
MONITORING PLAN EXECUTION IN PARTIALLY
OBSERVABLE STOCHASTIC WORLDS

by

MINLUE WANG

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
January 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Archive, E-theses Repository

https://core.ac.uk/display/19954613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

A B S T R A C T

This thesis presents two novel algorithms for monitoring plan exe-

cution in stochastic partially observable environments. The problems

can be naturally formulated as partially-observable Markov decision

processes (POMDPs). Exact solutions of POMDP problems are diffi-

cult to find due to the computational complexity, so many approxi-

mate solutions are proposed instead. These POMDP solvers tend to

generate an approximate policy at planning time and execute the pol-

icy without any change at run time. Our approaches will monitor the

execution of the initial approximate policy and perform plan modifi-

cation procedure to improve the policy’s quality at run time.

This thesis considers two types of approximate POMDP solvers.

One is a translation-based POMDP solver which converts a subclass

of POMDP, called quasi-deterministic POMDP (QDET-POMDP) prob-

lems into classical planning problems or Markov decision processes

(MDPs). The resulting approximate solution is either a contingency

plan or an MDP policy that requires full observability of the world

at run time. The other is a point-based POMDP solver which gener-

ates an approximate policy by utilizing sampling techniques. Study

of the algorithms in simulation has shown that our execution monitor-

ing approaches can improve the approximate POMDP solvers overall

performance in terms of plan quality, plan generation time and plan

execution time.

iii

A C K N O W L E D G M E N T S

I would like to give my sincere thanks to my supervisor Richard Dear-

den for his continuous support and insights along the way over the

last few years. Without his guidance and help this thesis would not

have been possible. Some of the work in this thesis has been a col-

laboration between myself and Richard, and so I have used the word

“we” throughout since the ideas and solutions have been contributed

by both.

I would like to thank my thesis committee member, Professor Ela

Claridge and Behzad Bordbar who have always provided me with

constructive criticism and encouragement over the last four years.

Many thanks to all IRLab members, especially Professor Aaron Slo-

man and Nick Hawes for their great feedback on my research and

study.

In addition, a thank you to my office mates: Quratul-ain Mahesar,

Sarah Al-Azzani, and Mark Rowan who made my journey as a re-

search student pleasant.

Finally, I am really thankful to my Mum for her constant support

throughout my life.

v

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following

publications:

• Minlue Wang, Sebastien Canu, Richard Dearden. Improving Robot

Plans for Information Gathering Tasks through Execution Mon-

itoring. Proceedings of International Conference on Intelligent

Robots and Systems (IROS), 2013

• Minlue Wang and Richard Dearden. Run-Time Improvement of

Point-Based POMDP Policies. Proceedings of the 23rd Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), 2013.

• Richard Dearden and Minlue Wang. Execution Monitoring to

Improve Plans with Information Gathering. Proceedings of the

30th Workshop of the UK Planning And Scheduling Special In-

terest Group (PlanSIG), 2012.

• Minlue Wang and Richard Dearden. Improving Point-Based POMDP

Policies at Run-Time. Proceedings of the 30th Workshop of the

UK Planning And Scheduling Special Interest Group (PlanSIG),

2012.

• Minlue Wang, Richard Dearden. Planning with State Uncertainty

via Contingency Planning and Execution Monitoring. The Ninth

Symposium on Abstraction, Reformulation and Approximation,

2011.

vii

C O N T E N T S

1 introduction 1

1.1 Problem Overview 5

1.2 Solution Overview 9

1.2.1 Execution Monitoring on Quasi-Deterministic POMDPs 9

1.2.2 Execution monitoring on generic POMDPs 12

1.3 Contributions 13

1.4 Thesis Structure 14

2 background on planning algorithms 17

2.1 Introduction 17

2.2 Classical Planning 20

2.2.1 State-Space Planners 21

2.2.2 Partial-Order Planners 24

2.2.3 Conformant Planning 25

2.2.4 Contingency Planners 26

2.3 Decision-Theoretical Planning 29

2.3.1 MDP 29

2.3.2 POMDP 33

3 background to execution monitoring 39

3.1 Execution Monitoring on Plans 41

3.1.1 Monitoring a plan 42

3.1.2 Reactive Plans 53

3.1.3 Other execution monitoring approaches 56

3.2 State Estimation 65

3.2.1 Model-Based Diagnosis 66

3.2.2 Bayesian Filtering Methods 68

3.3 Summary 72

ix

4 execution monitoring on quasi-deterministic pomdp 75

4.1 Quasi-Deterministic POMDPs 78

4.2 Generating Contingency Plans 80

4.3 Execution Monitoring 87

4.4 MDP Planning Approach 93

4.4.1 Problem Translation 94

4.5 Monitoring for MDP Policies 97

4.5.1 Macro Actions 98

4.6 Experimental Evaluation 101

4.6.1 RockSample 103

4.6.2 HiPPo 106

4.7 conclusion 109

5 execution monitoring on pomdp polices 113

5.1 Point-Based Algorithms 116

5.2 Execution Monitoring 121

5.2.1 Gap heuristic 123

5.2.2 L1 Distance 124

5.2.3 Value Difference 125

5.2.4 Belief Point Entropy and Number of Iterations 126

5.3 Experiment 128

5.3.1 Domains 129

5.3.2 Results 133

5.4 Conclusion 139

6 related work 141

6.1 Related Work on QDET-POMDP monitoring 141

6.2 Related work on execution monitoring of point-based

policies 145

7 conclusion and future work 153

7.1 Summary of Contributions 158

7.2 Future Work 159

x

bibliography 163

L I S T O F F I G U R E S

Figure 1 Classical planning domains 2

Figure 2 Non-classical planning domains 4

Figure 3 POMDP domains will include stochastic actions

and partial observability but no dynamic envi-

ronments. 5

Figure 4 Thesis Structure 8

Figure 5 Tiger problems. State space includes tiger-left

(S0) and tiger-right (S1). Observation space in-

cludes hear-left (TL)and hear-right (TR). 9

Figure 6 A blocks-world example 21

Figure 7 An interactive diagram between an agent that

is executing a POMDP policy and an environ-

ment. A policy will map each belief state into

an action that works on the environment. Once

an observation is received, a new belief state

will be updated accordingly 34

Figure 8 A POMDP policy tree p: the observation space

only contains o1 and o2, and b0 is the initial

belief state 35

Figure 9 A POMDP policy which contains policy tree

α0 and α1. α0 is the current best policy tree

for belief point b2 and b0. α1 is the current

best policy for belief point b1. 37

Figure 10 A Simple TriangleTable 43

Figure 11 Control and Data Flow in SIPE’s Replanner,

adapted from [112] 46

xi

Figure 12 An example of annotated search tree for MDP

monitoring, adapted from [37] 51

Figure 13 Three layers in 3T architecture for robotic con-

trol, adapted from [40] 54

Figure 14 An example of MBD approach, adapted from

[23] 67

Figure 15 The particle filtering algorithm for a continu-

ous state model. 71

Figure 16 An example of dynamic Bayesian network 79

Figure 17 An example of Warplan-c algorithm. S1 is an

initial state, G is a goal state and only actionA1

has two possible outcomes O1 and O2 81

Figure 18 An example of the RockSample(4,2) domain

and a contingency plan generated for that prob-

lem. The rectangles in the plan are state-changing

(mostly moving) actions and the circles are observation-

making actions for the specified rock. S stands

for moving south, E stands for moving east,

and R stands for examining action. 87

Figure 19 A diagram of the complete planning and mon-

itoring process for QDET-POMDPs. 101

Figure 20 Point-based value iteration needs to interpo-

late belief point from the sampled one. In this

example, b0,b1,b2,b3 and b4 are sampled points

at planning stage. bcurrent is the belief point

encountered at run-time. Current policy includes

α0 and α1. α2 is a potentially better α-vector

which we would like to find at run-time for

bcurrent. This figure is reproduced from [81] 120

Figure 21 L1 distance measurement. 124

xii

Figure 22 Value distance measurement 125

Figure 23 Plotted graph for factory domain with 95% con-

fidence interval 137

Figure 24 Plotted graph for reconnaissance domain with

95% confidence interval 137

Figure 25 Plotted graph for reconnaissance2 domain with

95% confidence interval 138

L I S T O F TA B L E S

Table 1 Differences of varieties of planning algorithms 20

Table 2 Preconditions and Postconditions of action PickUp(

x) 23

Table 3 Preconditions and Postconditions of action Un-

stack(x,y) 42

Table 4 Preconditions and Postconditions of action Put-

Down(x) 42

Table 5 Results for the RockSample Domain comparing

symbolic Perseus (POMDP) with the MDP ap-

proach(initial state [0.5,.0.5]). 104

Table 6 Results for the RockSample Domain comparing

symbolic Perseus (POMDP) with the MDP ap-

proach (initial state [0.7,.0.3]). 105

Table 7 Results for the HiPPo Domains comparing sym-

bolic Perseus (POMDP) with the MDP and the

contingency planning (FF) approaches. 107

Table 8 Results for the factory domain. 133

Table 9 Results for the reconnaissance domain. 134

xiii

Table 10 Results for the modified reconnaissance domain. 136

Table 11 Results for the RockSample and Hallway do-

main. 139

Table 12 Results for the RockSample Domain comparing

both execution monitoring approaches 157

xiv

1
I N T R O D U C T I O N

Planning is the task of coming up with a sequence of actions for an

agent to execute in order to achieve certain goals in the environment

[91]. Planning domains can usually be divided into classical domains

and non-classical domains. Classical planning (shown in Figure 1) as-

sumes no observability of the world, deterministic actions and a static

environment (complete model). A static environment does not mean

the environment is static but means the planning domain will capture

all the information about how the world changes so things will al-

ways evolve as we expect 1. On the other hand, non-classical domains

(displayed in Figure 2) require the relaxation of at least one of these as-

sumptions, for example they might include stochastic actions where

actions can have multiple outcomes, imperfect information about the

world (noisy observation actions) 2 or a dynamic environment (in-

complete model) where exogenous events or actions might occur at

any time. In particular, in the context of a dynamic environment, the

agent could end up with a total unexpected situation at run-time, for

instance, actions in the plan do not produce any anticipated effects

as modelled in the domains. There are also other assumptions in clas-

sical planning that could be relaxed, such as one action at a time,

instantaneous actions, discrete states and so on.

