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Abstract—The Internet of Things (IoT) is a novel paradigm that connects the 

pervasive presence around us of a variety of things or objects to the Internet by 

using wireless/wired technologies to reach desired goals. Since the concept of 

the IoT was introduced in 2005, we see the deployment of a new generation of 

networked smart objects with communication, sensory and action capabilities for 

numerous applications, mainly in global supply chain management, environment 

monitoring and other non-stress environments. This paper introduces the IoT 

technology for use in the emergency management community. Considering the 

information required for supporting three sequential and distinct rhythms in 

emergency response operations: mobilization rhythm, preliminary situation 

assessment rhythm, and intervention rhythm, the paper proposes a modified 

task-technology fit approach that is used to investigate how the IoT technology 
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can be incorporated into the three rhythms and enhance emergency response 

operations. The findings from our research support our two hypotheses: H1: IoT 

technology fits the identified information requirements; and H2: IoT technology 

provides added value to emergency response operations in terms of obtaining 

efficient cooperation, accurate situational awareness, and complete visibility of 

resources.  

 

 

Keywords: Internet of Things, wireless sensor networks, radio frequency identification, 

emergency response operations, task-technology fit, strategic value.  
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How the Internet of Things Technology Enhances Emergency Response 

Operations 

 

1 Introduction 

1.1 Motivation 

Disasters such as fires, floods, earthquakes, civil war, or terrorist attacks may cause crisis 

situations. Regardless of the origin, crisis situations are often accompanied by uncertainty of 

how the disaster will develop, a rapid pace of response operations, and the possibility of 

serious loss of human lives and property if not responded to properly. Good situational 

awareness and decision-making support are important factors for minimizing property 

damage and injury, and for saving people’s lives. To provide adequate situational awareness 

and decision-making support to manage crisis situations, researchers and practitioners in 

disaster management have urged attention to the development of emergency response 

information systems (ERISs). Emergency response information systems should support first 

responders by enhancing their situational awareness which will lead to better 

decision-making [1]. It is argued that human decision-making failures during catastrophic 

incidents such as Bhopal [2], the firefighters’ deaths during 9/11 [3] and the Three Mile 

Island nuclear crisis [4] were caused by situational awareness failures and the lack of support 

of decision-making. Several ERIS development efforts have addressed the importance of 

enhancing first responder situational awareness and improving their decision support 

capability [5-8]. Key studies [9-11] that recommended information system (IS) models and 

architectures suitable for emergency response (ER), have identified the ability of IS to 

provide support to decision-making and to understanding and recognizing the situation or 



4 
 

context that responders face as key criteria for design of effective ERISs. 

 

Different than IS for office use, an ERIS may work in an extreme and stress-filled environment, 

needing not only static information such as road maps and building floor plans, but also 

dynamic and real time information such as information about the latest disaster 

developments and the current locations of emergency personnel and resources. As an 

emergency evolves, requirements (both informational and logistical) may change resulting in 

necessary modifications of the response workflow [12, 13].  An investigation of first 

responders’ requirements in a Dutch emergency response case illustrated that much of the 

information first responders request during a crisis can be considered as dynamic 

information and needed almost instantaneously [14]. Furthermore, a desirable ERIS platform 

consists of a number of Mobile Data Terminals (MDT) [15], and many handheld devices such 

as mobile phones, iPads, personal digital devices (PDA), in cooperation with one or more 

large-scale computer server systems located in a fixed place. These features make it desirable 

for ERISs to be global and distributed information systems with the capability of real-time 

information acquisition, processing, sharing and understanding. To the knowledge of the 

authors, there are few such large-scale ERISs in use. Actually, many challenging issues 

involving technical, organizational and human factors and perspectives still need to be 

addressed before the desirable ERISs will be widely accepted. This paper addresses the 

information infrastructure issue of the desirable ERISs by introducing Internet of Things (IoT) 

technology into the emergency management domain, and investigates 

requirements-technology fit and the value added of using the IoT technology in ER 
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operations.  

 

1.2 Concept of the IoT 

The concept of the Internet of Things (IoT) is to make every single ‘network enabled’ object 

in the world network connected, and represents a vision in which the Internet extends into 

the real world embracing everyday objects [16]. The term ‘Internet of Things’ was 

popularized by the work of the Auto-ID Center at the Massachusetts Institute of Technology 

(MIT), which in 1999 started to design and propagate across-company radio frequency 

identification (RFID) infrastructure [17]. One of the definitions of the IoT described it as ‘a 

self-configured dynamic global network infrastructure with standards and interoperable 

communication protocols where physical and virtual ‘things’ have identities, physical 

attributes, and virtual personalities, and are seamlessly integrated into the information 

infrastructure’ [18]. The concept of ‘things’ in the network infrastructure refers to any real or 

virtual participating actors such as real world objects, human beings, virtual data and 

intelligent software agents. The purpose of the IoT is to create an environment in which the 

basic information from any one of the networked autonomous actors can be efficiently 

shared with others in real-time. With more powerful and efficient data collection and 

sharing ability, such a vision is possible and capable of supporting sophisticated decision 

support systems by providing services in a more accurate, detailed and intelligent manner.  

While workflows (descriptions of tasks to be performed, constraints on the tasks including 

resources needed, and relationships between the tasks) can be static in many applications 

(e.g. manufacturing), the constantly changing environment and requirements during an 
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emergency requires an ability to dynamically alter the workflow in a rapid and correct way 

[13].  The IoT, with its potential for instantaneous updates of status, requirements, and 

other information, can enable dynamic workflow adaptations.  For example, in [13] a 

formal approach for dynamic workflow management and analysis (WIFA) is proposed, and 

extended in [12] to incorporate awareness of changing resource (including people) needs 

and availability in dynamically creating and modifying workflows.  The research of [12, 13] 

developed an intuitive user interface to manage the dynamically changing workflow needs of 

an emergency.  Incorporating the concept of IoT and the technologies that support it, in a 

system that uses the WIFA approach proposed by [12, 13] will enable almost instantaneous 

changes in information and resources needed to update workflows and therefore enable 

decision-making about next steps (tasks) to be performed in a way that will make emergency 

response most effective during all phases of the event. 

