
Texas A&M University-San Antonio Texas A&M University-San Antonio 

Digital Commons @ Texas A&M University- San Antonio Digital Commons @ Texas A&M University- San Antonio 

Computer Science Faculty Publications College of Business 

2017 

Evaluating Network Test Scenarios for Network Simulators Evaluating Network Test Scenarios for Network Simulators 

Systems Systems 

A. Zarrad 

Izzat M. Alsmadi 
Texas A&M University-San Antonio, ialsmadi@tamusa.edu 

Follow this and additional works at: https://digitalcommons.tamusa.edu/computer_faculty 

 Part of the Computer Sciences Commons 

Repository Citation Repository Citation 
Zarrad, A. and Alsmadi, Izzat M., "Evaluating Network Test Scenarios for Network Simulators Systems" 
(2017). Computer Science Faculty Publications. 12. 
https://digitalcommons.tamusa.edu/computer_faculty/12 

This Article is brought to you for free and open access by the College of Business at Digital Commons @ Texas 
A&M University- San Antonio. It has been accepted for inclusion in Computer Science Faculty Publications by an 
authorized administrator of Digital Commons @ Texas A&M University- San Antonio. For more information, please 
contact deirdre.mcdonald@tamusa.edu. 

https://digitalcommons.tamusa.edu/
https://digitalcommons.tamusa.edu/computer_faculty
https://digitalcommons.tamusa.edu/business
https://digitalcommons.tamusa.edu/computer_faculty?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tamusa.edu/computer_faculty/12?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:deirdre.mcdonald@tamusa.edu


Research Article

International Journal of Distributed
Sensor Networks
2017, Vol. 13(10)
� The Author(s) 2017
DOI: 10.1177/1550147717738216
journals.sagepub.com/home/ijdsn

Evaluating network test scenarios for
network simulators systems

Anis Zarrad1 and Izzat Alsmadi2

Abstract
Networks continue to grow as industries use both wired and wireless networks. Creating experiments to test those
networks can be very expensive if conducted on production networks; therefore, the evaluation of networks and their
performance is usually conducted using emulation. This growing reliance on simulation raises the risk of correctness and
validation. Today, many network simulators have widely varying focuses and are employed in different fields of research.
The trustworthiness of results produced from simulation models must be investigated. The goal of this work is first to
compare and assess the performance of three prominent network simulators—NS-2, NS-3, and OMNet++—by con-
sidering the following qualitative characteristics: architectural design, correctness, performance, usability, features, and
trends. Second, introduce the concept of mutation testing to design the appropriate network scenarios to be used for
protocol evaluation. Many works still doubt if used scenarios can suit well to claim conclusions about protocol perfor-
mance and effectiveness. A large-scale simulation model was implemented using ad hoc on-demand distance vector and
destination-sequenced distance vector routing protocols to compare performance, correctness, and usability. This study
addresses an interesting question about the validation process: ‘‘Are you building the right simulation model in the right
environment?’’ In conclusion, network simulation alone cannot determine the correctness and usefulness of the imple-
mented protocol. Software testing approaches should be considered to validate the quality of the network model and
test scenarios being used.

Keywords
Network simulators, NS-2, NS-3, OMNeT++, mutation testing, test case quality, software definition network, software
testing

Date received: 19 May 2017; accepted: 26 September 2017

Handling Editor: Donatella Darsena

Introduction

Today’s network simulators are widely used in the
mobile world. Simulation networks are valuable tools
with which to investigate the behavior and performance
of new protocol designs, while reinforcing their under-
standing of networking concepts. Network simulation
tools save money and time by offering researchers the
possibility to test network protocols in virtual environ-
ments that might be difficult or expensive to emulate
using real hardware, such as routers, computers, or
switches. Simulation is the most common approach to
developing and testing newly designed protocols; there-
fore, there is a need to select the appropriate approach

by which to analyze and collect data in simulation
environments. To this end, simulation remains a pow-
erful tool, but some related potential drawbacks have

1Department of Information Systems, College of Computer &

Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi

Arabia
2Department of Computing and Cyber Security, University of Texas

A&M, San Antonio, TX, USA

Corresponding author:

Anis Zarrad, Department of Information Systems, College of Computer

& Information Sciences (CCIS), Prince Sultan University, Riyadh 11586,

Saudi Arabia.

Email: azarrad@psu.edu.sa

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (http://www.uk.sagepub.com/aboutus/

openaccess.htm).

https://doi.dox.org/10.1177/1550147717738216
https://journals.sagepub.com/home/ijdsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1550147717738216&domain=pdf&date_stamp=2017-10-27


emerged1 because simulations use queuing theory and
discrete events to reflect real scenarios. Missing docu-
mentation and tech support could also negatively
impact the user. To be credible, simulation results must
be produced by a serious of actions and well-designed
test scenarios following specific methodology.

Currently, there are many network simulation tools
(listed in Hogie et al.2) that allow users to model local
area networks (LANs), metropolitan area networks
(MANs), and wide area networks (WANs); these
include NS-2,3 NS-3,4 OPtimized Network Engineering
Tool (OPNET),5 QualNet,6 and OMNet++.7 There
are several criteria for evaluating the behavior and per-
formance of network simulators. In this contribution,
we offer a thorough comparison study of two promi-
nent network simulators, NS-2 and NS-3, based on
their architecture and performance results. A real simu-
lation scenario is implemented for both environments
using various mobile ad hoc network (MANET) rout-
ing protocols to give verisimilitude to our study.

NS-2 is a popular software for network simulation,
as it provides simulation and research supports for
wired networks, wireless networks using transmission
control protocol (TCP), and user datagram protocol
(UDP), internet protocol (IP), and cluster based rout-
ing protocol (CBR) patterns of communication. A
scripting language can be used to configure a network
and observe results generated by NS-2. In comparison,
NS-3 offers some interesting characteristics that allow
developers to cover a new research trend called

software-defined networks (SDNs), which overcomes
the limitation of existing network architecture in flexi-
bility, energy, and traffic management, as well as the
innovation shortage for the network research commu-
nity due to the absence of real network environments.

It is important to bear in mind that using and relying
on only network simulations is not sufficient. A soft-
ware testing approach should be followed, such as state
transition testing8 or mutation testing.9 Current results
must be compared with expected results to draw final
conclusions. Table 1 presents a comparison of several
basic qualities of NS-2 and NS-3.

Particularly in the case of real systems, these tools can
severely restrict the flexibility of network model construc-
tion and can make it difficult or impossible to model.
The behavior of the developed models can never be com-
pletely guaranteed to behave as intended. Hogie et al.2

presented a performance comparison between NS-2, NS-
3, OMNeT++, and GloMoSiM using ad hoc on-
demand distance vector (AODV) routing protocol. Three
variables must be considered to evaluate routing protocol
using simulators: memory usage, computation time, and
CPU utilization.2 Table 2 illustrates the comparison.