In terms of planning algorithms, there are two main categories.

One is called off-line planning which generates a full plan before

1 This is not be mistaken with the notion of a static property which refers to a domain
property that does not change over time

2 We use observation actions to represent sensing actions or knowledge gathering
actions throughout the thesis

1

Deterministic
 Actions

Full
Observability

Static EnvironmentsClassical Planning Domains

Figure 1: Classical planning domains

executing it, and the other is on-line planning which usually com-

putes the current best action for every single plan step at run-time.

Off-line planning algorithms work well for classical domains because

things can be observed completely in the world and always turn out

as expected. Once a plan is generated by an off-line planner, it can

be executed all the way to achieve the goal without any monitoring

in classical domains. However, this does not hold for non-classical

domains for two reasons. The first one is the environment can be

dynamic so exogenous events or actions which are not considered

before could occur at any time during the plan execution phase. The

second reason is that while the planning problems are becoming more

and more challenging, optimal solutions for large domains are diffi-

cult to find. Therefore, only approximate solutions are provided at

the off-line stage. Both reasons raise the importance of monitoring

the execution of a plan. In order to deal with a dynamic environment,

an execution monitoring module is required at run-time to detect any

unexpected situations and also to try to recover from them. As for the

problem of approximate solutions, we do not face the dynamic envi-

ronment (model is complete), but seek to improve the initial approx-

imate plans at run-time using plan modification techniques. On-line

2

planning algorithms are designed to make the agent more reactive to

the dynamic change of the world since plans are computed on the

fly. An on-line algorithm computes a best action for current belief

state for each time step [89]. Two simple procedures are performed in

order to find the action. The first procedure is building a tree of reach-

able belief states from the current belief state and the second step is

estimating the value of the current belief state by propagating the val-

ues from the fringe nodes all the way to the root nodes. However, in

practice, there are usually computational and time constraints at plan

execution so the on-line algorithms can not expand the tree fully to

search the best action. For instance, if there is one second time limit

for generating an action at each step, on-line algorithms might not

be able to return optimal actions for some large planning problems.

Therefore, in this thesis we are interested in how to improve off-line

solvers at run-time and also compare these with on-line algorithms.

This thesis examines execution monitoring that works on the off-

line planning caused by the second reason mentioned above. In par-

ticular, we define execution monitoring as follows:

Definition 1 (Execution Monitoring). Execution monitoring is a contin-

uous process of checking the execution of the plan which involves comparing

the future steps of the plans with the current state estimation and repairing

the plans if necessary.

We consider non-classical planning domains but assume the plan-

ning model is complete so no additional exogenous events happen at

run-time. Given these assumptions, we claim that it is more efficient

in many domains to generate approximate policies off-line, but im-

prove them at run-time using execution monitoring and plan repair

techniques.

Our novel execution monitoring approaches presented in this the-

sis aim to improve the approximate solutions generated at planning

3

Non-Classical Planning Domains

Stochastic
Actions

Partial
Observability

Dynamic
Environment

Figure 2: Non-classical planning domains

stage in an on-line fashion so that overall performance can be im-

proved. In order to this, two research questions need to be answered.

The first one is when should we decide to modify the original ap-

proximate solutions at run-time. Even if we have a mechanism to

improve the plan’s quality at each modification step, it is unrealis-

tic to repair the original plan for all the steps at run-time because

this would result in a massive increase in computational cost. On the

other hand, never triggering our execution monitoring module would

make the final performance of the algorithms the same as the original

ones. Therefore, finding an appropriate monitoring approach to trig-

ger our plan repair procedure plays a crucial part in this work. The

second research question is how to repair the approximate solutions

when we decide this is necessary. Replanning from scratch will be

very time consuming and also means the initial approximate solution

will be abandoned completely. The work presented in this thesis will

increase the initial plan’s final performance while preserving most of

its structure.

4

Stochastic
Actions

Partial
Observability

Dynamic
Environments

POMDPs

Figure 3: POMDP domains will include stochastic actions and partial ob-
servability but no dynamic environments.

1.1 problem overview

As mentioned earlier, classical planning domains do not take into

account the uncertainty of the action’s outcomes, the observations

or the dynamics of the environment. In order to make the domain

more realistic for an intelligent agent to execute, it has to incorporate

different types of uncertainty. Partially observable Markov decision

processes (POMDPs) [104, 100] provide a mathematical framework

for representing such planning problems. POMDPs have been widely

investigated in many research communities, such as operations re-

search [104], artificial intelligence [18] and robotics [83], with many

applications including robot navigation [99] and autonomous under-

water vehicle (AUV) [93]. As shown in Figure 3, POMDPs can capture

the uncertainty in the initial world states, in action outcomes and in

observations. One thing worth noting here is that they assume a static

environment so the models have captured all the uncertainties in the

problems. Because of the stochastic actions and noisy observations,

the agent is no longer sure about the consequence of an action and

the current state of the world at run-time. It needs to reason with

5

this uncertainty in order to successfully complete a task. In a POMDP

model, there is a matrix that specifies the stochastic outcomes for each

action and a matrix that specifies the uncertainty of the observations.

A reward will be assigned at each time step according to the current

state and the current selected action. A more detailed description of

POMDPs will be represented in Section 2.3.2. The goal of POMDPs

is to compute a sequence of actions that can maximize the accumu-

lated reward. A discount factor is also used to get the agent to prefer

collecting rewards as early as possible. We classify these planning

domains as reward-based problems which differ from classical plan-

ning domains (goal-oriental) which usually measure a plan’s quality

by looking at whether the goal states are achieved or not. Reward-

based domains provide a standard and numerical way of evaluating

a plan’s quality and are used as one of the metrics in our experiments.

However, as mentioned in [77], finite-horizon POMDPs are PSPACE-

complete, so finding exact solutions for large POMDPs is intractable

because of their computational complexity.

Nowadays, engineers from robotics are trying to make low-level

state-changing actions more and more reliable. However, as men-

tioned in [105], some planning problems are still hard because dif-

ferent parts of the environment appear similar to the sensor system

of the robot. For example, suppose an office robot is given the task of

delivering mail to a destination, navigation in a known environment

is easy to accomplish but it needs to determine the correct object first

given noisy vision operators. Following Besse and Chaib-draa [6], we

use the term quasi-deterministic partially observable Markov decision prob-

lems (QDET-POMDPs) to describe this interesting class of domains,

which differs from deterministic partially observable Markov decision prob-

lems (DET-POMDPs) [9] in that they allow uncertainty in the obser-

vation models of the actions (DET-POMDPs are entirely determin-

6

istic apart from the initial state). Although QDET-POMDPs are also

PSPACE-complete [6], they should be treated differently from general

POMDPs because all the state-changing actions are deterministic and

the uncertainty of the domains only comes from the observation ac-

tions and the initial state. In this thesis, we apply a classical planner

FF [51] and a Markov decision process (MDP) solver SPUDD [48] to

generate the initial approximate solutions. Since FF and SPUDD are

both introduced in order to tackle the domains with no observability,

the QDET-POMDPs domains firstly need to be translated into the do-

mains that FF and SPUDD can solve. These solvers will not generate

optimal policy for the QDET-POMDPs domains and the approximate

policy assumes complete knowledge of the world during the execu-

tion time. So we can improve the performance of these approximate

solutions by using execution monitoring approaches at run-time.

As for generic POMDPs, we are investigating point-based POMDP

algorithms (see Section 6.2 for a survey of point-based algorithms)

which have been demonstrated as able to successfully tackle large

POMDP domains [103, 61]. Point-based POMDP algorithms search

for optimal solutions in a subset of the belief space and expect this

approximate policy to work for all the belief points they encounter at

execution time. However point-based solvers will not generate poli-

cies for those belief points with low transition probabilities and thus

result in poor performance when they actually find themselves in

those belief points. Therefore we can include execution monitoring

at run-time to detect these situations and repair the original policies

accordingly.

A diagram of our execution monitoring approaches is displayed in

Figure 4. Both execution monitoring approaches aim to improve the

approximate solutions at execution time if it is decided that current

plans are not good enough for the current situation. It is also worth

7

POMDPsCh2

MDP Solver (SPUDD)
Classical Planner (FF) /

Contingent Plans/
MDP policy

Approximate POMDP Solver
 (Point-based algorithms)

Approximate POMDP policy

QDet-POMDPs

Execution Monitoring
 Voi-based plan repair

 Execution Monitoring
 Point-based sampling repair

Better policy
at execution time

On-line

Off-line

Ch4 Ch5

Figure 4: Thesis Structure

8

Tiger ?

Door1 Door2

Actions={0:listen
 1:open-left
 2:open-right}

Reward Function={
- Penalty for wrong opening: -100
- Reward for correct opening: +10
- Cost for listening action: -1}

S0
“tiger-left”
Pr(o=TL | S0, listen)=0.85
Pr(o=TR | S1, listen)=0.15

S1
“tiger-right”
Pr(o=TL | S0, listen)=0.15
Pr(o=TR | S1, listen)=0.85

Observations={
 -the tiger is heard on the left (TL)
 -the tiger is heard on the right(TR)}

Figure 5: Tiger problems. State space includes tiger-left (S0) and tiger-right
(S1). Observation space includes hear-left (TL)and hear-right (TR).

noting here that most of the execution monitoring approaches in the

literature (Chapter 3) work on goal-oriental planning domains [34,

112] while execution monitoring techniques in this thesis work on

reward-based planning domains.

