858 research outputs found

    Performance Analysis of an EEMD-based Hilbert Huang Transform as a Bearing Failure Detector in Wind Turbines

    No full text
    International audienceSustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. The most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the degeneration of the generator health, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper deals then with the assessment of a demodulation technique for bearing failure detection through wind turbines generator stator current. The proposed technique is based on a modified version of the Hilbert Huang transform. In this version, the use of the EEMD algorithm allows overcoming the well-known mixed mode

    Induction Machine Diagnosis using Stator Current Advanced Signal Processing

    No full text
    International audienceInduction machines are widely used in industrial applications. Safety, reliability, efficiency and performance are major concerns that direct the research activities in the field of electrical machines. Even though the induction machines are very reliable, many failures can occur such as bearing faults, air-gap eccentricity and broken rotor bars. Therefore, the challenge is to detect them at an early stage in order to prevent breakdowns. In particular, stator current-based condition monitoring is an extensively investigated field for cost and maintenance savings. In fact, several signal processing techniques for stator current-based induction machine faults detection have been studied. These techniques can be classified into: spectral analysis approaches, demodulation techniques and time-frequency representations. In addition, for diagnostic purposes, more sophisticated techniques are required in order to determine the faulty components. This paper intends to review the spectral analysis techniques and time-frequency representations. These techniques are demonstrated on experimental data issued from a test bed equipped with a 0.75 kW induction machine. Nomenclature O&M = Operation and Maintenance; WTG = Wind Turbine Generator; MMF = Magneto-Motive Force; MCSA = Motor Current signal Analysis; PSD = Power Spectral Density; FFT = Fast Fourier Transform; DFT = Discrete Fourier Transform; MUSIC = MUltiple SIgnal Characterization; ESPRIT = Estimation of Signal Parameters via Rotational Invariance Techniques; SNR = Signal to Noise Ratio; MLE = Maximum Likelihood Estimation; STFT = Short-Time Fourier Transform; CWT = Continuous Wavelet Transform; WVD = Wigner-Ville distribution; HHT = Hilbert-Huang Transform; DWT = Discrete Wavelet Transform; EMD = Empirical Mode Decomposition; IMF = Intrinsic Mode Function; AM = Amplitude Modulation; FM = Frequency Modulation; IA = Instantaneous Amplitude; IF = Instantaneous Frequency; í µí± ! = Supply frequency; í µí± ! = Rotational frequency; í µí± ! = Fault frequency introduced by the modified rotor MMF; í µí± ! = Characteristic vibration frequencies; í µí± !"# = Bearing defects characteristic frequency; í µí± !" = Bearing outer raceway defect characteristic frequency; í µí± !" = Bearing inner raceway defect characteristic frequency; í µí± !" = Bearing balls defect characteristic frequency; í µí± !"" = Eccentricity characteristic frequency; í µí± ! = Number of rotor bars or rotor slots; í µí± = Slip; í µí°¹ ! = Sampling frequency; í µí± = Number of samples; í µí±¤[. ] = Time-window (Hanning, Hamming, etc.); í µí¼ = Time-delay; í µí¼ ! = Variance; ℎ[. ] = Time-window

    Condition Monitoring of Wind Turbines Based on Amplitude Demodulation

    No full text
    International audienceWind energy conversion systems (WECS) have become a focal point in the research of renewable energy sources. In order to make wind turbine reliable and competitive, it is important to reduce the operational and maintenance costs. The most efficient way to reduce it relies on condition monitoring and fault diagnostics. This paper proposes a new fault detector based on the amplitude demodulation of the three-phase stator current. Simulations show that this low-complexity method is well suited for stationary or non-stationary behavior

    Modelling and detection of faults in axial-flux permanent magnet machines

    Get PDF
    The development of various topologies and configurations of axial-flux permanent magnet machine has spurred its use for electromechanical energy conversion in several applications. As it becomes increasingly deployed, effective condition monitoring built on reliable and accurate fault detection techniques is needed to ensure its engineering integrity. Unlike induction machine which has been rigorously investigated for faults, axial-flux permanent magnet machine has not. Thus in this thesis, axial-flux permanent magnet machine is investigated under faulty conditions. Common faults associated with it namely; static eccentricity and interturn short circuit are modelled, and detection techniques are established. The modelling forms a basis for; developing a platform for precise fault replication on a developed experimental test-rig, predicting and analysing fault signatures using both finite element analysis and experimental analysis. In the detection, the motor current signature analysis, vibration analysis and electrical impedance spectroscopy are applied. Attention is paid to fault-feature extraction and fault discrimination. Using both frequency and time-frequency techniques, features are tracked in the line current under steady-state and transient conditions respectively. Results obtained provide rich information on the pattern of fault harmonics. Parametric spectral estimation is also explored as an alternative to the Fourier transform in the steady-state analysis of faulty conditions. It is found to be as effective as the Fourier transform and more amenable to short signal-measurement duration. Vibration analysis is applied in the detection of eccentricities; its efficacy in fault detection is hinged on proper determination of vibratory frequencies and quantification of corresponding tones. This is achieved using analytical formulations and signal processing techniques. Furthermore, the developed fault model is used to assess the influence of cogging torque minimization techniques and rotor topologies in axial-flux permanent magnet machine on current signal in the presence of static eccentricity. The double-sided topology is found to be tolerant to the presence of static eccentricity unlike the single-sided topology due to the opposing effect of the resulting asymmetrical properties of the airgap. The cogging torque minimization techniques do not impair on the established fault detection technique in the single-sided topology. By applying electrical broadband impedance spectroscopy, interturn faults are diagnosed; a high frequency winding model is developed to analyse the impedance-frequency response obtained