The remainder of this article is organized as follows.
First, in section ‘‘History of network simulators,’’ we
give a brief history of network simulators. Next, we
summarize related work concerning network simula-
tion comparisons in section ‘‘Related work.’’ Section
‘‘Evaluation approach and discussion’’ then provides a
comprehensive comparative study of NS-2 and NS-3

Table 1. Comparison of basic qualities of two network simulators, NS-2 and NS-3.

NS-2 NS-3

The source code of all models and simulators can be
viewed and edited (Open Source)

The source code of all models and simulators can be
viewed and edited (Open Source)

New models can be coded directly by the user New models can be coded directly by the user
A large number of contributed codes A very limited number of contributed codes
Maturity in programming is required; bi-language system
(C++/Tcl)

Modest level of basic C++ programming skills is sufficient

Disables integration with real networks Enables integration with real networks.
Simulation results are not accepted for journal publications
since 2012

Simulation results are accepted for journal publications

Prebuilt models support a wider range of protocols and
devices

Prebuilt models support fewer protocols and devices

Used for wired and wireless simulation Used for Internet simulation

Table 2. Performance comparison.

NS-2 NS-3 OMNeT++ GloMoSiM

Memory usage Highest amount of memory Lowest amount of memory Average Average
CPU usage Higher Higher Lowest Lowest
Computation time Highest computation time Lowest Low Low

2 International Journal of Distributed Sensor Networks



and describes the simulation scenario and results analy-
sis. Finally, section ‘‘Conclusion’’ presents conclusions
and areas for future work.

History of network simulators

Until the 1950s, computer simulation was not some-
thing that fascinated many people because it took too
long to produce credible results and required many
skills and resources. A discrete event computer simula-
tion for the telephone system was used by IBM,10 but
unfortunately took too long.

Network simulation has been an important
resource for functional and performance analyses of
network protocols. Currently, the number of widely
adopted network simulators is large, and new tools
and systems continue to be developed to overcome
previous problems and disfunctionalities. This may
raise an important question concerning the credibility
of previous published simulation studies; however, a
brief network simulator history discussion may clarify
this issue.

Network simulation has a long history. A timeline of
major simulators’ releases is shown in Figure 1.

To the best of our knowledge, SLAMII was the first
simulator to include a network module.11,12 It is a
general-purpose language that uses process, event, or
continuous world views. An extended version called
SLAMSYSTEM was introduced in 1988. The first ver-
sion of Network Simulator, known as NS-1, was devel-
oped at Lawrence Berkeley National Laboratory
(LBNL) by Steve McCanne, Sally Floyd, Kevin Fall,
and other contributors. Later in 1985, an extended ver-
sion, NS-2,3 was developed by defense advanced
research projects agency (DARPA) and has since
evolved. The Network Simulator was written in C++
with a TCL scripting level for scenario simulation and
was originally derived from the REalistic And Large
(REAL)13 network simulator, to analyze the dynamic

behavior of flow and clogging of manage schemes in
packet switch data networks. In comparison,
SWANS14 was developed on top of the JiST platform14

to form a complete wireless network or sensor network
configuration. SWANS was surprisingly efficient for
computation of signal propagation, using hierarchical
binning. In 1997, the Network Based Environment for
Modelling and Simulation (NETSIM)15 was developed
by Tetcos and the Indian Institute of Science. It was
made available for commercial and academic purposes,
providing support for ATM, TCP, FDDI, IP,
Ethernet, and WN types of network protocols.

OMNeT++16 is a modular discrete event network
simulation framework used primarily for building net-
work simulators. It has a generic architecture, so it can
be used for functional and performance analyses of
wired and wireless communication networks.
Additionally, OMNeT++ supports parallel distribu-
ted simulation in order to increase the processing
power of a simulation. Currently, OMNeT++ 5.0 is
available for download.16 This version has a major
modification and introduces significant new features
compared to the last 4.x version. Another network
simulator, QualNet,6 was developed in 1999 by Dr
Rajive Bagrodia and his research group to predict the
behavior of dynamic communication environments.
QualNet supports wired, wireless, and mixed networks
and is a descendant of the open-source simulator
GloMoSim,17 which stopped releasing updates in 2000.

In 2007, OverSim18 was developed as an extension of
OMNeT++ to support structured and unstructured
peer-to-peer networks. It provides several common
functions that can be used for both simulation and real-
world networks. Castalia19 is another extension of
OMNeT++, used for low-power embedded devices. It
was built at the Networks and Pervasive Computing
program of National ICT Australia and is designed to
be used to measure data instead of making specific
assumptions based on the creation of fast fading.

Figure 1. A timeline of release dates of major network simulators.

Zarrad and Alsmadi 3



In 1986, an initial development work was started
for OPNET5 and in 2000 the product went public.
In October 2012, OPNET was acquired by Riverbed
Technology and became commercially available.
OPNET enables the simulation of entire heterogeneous
networks with various protocols, using a vast library of
accurate models and protocols.

In 2008, NS-2 underwent a major revision and was
replaced by a new simulator called NS-3.20 Research
groups from the US National Science Foundation
headed by Tom Henderson developed NS-3 as a new
open-source project for network simulations. The simu-
lator was written from scratch using C++ and was
not compatible with NS-2. The first release appeared in
June 2008 and the latest release, NS-3.26, was resched-
uled to early September 2016.20

Simulation have been an important resource for
functional and performance analyses of computer net-
works. Although the number of widely adopted net-
work simulators is small, new ones continue to be
created to address gaps in the functionality of existing
tools. It can be argued, however, that the scientific
community’s greatest need is to raise the credibility of
published simulation studies. Based on the literature, a
number of procedural difficulties stand in the way of
the production of credible simulation-based studies of
computer networks.21,22 These papers enumerate prob-
lems in methodology that cast doubts on the accuracy
of simulation studies. This statement is well supported
by the various updates,5 the halting of the release of
some versions,4,7 and the ending of support and main-
tenance for others.3,23 For example, NS-1 is no longer
developed or maintained, and NS-2 is not actively
maintained (active development stopped in 2012 and
works using it are no longer accepted for publication).
NS-3 is being actively developed, but is not compatible
with NS-2.