1.2 solution overview

1.2.1 Execution Monitoring on Quasi-Deterministic POMDPs

Two translation-based QDET-POMDPs solvers are proposed in this

thesis. One uses the classical planner FF to generate a contingency

plan which is a branching tree. Different branch plans are followed

depending on the outcomes of observation actions. This requires the

ability of knowing the exact state of the world during execution time

so that the appropriate plan branch can be chosen at run-time. How-

ever, due to the nature of POMDPs, observation actions are noisy so

no discrete state of the world will be observed directly. In POMDPs, a

belief state is defined to summarize all the past information including

the history of the actions and the observations. The belief state itself

is a probability distribution over all discrete states.

9

As an example, let us look at a tiger problem [18]. In the tiger do-

main (as shown in Figure 5), a person is asked to open a door which

the tiger is not behind. The state-changing actions are opening either

the left or right door. The observation-making actions are listening

to one of the doors in order to detect the existence of a tiger. If the

tiger is actually behind the door and you choose to open it, a large

penalty (-100) will be given and vice-versa a positive reward (10) will

be assigned if you open the door which the tiger is not behind. The

observation-making action listen is noisy, as you can see from Figure 5.

If the tiger is actually behind the left door (state S0), the probability of

getting correct observation (TL) is 0.85. The person never knows the

current state of the world (S0 or S1), and he only maintains a belief

state which is a probability distribution over the state space. There-

fore, the main question from the tiger domain is how many times

the listening actions need to be performed so that we believe that the

tiger is either behind the door or not behind it. This small example il-

lustrates the same problem we would like to solve by using execution

monitoring methods on contingency plans for QDET-POMDPs. As

said before, the contingency plan needs to have perfect information

about current state of the world in order to select appropriate plan

branch at run-time, our execution monitoring will decide how many

times the observation actions need to be executed at each branch

point in order to gain enough information about the world. Again,

the number of times the observation actions need to be executed at

each branch point plays a crucial part in getting a good performance

from our approach. A value of information approach is then applied

to compare the value improvement of executing the observation ac-

tion with the value of not doing this observation at all. As long as

this net value is greater than the cost of the observation action, we

will continue executing observation actions. One thing worth noting

10

here is that our execution monitoring is operating on a belief state,

which will be updated after every action and observation iteration.

Once we decide there is no need to perform the observation actions

at the branch point, the best branch plan will be selected according to

the updated belief state and the next value of information calculation

procedure will be triggered when we encounter another branch point

in the plans. Related to the research questions mentioned earlier, the

monitoring procedure is mainly about maintaining a belief state of

the world based on the initial state, the history of the actions taken

and the observations received. The plan repair procedure is triggered

automatically when the next action is an observation action and the

value information approach is used as the core of a plan repair proce-

dure at execution time.

Another similar translation scheme is done by converting the QDET-

POMDP into an MDP. This can be seen as a variant of the previous

FF approach. Instead of generating a contingency plan in the first

place, we use the MDP solver SPUDD to generate an initial policy

which will map each state in the world into an action. This idea of

solving POMDPs using an MDP solver was originally proposed in

QMDP algorithms [18] where the state of the world is assumed to

be completely observable after the first action is taken which means

all sensing actions become uninteresting so no observation actions

will be included in the policy. This is the reason why QMDP would

perform poorly in domains where observation actions are needed to

gather information such as the tiger problem we described above. Our

MDP approach differs from QMDP in its way of modelling observa-

tion actions and initial state, so that we can maintain as many of the

characteristics of the POMDP as possible. Our translation setting will

force the MDP solver to include observation actions in the policy so

that it can be improved at run-time. The execution monitoring mod-

11

ule on the MDP policy is similar to the one presented before on the

contingency plan except that a complete contingency plan is replaced

with a policy on the state space. This MDP translation scheme is more

expensive because the MDP solver needs to plan for all the states in

the domain. However, this gives us opportunities to modify the initial

plan more aggressively in order to get a better performance. Imagine

that our observation actions need to be executed after certain set up

actions, such as camera calibration for image taking actions. The exe-

cution monitoring approach described before will only be concerned

with the number of times observation actions are executed, while in

this case a better plan might insert certain set-up actions before we

actually execute the observation action. These insertions will make

the rest of the contingency plan invalid but will not affect our policy

execution since a policy is already covering the space over the en-

tire state space. Therefore, execution monitoring with macro-actions

is proposed (in this work) to allow the inserting of state-changing

actions in the branch points.

1.2.2 Execution monitoring on generic POMDPs

The execution monitoring approaches described above work for a

sub-class of general POMDPs. The execution monitoring approach

we consider here works on the policy generated by POMDP solvers,

point-based algorithms. This approach exploits the fact that point-

based POMDPs algorithms only compute optimal policies for belief

points with high probabilities but ignore unlikely belief regions. At

run-time, we use heuristics to estimate when we may have entered a

belief state for which the existing policy will perform poorly. We pro-

pose and evaluate a variety of heuristics for this. Unlike the previous

execution monitoring approach on QDET-POMDPs where as soon

12

as we encounter an observation action the plan repair procedure is

triggered, observation actions are not longer our automatic trigger-

ing points. When the heuristic function indicates the policy may be

poor, we re-run the point-based algorithm for a small number of addi-

tional sampled points to improve the policy around the current belief

point. These additional belief points are added to the overall point-

based policy so they can be reused in future. Although exact backups

are computationally expensive at run-time [45], only by performing

plan-repair using heuristics can we require significantly less execu-

tion time compared with on-line POMDP solvers which compute the

current best action at every time step.

1.3 contributions

The major contributions of this thesis are as follows

• Two translation-based approaches to solve QDET-POMDP. The

methods generate contingency plans or MDP policies based on

the relaxed domains where states of the world are assumed com-

pletely observable at run-time.

• A novel execution monitoring approach which works on ap-

proximate solutions generated by translation-based QDET-POMDP

solvers. The monitoring approach improves the approximate so-

lutions at execution time by inserting relevant actions.

• A comparison of the performance between the translation-based

QDET-POMDP solvers and state-of-art POMDP solvers with a

range of different benchmarks. It is shown in Chapter 4 that our

translation-based approaches with additional execution moni-

toring mechanism require much less plan generation time com-

13

pared to a standard POMDP solver symbolic Perseus [83] and

provide better plans compared to translation-based solvers alone.

• A novel execution monitoring approach which works on point-

based POMDPs algorithms. The key contribution here is propos-

ing several heuristic functions to detect the situation at run-

time where the current approximate policy is not good enough

for the current belief point. Results from Chapter 5 demon-

strate that our execution monitoring on point-based policies

out-performs point-based algorithms without any monitoring

in terms of the total reward. It works especially well on the do-

mains where low transition probability states exist, such as a

factory domain where each component can have a low proba-

bility of becoming faulty when the product is being assembled.

Comparison is also done on standard POMDP benchmarks.

1.4 thesis structure

The remainder of this thesis is structured as follows. Chapter 2 re-

views a variety of planning algorithms such as classical planning,

state-space planning, partial-order planning, contingency planning,

MDPs and POMDPs. Discussion of value iteration algorithms for

computing exact solutions for MDPs and POMDPs is also presented

in Chapter 2. A survey of existing execution monitoring approaches

from several research communities is given in Chapter 3. Most of

the execution monitoring approaches displayed in Chapter 3 take

into account the agent’s planning information rather than examin-

ing the state of individual physical components in the system. Chap-

ter 4 introduces the problem of solving Quasi-deterministic POMDPs

and explains the translation-based approaches with value of infor-

mation execution monitoring module. Chapter 5 focuses on general

14

POMDPs which relax the assumptions of state-changing actions be-

ing deterministic in QDET-POMDP models. Execution monitoring on

point-based POMDP algorithms is shown in this chapter followed

by systematic evaluation of different heuristic functions for decid-

ing the time of plan repair. Related work on execution monitoring

of QDET-POMDP models and general POMDP models are discussed

in Chapter 6 including similarities and differences among a variety of

point-based algorithms. Finally Chapter 7 concludes the thesis with

an overall summary of this work and discusses possible directions for

future research.

15

2
B A C K G R O U N D O N P L A N N I N G A L G O R I T H M S

2.1 introduction

Planning is the task of coming up with a sequence of actions for

an agent to execute in order to achieve certain goals in the environ-

ment. To do so, a planning domain that describes the dynamic of the

world needs to be given in the first instance. Since in reality different

problems can have a variety characteristics, many planning domains

are proposed to capture these properties. The varieties of planning

domains can exist in many aspects. Depending on the outcomes of

an action, planning domains can be classified into deterministic do-

mains, non-deterministic domains and stochastic domains. Determin-

istic domains require all the actions in the domain to have only one

outcome if the actions are applicable. On the other hand, actions in

non-deterministic domains [2, 25] cannot predict which effect is go-

ing to occur before execution. Stochastic domains not only represent

actions with non-deterministic effects but also use probabilities for

each effect. Another classification of planning domains is done by ob-

servability. Full observability gives you complete access to the world,

while no observability means there is no knowledge about the state of

the world at any given time. In partial observability domains, either

only part of the domains can be directly observed or the observa-

tion actions are noisy so that the world is not accurately observed.

In terms of the goal representation, domains which need to find the

actions that will lead from the current initial state to the goal states

17

are often called goal-directed problems. In goal-directed problems,

the correctness of a plan means the goal will be satisfied if the plan

directs its execution to stop and the completeness of a plan means it

can account for all possible situations in the world [65]. In decision-

theoretic planning (MDPs or POMDPs), an optimal policy (mapping

states to actions) usually needs to be found to maximise an accumu-

lated discounted reward. As said before, we classify this type of plan-

ning domain as a reward-based problem. Planning domains can also

be divided into concurrent or non-concurrent categories according

to whether the actions can be executed in parallel or not. In particu-

lar, the domains with concurrency often need to specify the duration

time of actions, while in other cases, actions can be executed instanta-

neously. Planning domains with continuous state variables also need

to be treated differently from the domains with only discrete vari-

ables. In the end, most of the planning domains assume a complete

model of the problem so no exogenous events will occur at execution

time which is also referred to as a static environment, while a dy-

namic environment can result in unexpected situations happening at

any time during plan execution.