 

There are many definitions of the Internet of Things in the research and relevant industrial 

communities. The definitions may rise from the word ‘Internet’ and lead to an ‘Internet 

oriented’ vision, or ‘things’ and lead to a ‘things oriented’ vision. Putting the world ‘Internet’ 

and ‘Things’ together semantically means a world-wide network of interconnected objects 

uniquely addressable, based on standard communication protocols. Atzori et al. [19] 

presented this third vision of IoT as ‘semantic oriented’ and the IoT paradigm as a result of 

the convergence of these three visions. The research roadmap from the European 

Commission [18] deemed the IoT as an integrated part of the future Internet. Some 

researchers tended to consider the IoT as a separate part of the Internet. Gershenfeld et al. 
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[20] described the IoT as an extension of the Internet to reach out to the physical world of 

things and places that only can support low-end computers, whilst Fleisch [21] argued that 

the IOT is not on the same level as the Internet, but it is in fact an application of the Internet 

as are many existing Internet-enabled services. Since the concept of IoT was introduced in 

2005, we see the deployment of smart ‘network enabled’ objects with communication, 

sensory and action capabilities for numerous applications such as in the areas of healthcare 

[22-24], smart buildings [25], social networks [26], environment monitoring [27], 

transportation and logistics [28], etc. All applications of the IoT rely on the data collected 

from distributed smart ‘network enabled’ objects and the IoT information infrastructure for 

data transmission.  

 

The existing studies, however, have not explicitly dealt with the IoT as an entire technology 

for ER operations. Does the use of the IoT technology enhance ER operations? In which way 

does this enhancement occur? What is the strategic value of the IoT in ER operations? The 

main purpose of this paper is to provide insight into these questions by investigating the 

workflow ER operations follow, what information is required in the workflow, how the IoT 

fulfills the information requirements, and how the use of the IoT creates sustainable 

benefits . The focus of the paper is particularly on how the IoT technology enhances ER 

operations by interconnecting the smart ‘network enabled’ objects, such as fire fighters, fire 

engines, crisis site, and other emergency resources, included in the IoT information 

infrastructure. 
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1.3 Organization of the paper 

The remainder of the paper is organized as follows. In Section 2, we introduce the IoT 

enabling technologies and the principal emergency related applications. The research 

method is the subject of Section 3. Section 4 gives a UK based workflow of large-scale ER 

operations, while the information requirements for supporting these ER operations are 

derived in Section 5. A modified task-technology fit approach is proposed in Section 6 and 

employed in the analysis of using the IoT technology in ER operations to fulfill the identified 

information requirements. Section 7 provides insight into the research findings followed by 

limitations in Section 8. Conclusions and future research plans are given in Section 9. 

 

2 Technical background 

The IoT is a multi-disciplinary concept that involves research in the fields of hardware, 

near-field communication, networking, data fusion and decision making. Implementation of 

the IoT concept into the real world is through the integration of several enabling 

technologies belonging to these fields. We categorize these enabling technologies in terms 

of the levels of their competencies [29]: 

 Technology level – technologies for connecting real or virtual smart objects within the 

information infrastructure under strong energy and environmental constraints, i.e. individual 

wireless sensing capabilities; 

 Communication and networking level – technologies for providing the massive secure,  

dynamic and flexible communication networking; 

 Intelligence level – technologies for providing data fusion and service discovery where 
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data collected by individual smart ‘network enabled’ objects such as RFID and wireless 

sensors are used by distributed users.   

 

2.1 RFID and wireless sensor network technologies 

The most significant feature of the IoT is the capability of embracing everyday ‘things’ in the 

physical world in the Internet and enabling interaction between them. This feature is 

implemented through the key functionalities in the technology level being considered as 

identification and sensing. The interface between the physical and the digital worlds requires 

the capacity for the digital world to sense the physical world and to act on it. Continuous 

progresses in technologies in pervasive and ubiquitous computing such as RFID, sensors, 

wireless sensor networks (WSNs) are enabling some specific functionality to support the IoT. 

However, simply equipping objects with microchips and retrieving information at a local 

level is far from enough. These smart ‘network enabled’ objects extend beyond current 

‘simple’ sensors and RFID or the combination of these two. They are in particular, based on 

cheap and small wireless devices with sensing, acting, communication, and advanced signal 

and information processing capabilities.  

 

2.1.1 RFID 

RFID is an automatic identification technology, which identifies items and gathers data about 

items without human intervention. RFID is also a wireless technology, which allows item 

identification and data transmission without physical contact. The most basic components of 

an RFID system are readers and tags [30]. 
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Logistics is one of the main application areas to which RFID systems are considered to be 

particularly suitable. Researchers have shown that by using RFID, the status of material and 

vehicles can be autonomously tracked and monitored throughout the supply chain and in 

logistics centers so as to increase the visibility and delivery reliability in terms of correct 

material orders and timely deliveries [31]. More and more logistics centers [32-35] are 

adopting RFID systems to improve performance as RFID systems can accomplish real-time 

monitoring of almost every link in the logistics management and obtain related information 

in a timely and accurate way. For example, Wal-mart, the world’s largest retailer, has 

implemented RFID into its supply chain, which gives them the ability to know where every 

item is in the supply chain [33]. Staake et al. [35] has shown the potential of using RFID 

systems to protect products against theft and plagiarism. In hospital ER operations, RFID 

systems have been used in asset tracking and people localization [23, 36, 37]. RFID systems 

have also been used in humanitarian logistics center management [38], emergency response 

management [39], and building assessment for urban emergency response and recovery 

[40].  

 

2.1.2 WSNs 

Advanced research and development of wireless technology and digital electronic devices 

has led to the creation of low-cost, low power, multifunctional, small, devices called wireless 

sensors or sensing nodes with limited communication distances [41]. Large numbers of 

sensing nodes, which have the ability to communicate wirelessly, form what are called WSNs 
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[42, 43]. There are many types of wireless sensors depending on the type of sensing. A few 

safety related sensors for sensing are named here: temperature, smoke, gas concentration, 

pressure, mechanical stress levels on attached objects, and presence or absence of hazard 

materials, etc. One of the key advantages of WSNs is the capability of their sensor nodes. All 

sensor nodes are powered by batteries, and can be instantly deployed without needing any 

previously existing infrastructure.   

 

The services offered by a WSN can be obtained through cooperation between these wireless 

sensor nodes, and classified into monitoring, tracking, alerting, and information ‘on-demand’ 

[44, 45].  Sensor nodes can continuously monitor environmental parameters of their 

surroundings such as temperature in a room. Sensors can track the position of goods, 

important equipment and people in real-time, identifying a person or object in motion. 

Sensors can constantly monitor certain physical conditions and automatically alert the users 

of the system if an abnormal condition occurs. WSNs can serve as data sources and be 

queried about the actual level of a certain environmental parameter, providing information 

“on-demand”. These services make these wireless sensors and WSNs very useful for 

monitoring natural phenomena, detecting environmental changes, controlling security, 

estimating traffic flows, monitoring military applications, and tracking friendly forces in the 

battlefields [42]. 