Related work

The related area of work relevant to the current contri-
bution is comparative reviews of network simulators.
Various network simulators exist throughout the
research community for building and evaluating new
protocols that are developed, as well as for comparing
these new protocols with existing protocols. Many
research works have been presented in this area;2,22,24–26

however, none of them provide any comparative study.
Rather, they present a description of each simulator
independently. A paper by Weingartner et al.27 pre-
sented a survey of recent network simulators where a
performance analysis criterion was used for compari-
son. A different approach was pursued by Karl,28

where architectural design characteristics were used for
comparison. A formal comparison based on usage

popularity, implementation, and installation issues was
described in Lessmann et al.,29 whereas Lucio et al.30

presented a comparative study of two popular network
simulators, OPNET and NS-2, based on packet-level
networks. In Duflos et al.,31 the authors compared var-
ious network simulators, such as OPNET, NS-2,
QualNet, OMNeT++, J-Sim,32 and Backplane, and
tested their suitability when used for simulation of criti-
cal infrastructure.

The works described in Luis Font et al.,33 Ikeda
et al.,34 and Luis Font et al.35 are perhaps the most rele-
vant ones to this study. In Luis Font et al.,33 the authors
presented a comparative study of the network simulators
NS-2 and NS-3 by considering source code metrics as
qualitative characteristics. Ikeda et al.34 presented a per-
formance comparison of network simulators that are spe-
cially designed for wireless ad hoc networks. Throughput
simulation results of NS-2 and NS-3 were given to evalu-
ate the performance of wireless ad hoc networks. Luis
Font et al.35 compared both network simulators from the
point of view of developers; however, they excluded net-
work performance and resource consumption assessment.

The main difference between this work and the pre-
viously mentioned contributions is that we have con-
centrated our comparison study on the most popular
network simulators, NS-2, NS-3, and OMNeT++,
using the latest versions: NS-2.35, NS-3.19, and
OMNeT++ 5.1. Moreover, we performed the com-
parison by combining both developer and user judg-
ment points of view. By ‘‘user judgment,’’ we mean
analysis and performance issues. Network simulators’
users require a clear and simple process through which
to select the most suitable tool for meeting their needs.
In addition, the way in which users collect output data
for result analysis is very important for building a valu-
able and true conclusion for a new routing protocol.
Additionally, compared to Ikeda et al.,34 we used a
large-scale scenario (1000 nodes) and various MANET
routing protocols, to evaluate the performance of the
network simulators.

Evaluation approach and discussion

Other studies have compared many network simula-
tions by focusing on the description of each simulator
independently or by mainly selecting a single compari-
son criterion, such as source code33 or network perfor-
mance.34 In this work, we adopted a different approach
to tackle both developer and user points of view, using
a large-scale scenario and various ad hoc routing proto-
cols. This article assessed the network simulators NS-2,
NS-3, and OMNeT++, as well as their evolution, by
considering qualitative and quantitative characteristics:
architectural design, usability, features, trends, docu-
mentation, network performance, and scalability.

4 International Journal of Distributed Sensor Networks



Architectural overview

Network simulators have different focuses and are
employed in different fields of research; hence, they
vary in their architecture. System architecture is a cen-
tral element that enables the construction of complex
simulations’ systems. It is therefore important to con-
sider the system architecture as a first characteristic
when comparing different simulation environments. In
this section, we investigate the characteristics and the
directions of NS-2 and NS-3 architectures.

NS-2 architecture. NS-2 is a discrete event simulator for
network simulation where actions are associated with
events, rather than time. Its architecture is composed of
five components: event scheduler, network, Tclcl, OTcl
library, and Tcl 8.0 (Figure 2).

The event schedulers and most of the network com-
ponents are implemented in C++ for efficiency rea-
sons. NS-2 makes use of discreet event schedulers3 to

implement the event schedulers’ components. Network
components simulate packet handling delay and should
also handle the event later at a scheduled time. Both
components are available to the OTcl component
through an OTcl linkage that is implemented using Tcl.
Simulation scripts are written in the OTcl language,
which is an object-oriented extended Tcl interpreter.
Reading and configuring C++ files can be very cum-
bersome; therefore, NS-2 uses a script language on top
of C++ in order to make the control and the change
easier for network developers.

Network elements in NS-2 are classified in a hier-
archical way. Figure 3 shows an overview of the OTcl
class hierarchy.24

In this class hierarchy, the TclObject class is the
superclass made up of all OTcl library objects (network
components, event schedulers, timers, etc.). A subclass
of TclObject, NsObject is the superclass of all basic net-
work component objects that handle packets. Network
objects, such as nodes and links, can then be composed
of these basic network components. Moreover,
NsObject is divided into two subclasses, Connector and
Classifier. Connector is the superclass of all basic net-
work objects that have only one output data path,
whereas Classifier is the superclass of all switching
objects that have possible multiple output data paths.
Network objects can now be composed of all basic net-
work component objects that are under the NsObject
class.

NS-3 architecture. Similar to NS-2, NS-3 is also a dis-
crete event network simulator. In recent years, it was

Figure 2. Architecture of the network simulator NS-2.

Figure 3. Network components of the network simulator NS-2.24

Zarrad and Alsmadi 5



decided to abandon backward compatibility with NS-2
and start from scratch using C++ or Python to allow
users to take advantage of the full support of each lan-
guage. In order to achieve scalability of a very large
number of simulated network elements, the NS-3 archi-
tecture (Figure 4) supports distributed simulation.

The NS-3 architecture is similar to that of Linux
computers, with internal and application interfaces,
such as network-to-device drivers and sockets. NS-3
provides a set of network simulation models implemen-
ted as C++ objects and wrapped through Python.
Users interact with NS-3 by writing a C++ or a
Python application that initiates a set of simulation
models to set up the simulation scenario of interest.
NS-3 design simulation is based on use cases in order
to allow the simulator to interact with the real world.
A direct code execution environment has been devel-
oped in NS-3 to allow users to run many applications
within the simulation, without requiring changes to the
application code.

Rather than the OTcl used in NS-2, NS-3 is written
in C++ with a Python scripting interface. Several new
mechanisms that exist in C++ and were not available
in C are used in NS-3. NS-3 protocols attempt to be
closer to reality in comparison with NS-2 protocols.
NS-3 is also written to support the open-source com-
munity and to allow the easy integration of new mod-
ules or components. Virtualization, where new hosts
and components can be more flexibly added or
removed, is another difference or enhancement in NS-3
in comparison to NS-2. Some NS-2 models written in
C++ can be used in NS-3.

NS-3 is implemented in a modular architecture.
Components can be easily reused in different scopes
than their original ones. Figure 5 shows NS-3 core soft-
ware components. Major components include core,
simulator, and common and node modules or compo-
nents. These four components support all other simula-
tor components.