Given different assumptions about the world in the planning do-

main, different planning algorithms have been developed to tackle

these problems. In the early stage of planning development, due to

computational reasons, the world is assumed fully observable and

actions can only have deterministic effects. We often refer to these

discrete problems with deterministic actions, no observation actions

and no concurrency as classical planning. The reason why observa-

tion ability is not needed in classical planning is that it assumes the

agent already has complete information about the world. This is of-

ten referred to as close world assumption [85]. For example in STRIPS

representation, the stored predicates are assumed to have truth value,

18

while the ones which are not stored are assumed to be false. Later

on, a desire to solve more realistic problems led to relaxing some

of these assumptions. One direction is assuming the agent only has

an incomplete knowledge about the world. There are two main ap-

proaches to deal with the problems with incomplete information. One

approach is contingency planning [84, 49] where observation actions

are available to sense the world and contingency plans are branching

plans where each plan branch corresponds to one specific outcome of

the observation action [17]. Although we cannot predict which out-

come is going to occur prior to execution of the action, if the world

is fully observable, we will know exactly which outcome will hap-

pen after execution, so the appropriate branch plan can be executed.

Some contingency planning problems have partial observability so

only a certain part of the world is observable. The other approach is

conformant planning [101, 10] where the agent has no observation ac-

tions. There are several possible initial states that the agent can start

with and this uncertainty can not be resolved either at planning stage

or execution stage because there areno observation actions. There-

fore, the goal of conformant planning is to search for a sequence

of actions that can achieve the goal from any initial state [10]. Ac-

tions in contingency planning and conformant planning can be either

non-deterministic or stochastic depending on whether the actions are

assigned probabilities. Decision-theoretic planners, such as Markov

decision process (MDP) or partial observability Markov decision pro-

cess (POMDP) solvers, have also been developed independently in

the operations research community and have drawn a great deal of

attention in the planning community in the last few decades [104].

MDP and POMDP both assume the world has stochastic outcomes.

The difference between the two is that POMDPs also assume imper-

fect observation, which means the observation actions reveal the true

19

Planning Initial State Actions Observability

STRIPS, FF Known Deterministic Full

Partial Order Planning Known Deterministic Full

Contingency Planning
Known or
Unknown

Stochastic or
Non-deterministic

Full or
Partial

Conformant Planning Unknown
Stochastic or

Non-deterministic
No

MDP Known Stochastic Full

POMDP Unknown Stochastic Partial

Table 1: Differences of varieties of planning algorithms

state of the world with pre-defined noises. The policies generated by

MDP solvers are similar to the contingency plans which also have

branches depending on the outcomes of the action. However, a policy

can map any discrete state in the world into an action while contin-

gency plan only accounts for the current initial state and needs to

re-plan if the initial state is changed. The differences between plan-

ning algorithms are shown in Table 1.

In this thesis, we are interested in the observation problems where

the world can not be accurately observed. Although there are obser-

vation actions available in the domains, we do not know the current

discrete state before or even after the execution of observation ac-

tion. This is the reason why the plans can benefit from our execution

monitoring approaches at run-time. Since POMDP provides a math-

ematical framework for presenting partial observable problems, we

will use POMDP domains as illustrated examples through out this

thesis.

2.2 classical planning

Let us look at a blocks-world example from classical planning. An

initial state and a goal state of the example are shown in Figure 6. In

20

Figure 6: A blocks-world example

this blocks-world example, the task is changing the position of the

two blocks on the table. Suppose a robot has four actions available to

it, namely PickUp(x), PutDown(x), Stack(x, y), and Unstack(x, y). The

PickUp(x) action picks up a block x from a table as long as the arm is

not holding another block; The PutDown(x) action puts down a block

x on the table; Stack(x, y) puts a block x on the top of block y; Un-

stack(x, y) takes a block x away from the top of block y. The problem

is to find a sequence of actions to achieve the goal state from the

starting state. As mentioned earlier, original classical planning works

on the domains with deterministic actions and full observability so

we know exactly where each block is at any given time and the four

actions will only have the expected outcome without considering the

action’s failure or other unexpected situation.

2.2.1 State-Space Planners

The Stanford Research Institute Problem Solver (STRIPS) [33] was

introduced to solve the classical problems using search techniques

in state space. Prior to that, most of planning systems were using

21

first-order logic to represent the world [87], such as situation calculus

[68]. The notations of original STRIPS planning are as follows [33]:

Definition 2 (Planning task). A planning task P is a triple 〈A, I,G〉 where

A is the set of actions, I is the initial state and G is the goal states.

We assume the world state is encoded with a set of propositions.

Since there is no uncertainty in the initial state in the original STRIPS

representation, the initial state is assumed to be fully known at the

first instance.

Definition 3 (State). A state s is a set of propositions.

Definition 4 (Action). A STRIPS action a is a pair (pre(a), effect(a))

where pre(a) are the preconditions of action a and effect(a) are the re-

sulting effects of executing a. Effect(a) is also a pair (add(a),del(a))

where add(a) and del(a) are the adding list and deleting list of action a

respectively.

An action is applicable in state S if pre(a) ⊆ S and the resulting new

state S
′
= a(S) = S∪ add(a) \ del(a).

In the original STRIPS representation, actions are deterministic so

effects of the action will always occur. Representations of extended

version of STRIPS actions with conditional effects will be given later

on.

Definition 5 (Plan). Given a planning task P = 〈A, I,G〉. A plan is an

action sequence a1,a2, . . . an that solves the task if G ⊆ an(. . . a2(a1(I))).

Take the blocks-world in Figure 6 for example, the initial state is

OnTable(B)∧On(A,B)∧Clear(A)∧HandEmpty() and goal state

isOnTable(A)∧On(B,A)∧Clear(B)∧HandEmpty(). Table 2 shows

preconditions and effects of the action PickUp in this example.

The planning in STRIPS is done by maintaining truth values of

predicates which are used to perform backward search from goal

22

Preconditions Clear(x)
OnTable (x)

HandEmpty()

Postconditions Add list:
Holds(x)

Delete list:
HandEmpty()

OnTable(x)
Clear(x)

Table 2: Preconditions and Postconditions of action PickUp(x)

states. The plan generated by STRIPS is a straight-line plan, for ex-

ample STRIPS might output a plan as:

{Unstack(A,B),PutDown(A),PickUp(B),Stack(B,A)}

for the illustrated blocks-world example. In the next Chapter 3, we

show how a system called PLANEX [34] can monitor the execution of

the STRIPS straight-line plans in order to deal with non-deterministic

actions and dynamic environment. In particularly, we show how PLANEX

can make use of the representation of preconditions and effects of

theSTRIPS action.

In this thesis, we use PDDL [69, 70] which is a Planning Domain

Description Language released in 1998 by the planning community

to represent the classical domains. As said in [36], although PDDL

was largely inspired by STRIPS formulations, it extended STRIPS to a

more expressive language, such as ability to express a type structure

for the objects, actions with negative preconditions and the parame-

ters in the actions and the predicates. For instance, the PickUp action

from blocksworld domain can be written in PDDL as follows:

(:action PickUp
:parameters
(Object ?x)

:preconditions
(and (OnTable ?x)

(Clear ?x)
(HandEmpty))

:effect

23

(and (Hold ?x)
(not (HandEmpty))
(not (OnTable ?x))
(not (Clear ?x))

)
)

where ?x is object parameter of the PickUp action.

One thing worth noting here is that a classical planner called FF

(Fast-Forward) [51] will be used to generate classical plans later on.

FF has shown great success in AIPS-2000 planning competition [51]

and has also been extended to tackle non-classical planning problems

[49, 116, 50]. FF utilizes a heuristic function which can be derived

from the planning domain and performs forward search in the state

space. The heuristic function itself can be computed from GRAPH-

PLAN system [7] in a relaxed domain where deleting effects are ig-

nored for each action. Original FF will perform on the problems writ-

ten in PDDL and generate a straight-line plan as STRIPS does in the

end.

2.2.2 Partial-Order Planners

Partial order planning (POP) [78, 66], sometimes called "Non-linear

Planning", generates plans without fully specifying the order of the

actions at planning time. They only consider the orders that are cru-

cial to the execution of the plan. For example, if an action a generates

an effect e which is the precondition of an action b, then action a

needs to be executed strictly before action b and no other actions

between action a and action b can change the value of the effect e.

Partial order planning [66] utilizes the idea of "least commitment", so

only the most crucial commitments are constructed at planning time.

This also makes partial order plans more flexible to be executed at

24

run-time because more options are available to execute the partial

order plans compared to straight-line plans. The commitments for a

plan could be the ordering of the actions or variable binding. Most

POP algorithms [78, 66] make the same assumptions of STRIPS: deter-

ministic actions, no observability and a static environment. In Chap-

ter 3, an execution monitoring approach for partial order planning

will be shown to tackle the problems with a dynamic environment.

As PLANEX makes use of the representation of actions in STRIPS,

the execution monitoring approach for partial order planning also

utilizes the data structure of partial order plans at run-time.

2.2.3 Conformant Planning

The approaches to classical planning we have discussed so far as-

sume perfect information about the model, including full knowledge

of the world state, actions with deterministic outcomes and a static

world. As stated before, in order to solve more realistic problems, peo-

ple have tried to model the planning problems with uncertainty. One

possible direction is conformant planning where there is uncertainty in

the initial state, but no observability at all in the model. So the prob-

lem of conformant planning is how to find a sequence of actions that

can achieve the goal without knowing at which initial state the agent

is. Conformant Graphplan [101] tackles this problem by creating a

different plan graph for each possible world and searches all graphs

at the same time. However, since there are several initial states that

the agent could be in, an initial belief state b0 can be used to repre-

sent this set of states. The problem then becomes finding a sequence

of actions that will map this initial belief state b0 into a target belief

state, Bonet et al. [10] have used this idea to search for the solutions

in belief space. Both approaches deal with conformant problems with

25

non-deterministic actions, Buridan [62] was an early attempt at tack-

ling conformant problems with probabilities. Without considering the

cost of the action and the maximization of probability of goal satis-

faction, Buridan can generates a partial order plan that is sufficiently

likely to satisfy the goals rather than achieving the goals every time.

