2,010 research outputs found

    Low Cost High Gain Millimeter Wave Planar Antennas

    Get PDF
    The advent of the fifth generation of wireless communication systems mandates the use of high gain antennas for transceiver front ends. The use of high gain antennas is very vital in order to compensate for the high path loss of the propagating signals at millimeter wave frequencies. There are many methods to implement high gain antennas; many of those solutions are expensive and complicated in terms of its fabrication process. Here, we emphasize 60 GHz high-gain antennas based on the low cost planar printed circuit board technology. The proposed solutions are low cost with high performance metrics. The proposed antennas suit short range, low power applications, such as wireless personal area networks (WPAN). Nonetheless, the study provided for the proposed structures reveals new physical insights, and new methods for the design procedure, where the design procedure becomes very straightforward. The first proposed structure utilizes the radiation losses in microstrip line discontinuities to implement an efficient high gain radiator at 60 GHz. The second proposed structure utilizes the diffracted fields from the edges of metal sheets as secondary radiating sources to boost the gain of the element. Also, an increased distance between the antenna elements can be achieved without generating grating lobes; this can be comprehended by visualizing each element as a subarray of radiating sources. Such a concept has a significant implication on the relaxation of the design of feeding networks. The single antenna element realized gain goes up to 11.5 dBi, the 10 dB return loss bandwidth covers the 60 GHz ISM band, and the radiation efficiency goes above 90%. A Magneto-Electric (ME) dipole is usually designed by superimposing electric and magnetic current elements orthogonally on each other. A new design procedure is proposed, which can transform the radiation characteristics of an electric or magnetic current element to a Magneto-Electric dipole characteristics. The proposed procedure doesn’t require the orthogonal combination of the magnetic and electric current elements. Hence, the procedure possesses a significant advantage, where it avoids the need for a quarter free-space wavelength spacing between the current element and the metallic ground plane. In addition, the proposed design increases the antenna gain dramatically, where the proposed structure has a boresight gain of 11.5 dBi, and a relative bandwidth of 13% centered at 60 GHz. The antenna element has been employed in a planar antenna array to achieve a gain of 22 dBi. A novel technique is proposed to enhance the gain of a Dielectric Resonator Antenna (DRA) over a wideband range of frequencies. The proposed antenna structure has a relative bandwidth of 27.5% in the 60 GHz band, and a peak realized gain of 12.5 dBi. The peak of the total antenna radiation efficiency is 96%. The proposed antenna is suitable for high data rate short range personal area networks applications. Printed Electromagnetic Band Gap (EBG) technology is used to feed the antenna to eliminate any parasitic radiation from the feed line. The characterization of 60 GHz antennas is very challenging. The end launch connector used to feed the antenna at such frequency is relatively large compared to the antenna dimensions, and that consequently affects the accuracy of the characterization of the antenna, especially if it is in the vicinity of the antenna. EBG surfaces have been used to resolve such characterization impairments. In a 5G network, the data is communicated at mm-wave frequencies between various communicating entities. The communicated high frequency signal is processed internally within the communicating entity itself. Thus, the data is communicated through electrical interconnects between several chips or between several sub-circuits within the chip. In such a way, those electrical interconnects between various sub-circuits within an Integrated Circuit (IC), or between several adjacent ICs, play a vital role in defining the performance limits of any system. As the frequency of operation gradually increases, the design of interconnects, whether within the IC environment (intra-chip) or between several adjacent ICs (inter-chip), turn into a more challenging task. As the frequencies of operation increase, the proper interconnect guiding structure dimensions become infeasible to realize, or it might exhibit a high level of losses, and large intrinsic RC time delay. Moreover, by the increase of the number of interconnects, the mutual coupling between the interconnect structures become more severe, not to mention the complexity, and associated cost of such design. The wireless interconnects concept (wireless intra-chip/inter-chip communication) emerged as a suggested remedy to the high frequency interconnect problem. We provide a study of several aspects of wireless inter-chip communication between adjacent ICs at mm-wave frequencies. The symmetrical layers concept is introduced as a general approach to eliminate the destructive interference and redirect the wasted radiated energy to free space towards the receiving antenna. In addition, the use of hard/soft surfaces and EBG structures to focus the radiated energy towards the receiving antenna is studied thoroughly. The use of such concepts has tremendous advantages, in focusing the energy towards the receiving antenna and eliminating the spherical spreading losses introduced by the radiated spherical wave nature. The incorporation of the symmetrical layers with hard/soft surfaces led to novel compact, low-cost wireless inter-chip structures with enhanced link budget performance

