2,867 research outputs found

    Evaluating Network Test Scenarios for Network Simulators Systems

    Get PDF
    Networks continue to grow as industries use both wired and wireless networks. Creating experiments to test those networks can be very expensive if conducted on production networks; therefore, the evaluation of networks and their performance is usually conducted using emulation. This growing reliance on simulation raises the risk of correctness and validation. Today, many network simulators have widely varying focuses and are employed in different fields of research. The trustworthiness of results produced from simulation models must be investigated. The goal of this work is first to compare and assess the performance of three prominent network simulators—NS-2, NS-3, and OMNet++—by considering the following qualitative characteristics: architectural design, correctness, performance, usability, features, and trends. Second, introduce the concept of mutation testing to design the appropriate network scenarios to be used for protocol evaluation. Many works still doubt if used scenarios can suit well to claim conclusions about protocol performance and effectiveness. A large-scale simulation model was implemented using ad hoc on-demand distance vector and destination-sequenced distance vector routing protocols to compare performance, correctness, and usability. This study addresses an interesting question about the validation process: “Are you building the right simulation model in the right environment?” In conclusion, network simulation alone cannot determine the correctness and usefulness of the implemented protocol. Software testing approaches should be considered to validate the quality of the network model and test scenarios being used

    Implementation of CAVENET and its usage for performance evaluation of AODV, OLSR and DYMO protocols in vehicular networks

    Get PDF
    Vehicle Ad-hoc Network (VANET) is a kind of Mobile Ad-hoc Network (MANET) that establishes wireless connection between cars. In VANETs and MANETs, the topology of the network changes very often, therefore implementation of efficient routing protocols is very important problem. In MANETs, the Random Waypoint (RW) model is used as a simulation model for generating node mobility pattern. On the other hand, in VANETs, the mobility patterns of nodes is restricted along the roads, and is affected by the movement of neighbour nodes. In this paper, we present a simulation system for VANET called CAVENET (Cellular Automaton based VEhicular NETwork). In CAVENET, the mobility patterns of nodes are generated by an 1-dimensional cellular automata. We improved CAVENET and implemented some routing protocols. We investigated the performance of the implemented routing protocols by CAVENET. The simulation results have shown that DYMO protocol has better performance than AODV and OLSR protocols.Peer ReviewedPostprint (published version

    Two-stage wireless network emulation

    Get PDF
    Testing and deploying mobile wireless networks and applications are very challenging tasks, due to the network size and administration as well as node mobility management. Well known simulation tools provide a more flexible environment but they do not run in real time and they rely on models of the developed system rather than on the system itself. Emulation is a hybrid approach allowing real application and traffic to be run over a simulated network, at the expense of accuracy when the number of nodes is too important. In this paper, emulation is split in two stages : first, the simulation of network conditions is precomputed so that it does not undergo real-time constraints that decrease its accuracy ; second, real applications and traffic are run on an emulation platform where the precomputed events are scheduled in soft real-time. This allows the use of accurate models for node mobility, radio signal propagation and communication stacks. An example shows that a simple situation can be simply tested with real applications and traffic while relying on accurate models. The consistency between the simulation results and the emulated conditions is also illustrated

    The Quest for Scalability and Accuracy in the Simulation of the Internet of Things: an Approach based on Multi-Level Simulation

    Full text link
    This paper presents a methodology for simulating the Internet of Things (IoT) using multi-level simulation models. With respect to conventional simulators, this approach allows us to tune the level of detail of different parts of the model without compromising the scalability of the simulation. As a use case, we have developed a two-level simulator to study the deployment of smart services over rural territories. The higher level is base on a coarse grained, agent-based adaptive parallel and distributed simulator. When needed, this simulator spawns OMNeT++ model instances to evaluate in more detail the issues concerned with wireless communications in restricted areas of the simulated world. The performance evaluation confirms the viability of multi-level simulations for IoT environments.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017

    Towards a comparable evaluation for VANET protocols: NS-2 experiments builder assistant and extensible test bed

    Get PDF
    Proceedings of: 9th Embedded Security in Cars Conference (ESCAR 2011), November 9 to 10, 2011, Dresden, GermanyIn order to validate an Intelligent Transportation System (ITS) application or service, simulation techniques are usually employed. Nowadays, there are two problems associated to this kind of validation: the relative complexity of existing simulators and the lack of common criteria in the creation of simulation experiments. The first one makes it hard for users not familiar with a simulation tool to create and execute comprehensive experiments. The second one leads to a situation in which different proposals are validated in different scenarios, thus making it difficult to compare their performance. This work contributes on addressing both problems by proposing VanSimFM, an open-source assistant tool for creating NS-2 simulation experiments, and by defining an extensible test bed which contains a set of simulation scenarios. The test bed is intended to represent the different situations that may be found in a real vehicular environment.This work is partially supported by Ministerio de Ciencia e Innovacion of Spain, project E-SAVE, under grant TIN2009-13461.No publicad

    A survey on network simulators in three-dimensional wireless ad hoc and sensor networks

    Get PDF
    © 2016 The Author(s). As steady research in wireless ad hoc and sensor networks is going on, performance evaluation through relevant network simulator becomes indispensable procedure to demonstrate superiority to comparative schemes and suitability in most literatures. Thus, it is very important to establish credibility of simulation results by investigating merits and limitations of each simulator prior to selection. Based on this motivation, in this article, we present a comprehensive survey on current network simulators for new emerging research area, three-dimensional wireless ad hoc and sensor networks which is represented by airborne ad hoc networks and underwater sensor networks by reviewing major existing simulators as well as presenting their main features in several aspects. In addition, we address the outstanding mobility models which are main components in simulation study for self-organizing ad hoc networks. Finally, open research issues and research challenges are discussed and presented
    corecore