6,772 research outputs found

    Wireless Water Flow Meter Network in the Great Bay

    Get PDF
    The Oyster Restoration Program alongside the New Hampshire chapter of the Nature Conservancy is working towards developing new oyster beds throughout the Great Bay. Sedimentation is proving to be a vast problem by covering up the beds before they have a chance to grow to a healthy level. The many rivers entering the Great Bay are bringing the sediments from all over the region and limiting the ability of the program to develop the new beds. They need a way to measure the sedimentation rate, by measuring the flow rate of the rivers over a single tidal cycle in various locations throughout the bay. This is done simply by the design of a wireless water flow meter network. Using a Price Meter as the measurement tool and an Arduino UNO to organize the data, the Oyster Restoration Program can monitor the characteristics of the locations to gain a better understanding of the location as a potential site for a new oyster bed. The design of an self contained system to extract and store the data to be collected is essential to speed up the process of monitoring these locations, which the device developed here will do

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A Review of Power Converters for Ships Electrification

    Get PDF
    Fully electric ships have become popular to meet the demand for emission-free transportation and improve ships' functionality, reliability, and efficiency. Previous studies reviewed the shipboard power systems, the different types of shipboard energy storage devices, and the influences of the shore-to-ship connection on ports' electrical grid. However, the converter topologies used in the electrification of ships have received very little attention. This article presents a comprehensive topological review of currently available shore-to-ship and shipboard power converters in the literature and on the market. The main goal is to anticipate future trends and potential challenges to stimulate research to accelerate more efficient and reliable electric ships

    Monitoring the hydraulic stability of Antifer blocks : an IoT-based approach

    Get PDF
    Breakwaters are resilient marine infrastructures, or barriers, built out into the sea to protect a coast or a harbour from the force of waves. The environmental conditions that these structures continuously face are challenging and the continuous monitorization of its hydraulic stability is a key success factor for preventive maintenance of these critical infrastructures. This paper introduces the architecture of an IoT solution designed to monitor the hydraulic stability of Antifer blocks, a common building block used for breakwater infrastructures construction, by measuring, recording, processing, and communicating the data related to the displacement of an Antifer block, in a laboratory context. The IoT device has been designed to meet the following requirements: 3D displacement measurement (up to 25 mm); corrosion-proof and waterproof; wireless charging and wireless communication; and autonomy above one month. Preliminary results have shown that the SmartAntifer prototype fulfills the core application requirements and presents an average consumption of 90 mA, which results in 11 hours of autonomy when equipped with a battery with a capacity of 1000 mAh.5311-8814-F0ED | Sara Maria da Cruz Maia de Oliveira PaivaN/

    Innovation in Energy Systems

    Get PDF
    It has been a little over a century since the inception of interconnected networks and little has changed in the way that they are operated. Demand-supply balance methods, protection schemes, business models for electric power companies, and future development considerations have remained the same until very recently. Distributed generators, storage devices, and electric vehicles have become widespread and disrupted century-old bulk generation - bulk transmission operation. Distribution networks are no longer passive networks and now contribute to power generation. Old billing and energy trading schemes cannot accommodate this change and need revision. Furthermore, bidirectional power flow is an unprecedented phenomenon in distribution networks and traditional protection schemes require a thorough fix for proper operation. This book aims to cover new technologies, methods, and approaches developed to meet the needs of this changing field

    A multi‐layer framework for energy efficiency assessment of shore‐to‐ship fast charging systems including onshore batteries

    Get PDF
    This paper proposes a three-layer framework for energy efficiency evaluation of Shore-to-Ship Charging (S2SC) systems using load-dependent loss models of the components. The considered S2SC system is supplied by the grid but is also supported by On-Shore Batteries (OSB). The presented approach is then used to investigate the impact of the specific design and operational parameters on energy efficiency. Power system architectures for three general S2SC solutions for ac, dc, and inductive charging are defined and compared in terms of energy efficiency. Operational parameters are also considered in the analysis, namely, the grid power ratio, determining the load sharing between the grid and the OSB, as well as the OSB charging profile. A case study is performed with peak charging power of 1 MW, and the most efficient S2SC solutions are identified for both ac- and dc-based onboard power systems. Moreover, it is shown that charging OSB with the highest available power from the grid between the charging breaks would often lead to higher energy efficiency than the maximum utilization of the available charging time. Field data from a real S2SC system is used to verify the estimated energy efficiency by the proposed framework. The analysis of the real case S2SC is then extended to include and verify a projected OSB. © 2022 The Authors. IET Electrical Systems in Transportation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.A multi‐layer framework for energy efficiency assessment of shore‐to‐ship fast charging systems including onshore batteriespublishedVersio
    • 

    corecore