since the concept of the IoT was introduced in 2005, we see the deployment of a new generation of networked smart objects with communication, sensory and action capabilities for numerous applications, mainly in global supply chain management, environment monitoring and other non-stress environments. This paper introduces the IoT technology for use in the emergency management community. Considering the information required for supporting three sequential and distinct rhythms in emergency response operations: mobilization rhythm, preliminary situation assessment rhythm, and intervention rhythm, the paper proposes a modified task-technology fit approach that is used to investigate how the IoT technology can be incorporated into the three rhythms and enhance emergency response operations. The findings from our research support our two hypotheses: H1: IoT technology fits the identified information requirements; and H2: IoT technology provides added value to emergency response operations in terms of obtaining efficient cooperation, accurate situational awareness, and complete visibility of resources. © 2012 Elsevier Inc

    Architecture and Applications of IoT Devices in Socially Relevant Fields

    Full text link
    Number of IoT enabled devices are being tried and introduced every year and there is a healthy competition among researched and businesses to capitalize the space created by IoT, as these devices have a great market potential. Depending on the type of task involved and sensitive nature of data that the device handles, various IoT architectures, communication protocols and components are chosen and their performance is evaluated. This paper reviews such IoT enabled devices based on their architecture, communication protocols and functions in few key socially relevant fields like health care, farming, firefighting, women/individual safety/call for help/harm alert, home surveillance and mapping as these fields involve majority of the general public. It can be seen, to one's amazement, that already significant number of devices are being reported on these fields and their performance is promising. This paper also outlines the challenges involved in each of these fields that require solutions to make these devices reliableComment: 1

    How the Internet of Things Technology Enhances Emergency Response Operations

    Get PDF
    The Internet of Things (IoT) is a novel paradigmthat connects the pervasive presence around us of a variety of things or objects to the Internet by using wireless/wired technologies to reach desired goals. Since the concept of the IoT was introduced in 2005, we see the deployment of a new generation of networked smart objects with communication, sensory and action capabilities for numerous applications, mainly in global supply chain management, environment monitoring and other non-stress environments. This paper introduces the IoT technology for use in the emergency management community. Considering the information required for supporting three sequential and distinct rhythms in emergency response operations: mobilization rhythm, preliminary situation assessment rhythm, and intervention rhythm, the paper proposes a modified task-technology fit approach that is used to investigate how the IoT technology can be incorporated into the three rhythms and enhance emergency response operations. The findings from our research support our two hypotheses: H1: IoT technology fits the identified information requirements; and H2: IoT technology provides added value to emergency response operations in terms of obtaining efficient cooperation, accurate situational awareness, and complete visibility of resources

    Real-time transmission and storage of video, audio, and health data in emergency and home care situations

    Get PDF
    The increase in the availability of bandwidth for wireless links, network integration, and the computational power on fixed and mobile platforms at affordable costs allows nowadays for the handling of audio and video data, their quality making them suitable for medical application. These information streams can support both continuous monitoring and emergency situations. According to this scenario, the authors have developed and implemented the mobile communication system which is described in this paper. The system is based on ITU-T H.323 multimedia terminal recommendation, suitable for real-time data/video/audio and telemedical applications. The audio and video codecs, respectively, H.264 and G723.1, were implemented and optimized in order to obtain high performance on the system target processors. Offline media streaming storage and retrieval functionalities were supported by integrating a relational database in the hospital central system. The system is based on low-cost consumer technologies such as general packet radio service (GPRS) and wireless local area network (WLAN or WiFi) for lowband data/video transmission. Implementation and testing were carried out for medical emergency and telemedicine application. In this paper, the emergency case study is described
    • 

    corecore