235 research outputs found

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Power System Stability With a High Penetration of Inverter-Based Resources

    Get PDF
    Inverter-based resources (IBRs) possess dynamics that are significantly different from those of synchronous-generator-based sources and as IBR penetrations grow the dynamics of power systems are changing. This article discusses the characteristics of the new dynamics and examines how they can be accommodated into the long-standing categorizations of power system stability in terms of angle, frequency, and voltage stability. It is argued that inverters are causing the frequency range over which angle, frequency, and voltage dynamics act to extend such that the previously partitioned categories are now coupled and further coupled to new electromagnetic modes. While grid-forming (GFM) inverters share many characteristics with generators, grid-following (GFL) inverters are different. This is explored in terms of similarities and differences in synchronization, inertia, and voltage control. The concept of duality is used to unify the synchronization principles of GFM and GFL inverters and, thus, established the generalized angle dynamics. This enables the analytical study of GFM-GFL interaction, which is particularly important to guide the placement of GFM apparatuses and is even more important if GFM inverters are allowed to fall back to the GFL mode during faults to avoid oversizing to support short-term overload. Both GFL and GFM inverters contribute to voltage strength but with marked differences, which implies new features of voltage stability. Several directions for further research are identified, including: 1) extensions of nonlinear stability analysis to accommodate new inverter behaviors with cross-coupled time frames; 2) establishment of spatial–temporal indices of system strength and stability margin to guide the provision of new stability services; and 3) data-driven approaches to combat increased system complexity and confidentiality of inverter models

    Harmonic Mitigation and Resonance Damping Based on Impedance Model Using Series LC Filtered VSI

    Get PDF

    A Review of Control Techniques for Wind Energy Conversion System

    Get PDF
    Wind energy is the most efficient and advanced form of renewable energy (RE) in recent decades, and an effective controller is required to regulate the power generated by wind energy. This study provides an overview of state-of-the-art control strategies for wind energy conversion systems (WECS). Studies on the pitch angle controller, the maximum power point tracking (MPPT) controller, the machine side controller (MSC), and the grid side controller (GSC) are reviewed and discussed. Related works are analyzed, including evolution, software used, input and output parameters, specifications, merits, and limitations of different control techniques. The analysis shows that better performance can be obtained by the adaptive and soft-computing based pitch angle controller and MPPT controller, the field-oriented control for MSC, and the voltage-oriented control for GSC. This study provides an appropriate benchmark for further wind energy research

    Real-time Forecasting and Control for Oscillating Wave Energy Devices

    Get PDF
    Ocean wave energy represents a signicant resource of renewable energy and can make an important contribution to the development of a more sustainable solution in support of the contemporary society, which is becoming more and more energy intensive. A perspective is given on the benefits that wave energy can introduce, in terms of variability of the power supply, when combined with oshore wind. Despite its potential, however, the technology for the generation of electricity from ocean waves is not mature yet. In order to raise the economic performance of Wave energy converters (WECs), still far from being competitive, a large scope exists for the improvement of their capacity factor through more intelligent control systems. Most control solutions proposed in the literature, for the enhancement of the power absorption of WECs, are not implemented in practise because they require future knowledge of the wave elevation or wave excitation force. The non-causality of the unconstrained optimal conditions, termed complex-conjugate control, for the maximum wave energy absorption of WECs consisting of oscillating systems, is analysed. A link between fundamental properties of the radiation of the floating body and the prediction horizon required for an effective implementation of complex-conjugate control is identified. An extensive investigation of the problem of wave elevation and wave excitation force forecasting is then presented. The prediction is treated as a purely stochastic problem, where future values of the wave elevation or wave excitation force are estimated from past measurements at the device location only. The correlation of ocean waves, in fact, allows the achievement of accurate predictions for 1 or 2 wave periods into the future, with linear Autoregressive (AR) models. A relationship between predictability of the excitation force and excitation properties of the floating body is also identified. Finally, a controller for an oscillating wave energy device is developed. Based on the assumption that the excitation force is a narrow-banded harmonic process, the controller is effectively tuned through a single parameter of immediate physical meaning, for performance and motion constraint handling. The non-causality is removed by the parametrisation, the only input of the controller being an on-line estimate of the frequency and amplitude of the excitation force. Simulations in (synthetic and real) irregular waves demonstrate that the solution allows the achievement of levels of power capture that are very close to non-causal complex-conjugate control, in the unconstrained case, and Model predictive control (MPC), in the constrained case. In addition, the hierarchical structure of the proposed controller allows the treatment of the issue of robustness to model uncertainties in quite a straightforward and effective way

