39 research outputs found

    PENENTUAN CAIRAN INFUS MASUK KE PASIEN SECARA OTOMATIS LEWAT PARAMETER BERAT MENGGUNAKAN JARINGAN NIRKABEL

    Get PDF
    Infus intravena dengan metoda gravity drip IV delivery adalah salah satu perawatan yang paling umum diberikan kepada pasien, khusus yang sedang menjalani operasi, dalam keadaan koma, kasus demam berdarah dan lainnya. Pemantauan berkelanjutan pada pasien merupakan faktor utama untuk penentu kualitas hasil perawatan. Parameter pemantauan adalah banyaknya cairan infus yang sudah masuk ke tubuh pasien, dan banyaknya cairan yang tersisa pada sistem infus.  Informasi ini sangat dibutuhkan perawat untuk memberikan perawatan. Makalah membahas tentang inovasi untuk memonitor banyaknya cairan infus yang telah masuk ke tubuh pasien, dengan memonitor sisa berat cairan pada sistem infus. Volume cairan infus yang masuk ke tubuh pasien berbanding lurus dengan nilai berat hasil kalkulasi. Nilai berat tersebut adalah selisih berat awal cairan infus terhadap berat cairan yang masih tersisa dalam sistem infus. Perangkat ini menimbang cairan infus beserta kemasannya selama proses terapi, dan memonitor berkurangnya berat karena cairan telah masuk ke dalam tubuh pasien. Perangkat terdiri dari sebuah loadcell beserta strain-gauge, analog-to-digital converter HX711, single board computer Raspberry PI model 3B+, layar sentuh, dan jaringan nirkabel untuk menghubungkan dengan sistem pemantauan terpusat.   Intravenous infusion with IV drip delivery method is one of the most common treatments given to the patients, especially those whose undergo surgery, in a coma, cases of dengue fever and others. Continuous monitoring of patients is a significant factor determining the quality of care outcomes. The monitoring parameter is the amount of infusion fluid that has entered the patient's body, and the amount of fluid left in the infusion system. This information is vital to the nurses for providing care. The paper discusses the innovation to monitor the amount of infusion fluid that has entered the patient’s body by monitoring the weight of fluid remaining in the infusion system. The volume of infusion fluid that enters the patient's body is directly proportional to the weight value of the calculation results. The weight value is the difference between the initial weight of the infusion fluid and the amount of fluid remaining in the infusion system This device measures the reduction of intravenous fluids weights due to fluids that entering the patient's body. The device consists of a load cell along with strain-gauges, an analog-to-digital converter HX711, a single board Raspberry PI 3B + model, a touch screen and wireless network to connect with a centralized monitoring system

    PENENTUAN CAIRAN INFUS MASUK KE PASIEN SECARA OTOMATIS LEWAT PARAMETER BERAT MENGGUNAKAN JARINGAN NIRKABEL

    Get PDF
    Infus intravena dengan metoda gravity drip IV delivery adalah salah satu perawatan yang paling umum diberikan kepada pasien, khusus yang sedang menjalani operasi, dalam keadaan koma, kasus demam berdarah dan lainnya. Pemantauan berkelanjutan pada pasien merupakan faktor utama untuk penentu kualitas hasil perawatan. Parameter pemantauan adalah banyaknya cairan infus yang sudah masuk ke tubuh pasien, dan banyaknya cairan yang tersisa pada sistem infus.  Informasi ini sangat dibutuhkan perawat untuk memberikan perawatan. Makalah membahas tentang inovasi untuk memonitor banyaknya cairan infus yang telah masuk ke tubuh pasien, dengan memonitor sisa berat cairan pada sistem infus. Volume cairan infus yang masuk ke tubuh pasien berbanding lurus dengan nilai berat hasil kalkulasi. Nilai berat tersebut adalah selisih berat awal cairan infus terhadap berat cairan yang masih tersisa dalam sistem infus. Perangkat ini menimbang cairan infus beserta kemasannya selama proses terapi, dan memonitor berkurangnya berat karena cairan telah masuk ke dalam tubuh pasien. Perangkat terdiri dari sebuah loadcell beserta strain-gauge, analog-to-digital converter HX711, single board computer Raspberry PI model 3B+, layar sentuh, dan jaringan nirkabel untuk menghubungkan dengan sistem pemantauan terpusat.   Intravenous infusion with IV drip delivery method is one of the most common treatments given to the patients, especially those whose undergo surgery, in a coma, cases of dengue fever and others. Continuous monitoring of patients is a significant factor determining the quality of care outcomes. The monitoring parameter is the amount of infusion fluid that has entered the patient's body, and the amount of fluid left in the infusion system. This information is vital to the nurses for providing care. The paper discusses the innovation to monitor the amount of infusion fluid that has entered the patient’s body by monitoring the weight of fluid remaining in the infusion system. The volume of infusion fluid that enters the patient's body is directly proportional to the weight value of the calculation results. The weight value is the difference between the initial weight of the infusion fluid and the amount of fluid remaining in the infusion system This device measures the reduction of intravenous fluids weights due to fluids that entering the patient's body. The device consists of a load cell along with strain-gauges, an analog-to-digital converter HX711, a single board Raspberry PI 3B + model, a touch screen and wireless network to connect with a centralized monitoring system