 

WSNs have demonstrated their capability of improving the efficiency of ER, by application in 

emergency medical care [46], in-home healthcare [47], civil infrastructural health monitoring 
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[48], and emergency evacuation [49]. WSNs have great potential to provide ‘inside building’ 

information. Sensors that are battery-powered, light and cheap can be deployed in the 

building to monitor the environment, and they can transfer real-time information about the 

occurrence and spread of an incident (such as a fire) to outside the building [50]. Information 

on, for example, temperature, smoke ingress, and gaseous composition, can greatly increase 

the situational awareness of the first responders [51, 52].  

 

In summary, RIFD and WSN technologies make it possible to identify the ‘things’, sense the 

environment in the physical world, and build low cost and reliable solutions and services that 

enable the interconnection of various ‘things’ in the IoT.  

 

2.2 Wireless communication technologies and Service Oriented Architecture 

There are several standards for developing a WSN and a RFID network and for filling the gap 

between the physical world and the Internet for the IoT. The two commonly used ones are 

ZigBee [53] and 6LowPAN [43]. Both of them are implemented on top of the IEEE 802.15.4 

standard [54]. IEEE 802.15.4 technology is a low data rate, low power consumption, and low 

cost wireless networking protocol targeted towards automation and remote control 

applications. The standard defines characteristics of the physical and MAC (medium access 

control) layers for Low-Rate Wireless Personal Area Networks (LR-WPAN). The main 

advantages of LR-WPAN are ease of installation; reliable data transfer; short-range operation; 

extremely low cost; and a reasonable battery life, while maintaining a simple and flexible 

protocol stack [55]. The ZigBee standard is mainly used in lower powered communication 
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devices and in home and industrial applications. The IPv6 over low power wireless personal 

networks (6LowPAN) standard supports IPv6 and allows direct access to the low powered 

devices by assigning their own IP address. These two standards can work independently or 

be interconnected through interconnection technologies such as IPv6 stack for ZigBee [56] or 

ZigBee-IP [53]. 

 

Work has been also carried out to investigate the integration and interconnection of RFID 

and WSN technologies at the communication and networking level of the IoT. Liu [57] used a 

field bus to connect sensors and RFID readers to a central server, whilst Jedermann et al. [58] 

designed and implemented a freight agent module to integrate RFID and WSNs in a container 

for fruit logistics. A further improved system was presented by Yang et al. [38] to seamlessly 

integrate RFID, sensors and WSNs into a unified ZigBee RFID Sensor Network for 

humanitarian logistics centre management. However, most of the existing research focuses 

on a local system design and a single-site and single-purpose implementation. For supporting 

the global vision of the IoT, well-developed long distance wireless communication 

technologies such as 3G and WiMAX are needed to link the local sensing systems with the 

global Internet infrastructure to achieve the scalability and flexibility of serving multiple 

applications within the scope of a global distributed system. The mobile data terminal (MDT) 

is an emergency application solution specifically for UK police, ambulance services and 

emergency response services. The MDT solution is a ruggedized mobile laptop built and 

installed in fire engines, police cars and ambulances to suit the needs of an extreme 

environment. It has a reliable wireless connection via 3G using the Internet or intranet for 
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remote information access.      

 

Simply adopting the IoT enabling technologies such as RFID and WSN in a local system 

cannot, itself, fulfill the visions of the IoT. A global information infrastructure is required for 

the IoT. The architectures proposed for the IoT often follow the Service Oriented 

Architecture (SoA) approach, where complex and monolithic systems are decomposed into 

publishing, registering, and consuming application functionality, namely services [59]. 

Service producers and service consumers are not initially designed to fit together but are 

matched at run time by the SoA middleware. Advantages of the SoA approach include 

allowing for software and hardware reuse, because it does not impose a specific technology 

for the service implementation [60], and enhancing the flexibility and simplicity of the 

system because of the simple and well-defined components.   

 

2.3 Data fusion and information query technologies 

Data fusion is an information processing technique that aims at associating, combining, 

aggregating, integrating, and blending data from multiple sources, in order to improve the 

quality of data or provide better information than individually provided by the original data 

sources. Information query technologies can be used to obtain the required data. As a global 

technology the IoT has to provide solutions to distributed data fusion and global data query 

requests. Unfortunately these areas are less mature compared with the ones at the 

technology and communication levels.  
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Data fusion in the IoT can be considered at the decision level or the measurement level. In 

the first case, the sensor or RFID tag shares with its neighbors a local decision, for example 

an average value of several measurements, while in the second case they share their raw 

measurements, i.e. individual measured values. In terms of communication cost, the transfer 

of raw measurements is general more expensive than a decision. A trade-off between the 

communication cost and the quality of the decision may be necessary in the case of 

large-scale and sufficiently dense networks [29].  

 

The nature of the distributed data generated in, or collected from, the IoT has also 

stimulated the concept of a sensor network as a distributed database, which allows any user 

to issue a query to the sensor network as if it is a database system. Mechanisms to 

disseminate queries through the network can be realized in a centralized or decentralized 

way [61, 62]. In the first case, all data from each node in the network is sent to a large central 

database. Users can then simply query that database. It could be impractical for a large-scale 

and dense network because of the communication costs. In the second case, a sensor 

network only provides information on demand, which can be energy efficient when the 

query rate is less than the rate at which data is generated. Sensor web enablement (SWE) is a 

promising standard being developed for information query over the IoT with the aim of 

enabling the discovery of sensors and corresponding observations, exchange and processing 

of sensor observations, as well as the tasking of sensors and sensor network systems [61]. 

The term ‘sensor’ in SWE may include observation archives and simulation data in addition 

to physical sensors. 
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2.4 Characteristics of the IoT technology    

The fundamental characteristics of the IoT technology are summarized as follows: (i) the IoT 

is a global and real-time solution; (ii) it is mainly wireless oriented and able to provide 

comprehensive data about its surroundings in both indoor and outdoor environments; and 

(iii) it has the ability of remotely monitoring the environment and tracing or tracking objects.  

 

The first fundamental characteristic of the IoT technology is that it is a global and real-time 

solution. First, because the IoT technology is Internet-based or other wide-area 

network-based, the scope of the IoT has no physical boundary. Any object linked with the 

network can be incorporated into the IoT. Second, the data communication is real-time or 

almost real-time over the IoT. In that way it is different than traditional databases or web 

systems. 

 

The second characteristic of the IoT is that it is wireless and possesses the ability to provide 

comprehensive data about the surroundings. RFID sensor networks in the IoT integrate RFID 

networks and wireless sensor networks into a unified information infrastructure. No line of 

sight is required in RFID sensor networks for their sensing tasks. This feature significantly 

increases the richness of information. 

