9 research outputs found

    A chain theorem for matroids

    Get PDF
    Abstract. Tutte’s Wheels-and-Whirls Theorem proves that if M is a 3-connected matroid other than a wheel or a whirl, then M has a 3-connected minor N such that |E(M) | − |E(N) | = 1. Geelen and Whittle extended this theorem by showing that when M is sequentially 4-connected, the minor N can also be guaranteed to be sequentially 4-connected, that is, for every 3-separation (X, Y) of N, the set E(N) can be obtained from X or Y by successively applying the operations of closure and coclosure. Hall proved a chain theorem for a different class of 4-connected matroids, those for which every 3-separation has at most five elements on one side. This paper proves a chain theorem for those sequentially 4-connected matroids that also obey this size condition. 1

    An upgraded Wheels-and-Whirls Theorem for 3-connected matroids

    Get PDF
    Let M be a 3-connected matroid that is not a wheel or a whirl. In this paper, we prove that M has an element e such that M\e or M/e is 3-connected and has no 3-separation that is not equivalent to one induced by M. © 2011 Elsevier Inc

    Extremal Problems in Matroid Connectivity

    Get PDF
    Matroid k-connectivity is typically defined in terms of a connectivity function. We can also say that a matroid is 2-connected if and only if for each pair of elements, there is a circuit containing both elements. Equivalently, a matroid is 2-connected if and only if each pair of elements is in a certain 2-element minor that is 2-connected. Similar results for higher connectivity had not been known. We determine a characterization of 3-connectivity that is based on the containment of small subsets in 3-connected minors from a given list of 3-connected matroids. Bixby’s Lemma is a well-known inductive tool in matroid theory that says that each element in a 3-connected matroid can be deleted or contracted to obtain a matroid that is 3-connected up to minimal 2-separations. We consider the binary matroids for which there is no element whose deletion and contraction are both 3-connected up to minimal 2-separations. In particular, we give a decomposition for such matroids to establish that any matroid of this type can be built from sequential matroids and matroids with many fans using a few natural operations. Wagner defined biconnectivity to translate connectivity in a bicircular matroid to certain connectivity conditions in its underlying graph. We extend a characterization of biconnectivity to higher connectivity. Using these graphic connectivity conditions, we call upon unavoidable minor results for graphs to find unavoidable minors for large 4-connected bicircular matroids

    Capturing elements in matroid minors

    Get PDF
    In this dissertation, we begin with an introduction to a matroid as the natural generalization of independence arising in three different fields of mathematics. In the first chapter, we develop graph theory and matroid theory terminology necessary to the topic of this dissertation. In Chapter 2 and Chapter 3, we prove two main results. A result of Ding, Oporowski, Oxley, and Vertigan reveals that a large 3-connected matroid M has unavoidable structure. For every n exceeding two, there is an integer f(n) so that if |E(M)| exceeds f(n), then M has a minor isomorphic to the rank-n wheel or whirl, a rank-n spike, the cycle or bond matroid of K_{3,n}, or U_{2,n} or U_{n-2,n}. In Chapter 2, we build on this result to determine what can be said about a large structure using a specified element e of M. In particular, we prove that, for every integer n exceeding two, there is an integer g(n) so that if |E(M)| exceeds g(n), then e is an element of a minor of M isomorphic to the rank-n wheel or whirl, a rank-n spike, the cycle or bond matroid of K_{1,1,1,n}, a specific single-element extension of M(K_{3,n}) or the dual of this extension, or U_{2,n} or U_{n-2,n}. In Chapter 3, we consider a large 3-connected binary matroid with a specified pair of elements. We extend a corollary of the result of Chapter 2 to show the following result for any pair {x,y} of elements of a 3-connected binary matroid M. For every integer n exceeding two, there is an integer h(n) so that if |E(M)| exceeds h(n), then x and y are elements of a minor of M isomorphic to the rank-n wheel, a rank-n binary spike with a tip and a cotip, or the cycle or bond matroid of K_{1,1,1,n}

    Exposing 3-separations in 3-connected matroids

    Get PDF
    Let M be a 3-connected matroid other than a wheel or a whirl. In the next paper in this series, we prove that there is an element whose deletion from M or M* is 3-connected and whose only 3-separations are equivalent to those induced by M. The strategy used to prove this theorem involves showing that we can remove some element from a leaf of the tree of 3-separations of M. The main result of this paper is designed to allow us to do this. © 2010 Elsevier Inc

    Inequivalent Representations of Matroids over Prime Fields

    Full text link
    It is proved that for each prime field GF(p)GF(p), there is an integer f(p)f(p) such that a 4-connected matroid has at most f(p)f(p) inequivalent representations over GF(p)GF(p). We also prove a stronger theorem that obtains the same conclusion for matroids satisfying a connectivity condition, intermediate between 3-connectivity and 4-connectivity that we term "kk-coherence". We obtain a variety of other results on inequivalent representations including the following curious one. For a prime power qq, let R(q){\mathcal R}(q) denote the set of matroids representable over all fields with at least qq elements. Then there are infinitely many Mersenne primes if and only if, for each prime power qq, there is an integer mqm_q such that a 3-connected member of R(q){\mathcal R}(q) has at most mqm_q inequivalent GF(7)-representations. The theorems on inequivalent representations of matroids are consequences of structural results that do not rely on representability. The bulk of this paper is devoted to proving such results

    Aspects of Matroid Connectivity

    Get PDF
    Connectivity is a fundamental tool for matroid theorists, which has become increasingly important in the eventual solution of many problems in matroid theory. Loosely speaking, connectivity can be used to help describe a matroid's structure. In this thesis, we prove a series of results that further the knowledge and understanding in the field of matroid connectivity. These results fall into two parts. First, we focus on 3-connected matroids. A chain theorem is a result that proves the existence of an element, or elements, whose deletion or contraction preserves a predetermined connectivity property. We prove a series of chain theorems for 3-connected matroids where, after fixing a basis B, the elements in B are only eligible for contraction, while the elements not in B are only eligible for deletion. Moreover, we prove a splitter theorem, where a 3-connected minor is also preserved, resolving a conjecture posed by Whittle and Williams in 2013. Second, we consider k-connected matroids, where k >= 3. A certain tree, known as a k-tree, can be used to describe the structure of a k-connected matroid. We present an algorithm for constructing a k-tree for a k-connected matroid M. Provided that the rank of a subset of E(M) can be found in unit time, the algorithm runs in time polynomial in |E(M)|. This generalises Oxley and Semple's (2013) polynomial-time algorithm for constructing a 3-tree for a 3-connected matroid

    Wild triangles in 3-connected matroids

    Get PDF
    Let {a, b, c} be a triangle in a 3-connected matroid M. In this paper, we describe the structure of M relative to {a, b, c} when, for all t in {a, b, c}, either M\t is not 3-connected, or M\t has a 3-separation that is not equivalent to one induced by M
    corecore