    Development of a prototype sensor-integrated urine bag for real-time measuring.

    Get PDF
    The urine output is a rapid bedside test for kidney function, and reduced output is the common biomarker for an acute kidney injury (AKI). The consensus definition of the symptom is used urine output <0.5 ml/kg/hour for ≥6 hours to define AKI. If a patient is suspected to have this problem, the urine output monitoring needs to be done hourly, and this task consumes a lot of time, and easily affected by human errors. Moreover, available evidences in literatures indicate that more frequent patient monitoring could impact clinical decision making and patient’s outcome. However, it is not possible for nurses to dedicate their precious time manually up to minute manually measurements. To date, there is no reliable device has been used in the clinical routine. From the literatures, only a few automated devices were found with the ability to automatically monitor urine outputs, and could reduce nurse workload and at the same time enhance work performance, but these still have some limitations to measure human urine. In this thesis presents the development and testing for such a device. The research was aimed at building a prototype that could be measured a small amount of urine output, and transit information via wireless to a Cloud database with inexpensive and less complex components. The concept is to provide a real-time measurement and generates data records in Cloud database without requiring any intervention by the nurse. The initial experiment was done measure small amount of liquid using a dropvolume calculation technique. An optical sensor was placed in a medical dropper to record number of counted-drops, the Mean Absolute Percent Error from the test is reported ±3.96% for measuring 35 ml of liquid compared with the ISO standard. The second prototype was developed with multi-sensors, including photo interrupter sensor, infrared proximity sensor, and ultrasonic sensor, to detect the dripping and urine flow. However, the optical sensor still provided the most accuracy of all. The final prototype is based on the combination of optical sensor for detecting drops to calculated urine flow rate and its volume, and weight scales to measurement the weight of collected urine in a commercial urine meter. The prototype also provides an alert in two scenarios; when the urine production is not met the goals, and when the urine container is almost full, the system will automatically generate alarms that warn the nurse. Series of experimentation tests have been conducted under consultant of medical professional to verify the proper operation and accuracy in the measurement. The results are improved from the previous prototype. The mean error found of this version is 1.975% or ≈ ±1.215 ml. when measure 35ml of urine under the average density value of urine (1.020). These tests confirm the potential application of the device by assisting nurse to monitor urine output with the accuracy in the measurement. The use of the Cloud based technology has not been previously reported in the literature as far as can be ascertained. These results illustrated the capability, suitability and limitation of the chosen technology