 

The third characteristic of the IoT is its ability to monitor the environment and trace and 

track objects. By combining the use of RFID sensor networks with other technologies such as 
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Global Positioning System (GPS) or infrared sensor detection, RFID sensor networks provide 

the ability of wireless, real-time monitoring and tracking of any tagged object in an indoor or 

outdoor environment to provide complete visibility of the resources. Such visibility enables 

instant response to any exception event, distributed information sharing among multiple 

organizations and multiple users, and resource distribution. 

  

3 Research methods 

The work presented in this paper is part of a completed large-scale multi-disciplinary ER 

research project in the UK (www.firesafetynet.org.uk). This project as a whole resulted in a 

novel Goal Directed Information Analysis (GDIA) tool for comprehensive user information 

requirements capturing [64] and a commercialized ER information system which is comprised 

of a set of wireless devices and software. This paper presents part of the results of the 

research project, in particular, the findings on how the IoT technology enhances ER 

operations in general. The key issues addressed in this study are: 

 understanding of three key rhythms in ER operations; 

 capturing the information required for, but not currently available to, the three 

rhythms; 

 investigating the ways IoT technology enhances ER operations by fulfilling the 

information required; 

 Identifying the strategic value of the IoT technology.            

 

http://www.firesafetynet.org.uk/
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A traditional inductive approach was adopted in this study. Induction is a ‘bottom up’ 

approach. The inductive theory approach begins with specific observation and evaluation in 

order to identify patterns, which are then articulated into tentative hypotheses. Then, based 

on these hypotheses, general conclusions are developed. Because of lack of control over 

parameters of the field studies such as the background of fire commanders and fire fighters, 

and the level of their ICT related experience and knowledge, this study is inductive in nature. 

The research approach was applied through four stages: preparation, data acquisition, data 

analysis, and theory induction. The preparation stage is comprised of both the IoT technical 

background review given in the previous section and the data acquisition preparation. 

Preparation for the data acquisition included securing access to three fire and rescue 

services (FRSs), and the design of the initial interview scripts and questionnaires. Data 

gathering methods included interviewing core emergency personnel, shadowing their 

training sessions, and administering a questionnaire to focus groups. The data analysis stage 

included translation and re-organization of the records from the data acquisition stage and 

comparative analysis stage. The theory induction stage was based on a modified 

task-technology fit approach [65] and mainly focused on mapping the IoT technology to the 

information required in ER operations as identified from both data acquisition and data 

analysis, and then deriving the value added from the mapping. 

        

The end user group included three emergency response services in the East Midlands region 

of the UK. They were the Leicestershire fire and rescue service (LFRS), Derbyshire fire and 

rescue service (DFRS), and Nottinghamshire fire and rescue service (NFRS). Data acquisition 
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was conducted over a 12 month period mainly by two researchers, one with an IS and 

emergency management background and the other one with an IoT background. Twenty 

semi-structured interviews at each FRS with their incident commanders, fire fighters, and 

staff in a command centre who are not directly involved in frontline duties were conducted. 

All the interviews were with one individual at a time and took 90 minutes on average with a 

set of pre-prepared interview questions addressing the above key research issues. 

 

As well as the interviews, three one-hour observations took place in fire fighter training 

sessions. These observations were used to validate the data collected from the interviews. 

Three focus groups were held with the majority of the emergency personnel who 

participated in the interviews. A forum for open discussion was provided and a 

questionnaire with 72 questions was administered to obtain quantitative information 

regarding the above research issues. The GDIA tool [64] was employed in the data 

acquisition and data analysis stages. 

 

4 Emergency response operations in the UK 

Like most of the countries in the world, the FRSs in the UK have to follow a set of strict work 

procedures in their ER operations, from handling an emergency call, to dispatching 

emergency response forces, to on-site preliminary situation assessment, and then to crisis 

response [66]. These procedures are extensively explained in all kinds of documents, some of 

which are available for access on the Internet. This section does not aim to provide a further 

illustration of the ER work practice which is available from many sources [14, 67, 68], but 
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identifies the change of priorities of first responders during the different stages of their 

operations. 

 

ER operations are triggered by 999 calls handled by a command centre of the FRS in the UK. 

The command centre has the ability to dispatch police cars, ambulances and fire engines. A 

certain number of fire engines from the nearest and available fire brigades are dispatched to 

the incident site. The incident commander, or another staff member assigned to arrive on 

scene, is responsible for making the decisions for scene management and for calling in 

additional help if required. Any incident site is physically separated into two parts - an inner 

and outer cordon. When the first responders arrive at the incident site they mount an inner 

cordon around the rescue zone into which only specially equipped and trained professionals 

are allowed [69]. One on-site command post is established to control the ER operations and 

coordinate the interoperation between all of the organisations present including the FRS, 

police and medical services. The FRS coordinates its own operations within the inner cordon. 

The medical services coordinate their activities together with the needs of the FRS and the 

services of the hospitals. The police coordinate their own activities and secure the boundary 

from access by the public. 

 

ER operations can be classified into three distinct rhythms. The initial rhythm is the 

mobilization rhythm in which the fire engines are dispatched by the command centre to the 

incident site. In this rhythm the priority of the fire crew is to confirm the information 

received from the command centre and prepare themselves mentally and physically for the 
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coming actions. The second rhythm is the preliminary situation assessment rhythm starting 

with the arrival of the fire crew at the incident site and ending with the completion of the 

preliminary situation assessment. The priority of the fire crew in this rhythm is to decide the 

tactical mode and to request additional resources. The third rhythm is the intervention 

rhythm starting when the physical intervention starts and ending at the completion of ER 

operations. The priority of the fire crew in this rhythm is reducing the loss caused by the 

disaster and ensuring the safety of the fire crew. There will be some overlap between the 

preliminary situation assessment rhythm and the intervention rhythm as some initial physical 

intervention may happen before the preliminary situation assessment is completed or even 

immediately on arrival. In most cases, police and ambulance services mainly take part in the 

intervention rhythm. This classification is similar in spirit to the one proposed by Landgren 

[67], but with a different definition of the second and third rhythms and the recognition of 

possible time overlap between these two rhythms.  

