4,400 research outputs found

    Winning Fast in Sparse Graph Construction Games

    Full text link

    Conditionally Optimal Algorithms for Generalized B\"uchi Games

    Get PDF
    Games on graphs provide the appropriate framework to study several central problems in computer science, such as the verification and synthesis of reactive systems. One of the most basic objectives for games on graphs is the liveness (or B\"uchi) objective that given a target set of vertices requires that some vertex in the target set is visited infinitely often. We study generalized B\"uchi objectives (i.e., conjunction of liveness objectives), and implications between two generalized B\"uchi objectives (known as GR(1) objectives), that arise in numerous applications in computer-aided verification. We present improved algorithms and conditional super-linear lower bounds based on widely believed assumptions about the complexity of (A1) combinatorial Boolean matrix multiplication and (A2) CNF-SAT. We consider graph games with nn vertices, mm edges, and generalized B\"uchi objectives with kk conjunctions. First, we present an algorithm with running time O(kn2)O(k \cdot n^2), improving the previously known O(knm)O(k \cdot n \cdot m) and O(k2n2)O(k^2 \cdot n^2) worst-case bounds. Our algorithm is optimal for dense graphs under (A1). Second, we show that the basic algorithm for the problem is optimal for sparse graphs when the target sets have constant size under (A2). Finally, we consider GR(1) objectives, with k1k_1 conjunctions in the antecedent and k2k_2 conjunctions in the consequent, and present an O(k1k2n2.5)O(k_1 \cdot k_2 \cdot n^{2.5})-time algorithm, improving the previously known O(k1k2nm)O(k_1 \cdot k_2 \cdot n \cdot m)-time algorithm for m>n1.5m > n^{1.5}

    Algorithms and Conditional Lower Bounds for Planning Problems

    Full text link
    We consider planning problems for graphs, Markov decision processes (MDPs), and games on graphs. While graphs represent the most basic planning model, MDPs represent interaction with nature and games on graphs represent interaction with an adversarial environment. We consider two planning problems where there are k different target sets, and the problems are as follows: (a) the coverage problem asks whether there is a plan for each individual target set, and (b) the sequential target reachability problem asks whether the targets can be reached in sequence. For the coverage problem, we present a linear-time algorithm for graphs and quadratic conditional lower bound for MDPs and games on graphs. For the sequential target problem, we present a linear-time algorithm for graphs, a sub-quadratic algorithm for MDPs, and a quadratic conditional lower bound for games on graphs. Our results with conditional lower bounds establish (i) model-separation results showing that for the coverage problem MDPs and games on graphs are harder than graphs and for the sequential reachability problem games on graphs are harder than MDPs and graphs; (ii) objective-separation results showing that for MDPs the coverage problem is harder than the sequential target problem.Comment: Accepted at ICAPS'1

    Positional Games

    Full text link
    Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science. We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances, standing open problems and promising research directions.Comment: Submitted to Proceedings of the ICM 201

    Hitting time results for Maker-Breaker games

    Full text link
    We study Maker-Breaker games played on the edge set of a random graph. Specifically, we consider the random graph process and analyze the first time in a typical random graph process that Maker starts having a winning strategy for his final graph to admit some property \mP. We focus on three natural properties for Maker's graph, namely being kk-vertex-connected, admitting a perfect matching, and being Hamiltonian. We prove the following optimal hitting time results: with high probability Maker wins the kk-vertex connectivity game exactly at the time the random graph process first reaches minimum degree 2k2k; with high probability Maker wins the perfect matching game exactly at the time the random graph process first reaches minimum degree 22; with high probability Maker wins the Hamiltonicity game exactly at the time the random graph process first reaches minimum degree 44. The latter two statements settle conjectures of Stojakovi\'{c} and Szab\'{o}.Comment: 24 page

    A new upper bound on the game chromatic index of graphs

    Full text link
    We study the two-player game where Maker and Breaker alternately color the edges of a given graph GG with kk colors such that adjacent edges never get the same color. Maker's goal is to play such that at the end of the game, all edges are colored. Vice-versa, Breaker wins as soon as there is an uncolored edge where every color is blocked. The game chromatic index χg(G)\chi'_g(G) denotes the smallest kk for which Maker has a winning strategy. The trivial bounds Δ(G)χg(G)2Δ(G)1\Delta(G) \le \chi_g'(G) \le 2\Delta(G)-1 hold for every graph GG, where Δ(G)\Delta(G) is the maximum degree of GG. In 2008, Beveridge, Bohman, Frieze, and Pikhurko proved that for every δ>0\delta>0 there exists a constant c>0c>0 such that χg(G)(2c)Δ(G)\chi'_g(G) \le (2-c)\Delta(G) holds for any graph with Δ(G)(12+δ)v(G)\Delta(G) \ge (\frac{1}{2}+\delta)v(G), and conjectured that the same holds for every graph GG. In this paper, we show that χg(G)(2c)Δ(G)\chi'_g(G) \le (2-c)\Delta(G) is true for all graphs GG with Δ(G)Clogv(G)\Delta(G) \ge C \log v(G). In addition, we consider a biased version of the game where Breaker is allowed to color bb edges per turn and give bounds on the number of colors needed for Maker to win this biased game.Comment: 17 page

    Sparse Positional Strategies for Safety Games

    Full text link
    We consider the problem of obtaining sparse positional strategies for safety games. Such games are a commonly used model in many formal methods, as they make the interaction of a system with its environment explicit. Often, a winning strategy for one of the players is used as a certificate or as an artefact for further processing in the application. Small such certificates, i.e., strategies that can be written down very compactly, are typically preferred. For safety games, we only need to consider positional strategies. These map game positions of a player onto a move that is to be taken by the player whenever the play enters that position. For representing positional strategies compactly, a common goal is to minimize the number of positions for which a winning player's move needs to be defined such that the game is still won by the same player, without visiting a position with an undefined next move. We call winning strategies in which the next move is defined for few of the player's positions sparse. Unfortunately, even roughly approximating the density of the sparsest strategy for a safety game has been shown to be NP-hard. Thus, to obtain sparse strategies in practice, one either has to apply some heuristics, or use some exhaustive search technique, like ILP (integer linear programming) solving. In this paper, we perform a comparative study of currently available methods to obtain sparse winning strategies for the safety player in safety games. We consider techniques from common knowledge, such as using ILP or SAT (satisfiability) solving, and a novel technique based on iterative linear programming. The results of this paper tell us if current techniques are already scalable enough for practical use.Comment: In Proceedings SYNT 2012, arXiv:1207.055
    corecore