Figure 5 also shows the network components sup-
ported by each core component. NS-3 modules are con-
tinuously updated, as NS-3 is a relatively new
simulator. Figure 6 shows the major modules imple-
mented in NS-3.

Wireshark37 is used to analyze network traffic and
read trace files, as it provides a realistic environment
and the source code is well organized and well docu-
mented. NS-3 supports the new paradigm for commu-
nication called the software-defined networking (SDN)
to separate the control plane from the data path. This
ability gives flexibility to the user, allowing them to
develop their own algorithms to control data from dif-
ferent applications running on the network.

Figure 4. Architecture of the network simulator NS-3.

Figure 5. Core components of the network simulator NS-3.36

6 International Journal of Distributed Sensor Networks



OMNeT++ architecture. OMNeT++ is a general dis-
crete event. Similar to NS-3, it is implemented using
component-based architecture to promote structured
and reusable models. OMNeT++ distributions are
available for both UNIX and Windows-based systems.
Figure 7 shows the OMNeT++ internal architecture.

The Model Component Library consists of the code
and compound modules. Modules are initiated, and the
concrete simulation model is created by the class
library (Sim) and simulation kernel. The model only
interacts with SIM. ENVIR contains code that is com-
mon for all three user interface libraries (Envir,
Cmdenv, and Tkenv). The simulation program may
contain several linked-in model components, including
networks, simple module types, compound module

types, and channel types. Any network (but only one at
a time) can be set up for simulation if all necessary
components are linked in. Klein and Jarschel38 pre-
sented a detailed implementation of the Openflow pro-
tocol in OMNeT++ to offer high flexibility in the
routing of network flows.

Discussion. This discussion investigates architectural
efficiency related to the following quality factors:

� Reusability: the degree to which existing applica-
tions can be reused in new applications.

� Integrability: the ability to make the separately
developed components of the system work cor-
rectly together.

Figure 6. Modules of the network simulator NS-3.

Figure 7. Internal architecture of the network simulator OMNeT++.

Zarrad and Alsmadi 7



� Testability: the ease with which software can be
made to demonstrate its faults.

� Flexibility: the ability for the solution to adapt to
possible or future changes in its requirements.

� Complexity: the amount of interaction between
modules in a system.

Clearly, OMNeT++ uses a well-established modu-
lar architecture and different user interfaces
(CMDENV, TKENV, and TVENV). Components are
also physically separated: they are in separate source
directories and form separate library files (libsim_
std.a, libenvir.a, etc.). OMNeT++ and NS-3
both have a flexible architecture that allows quick and
easy configuration of network devices using the SDN
OpenFlow module (Table 3). Both simulators can be
customized; users can implement any required feature
in software they control, rather than relying on the
internet vendor. Operating expenses and network
downtime are therefore reduced. Additionally,
OMNeT++ offers a low complexity compared to NS-
2 and NS-3, by mandating the communication between
modules using predefined connections. Models in NS-2
are difficult because of the complex interaction between
different modules.

Packet trace format

NS-2. NS-2 lacks ways to analyze its trace files, espe-
cially when the network’s size and the number of mes-
sages are very high. The trace files store information in
an ASCII file that could be used to extract network per-
formance characteristics, such as packet delay, network
overhead, and packet loss. Figure 8 shows the trace file
format in NS-2.

The event parameter consists of four values:
enqueue, dequeue, receive, and drop. CBR TCP defines

the packet type exchanged in the network, and packet
ID and sequence number are used to discard any dupli-
cate packets in the network.

NS-3. Logging can be called in NS-3 for different pur-
poses or levels: error, warning, debugs, information
function, and logic. Users can select the level of logging
through which they want to trace packets. The trace
helper class can be called at the points of interests
through the code. The Python scripting language is
used to configure the execution process. NS-3 provides
a native feature called FlowMonitor that allows the
collection of interesting information about the packet,
such as throughput, loss ratio, packet delay, bit rate,
and round trip time.

In NS-3, Pcap files that are generated by the simula-
tor can be inspected using one of two tools: Wireshark
or Tcpdump. Wireshark can help users extract more
information and has a robust graphical user interface
(GUI) with which they can interact. Monitoring tools
such as sFlow can be also integrated with NS-3 for traf-
fic monitoring. Users can also define their own instru-
mentation methods.

Programming language

NS-2 is implemented using C++ with an OTcL inter-
preter as a front-end to control and manage simulation
parameters. To reduce packet and event processing
time, NS-2 combines two different major programming
languages to separate the core system programming,
such as a packet header, and routing algorithm from
the simulation control. Tasks such as low-level event
processing and routing protocols require high perfor-
mance and are modified infrequently, which justifies
using C++. Conversely, tasks such as network config-
uration and traffic generation require frequent change,
and therefore there is a need to use a flexible scripting
language, such as Tcl. When the Tcl program is com-
piled, a trace file and an optional nam file are created.
The trace file plays the role of a log file to store the
node movement and packets surfing in the network at
each time instance, with details such as sending time,
receiving time, and node ID.

In contrast to NS-2, the NS-3 simulator is developed
and distributed completely in the C++ programming
language to implement the whole system, and users can

Table 3. Architectural comparison of three network
simulators, NS-2, NS-3, and OMNeT++.

NS-2 NS-3 OMNeT++

Integrability Limited Good Excellent
Reusability Good Excellent Excellent
Testability Limited Good Good
Flexibility Limited Excellent Excellent
Complexity High Moderate Low

Figure 8. Trace file format for the network simulator NS-2.

8 International Journal of Distributed Sensor Networks



use Python for any other scripts. Users of NS-3 are free
to write their simulation scripts as either C++ main()
programs or Python programs. An implementation in
NS-2 can therefore not be reused in NS-3 and must be
carefully and manually transferred.

OMNeT++ uses the topology description language
NED (NEtwork Description). The NED language has
been designed to scale well to design topologies; how-
ever, recent growth in the amount and complexity of
OMNeT++ simulation scenarios requires improve-
ment in the NED language. C++ is integrated in the
OMNeT++ Development Environment to write, run,
and debug the code leaving the IDE.

Usability

Our objective in this section is to compare NS-2, NS-3,
and OMNeT++ based on specific characteristics that
aid in their effectiveness (ease of use), learnability, and
usefulness.

Graphic visualization is an important tool in net-
work simulators that allows developers to understand
the large amount of data produced during network
simulations and input validation. Such visualization
affects the effectiveness factor. Visualization tools make
it possible to display network topology, traffic genera-
tion, and node mobility.