      

5 Information required for supporting ER operations 

There is rich literature identifying information requirements to meet the needs of first 

responders in their ER operations. Focusing on a Dutch case, Diehl et al. [14] investigated 

user requirements for the work of the different actors in emergency response including 

police, fire brigade, ambulance, and municipalities and other institutions. They highlighted 

the importance of getting real-time and dynamic information about the crisis and exchanging 

information between different partners at different administrative levels. Starting with 

specific user requirements collected in Calabria, de Leoni et al. [70] presented more general 
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user requirements for supporting communication between control rooms (back-end centers) 

and on-site rescue teams (front-end teams). Forty two requirements previously identified in 

emergency and incident management have been ranked in terms of their priorities by 

Robillard and Sambrook [71]. Using the GDIA [64] information capturing tool, four general 

categories of information for the UK first responders to support ER operations to a variety of 

disasters were elicited and a comprehensive list of information requirements of four core 

members of FRS were given in Yang et al. [52] as part of the research results of the national 

research project to which this work belongs.    

 

To further describe and classify user requirements, this section provides a tabular model of 

the information requirements for ER operations, as shown in Table 1. The tabular model 

presents the information requirements in two dimensions with multiple views. Horizontally, 

it separates the requirements into two parts: one for front-end teams and another for 

back-end teams. Front-end teams are directly involved in frontline duties, while back-end 

teams are located in a command centre which is geographically away from the incident scene. 

Then the requirements for front-end teams are further classified into mobilization rhythm, 

preliminary situation assessment rhythm and intervention rhythm in terms of the operation 

stages in which the information are requested. The components in the vertical dimension 

include priority of the tasks, category of information, requester of the information, source of 

information, richness of information, and importance in real-time. For major disasters, the 

situation might be more complicated than what is described above. For example, some 

emergency response organizations may join ER operations directly in the intervention 
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rhythm. Nevertheless, the requirements for front-end teams will be still classified as the ones 

shown in Table 1.       

 

Insert Table 1 here  

 

In the above tabular model, environmental conditions refer to any information about the 

incident scene such as the building structure, the number of occupants or the exact location 

of any hazard, the trapped victims and the fire fighters inside the building, etc. Information 

on response participants include who they are and what expertise they are providing. Status 

of causalities includes the number of causalities, locations, causes and severity, etc. Available 

resources may include important equipment, food, medicine, and other resources present at 

the incident scene.  

 

The information characteristics described in the above model can be summarized from the 

field studies as follows: 

 First responders usually have little information about the actual incident status during 

the mobilization rhythm. 

 First responders have little knowledge of what the situation is inside a premise during 

the preliminary situation assessment rhythm. 

 Maintaining the accountability of resources and personnel and tracing their exact 

locations is not always achievable but essential. 

 Decisions could be made much more efficiently and accurately if better situational 
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awareness through multiple sources of information is achieved during the intervention 

rhythm. 

 Resource allocation is a primary task for incident commanders and their command 

centre, but is often carried out less optimally due to the lack of the visibility of resources on 

the scene or dispatched to other places prior to the incident.   

 

6 Task-technology fit analysis 

6.1 Task-technology fit approach 

The task-technology fit approach is applied in this section to link the IoT technology with the 

information requirements identified and to investigate the ways the IoT can enhance ER 

operations. 

A task-technology fit (TTF) approach was suggested by Goodhue and Thompson [65] to 

understand the linkage between information systems and individual performance. A basic 

TTF model is illustrated in Fig. 1. In this model, task characteristics refer to the actions carried 

out by individuals, while technology characteristics refer to the technology used by 

individuals to perform their tasks. Task-technology fit is a degree to which a technology 

assists an individual in carrying out his or her tasks. Performance impacts relates to the 

accomplishment of a portfolio of tasks by an individual. Higher performance implies some 

mix of improved efficiency, improved effectiveness and/or higher quality. 

Insert Fig. 1 here 
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Insert Fig. 2 here 

In this study we adopt the idea of TTF, but replace ‘task’ with ‘information requirements’ and 

‘technology’ with ‘IoT technology’ in the basic model. We also use ‘strategic value’ to replace 

‘performance impacts’ as the IoT technology is new to emergency organizations and has not 

yet been fully implemented in ER operations. Therefore a simplified model for investigating 

the ways the IoT technology enhance ER operation is proposed in Figure 2. For the sake of 

the simplicity, we rename ‘Information requirements-IoT technology fit’ as 

‘requirements-technology fit’. In this model, the following two hypotheses are proposed 

following the TTF principle: 

Hypothesis 1 (H1): Adopting the IoT technology to deal with the information requirements 

will have a positive impact in determining the fit between the information requirements and 

the IoT technology.  

Hypothesis 2 (H2): The fit between the information requirements and the IoT technology will 

have an impact in determining the strategic value of the IoT technology in ER operations. 

6.2 Measurement 

Table 2 summarizes the attributes used to measure the characteristics of the information 

requirements, the IoT technology, requirements-technology fit, and strategic values. 

Information requirements characteristics and IoT technology characteristics were derived 

from the analysis described in Sections 5 and 2. The aspects of requirements-technology fit 

considered were derived from the literature on ERIS design.  The first three aspects were 
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design issues from Jiang et al. [72]: accountability, assessment of situation, and resource 

allocation. The fourth aspect was one of the design premises from Turoff et al. [12] – 

coordination. Research has shown many benefits of adopting IoT related technologies such 

as RFID [73-76], WSN [44], mobile communication [15] in emergency management and 

logistics management. Three generic performance impacts, effectiveness, performance and 

productivity, were suggested by Goodhue & Thompson [65]. Five benefits (reduced response 

time, efficient tagging and tracking, compatibility, reduced labor cost, and robustness), were 

proposed by Ahmed and Sugianto [75], which were expected to be realized by adopting RFID 

in emergency management. Li and Visich [73] and Tajima [74] compiled a comprehensive list 

of benefits across the supply chain by using RFID technologies, such as reduced shrinkage, 

reduced material handling and lower inventory. The aspect of strategic value in the current 

study is derived from these works but is more abstract and more detailed than described in 

the earlier literature. The final components of strategic value are (i) efficient cooperation 

between various organizations, (ii) accurate situational awareness and complete visibility of 

disaster development, and (iii) complete visibility of response forces and their remaining 

capability. It is more abstract in the sense that we focus on those benefits achieved by using 

only the IoT technology as an entire solution rather than using individual elements of the IoT 

related technology in certain independent applications.  It is also more detailed in the sense 

that the strategic benefits achieved are application-specific for ER operations rather than for 

generic emergency management, logistics supply chain management, policing or 

environment monitoring. 

Insert Table 2 here  
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Unlike the ordinary task-technology fit approach, this study does not measure the individual 

attributes listed in Table 1 and therefore, we are unable to statistically test the proposed 

hypothesizes (H1 and H2). This is because of limited research resources. Instead, we directly 

measure the relationships between information requirements characteristics (IRC), IoT 

technology characteristics (ITC), requirements-technology fit (RTF), and strategic values (SV) 

through a questionnaire. For the field studies, the questions in the questionnaire took two 

types of formats. The questions that tested H1 used Format 1, and the questions that tested 

H2 used the Format 2 (both shown below). 

