
Two-Stage Wireless Network Emulation

Tanguy Pérennou∗† Emmanuel Conchon∗† Laurent Dairaine∗†

Michel Diaz†

April 2004 – Submitted to the 2004 Workshop on Challenges of Mobility
http://www.wcc2004.org/congress/workshops/challenges.htm

Abstract

Testing and deploying mobile wireless networks and applications are very chal-
lenging tasks, due to the network size and administration as well as node mobility
management. Well known simulation tools provide a more flexible environment but
they do not run in real time and they rely on models of the developed system rather
than on the system itself. Emulation is a hybrid approach allowing real application
and traffic to be run over a simulated network, at the expense of accuracy when the
number of nodes is too important. In this paper, emulation is split in two stages:
first, the simulation of network conditions is precomputed so that it does not undergo
real-time constraints that decrease its accuracy; second, real applications and traffic
are run on an emulation platform where the precomputed events are scheduled in
soft real-time. This allows the use of accurate models for node mobility, radio signal
propagation and communication stacks. An example shows that a simple situation
can be simply tested with real applications and traffic while relying on accurate mod-
els. The consistency between the simulation results and the emulated conditions is
also illustrated.

1 Introduction

Developing and testing wireless communication protocols and distributed applications is a
big challenge. A first set of difficulties lies in the development of the networking aspects in
a distributed environment and is not specific to wireless networks. In a wireless context,
developers must in addition face a potentially high dynamism of the network topology due
to terminal mobility and environment-specific radio propagation issues.

A first solution is to set up an experimental testbed with a sufficient amount of nodes
and links, including routers, network interface hardware, full communication stacks and
applications. Even in a wired context, such testbeds are expensive and impractical to use

∗ENSICA, 1 place Emile Blouin, 31056 Toulouse Cedex 5, France
†LAAS-CNRS, 7 avenue du Colonel Roche, 31077 Toulouse Cedex 4, France

1



or configure, and they make it difficult either to repeat the same experiments or to set
up limit conditions. In a wireless context, making the nodes move is an additional source
of problems. A more practical solution is to use a discrete event simulation tool such as
ns-2 [1] or GloMoSim [19]. In this case, developers must provide models for all the com-
munication stacks of the tested system (including applications), the environment and the
generated traffic. The use of very elaborated models is possible because the simulation does
not need to meet real-time constraints. However, entirely relying on models may imply
other drawbacks. For example, when the system is under development, providing appropri-
ate models leads to a potentially expensive redundant development. Also, when the system
to test is already implemented and is too complex, developing the associated models of the
application and the generated traffic may be too expensive or simply impossible.

Emulation is a solution offering a compromise between real life experiments and simu-
lation. It simulates in real-time the service of a given layer on the basis of models of the
underlying layers: real software can be executed on top of that layer while the behavior
of the underlying layers is reproduced. In a network-level emulator for instance, true ap-
plications and transport-level protocols can send and receive regular IP datagrams. The
operational part of the emulation (i.e. from the emulated service up to the applications)
can be composed of off-the-shelf elements, such as the TCP or UDP protocols or classi-
cal probing tools like tcpdump, as well as software under development. The delivered IP
datagrams are then delayed or lost in a way that predictably simulates some user-defined
experimental conditions. This stage must be lighter than the computations carried out
by discrete event simulators, so that real-time constraints can be met. Nevertheless, the
operational part of the emulation can cause scalability problems, for instance in the con-
text of satellite networks involving a large number of nodes. Classical examples of IP-level
emulators are Dummynet [16] and NIST Net [2].

The present work introduces W-NINE, an emulation platform aiming at the emulation
of a wide range of wireless networks. It is based on a preliminary off line non real-time
simulation stage associated with a regular IP-level emulation stage. This preliminary stage
computes the dynamic topology of a wireless mobile network, taking into account node
positions, energy consumption, radio signal propagation issues, routing and lower-layer
communication protocols. The models computed at simulation-time can range from very
simple probabilistic models to accurate ones since this stage is not run in real-time. This
allows the set up of precise experiments involving numerous nodes and realistic mobility
and propagation-related models. The precomputation of the dynamic topology produces an
emulation scenario that is subsequently scheduled in soft real-time1 on the experimentation
platform, while real applications and protocols are tested.

This paper provides a brief overview of related work and then focuses on the architecture
of the W-NINE platform. A detailed description of the offline simulation stage is then given.
Then the usage of W-NINE is illustrated in a WiFi environment through a simple mobile
application.

