47 research outputs found

    AMPLE: an anytime planning and execution framework for dynamic and uncertain problems in robotics

    Get PDF
    Acting in robotics is driven by reactive and deliberative reasonings which take place in the competition between execution and planning processes. Properly balancing reactivity and deliberation is still an open question for harmonious execution of deliberative plans in complex robotic applications. We propose a flexible algorithmic framework to allow continuous real-time planning of complex tasks in parallel of their executions. Our framework, named AMPLE, is oriented towards robotic modular architectures in the sense that it turns planning algorithms into services that must be generic, reactive, and valuable. Services are optimized actions that are delivered at precise time points following requests from other modules that include states and dates at which actions are needed. To this end, our framework is divided in two concurrent processes: a planning thread which receives planning requests and delegates action selection to embedded planning softwares in compliance with the queue of internal requests, and an execution thread which orchestrates these planning requests as well as action execution and state monitoring. We show how the behavior of the execution thread can be parametrized to achieve various strategies which can differ, for instance, depending on the distribution of internal planning requests over possible future execution states in anticipation of the uncertain evolution of the system, or over different underlying planners to take several levels into account. We demonstrate the flexibility and the relevance of our framework on various robotic benchmarks and real experiments that involve complex planning problems of different natures which could not be properly tackled by existing dedicated planning approaches which rely on the standard plan-then-execute loop

    Reasoning about plan robustness versus plan cost for partially informed agents

    Get PDF

    Monitoring plan execution in partially observable stochastic worlds

    Get PDF
    This thesis presents two novel algorithms for monitoring plan execution in stochastic partially observable environments. The problems can be formulated as partially-observable Markov decision processes (POMDPs). Exact solutions of POMDP problems are difficult to find due to the computational complexity, so many approximate solutions are proposed instead. These POMDP solvers tend to generate an approximate policy at planning time and execute the policy without any change at run time. Our approaches will monitor the execution of the initial approximate policy and perform plan modification procedure to improve the policy’s quality at run time. This thesis considers two approximate POMDP solvers. One is a translation-based POMDP solver which converts a subclass of POMDP, called quasi-deterministic POMDP (QDET-POMDP) problems into classical planning problems or Markov decision processes (MDPs). The resulting approximate solution is either a contingency plan or an MDP policy that requires full observability of the world at run time. The other is a point-based POMDP solver which generates an approximate policy by utilizing sampling techniques. Study of the algorithms in simulation has shown that our execution monitoring approaches can improve the approximate POMDP solvers overall performance in terms of plan quality, plan generation time and plan execution time

    Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested Belief

    Get PDF
    Many AI applications involve the interaction of multiple autonomous agents, requiring those agents to reason about their own beliefs, as well as those of other agents. However, planning involving nested beliefs is known to be computationally challenging. In this work, we address the task of synthesizing plans that necessitate reasoning about the beliefs of other agents. We plan from the perspective of a single agent with the potential for goals and actions that involve nested beliefs, non-homogeneous agents, co-present observations, and the ability for one agent to reason as if it were another. We formally characterize our notion of planning with nested belief, and subsequently demonstrate how to automatically convert such problems into problems that appeal to classical planning technology for solving efficiently. Our approach represents an important step towards applying the well-established field of automated planning to the challenging task of planning involving nested beliefs of multiple agents

    CAMP-BDI: an approach for multiagent systems robustness through capability-aware agents maintaining plans

    Get PDF
    Rational agent behaviour is frequently achieved through the use of plans, particularly within the widely used BDI (Belief-Desire-Intention) model for intelligent agents. As a consequence, preventing or handling failure of planned activity is a vital component in building robust multiagent systems; this is especially true in realistic environments, where unpredictable exogenous change during plan execution may threaten intended activities. Although reactive approaches can be employed to respond to activity failure through replanning or plan-repair, failure may have debilitative effects that act to stymie recovery and, potentially, hinder subsequent activity. A further factor is that BDI agents typically employ deterministic world and plan models, as probabilistic planning methods are typical intractable in realistically complex environments. However, deterministic operator preconditions may fail to represent world states which increase the risk of activity failure. The primary contribution of this thesis is the algorithmic design of the CAMP-BDI (Capability Aware, Maintaining Plans) approach; a modification of the BDI reasoning cycle which provides agents with beliefs and introspective reasoning to anticipate increased risk of failure and pro-actively modify intended plans in response. We define a capability meta-knowledge model, providing information to identify and address threats to activity success using precondition modelling and quantitative quality estimation. This also facilitates semantic-independent communication of capability information for general advertisement and of dependency information - we define use of the latter, within a structured messaging approach, to extend local agent algorithms towards decentralized, distributed robustness. Finally, we define a policy based approach for dynamic modification of maintenance behaviour, allowing response to observations made during runtime and with potential to improve re-usability of agents in alternate environments. An implementation of CAMP-BDI is compared against an equivalent reactive system through experimentation in multiple perturbation configurations, using a logistics domain. Our empirical evaluation indicates CAMP-BDI has significant benefit if activity failure carries a strong risk of debilitative consequence

    Width and Complexity of Belief Tracking in Non-Deterministic Conformant and Contingent Planning

    No full text
    It has been shown recently that the complexity of belief tracking in deterministic conformant and contingent planning is exponential in a width parameter that is often bounded and small. In this work, we introduce a new width notion that applies to non-deterministic conformant and contingent problems as well. We also develop a belief tracking algorithm for non-deterministic problems that is exponential in the problem width, analyze the width of non-deterministic benchmarks, compare the new notion to the previous one over deterministic problems, and present experimental results
    corecore