NS-2 provides a visualization component called
nam,39 but it is not dedicated to mobile ad hoc net-
works. Thus, it cannot show wireless links, with the
exception of node range (Figure 3). Nam uses the trace
file to generate the network animation, but cannot be
used for accurate simulation analysis. For statistics
plotting, external tools such as Gnuplot or Xgraph can
be used for result analysis. Kurkowski et al.40 intro-
duced an extended version of nam called the interactive
NS-2 protocol and environment confirmation tool
(iNSpect) to support the visualization and animation of
NS-2-based wireless simulations.

Graphic display in NS-3 remains under extensive
development. The NS-3 simulator is equipped with the
Pyviz visualizer, which has been integrated since ver-
sion 3.10. Pyviz can be used for debugging purposes,
such as when packets are being dropped, and is mostly
developed using the Python language. Pyviz is more
complete and more powerful in comparison with nam.
Another animator called NetAnim,41 based on the
multi-platform Qt4 GUI toolkit, provides an animation
interface for use with stand-alone animators, using the
custom trace files generated by the animation interface
to graphically display the simulation.

OMNeT++ has an advanced GUI with intelligence
support. The visualization module is decoupled from
the simulator and can display many details of the sce-
nario being used, such as objects (obstacles), movement
trails, discovered network connectivity, discovered

network routes, ongoing transmissions and receptions,
radio signals, and statistics. In addition, it provides two
visualization features, both 2D and 3D, depending on
the user’s needs.

Table 4 presents a usability comparison of the NS-2,
NS-3, and OMNeT++ network simulators. One
advantage over NS-2 and NS-3 is that OMNeT++
can display statistics results and other variables on the
fly.

Additionally, OMNeT++ provides a graphical
debugger to detect errors and offer easy model develop-
ment for users, as well as offering an automatic anima-
tion to visualize and to draw interaction diagrams.

Simulation and performance analysis

To evaluate all three simulators, we ran similar scenar-
ios (parameters shown in Table 5) in NS-2, NS-3, and
OMNeT++.

N nodes were randomly placed in a grid network
topology. We used the \load_flatgrid. command to
create the network topology. This command initializes
the grid for the topography using the x-y co-ordinates
for sizing the grid. A UDP traffic flow at high rate was
used between nodes during the simulation. We studied
four flows: Flows 1 and 2 were diagonals drawn
between the opposite nodes (corners) of the grid,

Table 4. Usability comparison of the network simulators NS-2,
NS-3, and OMNeT++.

NS-2 NS-3 OMNeT++

Effectiveness
of GUI

Acceptable Acceptable Good–excellent

User support Discontinued In progress Excellent
Learning time Long Moderate Short
Usefulness Poor Good Good

Table 5. Simulation setting parameters.

Description Default value

Simulation time 300 s
Start time Flow 1 20 s

Flow 2 25 s
Flow 3 30 s
Flow 4 35 s

Routing protocol AODV/DSDV
Mac IEEE 802.11
UPD traffic flow 1 Mbps
Packet size 64 kB
Simulation area N = 100 500 m 3 500 m

N = 1000 10,000 m 3 10,000 m
Mobility model Pause time 1 s

Speed 10 m/s

AODV: ad hoc on-demand distance vector; DSDV: destination-

sequenced distance vector.

Zarrad and Alsmadi 9



whereas Flows 3 and 4 represented the two lines of
symmetry in the grid. As seen in Table 4, we allowed
20 s for the scenario to stabilize before starting the flow
scenarios and then allowed an interval of 5 s between
each flow. We tested the same scenario using different
routing protocols (AODV and destination-sequenced
distance vector (DSDV)) in network simulators NS-2,
NS-3, and OMNeT++. AODV and DSDV were cho-
sen from different categories—proactive and reactive,
respectively.

In general, models in OMNet++ are less abstract
than those of NS-2 and NS-3. NS-3 and OMNeT++
make it easier to run real code, as their packets contain
strings of bytes and support the integration of real
implementations’ code by providing standard applica-
tion programming interface (API). In contrast, NS-2
models must be ported manually to the NS-3 and
OMNet++ environments. NS-2 uses a queue tech-
nique for memory management, with fixed buffer size.
Any modification in the size requires a programming
effort to reflect the new size in all classes. No conges-
tion avoidance techniques are implemented in NS-2;
therefore, fairness cannot be guaranteed in NS-2.
Compared to NS-2 and NS-3, OMNeT++ provides a
clear separation of simulation kernel and models.

From a memory consummation view, C/C++ is a
memory source leak in NS-2. The use of ‘‘bind()’’ con-
sumes memory for each object that is created. This
method can be very expensive if many identical objects
are created. Protocols implemented using ‘‘dmalloc’’
will consume more memory than those using the stan-
dard ‘‘mallocs.’’ Conversely, in NS-3, memory manage-
ment is based heavily on ‘‘smart pointers,’’ related to
boost’s ‘‘intrusive_ptr.’’ Objects are stored in memory
through the ‘‘Ptr’’ class. This class is an efficient way to
allocate memory and is easier to use than the ‘‘dmalloc’’
used in NS-2, because all objects maintain an internal
reference count to determine when an object can safely
be deleted to free memory.

Experimental evaluation

The proposed evaluations are based on the following
primary metrics:

� The network throughput;
� Network latency;
� Packet delivery ratio;
� CPU usage;
� Simulation runtime.

We believe that such metrics are necessary for deter-
mining the effectiveness of any wireless network appli-
cation. We therefore investigated the impact of
simulation environments on these metrics. The network
throughput, network latency, simulation runtime, and
packet delivery ratio were retrieved directly from trace
files, thanks to the Perl language. The packet delivery
ratio was calculated as the total number of lost packets
divided by the total number of transmitted packets.
Network latency was the average delay for data trans-
fer from a sender to a receiver, measured in seconds.
The network throughput, measured in kbps, was calcu-
lated by dividing the amount of data sent by the time
that passed between the opening of a TCP connection
by the client and the closing of this connection.

Network throughput. In relation to network throughput,
Figure 9 indicates that performance was negatively
affected when implemented under DSDV.

Relevant papers that have conducted performance
comparisons of NS-2 and NS-327 have shown that as
network size increases, NS-3 steadily shows less compu-
tation time in comparison with NS-2. In addition, NS-
3 has a significantly steady low computation time in
comparison with NS-2. Although they are related,
throughput and computation time measure two differ-
ent performance aspects. Our results showed that in

Figure 9. Network throughput (kbps) using AODV and DSDV in the same environment with NS-2, NS-3, and OMNeT++.

10 International Journal of Distributed Sensor Networks



nearly all cases, throughput of NS-3 using AODV was
better than that of NS-2.