1Soft real-time means that deadlines may be missed, but are then detected and reported to the user.

2



2 Related Work

The main goal of emulation is to reproduce in real time the behavior of some target network.
As real distributed nodes must communicate, an experimentation network is used during
the emulation. A major aspect of emulation is the need for an over-provisioned physical
experimentation network. Typically a classical research environment cannot emulate core
networks but is suitable for most access networks such as satellite, xDSL, end-to-end WAN
communications [11], ad-hoc environments, etc.

In network-level emulation, only a few parameters need to be manipulated to mimic
specific network conditions for an end-to-end communication: bandwidth, delay and packet
losses. Traffic shapers such as Dummynet [16] or NIST Net [2] can be used as basic
tools allowing the manipulation of these parameters and can constrain the traffic of the
experimentation network. A number of large emulation testbeds use such traffic shapers,
e.g. Netbed/Emulab [18]. Various approaches allow the dynamic configuration of a traffic
shaper during an emulation.

Emulators built on a trace-based approach [12] reproduce the behavior of a real net-
work (wired or wireless) on the experimentation network, according to previously captured
traces. Those traces have to be processed to produce an emulation model that will be easily
interpreted by the traffic shaping part of the emulator (i.e. a model made of bandwidth,
delays and losses). This processing phase is called the distillation phase. It results in an
accurate emulation of what happened in the real network. However, capturing traces can
be difficult and expensive in time, for instance in large-scale networks. Moreover, traces
are a snapshot of specific network conditions at some moment in time. For a user, it is
nearly impossible to set up some unforeseen condition: a new experiment should be set up
so that the expected situation really happens, thus allowing to capture an adequate set of
traces.

A second approach consists in using a simulation stage. As an example, ns-2 provides
an emulation mode [3], although it is widely used by researchers as a discrete event sim-
ulation platform. Contrary to this classical use, the emulation mode operates with a real
time scheduler and is able to process real packets. The ns-2 emulator can work in two
complementary modes: an opaque mode where real packets are not modified but undergo
semantic or temporal modifications, and a protocol mode which, in addition, allows real
packets to be interpreted and modified by ns-2 network models. An extension for wireless
networks emulation has been presented in [9]. It uses the new features added by wireless
extensions of the ns-2 simulator to emulate ad-hoc environments. In this emulator, wireless
and ad-hoc conditions are reproduced by ns-2 , so its accuracy depends on the modeling
level used. Another exemple of this type of emulation platform is Seawind [10], which is
used in the context of mobile wireless WANs like GPRS.

The main difficulty with this fully centralized type of emulation is that the discrete-
event simulator has to process all relevant events in real-time. When the density of events
becomes too important, the simulator drifts and does not meet the timing contraints, thus
invalidating the emulation results. The main causes of the increase of event density are
the number of nodes involved and the accuracy of the implemented models. For wireless

3



networks, these models handle not only communication layers, but also node mobility and
radio signal propagation. The latter may involve complex random number generation or
ray-tracing algorithms [17].

Several ways of preventing the simulation drift have been proposed. A first distribu-
tion scheme consists in parallelizing the simulation task accross several hosts, each being
responsible for only a subset of emulated nodes. This is done in e.g. PDNS [15] and
Netbed/Emulab [18]; the latter makes use of a grid and provides an integrated access to
three disparate experimental environments: simulated, emulated, and wide-area network
testbeds. Another distribution scheme consists in delegating part of the simulation task
to each emulated node. The central simulation node(s) then periodically synchronize its
computation with that of emulated nodes. This approach has been used in several wireless
network emulation platforms, such as EMWIN [20] and JEmu [4]. Each emulated node
computes its own propagation capacities, typically neighbor tables, while the central simu-
lation periodically broadcasts new positions. This approach is rather intrusive in that each
emulated node must host special software. In addition none of these platforms currently
implement accurate propagation models.

An alternative approach consists in using a precomputed scenario to control a traffic
shaper, as in the Network Emulation Testbed [5], which allows the use of XML-formatted
scenarii to emulate wireline networks. This paper extends this approach in the context
of wireless networks, so as to allow the use of accurate mobility, propagation and com-
munication models. These models are run at simulation-time, in a preliminary stage that
does not undergo real-time constraints. The real-time constraints have to be met only
at emulation-time, when applications and traffic get operational. The topic of real-time
traffic shaping is outside the scope of this paper.