    Prognostic-based Life Extension Methodology with Application to Power Generation Systems

    Get PDF
    Practicable life extension of engineering systems would be a remarkable application of prognostics. This research proposes a framework for prognostic-base life extension. This research investigates the use of prognostic data to mobilize the potential residual life. The obstacles in performing life extension include: lack of knowledge, lack of tools, lack of data, and lack of time. This research primarily considers using the acoustic emission (AE) technology for quick-response diagnostic. To be specific, an important feature of AE data was statistically modeled to provide quick, robust and intuitive diagnostic capability. The proposed model was successful to detect the out of control situation when the data of faulty bearing was applied. This research also highlights the importance of self-healing materials. One main component of the proposed life extension framework is the trend analysis module. This module analyzes the pattern of the time-ordered degradation measures. The trend analysis is helpful not only for early fault detection but also to track the improvement in the degradation rate. This research considered trend analysis methods for the prognostic parameters, degradation waveform and multivariate data. In this respect, graphical methods was found appropriate for trend detection of signal features. Hilbert Huang Transform was applied to analyze the trends in waveforms. For multivariate data, it was realized that PCA is able to indicate the trends in the data if accompanied by proper data processing. In addition, two algorithms are introduced to address non-monotonic trends. It seems, both algorithms have the potential to treat the non-monotonicity in degradation data. Although considerable research has been devoted to developing prognostics algorithms, rather less attention has been paid to post-prognostic issues such as maintenance decision making. A multi-objective optimization model is presented for a power generation unit. This model proves the ability of prognostic models to balance between power generation and life extension. In this research, the confronting objective functions were defined as maximizing profit and maximizing service life. The decision variables include the shaft speed and duration of maintenance actions. The results of the optimization models showed clearly that maximizing the service life requires lower shaft speed and longer maintenance time

    A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions

    Get PDF
    This paper deals with the condition monitoring of wind turbine gearboxes under varying operating conditions. Generally, gearbox systems include nonlinearities so a simplified nonlinear gear model is developed, on which the time–frequency analysis method proposed is first applied for the easiest understanding of the challenges faced. The effect of varying loads is examined in the simulations and later on in real wind turbine gearbox experimental data. The Empirical Mode Decomposition (EMD) method is used to decompose the vibration signals into meaningful signal components associated with specific frequency bands of the signal. The mode mixing problem of the EMD is examined in the simulation part and the results in that part of the paper suggest that further research might be of interest in condition monitoring terms. For the amplitude–frequency demodulation of the signal components produced, the Hilbert Transform (HT) is used as a standard method. In addition, the Teager–Kaiser energy operator (TKEO), combined with an energy separation algorithm, is a recent alternative method, the performance of which is tested in the paper too. The results show that the TKEO approach is a promising alternative to the HT, since it can improve the estimation of the instantaneous spectral characteristics of the vibration data under certain conditions

    Fault Management in DC Microgrids:A Review of Challenges, Countermeasures, and Future Research Trends

    Get PDF
    The significant benefits of DC microgrids have instigated extensive efforts to be an alternative network as compared to conventional AC power networks. Although their deployment is ever-growing, multiple challenges still occurred for the protection of DC microgrids to efficiently design, control, and operate the system for the islanded mode and grid-tied mode. Therefore, there are extensive research activities underway to tackle these issues. The challenge arises from the sudden exponential increase in DC fault current, which must be extinguished in the absence of the naturally occurring zero crossings, potentially leading to sustained arcs. This paper presents cut-age and state-of-the-art issues concerning the fault management of DC microgrids. It provides an account of research in areas related to fault management of DC microgrids, including fault detection, location, identification, isolation, and reconfiguration. In each area, a comprehensive review has been carried out to identify the fault management of DC microgrids. Finally, future trends and challenges regarding fault management in DC-microgrids are also discussed

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    Adaptive overhead transmission lines auto-reclosing based on Hilbert–Huang transform

    Get PDF
    This paper presents a reliable and fast index to detect the instant of arc extinction for adaptive single-pole automatic reclosing (ASPAR). The proposed method is a simple technique for ASPAR on shunt compensated transmission lines using the Hilbert–Huang Transform (HHT). The HHT method is a combination of the empirical mode decomposition (EMD) and the Hilbert transform (HT). The first intrinsic mode function (IMF1) decomposed by EMD, which contains high frequencies of the faulty phase voltage, was used to calculate the proposed index. HT calculates the first IMF spectrum in the time-frequency domain. The presented index is the sum of all frequency contents below 55 Hz, which remains very low until the fault clearance. The proposed method uses a global threshold level and therefore no adjustment is needed for different transmission systems. This method is effective for various system configurations including different fault locations, line loading, and various shunt reactor configurations, designs, compensation rates, and placement. The performance of the method was verified using 324 test cases simulated in electromagnetic transient program (EMTP) related to a 345 kV transmission line. For all the test cases, the algorithm successfully operated with an average reclosing time delay of 32 ms
    corecore