2.2.4 Contingency Planners

The only difference between contingency planning and conformant plan-

ning is that sensory information is available for contingency planning

at execution time. In the literature [79], the term conditional planning

is also used for contingency planning. In this thesis, we define contin-

gency planning as follows:

Definition 6 (Contingency planning). Contingency planning is a plan-

ning task where an action can have multiple outcomes and the one that will

occur at run-time is unknown at planning time. Contingency planning as-

sumes either full or partial observability in the model where only part of the

world can be observed.

and a contingency plan is defined as follows:

Definition 7 (Contingency plan). A contingency plan is a plan which

usually has branches, where each branch corresponds to one or more possible

outcomes of an action, and the branch to execute will be chosen at run-time.

In general, there are three main problems that need to be consid-

ered for contingency planning:

• The first question is how to represent the actions with multi-

ple outcomes. As summarised in [17], one can model the un-

certainty of the actions strictly in logic using disjunctions (non-

deterministic) and the other approach is modelling the action

numerically using probabilities (stochastic).

26

• Prior to the execution of non-deterministic or stochastic actions,

it is not known which outcome will occur. However, since the

world can be fully or partially observed, some observation infor-

mation could be available at execution time in order to choose

the appropriate branch plan to follow.

• Contingency planning only considers a number of predicted

sources of uncertainties [79], such as actions having multiple

outcomes. Unpredicted sources of uncertainty, such as an in-

complete model or a dynamic environment needs to be dealt

with by execution monitoring at run-time.

Conditional nonlinear planning (CNLP) [79] and Cassandra [84]

are two contingency planners that model the uncertainty of the action

using disjunctions. However, CNLP assumes full observability and

Cassandra assumes partial observability in the domain. CNLP is an

extended version of the Systematic Nonlinear Planner (SNLP) [66]

by adding sensing operator observe() in the domain to observe which

outcome occurs at run-time. For example, the action observe(road(b,s))

has two possible outcomes with the labels ¬clear(b,s) and clear(b,s)

to indicate the clearness of road from location b to location s. These

labels from sensing actions are called observation labels. CNLP works

by attaching reason labels and context labels to all the actions in the

plan. Context labels are a set of observations needed for executing

the current action and reason labels are the goals that the action aims

to achieve. Therefore, appropriate actions can be chosen by matching

the observations received so far with the corresponding labels.

Cassandra [84] uses the same syntax as in SNLP where uncertain

effects of the actions are represented as conditional effects or secondary

preconditions. As described in [84], conditional effects allow postcon-

ditions of actions depending on the context in which the action is

executed. Let us look back at the blocks-world example in Section 2.2,

27

if a successful execution of the PickUp(x) action for a robot depends

not only on the preconditions OnTable (x) ∧ HandEmpty() but also on

the dryness of the robot’s hand (Dry ?hand), a contingency plan that

accounts for both events needs to be constructed first. A description

of this extended version of PickUp action with secondary precondi-

tions written in PDDl is shown as follows:

(:action PickUp
:parameters
(Object ?x Object ?hand)

:preconditions
(and (OnTable ?x)

(HandEmpty))
:effect
(when (Dry ?hand) \\conditional effects
(effect (and (Hold ?x)

(not (HandEmpty))
(not (OnTable ?x))
(not (Clear ?x))))

(when (not (Dry ?hand)) \\conditional effects
(effect (and (not (Hold ?x))

(HandEmpty)
(OnTable ?x)
(Clear ?x)

)
)

)

where ?hand is the additional object parameter of the Pickup ac-

tion.

The other contribution of Cassandra is the separation of the infor-

mation gathering process from the decision making process. So one

information gathering process might be executed once but serve sev-

eral decisions. For instance, checking the dryness of a robot’s hand

once can let the PickUp action be executed multiple times (if we as-

sume the hand is always dry afterwards). Once again, the observation

model for the sensing actions might make the contingency problem

even harder. Suppose observation action check-hand (h) does not al-

ways return perfect information about the dryness of the hand h, it

then becomes difficult to choose which branch to follow as we do

28

not know the current state of the world at execution time. As stated

in the previous chapter, this is exactly the problem having uncer-

tainty in both actions and observations, that we would like to solve.

C-Buridan [31] planner, which is an extension of Buridan, has tried

to tackle these problems by finding a plan that can succeed with a

minimum probability. C-Buridan will generate a partial order plan

as Buridan does, the only difference is that the plan generated by C-

Buridan includes noisy observation actions while Buridan does not

consider any observation actions. In the next section, we demonstrate

how decision-theoretical planning can represent this problem and

find a policy that can maximise the probability of success. In Chapter

4, an execution monitoring approach for contingency plans will be

discussed which aims to improve the quality of the plan in stochastic

and noisy observability domains.

2.3 decision-theoretical planning

Markov decision processes (MDPs) and partially observable Markov

decision processes (POMDPs) have been used widely in AI commu-

nity to formalise the planning problem in stochastic domains [18].

2.3.1 MDP

MDPs can formulate sequential decision making problems with stochas-

tic actions and assume full observability of the model so the agent can

know which outcome of the action occurred at run-time and the cur-

rent state of the world at any time. These assumptions are the same

for contingency planning. A policy generated by a MDP solver is also

a decision tree where each branch corresponds to one outcome of

an action. The major difference between MDP and contingency plan-

29

ning is that the former tries to generate a policy that can maximise an

accumulated reward over a fixed finite period of time or over an infi-

nite horizon while the latter only generates a branching plan that can

achieve the goals. In this section, we describe the basic MDP model

and consider an exact MDP approach, value iteration.

Formally, an MDP is a tuple 〈S,A, T ,R,β〉 where:[53]:

• S is a finite set of environmental states that can be reliably iden-

tified by the agent. We assume all states are discrete.

• A is a finite set of actions that the agent can take.

• T is a state transition function that maps S×A into a probability

distribution over states S. P(s,a, s ′) represents the probability

of ending at state s ′ when the current state is s and action a is

taken.

• R is a reward function that is a mapping from S×A into a real-

value reward r. R(s,a) is the immediate reward of taking action

a in state s.

• β is a discount factor, where 0 < β < 1.

The objective of MDP planning is finding an optimal policy π∗ that

maximises the expected long-term total discounted reward over the

infinite horizon for each s and is defined as follows:

E[

∞∑
t=0

βtR(st,π∗(st))]. (1)

where st is the state of the agent and t is the time step at execution

stage.

A policy π is a mapping from any state s in the planning domain

into an action a which can be represented as π(s). Let Vπ(s) be the

value of executing that policy π starting from state s. The V value

30

for all states in the domain can be calculated by using the following

linear equations:

Vπ(s) = R(s,π(s)) +β
∑
s ′∈S

P(s,π(s), s ′)Vπ(s ′). (2)

The V function can be seen as an evaluation method for a policy.

On the other hand, if we know the V values of all the states, a policy

can be extracted by using the maximum operator, which is shown as

follows:

π(s) = arg max
a

[R(s,a) +β
∑
s ′∈S

P(s,a, s ′)V(s ′)]. (3)

[53] has shown that there is a stationary policy π∗ and an optimal

value function V∗ for every starting state in the infinite-horizon dis-

counted case. Finding an optimal policy π∗ can now be realized by

finding an optimal value function V∗. Value iteration algorithms [5]

search the optimal policy by incrementally computing V values. The

main idea is that, at each iteration the value function Vt is improved

from previous value function Vt−1 by using the following Equation:

Vt(s) = max
a

[R(s,a) +β
∑
s ′∈S

P(s,a, s ′)Vt−1(s ′)]. (4)

where t represents the number of iterations at planning stage. This

process of computing a new value function from the previous value

function is often referred to as Bellman backup. One thing worth noting

here is that the value iteration algorithm utilizes a function Q(s,a),

which takes a state and an action as arguments and represents the

31

Algorithm 1 Value iteration for MDPs.

For each s ∈ S V0(s) = 0, t = 0
repeat

for all s ∈ S do
for all a ∈ A do
Qt(s,a) = R(s,a) +β

∑
s ′∈S P(s,a, s ′)Vt−1(s ′)

end for
πt(s) = arg maxaQt(s,a)
Vt(s) = Qt(s,πt(s))

end for
until maxs |Vt(s) − Vt−1(s)| < θ

value of executing the action a in the state s and then following the

current best policy. So the Equation 3 can be rewritten as follows:

πt(s) = arg max
a
Qt(s,a) (5)

The value iteration can be terminated when the maximum differ-

ence between the current value functions Vt and the previous value

function Vt−1 is less than a pre-defined threshold θ in order to find

a near-optimal policy. The basic value iteration algorithm is shown in

Algorithm 1.

One difficulty of using the value iteration algorithm to solve MDP

is the need to enumerate all the actions and states as shown in the Bell-

man backup process (Equation 4), and each iteration requires |S|2|A|

computation time for enumerating the state space. In particular, the

size of the state space |S| grows exponentially with the number of

domain variables. There has been a great deal of research on develop-

ing representational and computational methods for certain types of

MDPs [16, 48] which have shown great success in tackling some large

MDP problems. The main idea is that by aggregating a set of states

according to certain state variables, the algorithms can manipulate

these abstract-level states in order to avoid the explicit enumeration

of the state space. In this thesis, we use an MDP solver called SPUDD

32

which represents value function and policy with algebraic decision

diagram (ADD) [4].