3 The W-NINE Platform

The W-NINE platform is designed to emulate a large spectrum of mobile wireless networks
based on high-level experiment descriptions written by developers for tests. A high-level
experiment description allows the combination of accurate simulation models at the user
level, so that tested situations can approximate real conditions. W-NINE consists of a
network emulation platform, called NINE (Nine Is a Network Emulator), which was al-
ready used in various emulation experiments [11], and a Simulator for Wireless Networks
Emulation, called SWINE (see Figure 1).

The NINE network emulator is a platform of interconnected nodes where the IP traffic
is shaped with Dummynet [16]. The experimental network is a wired Ethernet gigabit net-
work. NINE also includes a configuration node that uses an emulation scenario to schedule
in (soft) real-time Dummynet configuration commands corresponding to precomputed QoS
events, such as bandwidth or delay change on a given link. Real applications and trans-
port protocols are deployed on the physical experiment nodes and the IP datagrams that
they exchange are systematically routed to the traffic shaper, that delays or loses them
according to the current emulation state.

4



Figure 1: The W-NINE Platform Architecture

The SWINE simulator is a discrete event simulator that runs offline before the emulation
stage. Its purpose is to generate the NINE emulation scenario corresponding to a high-level
experiment description. This description fully describes an experiment, i.e. the movement
of mobile nodes, their energy consumption, the positions of obstacles, the radio propagation
conditions and the communication stack from the physical medium to the network level
on each node. A model toolbox is used for helping the end-user to provide a high-level
experiment description, for example to express node mobility (e.g. Random Waypoint or
Pursue mobility model [7]), propagation of the radio signal between end systems (e.g. Path
Loss Exponent propagation model, associated with Rayleigh or Rice fading model [14]),
energy management or the wireless technology used. The parameters of these models can
be changed for each new experiment. Moreover, SWINE is defined as an open architecture
and allows the easy addition of new models. A more detailed description of SWINE can
be found in Section 4.

To sum up, the roles of SWINE and NINE are quite simple: SWINE precomputes a
scenario composed of IP traffic constraints, and NINE provides a physical network inter-
connecting real node, where the IP traffic is shaped in soft real-time according to this
scenario, as if the underlying network was a mobile wireless network.

The limited role of SWINE makes it a much simpler simulator than ns-2 or GloMoSim.
SWINE does not have to model neither network layers above IP nor the application or the
traffic itself, while in ns-2 , every packet is simulated and passed across all the modeled
layers, starting from the application to the physical channel. The principle behind SWINE
is not to simulate packets, but to compute the effects of the target network on the band-
width, delay and losses of each potential link, according to models of lower communication
layers (physical, MAC and IP), propagation issues and node mobility.

5



4 Simulator Architecture

The SWINE simulator computes the evolution over a given period of time of a mobile wire-
less network in terms of network-level parameters, i.e. data throughput, delay and packet
losses. The simulation must take into account the node movements, radio propagation
issues and the communication stack used for delivering IP packets to the transport layer.
Moreover, SWINE takes its input from the end-user (high-level experiment description)
and delivers its output to the NINE configuration software. To keep the exchanges as flexi-
ble as possible, XML was chosen to format these inputs and outputs. These considerations
lead to the architecture given in Figure 2.

Figure 2: SWINE Global Architecture Overview

The high-level experiment description describes the nodes (their movements, their com-
munication stacks up to IP, including ad-hoc routing protocols) and the environment (ob-
stacles and radio propagation conditions). This description is analysed by SWINE, which
consequently creates both the domain objects and the model objects. Domain objects
include nodes, links and routes, as well as obstacles. Model objects realize the equations
corresponding to the user-specified models2. The simulation block then discretely computes
the dynamic topology: the positions of each node over time, then the received power, data
throughput, packet loss and delay for each node and link, and finally available routes and
IP parameters on those routes. This simulation stage delegates a great amount of the
computation to the model objects. Finally, the results are synthesized into an emulation
scenario for the NINE platform.

At the time of writing, a prototype version of SWINE is implemented and supports the
following models: Random Walk, Random Waypoint, Rectilinear Uniform, Still mobility
models; Friis, Two-ray, Path-Loss Exponent large-scale pathloss models; Per-Obstacle Ab-
sorption, Lognormal medium-scale shadowing model; Rayleigh short-scale fading model;
Thermal noise model; Table-based IP throughput model. This first version has been set up
to demonstrate the usefulness of a simple IP-level simulator, as opposed to more complex
simulators like ns-2 that encompass additional models for applications, transport proto-
cols and network traffic. A more mature version will be developed with a full support for
mobile ad-hoc networks in mind. This implies group-based mobility models and a more
explicit simulation of the concurrent access to the radio resource.