The OMNeT++ network throughput was reduced
when the number of nodes increased in all types of flow.
Two ThruputMeter modules are used for this purpose
between the IP and the TCP, one for each direction in
which the packets travel. For all simulators, the average
throughput increased with an increase in the number of
nodes. The throughputs for NS-2 and NS-3 were large,
due to the fact that delayed acknowledgments were
used, because only half the number of ACK-packets
was sent. In OMNeT++, many improvements have
been made to target this issue. The case for DSDV
seems different, as throughput fluctuates for this proto-
col for all simulators. AODV in most cases has better
throughput than DSDV. The maximum network
throughput can be computed

64 3
1000

60
= 1066:67 kbps ð1Þ

where RTT = 60 ms, window size = 64 kbps, and we
assume a large network bandwidth to ignore the bottle-
neck. As shown in Figure 7, simulation results were
actually less than approximately half of the theoretical
result from equation (1). This clearly supports our find-
ing that we ‘‘should rely only on network simulators to
test our implemented routing protocols.’’ There is a
need to add a conformance testing level to ensure that
the specifications are implemented correctly and to
achieve interoperability with network simulator
modules.

Network delay. Network delay represents the average
time needed to send a message from one node to
another. Figure 8 shows the network delay produced
by different flows using AODV and DSDV routing
protocols under the same environment.

In Flow 1, the network delay increased when the net-
work size increased (Figure 10). DSDV has a higher
delay in general than does AODV. DSDV in NS-2 had
the highest delay of the four flows in most cases, with
the exception of when network size was large, when in
most cases the two protocols in the two simulators pro-
duced largely comparable results.

As shown in Figure 8, the delay was vastly improved
in OMNeT++ by the implementation of the precision
of delay emulation in the OMNeT++ framework.
Additionally, the reason for this difference in perfor-
mance between the three simulators is that in NS-2 and
NS-3, many messages cannot be delivered to their desti-
nation, which incurs a longer delay. Figure 11 in the
packet delivery ratio section (see below) confirms this
conclusion.

Packet delivery ratio. The packet delivery ratio represents
the ratio of the total messages delivered over the total
number of messages surfing in the network under IEEE
802.11 MAC. Figure 11 shows the variation in the
packet delivery ratio against the network size using
either AODV or DSDV routing protocol under the
same simulation environment.

With large network size, NS-2 and NS-3 show dif-
ferent behaviors, with the exception of Flow 1 when
applying different ad hoc routing protocols. In
OMNeT++, packet loss was between 3% and 10%.
When the number of nodes increased, the ratio
decreased for all simulators. In NS-2, with the 1000
nodes scenario, occasionally the send buffer at the
receiving node and packets from this queue were
dropped. We must therefore use execution time and
memory usage to test the performance of simulation
software.

In agreement with results from other research experi-
ments, AODV showed a better packet delivery ratio
than did DSDV. In addition, network size did not

Figure 10. Network delay (s) for AODV and DSDV under the same environment in NS-2, NS-3, and OMNeT++.

Zarrad and Alsmadi 11



significantly impact packet delivery ratio in any of the
cases.

Simulation runtime. Simulation runtime was used to eval-
uate the performance of the three simulation tools. We
ran the AODV scenario in all environments, with the
simulation time set to 300 s. Figure 12 shows the mea-
sured simulation runtime in seconds with various net-
work sizes for the NS-2, NS-3, and OMNeT++
simulators.

Our results indicated that the computation time per-
formance of OMNeT++ is considerably faster than
that of NS-2 and NS-3. We attribute this winning mar-
gin to the architectural improvements and modular
design of OMNeT++. The effect of the internal mod-
ule ‘‘tcpApp’’ is remarkable. Similarly, NS-3 was faster

than NS-2, likely due to the removal of the overhead
associated with interfacing OTcl with C++, and the
overhead associated with the OTcl interpreter. NS-2
requires more execution time than NS-3 and
OMNeT++.

CPU usage. CPU utilization was measured while varying
the number of nodes in the network model. Figure 13
shows the percentage of CPU usage for NS-2, NS-3,
and OMNeT++. To avoid affecting the output mea-
surements, all applications were closed in the experience
environment while waiting for the result. For this
experiment, we used AODV in the environment.

When the network size included a small number
(50–100) of nodes, the CPU usage was nearly the same
(75%) for all simulators. Compared to NS-2 and NS-3,

Figure 11. Packet delivery ratio (percentage) using AODV and DSDV under the same environment in NS-2, NS-3, and OMNeT++.

Figure 12. Simulation runtime versus network size when running the same model using three different network simulators, NS-2,
NS-3, and OMNeT++.

12 International Journal of Distributed Sensor Networks



the OMNeT++ simulator had the lowest percentage,
approximately 90%. This percentage is still high
because entities in OMNeT++ are implemented with
co-routines, which requires relatively large amounts of
memory.

Additionally, every module requires its own CPU
stack, leading to larger memory requirements for the
simulation program. We observed irregular behavior in
NS-2 when the number of nodes was 1000; NS-2 failed
many times to run the scenario with that many nodes.
Overall, with a large scenario, OMNeT++ used less
memory than did NS-2 and NS-3.

Mutation-based conformance testing

Previous simulation results have reported variations in
performance analysis and some unexpected failures. In
many cases, the root cause for the faulty operation
depends on the testing scenario and configuration para-
meters. Testing scenario can significantly influence the
output results. The networking research community
relies mainly on using simulation environments such as
NS-2, NS-3, and OMNeT++ to verify and test their
developed protocols. These techniques are guaranteed
to achieve the expected results and performance of the
given program, but may suffer from low quality in
terms of identifying routing faults that might be present
in the embedded protocol. Additionally, making deci-
sions about the testing scenario, including parameter
initiation such as network size, MAC, simulation area,
and ifqlen, is a challenging task for researchers.

We therefore propose a mutation testing approach
that involves developing a new trustworthy technique
using mutation testing to be added on top of a network
simulator, in order to adequately design testing

scenarios and to correct implementation-based proto-
cols. We exploit the synchronization, the exchange, and
the manipulation of the routing information through
mutation testing in an internal process simulation.
Figure 14 shows the proposed approach.

Our approach attempts to generate test cases with
high quality (the generation of test cases based on the
test requirements can be done manually or automati-
cally) based on conformance testing to add confidence
to the expected outputs. Each mutant is executed with
test data, and we measure the mutation score of the test
case. If the mutation score is low, the Mutation
Analyzer generates a new test case for the same require-
ment that is likely to be high quality. Tests with high
scores (threshold values) are saved and used later to
validate the implemented network protocol. The whole
process is iterated to generate other new test cases.

For example, we calculated the mutation testing
average results in the aspect of test cases generated by
changing one value of the default network parameters
in selected test cases.