2.3.2 POMDP

MDP requires the ability to know the exact current state of the world

in order to execute the policy. What if the agent is not fully observing

the world? The POMDP framework provides a mathematical frame-

work for representing such planning problems with uncertainty in ini-

tial state, the effects of actions and observations. One thing worth not-

ing here is that, there no distinction is made between actions that can

change the state of world and the actions that can observe the world

in POMDP. All the actions are modelled so that both effects are in

standard POMDP domain. This is different from what we have seen

in the contingency planner Cassandra where observation-making ac-

tions are defined independently from state-changing actions.

Formally, a POMDP is a tuple 〈S,A, T ,Ω,O,R,β〉 where [56, 18]:

• S is the state space of the problem.

• A is the set of actions available to the agent.

• T is the transition function that describes the effects of the ac-

tions. We write P(s,a, s ′) where s, s ′ ∈ S,a ∈ A for the probabil-

ity that executing action a in state s leaves the system in state

s ′.

• Ω is the set of possible observations that the agent can make.

• O is the observation function that describes what is observed

when an action is performed. We write P(s,a, s ′,o) where s, s ′ ∈

S,a ∈ A,o ∈ Ω for the probability that observation o is seen

when action a is executed in state s resulting in state s ′.

33

SE Policy

Action

b

Environment

Observation

partially observed

Figure 7: An interactive diagram between an agent that is executing a
POMDP policy and an environment. A policy will map each be-
lief state into an action that works on the environment. Once an
observation is received, a new belief state will be updated accord-
ingly

• R is the reward function that defines the value to the agent of

particular activities. We write R(s,a) where s ∈ S,a ∈ A for the

reward the agent receives for executing action a in state s.

• β is a discount factor, where 0 < β < 1.

As you can see from the definition of POMDP, state space S, ac-

tion space A and transition function T are the same as the ones in

MDP definition. Additional parameters of POMDPs are observation

variable Ω and observation function O which govern the observation

model in POMDP.

Since POMDPs do know exactly at which state the agent is , they

need to estimate the current state according to the previous experi-

ence of the agent. That is, they need to maintain a belief state, a distri-

bution over S calculated from the initial belief state and the history

of actions and observations. Given this, a policy for a POMDP is a

mapping from belief states to actions. The belief state (or sometimes

34

b0

O1 O2

a0

b1 b2

a1 a2

O1 O1O2 O2

..
Figure 8: A POMDP policy tree p: the observation space only contains o1

and o2, and b0 is the initial belief state

it is referred as an estimate state) can be computed from the previous

belief state b, action a and observation o using Bayes’ rule:

SEs ′(a,b,o) = P(s ′|a,b,o) (6)

=
P(o|s ′,a,b)P(s ′|a,b)

P(o|a,b)
(7)

=
P(o|a, s ′)

∑
s∈S P(s

′|s,a)b(s)
P(o|a,b)

(8)

where P(o|a,b) is a normalisation constant.

A digram of POMDP model is shown in Figure 7 where SE stands

for state estimator which updates belief state according to Equation 6.

Because the new belief state b
′

is deterministic if we know the current

executed action a and the observation o, there is only a finite num-

ber of possible future belief states which is the number of possible

observations we can get after executing an action. A policy tree of

POMDP solution is illustrated in Figure 8. As can be seen from the

graph, a policy tree p defines a best action a0 for the initial state b0

35

and provides sub-trees associated with possible observations. The ex-

ecution of this policy tree is similar to the execution of a contingency

plan that has observation actions. Both require an appropriate branch

plan to be chosen according to the observation outcome received at

run-time.

Suppose we have a policy tree p and the agent knows the current

state of the world is state s, the expected value of executing this policy

tree p can be computed as follows:

Vp(s) = R(s,p(s))+β
∑
s ′∈S

P(s,p(s), s ′)
∑
o∈Ω

P(o|s,p(s), s ′)Vpo(s
′). (9)

where p(s) defines the action to take when current state is s and

Vpo(s
′) represents the expected value of following policy subtree after

observation o.

As mentioned earlier, the agent no longer knows the exact state

of the world in POMDP, but only maintains a belief state, so the ex-

pected value of executing the policy tree p from current starting be-

lief state b0 is a linear combination of expected value for all discrete

states:

Vp(b) =
∑
s∈S

b(s)Vp(s) (10)

Smallwood and Sondick [100] showed that the optimal value func-

tion for a POMDP is piecewise linear and convex so it can be repre-

sented by a set of |S|-dimensional hyperplanes: Γ = {α0,α1, . . . ,αn}.

Each hyperplane is often referred to as a α-vector which can map

each belief state b in the belief space to a value according to Equation

10. In particular, each α-vector also corresponds to a policy tree, so

the current action can be extracted once the best α-vector is found.

36

b0 b1b2

α0

α1

S0 S1

V

belief

va
lu

e

Figure 9: A POMDP policy which contains policy tree α0 and α1. α0 is the
current best policy tree for belief point b2 and b0. α1 is the current
best policy for belief point b1.

Algorithm 2 Value iteration for POMDPs.

For each b ∈ S V0(b) = 0, t = 0
repeat

for all b ∈ B do
Vt(b) = maxa∈A[R(b,a) +β

∑
b ′∈b P(b,a,b ′)Vt−1(b ′)]

end for
until maxs |Vt(b) − Vt−1(b)| < θ for all b ∈ B

The goal of POMDP planning is now to find those α-vectors so that

the best policy π∗ can be derived as:

π∗V(b) = arg max
a
αa · b. (11)

where each α-vector defines the best policy for the belief points.

For example, suppose we have a POMDP domain which only has

two states s0 and s1 (Figure 9), α-vectors are lines in 2-dimensional

space. As can be seen from Figure 9, current best policy is the upper

surface of two α-vectors (policy trees) namely α1 and α2, and each

α-vector is only accountable for a sub-region of the belief space.

37

A belief-based discrete-state POMDP can be seen as an MDP with a

continuous state space, thus, one of the MDP solvers, value iteration

can also be used to solve a POMDP [53]. An algorithm of POMDP

value iteration is shown in Algorithm 2. For each iteration, the dif-

ficulty of building current value function Vt from previous value

function Vt−1 comes from two aspects: one is the need to consider

all the belief points in a continuous space for each iteration while in

MDP the number of states are only finite; the other issue is when the

previous value function Vt−1 has |Γ∗t−1| vectors, the number of new

policy trees is |A||Γt−1|
|Ω| which is exponential in size of the observa-

tion space [63]. It has been shown that finding the optimal policy for a

finite-horizon POMDP is PSPACE-complete [77]. In Chapter 5, we dis-

cuss an approximate POMDP solver point-based algorithm and how

the approximate policy can benefit from our execution monitoring

approach.

38

3
B A C K G R O U N D T O E X E C U T I O N M O N I T O R I N G

In this chapter various execution monitoring approaches from differ-

ent research communities are surveyed. As mentioned in Chapter 1,

execution monitoring is defined as a process of monitoring and mod-

ifying plans at run-time by considering the future steps. Much effort

has been made in the area of planning, discussed in Chapter 2 for

intelligent agents, such as office robots, and autonomous underwa-

ter vehicles (AUV). Planning involves choosing a sequence of actions

from a planning model in order that the intelligent agent achieves a

set of goals. Most of the planning algorithms try to find a complete

plan or policy that the agent can follow at execution time. However, in

dynamic environment, the agent can encounter differences between

the expected and actual context of execution, such as the failure of

actions failure or a change in the goal, in these cases, the original

plan is not sufficient to achieve the goal. In the context of execution

monitoring, we would like to make sure the agent will successfully

accomplish its given goals regardless of what changes occur in the

world. The term change here means things do not go as we planned;

for example, actions do not produce anticipated effects or some goal

conditions are changed at run-time.

Chiang et al. [19] define execution monitoring as a system that al-

lows the robot to detect and classify failures, and failure here means

execution does not proceed as planned. This definition of execution

monitoring should be reformulated as state estimation or fault diagno-

sis, since its main objective is to report a failure and possibly find the

causes of the failure when a failure occurs at execution time. For ex-

39

ample, fault diagnosis techniques mentioned in [19] can be applied

to detect broken wheels or faulty sensors of an office robot. More de-

tails of state estimation or fault diagnosis approaches are discussed

in Section 3.2. Execution monitoring in this thesis is more related to

a specific high-lever planning system, and it aims to make sure the

current plan can achieve its goal in the end or try to gain as much

reward as possible from the world with respect to a dynamic environ-

ment. Let us look at an example where an office robot has abilities

of picking up and putting down an object. The robot’s goal is to put

an object on a table. A straight-line plan move(pos-r,pos-o), PickUp(r,o),

move(pos-r,pos-t), PutDown(r,o,t) is computed off-line and sent to the

robot to execute, where pos-r represents the location of the robot, pos-

o denotes the object and pos-t represents table’s location. Suppose that

when our robot is moving towards an object, the object is relocated to

another position by somebody. The execution monitoring module on

the robot needs to re-examine the situation and probably ask its plan-

ning module to generate a repair plan from the current unexpected

situation. So execution monitoring mentioned in this thesis can be

viewed as a complement to the planning system for the intelligent

agent and not only deals with fault diagnosis but also needs to react

to unexpected situations from the dynamic environment.

In the literature, there are generally two ways of dealing with dy-

namic environment. One is replanning from scratch when we face a

different situation, the other is using plan repair or plan modification

technique to reuse the original plan as much as possible. Although

Nebel et al. [73] have proved that modifying an existing plan is (worst-

case) no more efficient than a complete replanning, in practice, it is

still quite costly to abandon previously generated plans and re-plan

completely at run-time. There is another motivation for using plan re-

pair techniques, and that is to solve a series of similar planning tasks

40

[59, 60]. These techniques need to store the plans which are successful

in a plan library, so that once a similar task is presented, they retrieve

a similar plan from the library and perform modification techniques

to change that plan in order to complete the new task. These plan

repair techniques are done at the planning stage and can be seen as

an another planning algorithm, while most of the plan repair tech-

niques mentioned below are done at execution time and do not have

a library of previous plans.