2For instance, if a path loss exponent model is specified in the experiment desciption, the corresponding
model object computes the pathloss in dB, i.e. PL(d) = PL(d0)+10n log(d/d0), where d is the transmitter-
receiver distance, d0 a reference distance, PL(d0) an estimate of the pathloss at d0 and n an empirical
exponent [14]. The experiment description should at least provide the values for n and d0.

6



Figure 3: Plot of SWINE’s Raw Output (Distance and Received Power)

5 Experimenting with W-NINE

In this section we describe a simple W-NINE session. The emulated network is a 802.11b
infrastructure network in an office, where a fixed station F1 wired to the access point
continuously transmits UDP data to a mobile host M1. The purpose of this experiment
is to demonstrate that W-NINE can emulate wireless network with a sufficient amount of
realism.

The emulated network and experimental conditions are described in the high-level ex-
periment description, which contains the models for mobility, propagation and IP com-
munication. The mobility model used for the mobile host is a rectilinear back and forth
movement3 with a constant speed of 0.5 m/s over 40 meters. Among other curves, Fig-
ure 3 shows the F1-M1 distance computed by SWINE with a time granularity of 500 ms.
The large-scale propagation model used is a path loss exponent model without lognormal
shadowing, where n = 4.6, d0 = 1 m and PL(d0) is estimated using the Friis free-space
path loss model. Two obstacles absorb respectively 50% and 100% of the received signal.
A second simulation adds a Rayleigh fading model. Figure 3 also shows the received power
Pr for both faded and not faded experiments. As expected, the introduction of Rayleigh
fading causes fast variations of Pr. The Pr brutal drops and holes are due to partial and
full absorption of the signal by the obstacles when the M1 passes in front of them. The
horizontal lines show the minimal power needed to receive data transmitted at 1, 2, 5.5
and 11 Mb/s.

The communication model is based on a simple table associating an IP throughput
with the received signal: the receiver’s radio sensitivity levels allows the selection of the
appropriate transmission speed and the 802.11b PHY and MAC protocols then allow the
computation of the theoretical maximum data throughput [8]. The packet loss rate is
either 0 or 1, and delays due to auto-rate fallback were ignored. The computed throughput

3To ease the interpretation of results, we did not use a random model.

7



Figure 4: Throughput Computed by SWINE

Figure 5: Throughput Measured by MGEN on NINE

is illustrated in Figure 4 for both faded and not faded experiments. The steps-like curve
represents the computed throughput and changes according to the Pr level, with much more
frequent changes when Rayleigh fading is taken into account. The throughput changes for
each link compose the emulation scenario computed by SWINE.

Until now, no real traffic has been sent from F1 to M1. During the emulation stage, two
tasks are run in parallel: applications are run on NINE physical nodes while the Dummynet
traffic shaper is configured in real-time according to the scenario computed by SWINE.
Here, the applications are a MGEN [13] transmitter running on the Linux PC hosting the
fixed host F1 and a MGEN receiver on M1’s host, and the transport protocol used is UDP.
The MGEN apps have been configured to measure the throughput from F1 to M1, now
with real UDP/IP packets going through the Dummynet traffic shaper. Figure 5 shows
that as soon as QoS events are scheduled on the shaper, the measured throughput changes
accordingly.

This experiment shows that a high-level, i.e. user-friendly, description of an experiment
can be used to dynamically configure an Ethernet-based emulation platform where real
applications can run in real-time as if they were deployed over a wireless network.

8



6 Conclusion and Future Work

This paper proposes an architecture and a process allowing the test of distributed applica-
tions and/or transport protocols over an emulated mobile wireless network. The proposed
platform, called W-NINE, is based on the SWINE offline simulator which produces an
emulation scenario for NINE, a real-time IP-level emulation platform. This architecture
benefits from a user-centric design in the sense that simple configurations can be simply
expressed in high-level descriptions. This architecture is also open and evolutive in that it
can integrate over time a number of classical as well as emerging models expressing node
mobility, propagation issues, energy management, radio technology, medium access control
and ad-hoc routing protocols.

NINE is currently deployed over a gigabit ethernet network emulation platform includ-
ing Dummynet traffic shaping nodes. A powerful dynamic configuration package has been
developed to schedule the events from the emulation scenario in real time. A low-level per-
link scenario format has been defined in XML. We have also developed a first version of
the SWINE simulator, focusing on the integration of well-known models for node mobility,
radio propagation and medium access control, and a monitoring GUI.