    New generation of interactive platforms based on novel printed smart materials

    Get PDF
    Programa doutoral em Engenharia Eletrónica e de Computadores (área de Instrumentação e Microssistemas Eletrónicos)The last decade was marked by the computer-paradigm changing with other digital devices suddenly becoming available to the general public, such as tablets and smartphones. A shift in perspective from computer to materials as the centerpiece of digital interaction is leading to a diversification of interaction contexts, objects and applications, recurring to intuitive commands and dynamic content that can proportionate more interesting and satisfying experiences. In parallel, polymer-based sensors and actuators, and their integration in different substrates or devices is an area of increasing scientific and technological interest, which current state of the art starts to permit the use of smart sensors and actuators embodied within the objects seamlessly. Electronics is no longer a rigid board with plenty of chips. New technological advances and perspectives now turned into printed electronics in polymers, textiles or paper. We are assisting to the actual scaling down of computational power into everyday use objects, a fusion of the computer with the material. Interactivity is being transposed to objects erstwhile inanimate. In this work, strain and deformation sensors and actuators were developed recurring to functional polymer composites with metallic and carbonaceous nanoparticles (NPs) inks, leading to capacitive, piezoresistive and piezoelectric effects, envisioning the creation of tangible user interfaces (TUIs). Based on smart polymer substrates such as polyvinylidene fluoride (PVDF) or polyethylene terephthalate (PET), among others, prototypes were prepared using piezoelectric and dielectric technologies. Piezoresistive prototypes were prepared with resistive inks and restive functional polymers. Materials were printed by screen printing, inkjet printing and doctor blade coating. Finally, a case study of the integration of the different materials and technologies developed is presented in a book-form factor.A última década foi marcada por uma alteração do paradigma de computador pelo súbito aparecimento dos tablets e smartphones para o público geral. A alteração de perspetiva do computador para os materiais como parte central de interação digital levou a uma diversificação dos contextos de interação, objetos e aplicações, recorrendo a comandos intuitivos e conteúdos dinâmicos capazes de tornarem a experiência mais interessante e satisfatória. Em simultâneo, sensores e atuadores de base polimérica, e a sua integração em diferentes substratos ou dispositivos é uma área de crescente interesse científico e tecnológico, e o atual estado da arte começa a permitir o uso de sensores e atuadores inteligentes perfeitamente integrados nos objetos. Eletrónica já não é sinónimo de placas rígidas cheias de componentes. Novas perspetivas e avanços tecnológicos transformaram-se em eletrónica impressa em polímeros, têxteis ou papel. Neste momento estamos a assistir à redução da computação a objetos do dia a dia, uma fusão do computador com a matéria. A interatividade está a ser transposta para objetos outrora inanimados. Neste trabalho foram desenvolvidos atuadores e sensores e de pressão e de deformação com recurso a compostos poliméricos funcionais com tintas com nanopartículas (NPs) metálicas ou de base carbónica, recorrendo aos efeitos capacitivo, piezoresistivo e piezoelétrico, com vista à criação de interfaces de usuário tangíveis (TUIs). Usando substratos poliméricos inteligentes tais como fluoreto de polivinilideno (PVDF) ou politereftalato de etileno (PET), entre outos, foi possível a preparação de protótipos de tecnologia piezoelétrica ou dielétrica. Os protótipos de tecnologia piezoresistiva foram feitos com tintas resistivas e polímeros funcionais resistivos. Os materiais foram impressos por serigrafia, jato de tinta, impressão por aerossol e revestimento de lâmina doctor blade. Para terminar, é apresentado um caso de estudo da integração dos diferentes materiais e tecnologias desenvolvidos sob o formato de um livro.This project was supported by FCT – Fundação para a Ciência e a Tecnologia, within the doctorate grant with reference SFRH/BD/110622/2015, by POCH – Programa Operacional Capital Humano, and by EU – European Union

    A Lab-On-a-Chip system for cell microencapsulation in a polymeric material

    Get PDF
    In order to give a concrete response to the need of novel drug delivery systems for cancer treatment, a microfluidic device designed for cell encapsulation has been developed in this thesis work. Water in oil (w/o) and oil in water (o/w) emulsion processes are carried out in the microsystems produced during the thesis project, which is the starting point for encapsulating cells. Specific microfabrication techniques are employed in the development of the microchip, made using a novel polymeric platform, called Off-Stoichiometry Thiol-Ene/Epoxy (OSTE (+)).\nThe experimental results show how a high value of the flow rate ratio between the continuous phase and the dispersed phase, for both w/o and o/w emulsions, allows for high production frequency of droplets with size comparable to the channel s width. The tests conducted highlight that the innovative polymeric material employed and the microfluidic device fabricated both are suited for the development of a new drug delivery systemopenEmbargo per motivi di segretezza e/o di proprietà dei risultati e/o informazioni sensibil