We managed to calculate mutation score for each
test case by comparing the output results of Packet
Delivery Ratio, Total Dropped Packets, and Average
Delay with the obtained boundary values. The mutant
considered killed for each test case, if at least two out-
puts out of three were not within the specified safe
range, and the testing result will be success. Finally, the
mutation score was calculated by determining the per-
centage of out-ranged values for each test case as shown
in Figure 15.

Our preliminary results are shown in Figure 16.
Eight test cases were generated for AODV and DSDV
by changing the network parameters values (nodes, ifq-
len, x, and y) to see their influence on the test results.

Figure 13. CPU usage when running the same model using three different network simulators, NS-2, NS-3, and OMNeT++.

Zarrad and Alsmadi 13



We tried to choose values with reasonable limits that
can be handled by NS-2 without any error messages.
Table 6 shows the details of selected test cases.

After comparison, we found that the average results
of test cases 2 and 4 (86.11%) were relatively more dif-
ferent from each other than they were from the first test
case result (45.83%), which means that the number of
mobile nodes (from test case 2) and max packet in ifq
(from test case 4) also have a valuable impact on the
mutation testing results, leading to success, whereas
using smaller values in the y dimension of topography
(from test case 8) caused a negative impact on the muta-
tion testing results (33%).

Test case 1 and test case 8 had very low scores, which
means that using the set parameters to test AODV was
not appropriate. In addition, by analyzing the collected
test case data, we realized furthermore, with reference
to the x and y parameters and the comparison of the
test cases’ average result in which the simulation area
was (500 3 500) (68.52%), and the test cases’ average
result in which the simulation area was (1000 3 1000)
(63.34%), it can be concluded that increasing the

Figure 14. Detailed procedure of the proposed mutation testing approach.

Figure 15. The process of determining the test result for each
test case.

Table 6. List of test cases.

Parameter/TCs TC#1 TC#2 TC#3 TC#4 TC#5 TC#6 TC#7 TC#8

Nn 10 100 500 100 10 100 10 10
ifqlen 50 50 50 250 50 50 50 50
x 500 500 500 500 500 1000 400 500
y 500 500 400 500 500 500 400 50

14 International Journal of Distributed Sensor Networks



simulation area results in decreasing the mutation score
in AODV protocol a neglect difference exists between
the two areas in DSDV protocol (71.92% and 72.23%).
This indicates that different sizes of the simulation area
should always be used in such tests. For example,
Maleh and Ezzati42 used only a fixed simulation area
(600 3 600), which should have been increased to pro-
duce more reliable results.

Conclusion

In this article, we presented a methodology to evaluate
three network simulators: NS-2, NS-3, and
OMNeT++. The methodology involved the following
steps. First, we selected the protocols to run on the simu-
lator. Second, we formalized a variety of network sce-
narios to cover all performance aspects, including size of
the network, throughput, and delay. In the third step,
we generated and collected executable results and then
conducted a comparison approach and evaluated both
simulators. To retrieve significant and valid results, it is
important to put both simulators under the same condi-
tions (running machine, environment, and scenarios).
Finally, we proposed an initial idea for developing a
mutation-based conformance testing approach to over-
come potential weaknesses in the simulation environ-
ment and to generate smart testing scenarios.

As a recent evolution from NS-2, NS-3 possesses
flexible capabilities that were not included in NS-2. It
also includes modules to handle emerging network
architectures, such as SDN or OpenFlow. OMNeT++
has also proposed an extension model to handle SDN.

In comparison with NS-2 and NS-3, OMNeT++
appears to give users a more powerful ability to

communicate with and customize their experiments
using two options: graphic visualization and text for-
mat. From the memory usage point of view,
OMNeT++ is the most efficient simulation tool, fol-
lowed by NS-3. We believe, however, that there are sev-
eral functionality- and quality-based enhancements that
should be included in future versions of NS-3 to guar-
antee a robust successor to NS-2. NS-3 should modify
its closed nature to offer flexibility, allowing the develo-
per to make their own protocols. OMNeT++ has a
flexible model structure and leaves the creation of simu-
lation models to independent research groups. A fur-
ther testing phase is recommended to evaluate the
credibility of a simulation model and the acceptability
of simulation results. The simulation data results of this
study prove that the mutation testing technique is effec-
tive for generating appropriate test scenario in order to
increase sureness of the used network simulator.

Ongoing research work has been developed within
the scope of mutation testing for network protocols to
investigate the quality of test cases and to help develo-
pers design the appropriate test cases for their devel-
oped protocols in large-scale scenario more than (1000
nodes) using various network topologies.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

Figure 16. AODV DSDV average results (%) per test case (TC1–TC8).

Zarrad and Alsmadi 15



References

1. Heidemann J, Mills K and Kumar S. Expanding confi-

dence in network simulations. IEEE Network 2001;

15(5): 58–63.
2. Hogie L, Bouvry P and Guinand F. An overview of

MANETs simulation. Electron Notes Theor Comput Sci

2006; 150: 81–101 (also published in Proceedings of the

1st international workshop on methods and tools for coor-

dinating concurrent, Belgium, 2005).
3. The Network Simulator—NS2, http://www.isi.edu/

nsnam/ns/ (accessed 10 October 2016).
4. NS3 official website, https://www.nsnam.org/ (accessed

18 November 2016).
5. OPNET Modeler, http://www.opnet.com/
6. Scalable Networks Technologies Inc. QualNet (version

4.5), http://www.scalable-networks.com (accessed 10

October 2016).
7. OMNeT++ Community Site, http://www.omnetpp.org/

(accessed 10 January 2017).

8. Carvalho S and Tsuchiya T. Coverage criteria for state

transition testing and model checker-based test case gen-

eration. In: Proceedings of the 2nd international sympo-

sium on computing and networking (CANDAR),

Shizuoka, Japan, 10–12 December 2014, pp.596–598.

New York: IEEE.
9. Han X, Wen Q and Zhang Z. A mutation-based fuzz

testing approach for network protocol vulnerability

detection. In: Proceedings of the 2nd international confer-

ence on computer science and network technology

(ICCSNT), Changchun, China, 29–31 December 2012,

pp.160–169. New York: IEEE.
10. Reitman J. A concise history of the ups and downs of

simulation. In: Proceedings of the 1988 simulation confer-

ence, San Diego, CA, 12–14 December 1988. New York:

IEEE.
11. Garcia AB. Estimating and implementation of generic com-

puter communication network performance using network

simulation. PhD Dissertation, University of Dayton, Day-

ton, OH, 1985.
12. Pritsker AAB. Introduction to simulation and SLAM II.