 

Format 1: If ITCj ( j=1, 2, 3) is adopted in ER operations to deal with IRCi (i=1, 2, 3, 4, 5), how 

much do you agree RTFk (k=1, 2, 3, 4) will be achieved? 

 

Format 2: If RTFi ( i=1, 2, 3, 4) is true, how much do you agree SVj (j=1, 2, 3) will be achieved? 

 

The questionnaire is comprised of 72 questions, in which 60 questions ( 5 4 3  ) used 

Format 1 and 12 questions ( 4 3 ) used Format 2. Sixty emergency personnel, including 

incident commanders and fire fighters, participated in the questionnaire. All of the answers 

to the questions in the questionnaire were measured on a 5-point Likert-type scale with the 

two extremes of ‘strongly disagree=1’ and ‘strongly agree=5’. This kind of adaptation is not 

uncommon in this type of task-technology fit research work.  

 

The answers to the questionnaire are summarized in Tables 3 and 4, named effect matrix, 
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where the rows in Table 3 indicate the five information requirements characteristics IRCi (i=1, 

2, 3, 4, 5), and the columns indicate the four requirements-technology fits RTFk (k=1, 2, 3, 4). 

Each RTF column is further divided into the three IoT technology characteristics ITCj ( j=1, 2, 

3). Each cell in Table 3 is the mean of the answers to the corresponding question using 

Format 1. For example, ‘if ITCj is adopted to deal with IRCi,’ the mean of the answers to RTFk 

is recorded at cell ( ,( 1) 3 )i k j   . Similarly, the rows in Table 4 indicate 

requirements-technology fit RTFi ( i=1, 2, 3, 4), and the columns indicate strategic values SVj 

(j=1, 2, 3). Each cell in Table 4 is the mean of the answers to the corresponding questions 

using Format 2. For example, if RTFi is true, the mean of the answers of SVj being achieved is 

recorded at cell ( , )i j . 

 

Insert Table 3 here 

 

Insert Table 4 here  

 

6.3 Results analysis 

The effect matrixes in Tables 3 and 4 illustrate the degree to which the IoT technology assists 

ER operations in fulfilling information requirements and generating strategic value, 

respectively. In order to simplify the results analysis, we apply the following transfer function 

to each cell of these two effect matrixes, 

1, 4
( )

0, 4

value of cell
Binary value of cell

value of cell
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Therefore, Tables 3 and 4 are then transformed into two binary effect matrixes (Tables 5 and 

6.) The cells with ‘1’ show that the degree of agreement is ‘agree’ or ‘strongly agree’, and the 

cells with ‘0’ show that the degree of agreement is ‘neutral’ or ‘disagree’, or ‘strongly 

disagree’. We argue that starting with the 5-point Likert-type scale and then transforming to 

the binary scale is more accurate than directly measuring the answers to the questionnaire in 

a binary scale, i.e. agree (1) or disagree (0). 

Insert Table 5 here 

Insert Table 6 here 

The results analysis in terms of the binary effect matrix can be carried out in the following 

two steps: 

Step 1: Check each role in the binary effect matrix.  If there is a zero row, i.e. all the cells in a 

row are zero, then the attribute corresponding to the zero row has no impact on any column 

attribute; otherwise, all of the row attributes have impact on the column attributes.   

Step 2: Check each column in the binary effect matrix.  If there is a zero column, i.e. all the 

cells in a column are zero, then the entire row attributes have no impact on the attribute 

corresponding to the zero column; otherwise, all of the column attributes can be achieved. 

There is a special step for Table 5 due to the three characteristics involved, that is: 

Step 3: If there is at least one none zero column in a RTF section, this particular RTF attribute 

is achievable; otherwise, unachievable. 
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By applying the above Steps 1 and 3 to Table 5, we can conclude: (a) all the 

requirements-technology fits (RTF1, RTF2, RTF3, RTF4) are achievable as there is at least one 

non-zero column in each RTF section; (b) all the information requirements characteristics 

(IRC1, IRC2, IRC3, IRC4, IRC5) can be handled with a certain number of IoT technology 

characteristics (ITC) and contribute to one or more requirements-technology fit (RTF) 

attributes as there does not exist a zero row in Table 5. Therefore, Hypothesis H1 is supported. 

In detail: 

  Accountability of resources and personnel (RTF1) is achieved by  

o the global and real-time IoT characteristic (ITC1), dealing with the lack of 

information on the way to scene (IRC1), and maintaining the accountability of 

resources and personnel (IRC3), and  

o the IoT ability of monitoring, tracing and tracking objects (ITC3), dealing with the 

lack of information on the way to scene (IRC1), and inside a premise (IRC2), and 

maintaining the accountability of resources and personnel (IRC3).  

 Assessment of the situation (RTF2) is achieved by  

o the global and real-time IoT characteristic (ITC1), dealing with situational 

awareness (IRC4), and 

o the IoT ability of both providing comprehensive type of environmental 

information (ITC2) and providing monitoring, tracing and tracking objects (ITC3), 

dealing with the lack of information inside a premise (IRC2), maintaining the 
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accountability of resources and personnel (IRC3), and situational awareness (IRC4).  

 Resource allocation (RTF3) is achieved by  

o the global and real-time IoT characteristic (ITC1), dealing with maintaining the 

accountability of resources and personnel (IRC3), and the lack of the visibility of 

resources on scene or dispatched to other places early (IRC5), and 

o the IoT ability of monitoring, tracing and tracking objects (ITC3) dealing with the 

lack of information on the way to scene (IRC1), maintaining the accountability of 

resources and personnel (IRC3), and the lack of the visibility of resources on scene 

or dispatched to other places early (IRC5).  

 Coordination among different participating organizations (RTF4) is achieved by 

o the global and real-time IoT characteristic (ITC1) and the IoT ability of both 

providing comprehensive type of environmental information (ITC2) and providing 

monitoring, tracing and tracking objects (ITC3) dealing with situational awareness 

(IRC4).    

Similarly, by applying the above Steps 1 and 2 to Table 6, we can conclude: all the strategic 

values (SV1, SV2, and SV3) are achievable as there are no zero columns in Table 6, i.e. 