    Development of a prosthetic heart valve with inbuilt sensing technology, to aid in continuous monitoring of function under various stenotic conditions

    Get PDF
    In spite of technological advances in the design of prosthetic heart valves, they are still often subject to complications after implantation. One of the common complications is valve stenosis, which involves the obstruction of the valve orifice caused by biological processes. The greatest challenge in diagnosing the development of valve failure and complications is related to the fact that the valve is implanted and isolated. To continuously monitor the state of the valve and its performance would be of great benefit but practically can only be achieved by instrumenting the implanted valve. In this thesis, we explore the development of a prosthetic valve with inbuilt sensing technology to aid in continuous monitoring of valve function under various stenotic conditions. 22mm polyurethane valves were designed via dipcoating. A custom made mock circulatory system was designed and hydrodynamic testing of the polyurethane valves under different flow rates were performed with Effective orifice area (EOA) and Transvalvular Pressure Gradient (TVPG) being the parameters of interest. Valves were subjected to varying levels of obstruction to investigate the effect obstruction has on the pressure gradient across the valves. Similar tests were performed on a Carpentier Edwards SAV 2650 model bioprosthetic valve for comparison. Polyurethane valves were then instrumented with strain gauges to measure peak to peak strain difference, in response to varying levels of obstructions. All the polyurethane valves exhibited good hydrodynamic performance with EOA (>1cm2) under baseline physiological conditions. It was also discovered that pressure difference across the valves was directly proportional to the flow rate. The pressure difference also demonstrated a slow increase during the initial stages of simulated stenosis and a sudden increase as the obstruction became severe. This provides further evidence to support the ideal that stenosis is a slow progressive disease which may not present symptoms until severe. The peak to peak strain differences also tend to decrease as the severity of the obstruction was increased. The peak to peak strain difference is indicative of the pressures within the valve (intravalvular pressure). The results suggest that directly monitoring the pressures within the valve could be a useful diagnostic tool for detecting valve stenosis. Future works involves miniaturisation of the sensors and also the incorporation of telemetry into the sensor design.In spite of technological advances in the design of prosthetic heart valves, they are still often subject to complications after implantation. One of the common complications is valve stenosis, which involves the obstruction of the valve orifice caused by biological processes. The greatest challenge in diagnosing the development of valve failure and complications is related to the fact that the valve is implanted and isolated. To continuously monitor the state of the valve and its performance would be of great benefit but practically can only be achieved by instrumenting the implanted valve. In this thesis, we explore the development of a prosthetic valve with inbuilt sensing technology to aid in continuous monitoring of valve function under various stenotic conditions. 22mm polyurethane valves were designed via dipcoating. A custom made mock circulatory system was designed and hydrodynamic testing of the polyurethane valves under different flow rates were performed with Effective orifice area (EOA) and Transvalvular Pressure Gradient (TVPG) being the parameters of interest. Valves were subjected to varying levels of obstruction to investigate the effect obstruction has on the pressure gradient across the valves. Similar tests were performed on a Carpentier Edwards SAV 2650 model bioprosthetic valve for comparison. Polyurethane valves were then instrumented with strain gauges to measure peak to peak strain difference, in response to varying levels of obstructions. All the polyurethane valves exhibited good hydrodynamic performance with EOA (>1cm2) under baseline physiological conditions. It was also discovered that pressure difference across the valves was directly proportional to the flow rate. The pressure difference also demonstrated a slow increase during the initial stages of simulated stenosis and a sudden increase as the obstruction became severe. This provides further evidence to support the ideal that stenosis is a slow progressive disease which may not present symptoms until severe. The peak to peak strain differences also tend to decrease as the severity of the obstruction was increased. The peak to peak strain difference is indicative of the pressures within the valve (intravalvular pressure). The results suggest that directly monitoring the pressures within the valve could be a useful diagnostic tool for detecting valve stenosis. Future works involves miniaturisation of the sensors and also the incorporation of telemetry into the sensor design
    corecore