2nd ed. New York: Halsted Press, 1984.
13. REAL, http://www.cs.cornell.edu/skeshav/real/index.html
14. Sutaria T, Mahgoub I, Humos A, et al. Implementation

of an energy model for JiST/SWANS wireless network

simulator. In: Proceedings of the 6th international confer-

ence on networking (ICN ’07), Martinique, 22–28 April

2007. New York: IEEE.
15. Lord M and Memmi D. NetSim: a simulation and visua-

lization software for information network modeling. In:

Proceedings of the 2008 international MCETECH confer-

ence on e-Technologies, Montreal, QC, Canada, 23–25

January 2008. New York: IEEE.
16. Varga A. Using the OMNeT++ discrete event simula-

tion system in education. IEEE T Educ 1999; 42: 4–11.
17. Zeng X, Bagrodia R and Gerla M. GloMoSim: a library

for parallel simulation of large-scale wireless networks.

In: Proceedings of the 12th workshop on parallel and dis-

tributed simulation (PADS ’98), Banff, AB, Canada, 29

May 1998. New York: IEEE.

18. Baumgart I, Heep B and Krause S. OverSim: a flexible
overlay network simulation framework. In: Proceedings
of the 2007 IEEE global Internet symposium, Anchorage,

AK, 11 May 2007. New York: IEEE.
19. Rastegarnia A and Solouk V. Performance evaluation of

Castalia Wireless Sensor Network simulator. In: Proceed-
ings of the 34th international conference on telecommuni-

cations and signal processing (TSP), Budapest, 18–20
August 2011. New York: IEEE.

20. NS-3 (version 3.25), https://www.nsnam.org (accessed 5

September 2016).
21. Camp T, Kurkowski S and Colagrosso M. MANET

simulation studies: the incredibles. ACM SIGMOBILE

Mob Comput Commun Rev 2005; 9(4): 50–61.
22. Pawlikowski K, Jeong HDJ and Lee JSR. On credibility

of simulation studies of telecommunication networks.
IEEE Commun Mag 2002; 40: 132–139.

23. Montresor A and Jelasity M. PeerSim: a scalable P2P

simulator. In: Proceedings of the 9th international confer-

ence on peer-to-peer computing, Seattle, WA, 9–11 Sep-

tember 2009, pp.99–113. New York: IEEE.
24. Begg L, Liu K, Pawlikowski S, et al. Survey of simulators

of next generation networks for studying service availabil-

ity and resilience. Technical report TRCOSC 05/06, Feb-

ruary 2006. Christchurch, New Zealand: Department of
Computer Science & Software Engineering, University of
Canterbury.

25. Mehta S, Uallh N and Humaun Kabir MD. A case study
of networks simulation tools for wireless networks. In:
Proceedings of the 3rd Asia international conference on

modeling & simulation, Bali, Indonesia, 25–29 May 2009,

pp.661–666. New York: IEEE.
26. Schilling B. Qualitative comparison of network simula-

tion tools. Technical report, Institute of Parallel and Dis-
tributed Systems (IPVS), University of Stuttgart,
Stuttgart, January 2005.

27. Weingartner E, Lehn HV and Wehrle K. A performance
comparison of recent network simulators. In: Proceedings

of the IEEE international conference on communications,
Dresden, 14–18 June 2009, pp.211–219. New York:
IEEE.

28. Karl M. A comparison of the architecture of network
simulators NS2 and TOSSIM. In: Proceedings of the

performance simulation of algorithm and protocols seminar

institute of parallel and distributed systems, January 2005,
pp.123–133. Abteilung Verteilte Systeme, University
Stuttgart.

29. Lessmann J, Janacik P, Lachev L, et al. Comparative
study of wireless network simulators. In: Proceedings

of the 7th international conference on networking,

Cancun, Mexico, 13–18 April 2008, pp.517–523. New
York: IEEE.

30. Lucio GF, Paredes-Farrera M, Jammeh E, et al. OPNET
Modeler and NS2—comparing the accuracy of network
simulators for packet-level analysis using a network
testbed. WSEAS Trans Comput 2003; 2(3): 700–707.

31. Duflos S, Grand GL, Diallo AA, et al. Deliverable list of

available and suitable simulation component. Technical
report, Ecole Nationale Supérieure des Télécommunica-
tions (ENST), Paris, September 2006.

16 International Journal of Distributed Sensor Networks



32. Miller J, Nair R, Zhang Z, et al. JSIM: A Java-based
simulation and animation environment. In: Proceedings
of the 30th simulation symposium, Atlanta, GA, 7–9 April
1997, pp.31–42. New York: IEEE.

33. Luis Font J, Inigo P, Dominguez M, et al. Analysis of
source code metrics from NS-2 and NS-3 network simu-
lators. Simul Model Pract Th 2011; 19(5): 1330–1346.

34. Ikeda M, Kulla E, Barolli L, et al. Wireless ad-hoc net-
works performance evaluation using NS-2 and NS-3
network simulators. In: Proceedings of the 2011 interna-

tional conference on complex, intelligent, and software

intensive systems, Seoul, South Korea, 30 June–2 July
2011. New York: IEEE.

35. Luis Font J, Iñigo P, Domı́nguez M, et al. Architecture,
design and source code comparison of NS2 and NS3 net-
work simulators. In: Proceedings of the 2010 spring simu-

lation multi-conference (SpringSim ’10), Orlando, FL,

11–15 April 2010, pp.109–117. ACM.
36. Nam Organization, https://www.nsnam.org/docs/release/

3.10/manual/html/organization.html

37. Wireshark, http://www.wireshark.org (accessed 10 Janu-
ary 2016).

38. Klein D and Jarschel M. An OpenFlow extension for the
OMNeT++ INET framework. In: Proceedings of the 6th
international ICST conference on simulation tools and tech-

niques (SimuTools ’13), Cannes, 5–7 March 2013. New
York: ACM.

39. Nam, http://www.isi.edu/nsnam/ns/ (accessed 10 January
2017).

40. Kurkowski S, Camp T and Colagrosso M. A visualiza-
tion and animation tool for NS-2 wireless simulations:
iNSpect. In: Proceedings of the 13th annual meeting of the

IEEE international symposium on modeling, analysis, and

simulation of computer and telecommunication systems, 16
June 2004, pp.1–6. IEEE.

41. Nam architecture, https://www.nsnam.org/docs/architecture.
pdf (accessed 23 February 2017).

42. Maleh Y and Ezzati A. Comparative Analysis of routing
protocols AODV DSDV and DSR in MANET. Int J

Comput Sci Mobile Comput 2014; 3(3): 379–385.

Zarrad and Alsmadi 17


	Evaluating Network Test Scenarios for Network Simulators Systems
	Repository Citation

	Evaluating network test scenarios for network simulators systems