Hypothesis H2 is supported. In detail, efficient cooperation between various organizations 

(SV1) and complete visibility of response forces and their remaining capability (SV3) are 

achieved through accurate and real-time accountability of resources and personnel (RTF1), 

well-supported resource allocation (RTF3), and well-supported coordination by the ERIS 
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(RTF4). Similarly, accurate situational awareness and complete visibility of disaster 

development (SV2) is achieved through well-supported indoor and outdoor situation 

assessment (RTF2).    

7 Research findings 

In this paper we have explored how the IoT technology might enhance ER operations by 

meeting their information requirements and what strategic value can be obtained. Four 

attributes of requirements-technology fit and three of strategic value were chosen because 

they are extremely prominent in the literature, and are also very much at the forefront of UK 

ER operations. However, it must be recognized that the list of the attributes of 

requirements-technology fit and strategic value is by no means complete.  Every new IoT 

implementation, and its applications in different categories of ER operations, will be very 

different, and therefore may require a different requirements-technology fit attribute or 

similar attributes in a modified form, and may generate a different strategic value attribute. 

Attributes of requirements-technology fit actually indicate opportunities for the IoT 

technology to facilitate ER operations, and taking these opportunities may add value to ER 

operations. 

 

The research findings of this paper support the two hypotheses in our proposed research 

model for the IoT technology in Fig.2, as described below: 

Supported Hypothesis 1 - The IoT technology can enhance ER operations from the following 

four perspectives.   
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(i) Accountability of resources and personnel. Accurate and real-time accountability ensures 

that there is an accurate count of resources and personnel on the scene or on the way to the 

scene. A lack of accountability can lead to dangerous situations where it is not recognized 

that resources or personnel are missing [72]. The IoT technology provides a global and 

real-time solution for monitoring, tracing and tracking resources and personnel on the scene, 

even inside a premise or on the way to the scene. This solution not only works in outdoor 

environments with high-visibility, but also in indoor environments in poor-visibility 

conditions [77]. Therefore the IoT technology offers accurate and real-time accountability of 

resources and personnel to ER operations.  

(ii) Assessment of the situation. Enhanced situational awareness leads to better 

decision-making in ER operations [1]. The IoT technology possesses the ability to provide 

real-time and comprehensive data about the incident scene via wireless sensor networks, 

RFID and other techniques. Therefore, fast and accurate situational awareness can be 

achieved by gathering these comprehensive data and presenting them to emergency 

personnel [50, 52].    

(iii) Resource allocation. Effective ER operations rely on sufficient supplies of emergency 

responding personnel and resources [38]. The IoT technology provides for visibility of 

response personnel and their remaining resources through its ability of remote monitoring, 

tracing and tracking. Therefore resources can be most efficiently allocated and delivered to 

the disaster scene. Furthermore, resource allocation increases the capability of ER 

operations by making the limited resources available to more ER operations. This finding 

extends the IoT application from mainly logistics supply chain management to dynamic 
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resource allocation. 

(iv) Multi-organizational coordination. ER operations require the participation of a wide 

range of organizations, including fire brigades, police forces, ambulance services, local or 

national public sectors, and humanitarian aid organizations, etc. Extensive information and 

resource sharing between separate organizations is crucial to the success of ER operations 

[78]. The IoT technology provides real-time information on disaster development and the 

remaining resources of each participating organization, as well as an information sharing 

infrastructure. Multi-organizational coordination could be well supported by the rich 

information provided by the IoT information infrastructure. 

 

Supported Hypothesis 2 - ER operations enhanced by the above four perspectives can 

achieve the following three aspects of strategic value: (i) efficient cooperation between 

various organizations; (ii) accurate situational awareness; and (iii) complete visibility of 

response forces and their remaining capabilities. Strategic value is realized in three ways: 

information sharing, information retrieving, and information explanation, and contributed to 

by the characteristics of the IoT technology.     

 

Based upon the above analysis, it can be argued that this paper makes a number of 

important contributions to both IoT and ER communities in terms of what opportunities are 

offered to the IoT technology, and how and why the IoT technology can enhance ER 

operations. The two supported hypotheses illustrate the usefulness of the IoT in ER 

operations. 
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8 Limitations 

There are four limitations to this study. First, much of the literature integrates the 

task-technology (TTF) model with the technology acceptance model (TAM) and discusses 

determinants of users’ intention to adopt a particular technology [79, 80]. This paper does 

not discuss technology acceptance issues under the assumption that the IoT technology 

would be adopted by first responders if available. Our future work will examine this 

assumption in detail by incorporating TAM with TTF. Second, the effect matrixes in Tables 3 

and 4 directly record the potential impact between causal attributes and consequent 

attributes, which makes the analysis of results much simpler than if path analysis and 

structural equation modelling were used (SEM) [81]. Also, the three individual attributes of 

IRC, ITC and RTF are combined in a single question, and some of the respondents may find it 

difficult to answer the questions. This limitation could be overcome by providing the 

respondents a clear explanation for each question. Third, like other task-technology fit 

approaches, candidate attributes shown in Table 1 such as possible strategic value and 

requirements-technology fit, must be proposed before any test takes place. There is a no 

systematic way to derive possible strategic value and requirements-technology fit. Finally, we 

did not use statistic analyses such as factor loading, composite reliability and regression 

coefficient calculation in this study as we did not intend to build a structural equation model 

and quantitatively test the hypotheses (H1 and H2). Because of this simplification, this study 

is not able to provide a statistical test result for each hypothesis. We classify this modified 

task-technology fit approach as one between quantitative and qualitative studies.    
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9 Conclusions and future work 

The IoT technology has many positive impacts on every stage of ER operations from the 

mobilization rhythm, preliminary situation assessment rhythm, all the way to the 

intervention rhythm. It enhances cooperation between various participating organisations, 

improves situational awareness, and enables complete visibility of response force and their 

remaining resources, thus providing for faster and more efficient and effective ER operations.  

 

This paper presents a novel and simple way of analyzing and understanding how the IoT 

technology enhances ER operations and what strategic value can be obtained by assessing 

the fit between the IoT technology and the information requirements of ER operations 

through a modified task-technology fit analysis. We argue that this paper makes 

contributions to knowledge from both theoretical and practical perspectives. From a 

theoretical perspective, this paper contributes to knowledge by proposing a modified 

task-technology fit approach which is simple and does not need rigorous statistic analysis. 

From a practical perspective, this paper contributes to knowledge by introducing the IoT 

technology to the ER community and by identifying the ways the IoT technology enhances ER 

operations and the strategic value which may be realized.  