    Control of voltage source converters connected to variable impedance grids

    Get PDF
    The increase in new renewable energy resources is key to achieving carbon reduction targets, however it also introduces new grid integration challenges. The best renewable resource in Scotland is found in remote parts of the country, and as a result new renewable based generation is increasingly subjected to high and variable levels of impedance. Impedances that cause resonances are also increasingly common, given the higher order characteristics of impedance when transformers, filters, subsea cables, compensators and so on are present in the network. For a better understanding of impedance related stability issues, the estimation of the grid impedance using both Thévenin equivalent and wide spectrum techniques is studied in this thesis and integrated into the converter’s control. These estimations inform the controller of the grid conditions, allowing for controller adaptation. In instances where weak grid conditions are severe and the local grid impedance is dominant, a disturbance rejection mechanism called the pre-emptive voltage decoupler (PVD) is proposed. The PVD feeds forward the active current reference and measured voltage, and adapts the reactive current reference as a function of the impedance estimation, to pre-emptively compensate the local voltage for changes in active power transfer. This is justified through small signal analysis using linearised state space models and validated in the laboratory using large inductors and a converter. The control is also made more resilient with an instability detector, proposed to prevent instability when significant grid disturbances occur. Through early detection of sudden power angle changes, stability can be maintained. This is achieved by momentarily reducing the power reference and re-establishing grid parameters. The implementation of the proposed changes improves the steady state stability region from -0.75 – 0.55 pu to -0.85 – 0.75 pu. Further, the nonlinear transient performance is much more resilient, and uninterrupted power flow can be maintained. When the local grid is not dominant, and higher order grid impedances cause undesired resonances, a detection of the resonant frequency allows for an adaptation of the outer loop gains, thus damping the resonances and improving stability. Such grids are also prone to instability, but a reduction of the power reference does not improve stability, on the contrary the reduction of the power reference shifts eigenvalues into the right hand plane. A better preventative measure is to reduce the outer loop gains, and once the frequency of the problematic resonances is identified, final decisions on outer loop tuning can be taken. With this implementation, the stability of the system is maintained and the power output can be recovered within about 1 second.The increase in new renewable energy resources is key to achieving carbon reduction targets, however it also introduces new grid integration challenges. The best renewable resource in Scotland is found in remote parts of the country, and as a result new renewable based generation is increasingly subjected to high and variable levels of impedance. Impedances that cause resonances are also increasingly common, given the higher order characteristics of impedance when transformers, filters, subsea cables, compensators and so on are present in the network. For a better understanding of impedance related stability issues, the estimation of the grid impedance using both Thévenin equivalent and wide spectrum techniques is studied in this thesis and integrated into the converter’s control. These estimations inform the controller of the grid conditions, allowing for controller adaptation. In instances where weak grid conditions are severe and the local grid impedance is dominant, a disturbance rejection mechanism called the pre-emptive voltage decoupler (PVD) is proposed. The PVD feeds forward the active current reference and measured voltage, and adapts the reactive current reference as a function of the impedance estimation, to pre-emptively compensate the local voltage for changes in active power transfer. This is justified through small signal analysis using linearised state space models and validated in the laboratory using large inductors and a converter. The control is also made more resilient with an instability detector, proposed to prevent instability when significant grid disturbances occur. Through early detection of sudden power angle changes, stability can be maintained. This is achieved by momentarily reducing the power reference and re-establishing grid parameters. The implementation of the proposed changes improves the steady state stability region from -0.75 – 0.55 pu to -0.85 – 0.75 pu. Further, the nonlinear transient performance is much more resilient, and uninterrupted power flow can be maintained. When the local grid is not dominant, and higher order grid impedances cause undesired resonances, a detection of the resonant frequency allows for an adaptation of the outer loop gains, thus damping the resonances and improving stability. Such grids are also prone to instability, but a reduction of the power reference does not improve stability, on the contrary the reduction of the power reference shifts eigenvalues into the right hand plane. A better preventative measure is to reduce the outer loop gains, and once the frequency of the problematic resonances is identified, final decisions on outer loop tuning can be taken. With this implementation, the stability of the system is maintained and the power output can be recovered within about 1 second

    Modelling and control of coupled infinite-dimensional systems

    No full text
    First, we consider two classes of coupled systems consisting of an infinite-dimensional part [sigma]d and a finite-dimensional part [sigma]f connected in feedback. In the first class of coupled systems, we assume that the feedthrough matrix of [sigma]f is 0 and that [sigma]d is such that it becomes well-posed and strictly proper when connected in cascade with an integrator. Under several assumptions, we derive well-posedness, regularity and exact (or approximate) controllability results for such systems on a subspace of the natural product state space. In the second class of coupled systems, [sigma]f has an invertible first component in its feedthrough matrix while [sigma]d is well-posed and strictly proper. Under similar assumptions, we obtain well-posedness, regularity and exact (or approximate) controllability results as well as exact (or approximate) observability results for this class of coupled systems on the natural state space. Second, we investigate the exact controllability of the SCOLE (NASA Spacecraft Control Laboratory Experiment) model. Using our theory for the first class of coupled systems, we show that the uniform SCOLE model is well-posed, regular and exactly controllable in arbitrarily short time when using a certain smoother state space. Third, we investigate the suppression of the vibrations of a wind turbine tower using colocated feedback to achieve strong stability. We decompose the system into a non-uniform SCOLE model describing the vibrations in the plane of the turbine axis, and another model consisting of a non-uniform SCOLE system coupled with a two-mass drive-train model (with gearbox), in the plane of the turbine blades. We show the strong stabilizability of the first tower model by colocated static output feedback. We also prove the generic exact controllability of the second tower model on a smoother state space using our theory for the second class of coupled systems, and show its generic strong stabilizability on the energy state space by colocated feedback

    Engineering and built environment project conference 2016: book of abstracts - Toowoomba, Australia, 19-23 September 2016

    Get PDF
    Book of Abstracts of the USQ Engineering and Built Environment Conference 2016, held Toowoomba, Australia, 19-23 September 2016. These proceedings include extended abstracts of the verbal presentations that are delivered at the project conference. The work reported at the conference is the research undertaken by students in meeting the requirements of courses ENG4111/ENG4112 Research Project for undergraduate or ENG8411/ENG8412 Research Project and Dissertation for postgraduate students
    • …
    corecore