    Wireless sensor system for infrastructure health monitoring

    Get PDF
    In this thesis, radio frequency identification (RFID)-based wireless sensor system for infrastructure health monitoring (IHM) is designed and developed. It includes mountable semi-passive tag antenna integrated sensors capable of measuring critical responses of infrastructure such as dynamic acceleration and strain. Furthermore, the system is capable of measuring structural displacement. One of the most important parts of this system is the relatively small, tunable, construction material mountable RFID tag antenna. The tag antenna is electronically integrated with the sensors. Leading to the process of developing tag antenna integrated sensors having satisfactory wireless performance (sensitivity and read range) when mounted on concrete and metal structural members, the electromagnetic performance of the tag antenna is analyzed and optimized using both numerical and experimental procedures. Subsequently, it is shown that both the simulation and the experimental measurement results are in good agreement. The semi-passive RFID-based system is implemented in a wireless IHM system with multiple sensor points to measure dynamic acceleration and strain. The developed system can determine the natural frequencies of infrastructure and identify any state changes of infrastructure by measuring natural frequency shifts. Enhancement of the spectral bandwidth of the system has been performed under the constraints of the RFID hardware. The influence of the orientation and shape of the structural members on wireless power flow in the vicinity of those members is also investigated with the RFID reader-tag antenna system in both simulation and experiments. The antenna system simulations with a full-scale structural member have shown that both the orientation and the shape of the structural member influence the wireless power flow towards and in the vicinity of the member, respectively. The measurement results of the conducted laboratory experiments using the RFID antenna system in passive mode have shown good agreement with simulation results. Furthermore, the system’s ability to measure structural displacement is also investigated by conducting phase angle of arrival measurements. It is shown that the system in its passive mode is capable of measuring small structural displacements within a short wireless distance. The benchmarking of the developed system with independent, commercial, wired and wireless measurement systems has confirmed the ability of the RFID-based system to measure dynamic acceleration and strain. Furthermore, it has confirmed the system’s ability to determine the natural frequency of an infrastructure accurately. Therefore, the developed system with wireless sensors that do not consume battery power in data transmission and with the capability of dynamic response measurement is highly applicable in IHM

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Improving SINR Performance Deploying IRS in 6G Wireless Networks

    Full text link
    Interactive reflecting surfaces (IRSs) are a remarkable technology that will be integrated into 6G wireless networks to enhance the electromagnetic propagation environment in a programmable or adaptable way in order to improve communication between both transmission and reception devices. The work intends to broaden coverage by including IRS into micro radio transmission. As a consequence, the study evaluated and contrasted the performance of regular miniature cellular connection with IRS-enhanced miniature cellular connection in the 6G radio context in respect to signal to interference plus noise ratio (SINR)

    DESIGN AND ANALYSIS OF ANTENNA-ON-CHIP AND ANTENNA-IN-PACKAGE FOR 60-GHZ WIRELESS COMMUNICATIONS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Indoor Radio Measurement and Planning for UMTS/HSPDA with Antennas

    Get PDF
    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator\u27s point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product\u27s response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work

    Compact Optical Fiber and Wireless Interconnects:Micro-lens on Interposer

    Get PDF

    High Gain Broadband mm-wave Antennas and Beamforming for Wireless Communication Systems

    Get PDF
    Generating multi-beams along with having broadband and beam steering capability in the mm-waves band are of crucial importance for diverse applications such as remote piloted vehicles, satellites, collision-avoidance radars, and ultra-wideband communications systems. Besides, the propagation environment at millimeter wave (mm-wave) frequencies—suggested for the next generation of wireless networks (5G)—lends itself to a beamforming structure wherein antenna arrays are required in order to obtain the necessary link budget and to overcome the associated strong attenuation. Therefore, the design of high gain antennas (to focus the directive beam to a user) and beamforming networks (to reduce interference) are essential and are needed to address many challenges associated with 5G wireless communications. This work addresses the design and development of high-performance Quasi-Yagi antenna and Rotman lens-based beamforming networks. Accordingly, several issues are addressed in this thesis. A Quasi-Yagi antenna with a perturbed dielectric lens that is broadband and has high gain is designed, optimized, fabricated and tested at 30 GHz. The antenna provides 95% aperture efficiency with a measured gain of 15 dBi as well as a radiation efficiency of ~90% at 30 GHz and a broadband (24-40 GHz) for |S_11 |<-10 dB. The designed end-fire antenna, with its low-profile and compact size, is a good candidate for many applications in the mm-wave band. An optimum and accurate methodology for designing Rotman lens-based mm-wave analog beamforming network (BFN) is presented. The simulation and measurement results showed good beamforming capabilities as well as a scanning range of 80° in the azimuth plane, and, also, good matching at the array ports. The maximum phase error is ±6.6°, and the main beam of the proposed BFN points at seven different angular directions that cover the range of ±40°. The maximum achieved realized gain is 14 dBi at 28 GHz for the center beam. An analog Rotman lens-based BFN using RWG technology, integrated with the excitation ports and the antenna array elements, was designed, simulated, manufactured, and measured. The proposed integrated system is realized using the metallized 3D-printing technology, in order to reduce the implementation cost of the full metal RGW Rotman lens. The measured results demonstrate that the system scan range equals ±39.5º over a wideband 27.5-37 GHz decreases to 30º in the band 37-40 GHz. The BFN bandwidth for VSWR < 2 is larger than 38% and is limited by its single antenna element

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy
    corecore