We now plan to evaluate the accuracy of W-NINE with respect to time granularity. We
are also concerned by SWINE’s behaviour when the number of nodes explodes. Another key
issue is a more realistic support of concurrent access to the radio ressource, i.e. modeling
the impact of interferences between streams on the per-stream throughput, which is of
prime importance in infrastructure networks [6] as well as ad-hoc networks. Finally, full
support for ad-hoc networks will be developed.

Acknowledgements

We wish to thank Emmanuel Goua de Baix, Jérôme Fimes and Hervé Thalmensy for their help
in the development and administration of the W-NINE platform.

References

[1] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. Mc-
Canne, K. Varadhan, Y. Xu, and H. Yu. Advances in Network Simulation. IEEE
Computer, 33(5), May 2000.

[2] M. Carson and D. Santay. NIST Net: A Linux-based Network Emulation Tool. ACM
SIGCOMM Computer Commununications Review, 33(3):111–126, 2003.

[3] K. Fall. Network Emulation in the VINT/NS Simulator. In Proceedings of the fourth
IEEE Symposium on Computers and Communications, 1999.

[4] J. Flynn, H. Tewari, and D. O’Mahony. JEmu: A Real Time Emulation System for
Mobile Ad Hoc Networks. In Proceedings of the First Joint IEI/IEE Symposium on
Telecommunications Systems Research, November 2001.

9



[5] D. Herrscher and K. Rothermel. A Dynamic Network Scenario Emulation Tool. In
Proceedings of ICCCN 2002, pages 262–267, October 2002.

[6] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance Anomaly in
802.11b. In Proceedings of IEEE INFOCOM 2003, 2003.

[7] A. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri. Towards Realistic Mo-
bility Models for Mobile Ad hoc Networks. In Proceedings of MobiCom ’03, September
2003.

[8] J. Jun, P. Peddachagari, and M. Sichitiu. Theoretical Maximum Throughput of IEEE
802.11 and its Applications. In Proceedings of the 2nd IEEE International Symposium
on Network Computing and Applications (NCA-03), 2003.

[9] Q. Ke, D. Maltz, and D. Johnson. Emulation of Multi-Hop Wireless Ad Hoc Networks.
In The 7th International Workshop on Mobile Multimedia Communications (MoMuC
2000), October 2000.

[10] M. Kojo, A. Gurtov, J. Mannner, P. Sarolahti, T. Alanko, and K. Raatikainen. Sea-
wind: a Wireless Network Emulator. In Proceedings of the 11th GI/ITG Conference
on Measuring, Modelling and Evaluation of Computer and Communication Systems
(MMB 2001), 2001.

[11] L. Lancerica, L. Dairaine, F. de Belleville, H. Thalmensy, and C. Fraboul. MITV, A
solution for Interactive TV Based on IP Multicast over Satellite. In Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME), June 2004.

[12] B. Noble, M. Satyanarayanan, G. Nguyen, and R. Katz. Trace-Based Mobile Network
Emulation. In Proceedings of ACM SIGCOMM’97, September 1997.

[13] NRL/PROTEAN. MGEN: The Multi-Generator Toolset. http://mgen.pf.itd.nrl.
navy.mil.

[14] T. Rappaport. Wireless Communications Principles and Practice, 2nd Edition. Pren-
tice Hall, 2002.

[15] G. F. Riley, R. Fujimoto, and M. H. Ammar. A Generic Framework for Paralleliza-
tion of Network Simulations. In Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), 1999.

[16] L. Rizzo. Dummynet: A Simple Approach to the Evaluation of Network Protocols.
ACM Computer Communication Review, 27(1), January 1997.

[17] A. Schoonen. Designing Wireless Indoor Radio Systems with Ray Tracing Simulators.
Technical report, Eindhoven University of Technology, Dec. 2003. Available at http:
//people.spacelabs.nl/∼admar/SimpleCSD/report.pdf.

10



[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar. An Integrated Experimental Environment for Distributed
Systems and Networks. In Proceedings of OSDI02, 2002.

[19] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A Library for Parallel Simulation
of Large-scale Wireless Networks. In Proceedings of PADS ’98, May 1998.

[20] P. Zheng and L. Ni. EMWin: Emulating a Mobile Wireless Network using a Wired
Network. In Proceedings of the 5th ACM international workshop on Wireless mobile
multimedia, 2002.

11