 

As discussed previously, technology acceptance issues must be taken in consideration in 

future work. It was evident from Yang et al. [11] that fire and other emergency personnel 

have an almost paradoxical relationship with new technologies. Many of them lack the 

incentive to use new technologies in real operations, and are worried about the reliability 



37 
 

and procrastinate in adopting them. Alleviating this fear of emergency personnel could 

directly contribute to the acceptance of the IoT technology in ER operations. Another 

obstacle which slows down, if not stops, the adoption of the IoT technology in ER operations 

is the potential for security risks. Emergency personnel will resist the IoT as long as public 

confidence that it will not cause serious threats to privacy and information security is lacking. 

Generally speaking, the possible threats of a widespread adoption of such a technology are 

that ‘to the extent that everyday objects become information security risks; the IoT could 

distribute those risks far more widely than the Internet has to date’ [19]. The IoT is extremely 

vulnerable to attacks because of characteristics such as being wireless, having unattended 

components, and possessing low capabilities in terms of both energy and computing 

resources and thus, complex security measures cannot be implemented. 

 

In closing, we anticipate that research on the IoT technology will continue to evolve over the 

next decade. More characteristics of the IoT technology such as new sensing, communication 

and information processing and data query over the IoT may become available. New 

approaches and models for systems support of managing emergencies and the information 

required, e.g. WIFA described in [12, 13] may become available that can benefit from the use 

of the IoT technology.  Investigation into the use of this technology in ER operations should 

include a variety of approaches, reflecting methodologies using both technical and 

non-technical perspectives.   
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Table 1 A tabular model of information requirements for ER operations. 

 Front-end Back-end 

(command 

centre) 

Mobilization Preliminary 

situation 

assessment 

Intervention 

Priority of 

the tasks 

Prepare first 

responders 

and make 

sense of what 

will face them 

upon arrival 

Decide the 

tactical mode 

and the 

request of 

additional 

resources 

Reduce the loss 

caused by the 

accident and 

ensure the 

safety of the fire 

crew 

Optimize 

resource 

allocation and 

dispatch 

Category of 

information 

Environmental 

conditions 

Environmental 

conditions, 

available 

resources 

Environnemental 

conditions, 

information on 

response 

participants, 

status of 

casualties,  

available 

resources 

Environnemental 

conditions, 

information on 

response 

participants, 

status of 

casualties,  

available 

resources 

Requester of 

the 

information 

Incident 

commanders, 

fire fighters 

Incident 

commanders 

Incident 

commanders, 

fire fighters 

The command 

centre 

Source of 

information 

Command 

centre, central 

database, 

physical 

sensors 

installed in the 

incident scene, 

Internet 

Local people, 

physical 

sensors 

installed in the 

incident scene 

Local people, 

on-site officers, 

physical sensors 

installed in the 

incident scene 

Non emergency 

personnel, 

on-site officers, 

central 

database, 

Internet 

Richness of 

information 

Low Medium Medium High 

Importance 

in real-time 

Important Very important Extreme 

important 

Less important 
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Table 2 Attributes used for measurement. 

Attributes used for measurement 

Information requirements characteristics (IRC) 

First responders have little information about the accident on the way to scene (IRC1). 

First responders have little knowledge of the situation inside a premise (IRC2). 

Maintaining the accountability of resources and personnel and tracing their exact location 

is crucial but not always achievable (IRC3). 

Decision could be made much efficiently and accurately if better situational awareness 

through multiple sources of information is achieved (IRC4). 

Resource allocation is often carried out less optimally due to lack of the visibility of 

resources on scene or dispatched to other places early (IRC5).  

IoT technology characteristics (ITC) 

IoT technology is a global and real-time solution (ITC1). 

IoT technology possesses the ability to wirelessly provide comprehensive type of data 

about the surroundings (ITC2). 

IoT technology possesses the ability to monitor the environments and trace and track 

objects (ITC3). 

Requirements-technology fit (RTF) 

Accountability of resources and personnel on scene or on the way to scene is always 

up-to-date and accurate (RTF1).  

Assessment of the situation, regardless of indoor or outdoor environments, is well 
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supported by multiple sources of information (RTF2). 

Resource allocation is well supported by the visibility of response forces and their 

remaining capability (RTF3). 

Coordination among various participating organizations is well supported by the ERIS 

(RTF4). 

Strategic value (SV) 

Efficient cooperation between various organizations (SV1).  

Accurate situational awareness and complete visibility of disaster development (SV2). 

Complete visibility of response forces and their remaining capability (SV3). 

 

 

Table 3 Effect matrix between information requirements characteristics, IoT technology 

characteristics and requirements-technology fit 

 H1 RTF1 RTF2 RTF3 RTF4 

ITC1 ITC2 ITC3 ITC1 ITC2 ITC3 ITC1 ITC2 ITC3 ITC1 ITC2 ITC3 

IRC1 4.25 3.2 4.85 2.5 2.1 2.4 1.5 1.3 4.2 3.2 2.25 1.25 

IRC2 2.85 2.2 4.4 3.36 4.95 4.2 2.2 2.35 3.24 1.35 1.25 2.95 

IRC3 4.95 3.0 4.85 3.25 4.1 4.85 4.35 3.1 4.35 2.95 3.1 3.15 

IRC4 2.38 3.18 2.15 4.05 4.98 4.98 2.0 3.48 3.26 4.35 4.45 4.1 

IRC5 1.85 1.55 1.5 2.15 1.95 3.1 4.2 3.21 4.98 2.45 2.12 2.98 
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Table 4 Effect matrix between requirements-technology fit and strategic value 

H2 SV1 SV2 SV3 

RTF1 4.25 2.25 4.85 

RTF2 2.5 4.95 3.25 

RTF3 4.35 2.25 4.90 

RTF4 4.85 3.30 4.20 

 

Table 5 Binary effect matrix between information requirements characteristics, IoT 

technology characteristics and requirements-technology fit 

H1 RTF1 RTF2 RTF3 RTF4 

ITC1 ITC2 ITC3 ITC1 ITC2 ITC3 ITC1 ITC2 ITC3 ITC1 ITC2 ITC3 

IRC1 1 0 1 0 0 0 0 0 1 0 0 0 

IRC2 0 0 1 0 1 1 0 0 0 0 0 0 

IRC3 1 0 1 0 1 1 1 0 1 0 0 0 

IRC4 0 0 0 1 1 1 0 0 0 1 1 1 

IRC5 0 0 0 0 0 0 1 0 1 0 0 0 
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Table 6 Binary effect matrix between requirements-technology fit and strategic value 

H2 SV1 SV2 SV3 

RTF1 1 0 1 

RTF2 0 1 0 

RTF3 1 0 1 

RTF4 1 0 1 
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Fig. 1. The basic task-technology fit model. 
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Fig. 2. Proposed research model for the IoT technology. 
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