3.1 execution monitoring on plans

In this section, we will review several execution monitoring tech-

niques that are used to supervise the execution of the plans. They

are divided into two groups. The first one is monitoring a single

plan. The plan can have different structures, for instance it can be a

straight-line plan or a partial hierarchical plan. Therefore, execution

monitoring techniques are different due to differences in the structure

of the plan. However, they do share the same idea, which is exploit-

ing the structure of the plan to help monitoring in order to deal with

unexpected situations at run-time. The second category of execution

monitoring is called reactive execution monitoring. At planning stage,

reactive execution monitoring predicts the unexpected situations that

might arise at execution time and builds pre-computed responses to

them. The reactive means one can decide the current action directly

according to the current situation and not commit to any plans be-

forehand. Some other relevant execution monitoring techniques are

also discussed, including continual planning, explanatory monitor-

ing, semantic-knowledge based monitoring, and rationale-based mon-

itoring.

41

3.1.1 Monitoring a plan

3.1.1.1 PLANEX

Preconditions Clear(x)
On(x, y)

HandEmpty()

Postconditions Add list
Holds(x)
Clear (y)

Delete list:
HandEmpty()

On(x, y)
Clear(x)

Table 3: Preconditions and Postconditions of action Unstack(x,y)

Preconditions Hold(x)

Postconditions Add list:
OnTable (x)

Clear(x)
HandEmpty()

Delete list:
Hold(x)

Table 4: Preconditions and Postconditions of action PutDown(x)

We firstly show one of the early execution monitoring systems,

PLANEX [34], that works on straight-line plans. As explained in Chap-

ter 2, STRIPS is a planning domain language that can be used to pro-

duce sequences of actions in order to accomplish certain tasks. The de-

velopers of STRIPS also present a higher-lever executor of the STRIPS

plans in their system called PLANEX [34]. The actions that the robot

can execute in PLANEX have a STRIPS representation, so each action

has its own preconditions and postconditions (effects). The monitor-

ing system PLANEX tends to answer questions such as "has the plan

produced the expected results" or "what part of the plan needs to be

42

On(A,B)
Clear(A)
Handempty()

Hold(A) Putdown(A)

Clear(B)
Handempty()
Clear(A)
OnTable(A)

1

A1

A2

Op2

Op1

A1/2

Unstack(A,B)

Figure 10: A Simple TriangleTable

executed so that the goal will be achieved". Consider a blocks-world

problem, the STRIPS representations of the Unstack action and the

PutDown action are shown in Table 3 and Table 4.

A specifically designed data structure for arranging the operators

and the clauses, called a triangle table, is implemented in the PLANEX

system that can be used to react to unexpected situations in a dy-

namic environment. Suppose a robot is executing a plan which is

trying to move block A from the top of block B to a table. The trian-

gle table with two sequential actions Unstack (A,B) and Putdown (A)

is illustrated in Figure 10. From Figure 10 we can see that the precon-

ditions of each action are given on the left-hand side, and effects are

included in the cell which is right below its operator. In this exam-

ple, the resulting clauses of executing operator Unstack (A,B) which

are Hold (A) and Clear (B) are contained in the cell A1. The cell A1/2

contains clauses in A1 which are not deleted by the next operator

Op2 and the left-most column includes the preconditions for the en-

tire plan. One property of PLANEX is having the ability to determine

whether the rest of the plan is still applicable or not. This can be re-

alized by using a unique rectangular sub-array (as shown in the box

43

in Figure 10). This sub array is defined as the kernel which contains

all the supporting clauses that make the corresponding rest of plan

applicable. So when an exogenous event occurs after executing the

action Unstack (A,B), as long as the clauses in the kernel (in this case

Hold(A) and Clear (B)) are satisfied, it is guaranteed that executing

this part of the plan will accomplish the task in the end. The kernel is

sorted according to the number of actions left in the plan. The high-

est kernel corresponds tothe preconditions of the last action in the

original plan. In the example, Hold(A) and Clear (B) are in the high-

est kernel for the last action PutDown(A) to be executed. So PLANEX

works by finding the highest kernel that is satisfied at each time step

and executes the corresponding rest of the plan. Because the planning

domain for PLANEX assumes full and perfect observations about the

world, PLANEX is not concerned with the issue of detecting exoge-

nous events from raw sensory data.

3.1.1.2 SIPE

PLANEX can only work on straight-line plans, and we would like

to demonstrate more execution monitoring techniques that can apply

to advanced planning systems. As mentioned in Chapter 2, partial

order planning tried to minimise the commitment at planning stage

as little as possible, and includes action ordering or variable binding

in action arguments. The key idea of partial order planning is allow-

ing these commitments to be made at run-time which provides more

alternatives than straight-line plans, where everything is determined

prior to execution stage. One work of execution monitoring of partial

order plans was included in the system called System for Interactive

Planning and Execution Monitoring (SIPE)[111]. The plans that are

monitored in [112] not only have partial order structure but also have

a hierarchical structure that allows different layers of abstractions of

44

actions to be represented at different layers in the hierarchy. As stated

in [112], the execution monitoring part of the SIPE system tries to ac-

cept different descriptions of unexpected events and also be able to

determine how they affect the plan being executed. In particular, the

replanning mechanism wants to utilize the original plan as much as

possible in order to recover from unexpected situations.

Compared to the previous PLANEX system which is used to decide

which part of the plan is still valid at each time step, the execution

monitoring module in SIPE has the ability to modify the original plan

more interactively according to the current situations, such as adding

new sub-goals into initial plans. One thing worth noting here is that

the replanning algorithm in SIPE is implemented as a rule-based sys-

tem so all possible exogenous events and recovery actions are defined

in advance. There are six possible problems that could occur in SIPE,

such as the action does not achieve its purpose or the preconditions

of the action become invalid, and each problem is associated with

certain response actions which determine how to modify the original

plan. There are a total of eight replanning actions that are specified be-

fore hand in SIPE for dealing with different unexpected events (some

events can have multiple choices of recovery actions). For instance,

one of the replanning actions Reinstantiate will instantiate a variable

differently so that the preconditions of the action become true. Sup-

pose that an office robot is asked to move from office A to office B

with two possible routes route1 and route2, and the robot decides to

choose route1 by considering the cost and other requirements. The

preconditions of taking one route is clear(route). When the robot is

executing the plan, if route1 is blocked by some obstacles, this will

make the preconditions of the action invalid. In this circumstance,

the Reinstantiate action can choose an alternative route by instanti-

ating the route variable to route2. This again demonstrates the idea

45

PlanUnexpected Situation

Execution Monitoring

Problem
General
Replanner

Replanning
Actions

Figure 11: Control and Data Flow in SIPE’s Replanner, adapted from [112]

of using the planning structure from the planner to minimise the ef-

fort of the replanning procedure at the execution monitoring stage,

as the previous PLANEX system does. The actions in partial-order

planning were modelled in a more expressive language in order to

handle action arguments and have been utilized by the SIPE system.

Figure 11 shows the diagram of the execution monitoring module

in the SIPE system. In this figure, the output Problem of execution

monitoring module can be thought of faults detected. The inputs Plan

and Unexpected Situation of execution monitoring indicate its ability to

accept descriptions of the unexpected events at execution time. This

execution monitoring process can be characterised as the fault identi-

fication stage in traditional FDI theory [24]. However, only a limited

number of types of faults can distinguished and it has no ability to

handle arbitrary unexpected faults. Once a problem (fault) has been

successfully identified, the module general replanner will be called to

decide the best replanning action from a set of pre-defined rules ac-

cording to the detected problems. The replanning action will then try

to modify the original plan in such a way that most of the initial plan

46

will be preserved [112]. The new generated plan will be monitored by

following the same process.

The previous two execution monitoring systems PLANEX and SIPE

both share the same core idea of utilizing the original plan as much

as possible when dealing with certain unexpected events at run-time.

SIPE performs plan modification according to the types of unexpected

situations from a ruled-based system while PLANEX chooses a valid

segmentation of the original plan that can achieve the task. However,

both systems have the same limitation in that they require the ability

to detect any unexpected situation in the environment automatically,

but do not address the problem of how to detect such a discrepancy

from raw sensory data directly. Another problem that these two sys-

tems have not considered is how to generate correct predicates in

the planning language from the raw sensory data; for example check-

ing the object’s position from the cameras. In the end, both systems

assume a perfect world description so no uncertainty or unreliable

sensors are considered.

3.1.1.3 GRIPE

In order to address the problem of a more reliable verification of the

execution of a plan, Doyle et al. [30] proposed a computer program

called GRIPE (Generator of Requests Involving Perceptions, and Ex-

pectations) to insert perception request before and after the actions.

These perception operators will have a set of expected values from

sensor data, so if the observed value returned from the sensor is not

included in this set, it would imply the failure of the preconditions or

actions. As mentioned in [30], GRIPE focuses on generating percep-

tion requests and expectations to verify the execution of actions in a

plan which is only part of the execution monitoring task.

47

As described in [30], there are four basic components in his ex-

ecution monitoring system, namely, Selection, Generation, Detec-

tion/Comparison, and Interpretation. Selection will choose appropri-

ate pre-conditions or post-conditions of the actions to monitor. After

that, generation task will insert appropriate assertions such as pre-

conditions and post-conditions in the plans. In particular, they define

Verification Operators as follows:

Definition 8 (Verification Operators). Verification Operators represent

the knowledge of which perceptions and expectations are appropriate for the

pre-conditions and postconditions of which actions .

Each verification operator will map each assertion,which will have

its own expected value based on the current situation, into a set of

sensory actions. For example, a grasp action for a robot requires the

correct position of the robot’s arm and the arm is not holding an

object at the current stage. These assertions will be translated into

several sensing actions, such as a vision sensor (to check the arm’s

position) or force sensor (to check what the arm is holding). Then a

comparison between the expected value and observed value from the

sensory data will be used to indicate the successful execution of the

actions. Finally, the interpretation will decide how the failure actions

affect the rest of the plan.

As mentioned before, it is intractable to monitor all assertions in

the plan due to the limited computational power and time constraint.

In [30], they discussed several criteria for selecting appropriate asser-

tions at run-time.

1. Uncertainty Criteria Uncertainty can exist in the world model

or action outcomes. A stochastic action which has multiple out-

comes might need more verification operators to determine the

failure of the action compared to deterministic actions.

48

2. Dependency Criteria A critical path in a plan represents those

postconditions that will be required by actions later in the plan.

In other words, postconditions that are not used by later actions

in the plan can be ignored and need not be monitored because

they will not affect continuing execution of the rest of the plan.

This again can be characterised as determining relevance of the

effects of the actions based on the validity of the plan.

3. Importance Criteria These criteria are largely related to the pre-

vious dependency criteria. Conditions of the actions can be pri-

oritised based on metrics such as the number of subsequent

actions that need these conditions.

4. Recovery Ease Criteria These criteria focus on how easily it can

recover from the failure of an action. If it is quite difficult to

recover from the failure of an action, the assertions of the action

might need to be examined closely.

3.1.1.4 Monitoring policy Execution

Fritz et al ’s work [39] focuses on monitoring policies of MDP prob-

lems (details in Chapter 2). They apply execution monitoring for

MDP policies because of the incomplete model of the planning do-

mains, so unexpected states could occur at any time step. In particu-

lar, unexpected situations will not only affect the validity of the cur-

rent best plan, but will also affect its optimality. For instance, the

original sub-optimal branches in the policy might become optimal

after the unexpected situations occur. This idea of checking the op-

timality of plans was first introduced by Veloso et al.[108] and is

shown in Section 3.1.3.4. Therefore, their execution monitoring tech-

nique needs to decide the optimality of the current best policy at

execution time. They claimed re-planning for every unexpected state

is costly and often unnecessary [39], so the main contribution of this

49

work is finding the relevant conditions that will affect the optimality

of the current policy. By doing this, execution monitoring will ignore

the unexpected states that only contain irrelevant conditions so as to

avoid expensive replanning procedures.

One thing that is worthy of note is that they consider forward

search-based MDP solvers rather than standard dynamic program-

ming as explained in Chapter 2. As described in [26], a forward

search-based MDP solver is an on-line solver that will start with a

root node which contains only initial state S0 and gradually expand

its successors until a certain horizon is reached. Forward search-based

MDP solvers require a heuristic estimate (V ′) of optimal value func-

tion (V∗) for all states in the domain to be computed, so it can back

up these values from the leaf nodes of the search tree to the root us-

ing Bellman Backup operators. This can provide a better estimation

of value functions for the states in the tree. Given this search tree, the

best action for the current state can be selected greedily and also for

the subsequent actions. An example of the search tree is illustrated

in Figure 12 where circles represent states in the MDP, and rectangles

represent action choices. Another thing to be noted here is that all

the states and actions are represented in the situation calculus. The

initial state S0 is the root of the search tree and N[a1,S0] represents

the execution of action a1 in the initial state. Since actions in the MDP

have stochastic outcomes, they refer to the selection of an action out-

come as nature’s choice and the notion of N[do(a
′
i,j, s)] indicates the

jth outcome of action i. As mentioned in [38], situation label nodes

N[s] will be annotated with rewards, and edges E[a
′
,S] will associate

cost and probability of that outcome.

In the context of execution monitoring, they [39] want to make sure

the current unexpected situation will not affect the validity and op-

timality of the policy. At first, the forward search-based MDP solver

50

S0

a1

a2

N[a1,s0]

N[a2,s0]

N[do(a'1,1, S0)]

N[do(a'1,2, S0)]

N[do(a'2,1, S0)]

N[do(a'2,2, S0)]

E[a'1,1,S0]

E[a'1,2,S0]

E[a'2,1,S0]

E[a'2,2,S0]

Figure 12: An example of annotated search tree for MDP monitoring,
adapted from [37]

will only produce a policy (contingency plan) which contains the best

action to take for current state and also for its successors. Given the

policy itself, it is not enough to answer the above question, because

the policy is extracted from the search tree and does not provide any

information about how the optimal or near-optimal policy was se-

lected. So Fritz et al. [39] annotate the policy with the search tree. The

annotation is done by associating the root node in the policy with the

complete search tree and its following nodes with corresponding sub-

search trees. So it is only necessary to check whether the unexpected

states affect the current annotating (sub-search) tree at execution time.

This is done by regression which is defined as follows [39]:

Definition 9 (Regression). Regression of a formula ψ through an action

a is a formula ψ’ that holds prior to a being executed if and only if ψ holds

after a is executed.

By regressing the value function and other useful information from

the search tree, such as the cost of an action, all the relevant condi-

tions related to the current choice of the policy will be stored for

current state. Therefore, the discrepancy between unexpected states

51

and actual states can be distinguished as relevant or irrelevant by

comparing them with the regressed information.

3.1.1.5 Abstract model

Another piece of work done by Fritz [37] proposes an abstract execu-

tion monitoring model which is stated as follows:

1. during plan generation, annotate the planning data structures

with all information relevant to the achievement of the objective.

2. when a discrepancy between the assumed and the estimated

state of the world occurs, use this information to determine the

degree of relevance of the discrepancy.

More specifically, the planning data structure contains all decision cri-

teria that will affect the choice of the plan and the objective can be to

ensure either the validity of the plan or the optimality of the plan.

Fritz [37] claimed that in general it is too costly to re-plan every time

there is a discrepancy occurring in the world, since some discrepan-

cies might not affect the execution of the rest of the plan at all. He [37]

also acknowledged that different plan annotations are required and

different algorithms are needed depending on what is being moni-

tored. For example, the previously mentioned PLANEX system uti-

lizes the triangle table as an additional planning data structure in the

monitoring procedure, because a classical straight-line plan is being

monitored. The relevant conditions are computed by using regression

techniques; for instance, preconditions of the actions are regressed

and stored in the triangle table in the PLANEX system. Fritz [37]

claimed that some other execution monitoring approaches also use

regression techniques to obtain critical information about the choice

of the plan.

52

3.1.2 Reactive Plans

As mentioned before, the previous execution monitoring approaches

are trying to decide the relevance of the discrepancy with respect

to the current plan and modify the plan accordingly. In this section,

we discuss another category of execution monitoring approach called

reactive planning which tries to predict beforehand what is going to

happen in the environment as much as possible, and also generate

corresponding plans for all situations. By doing this, it will only take

a small amount of time to react to any situation at execution time by

simply switching to the appropriate plan. This is actually a planning

process but it aims to achieve the objective of execution monitoring.

3.1.2.1 Universal Plan

Universal planning [95] is one of the early attempts to tackle dynamic

environments by introducing reactive plans. The author assumes the

agent has incomplete knowledge about the initial state and current

state. More importantly, he assumes external behaviours might af-

fect the success of executing the plans. As mentioned before, these

assumptions are the same reason for proposing execution monitor-

ing techniques. The solution he proposed is that appropriate actions

are chosen at execution time based on a decision tree which is con-

structed at the planning stage, and each node of the decision tree

is one possible state of the world and the leaf is the action to per-

form under this description of the world. There are some obvious

drawbacks with this approach. Firstly, even though they assume in-

complete knowledge about the initial state of the world, they assume

complete observability about the world during the execution, which

is often not the case for an intelligent agent; Secondly, not all possible

states of the world, including unexpected situations or fault states,

53

Deliberator Layer

Controller Layer

Sequencer Layer

Figure 13: Three layers in 3T architecture for robotic control, adapted from
[40]

can be enumerated during construction of the decision tree at the

planning stage. Therefore additional execution monitoring needs to

be incorporated.

3.1.2.2 3T Architecture

Another approach to address the problem of exogenous events and

action failures is hierarchical robotic architecture such as 3T [35]. A

diagram of the 3T architecture is shown in Figure 13. According to

[40], the three layers of the architecture are separated depending on

whether they utilize internal states (belief state). Primitive behaviours,

such as obstacle avoidance or object tracking, are coded at the lowest

level called the controller layer, which is highly related to the hard-

ware of the robot [8] and does not use internal states. These primi-

tive behaviours are controlled by a sensor feedback controller so they

can react to sensory information directly and rapidly and no internal

states need to be used at this stage. For example, the robot’s object

avoidance can be modelled as a basic skill in the controller layer and

does not need to communicate with higher layer when the robot is

54

performing an action. In the highest level, the Deliberator, plans are

generated by traditional time-consuming planning algorithms, such

as STRIPS or MDPs solvers. Internal states which reflect the agent’s

belief about the current world are used at this layer. An intermedi-

ate level called the Sequencer, connects the other two layers. One re-

quirement of this intermediate layer is that it should quickly translate

high-level actions from the deliberator into a sequence of primitive

behaviours and monitor the outcomes of these primitive actions. A

specific language Reactive Action Packages (RAPs) [35] is built to fill

the gap between the high-level planner layer and the low-level reac-

tive layer by choosing the appropriate sequence of primitive actions

according to different situations. For instance, consider a task of mov-

ing an object O from location A to location B. It has some primitive

actions, such as PickUp(O,A) which picks up the object O at the lo-

cation A, Move(O,A,B) and PutDown(O,B) which puts down the

object O at the location B. In the RAP layer, it assumes there is a sen-

sory action Check(O,B) which checks the success of this task. In the

application of the 3T architecture called IDEA[43], Mode Identification

(MI), which estimates the state from noisy sensory data and Mode Re-

covery (MR) which computes the least costly path from a faulty state

to a normal state are also incorporated in the system to make it more

robust. This interaction between the controller and the sequencer is

where the reactivity comes from. The 3T architecture can be viewed

as an extension of universal plans where appropriate reactions to the

situations are programmed before-hand in the RAP.

Another application of the 3T architecture can be found in Ficht-

ner et al. ’s work [32] where they focus on two aspects. One is how

to deal with dynamic information from the world and, in particular,

that the information the robot has might be out of data, incomplete,

and uncertain. The other is how to reason about and possibly recover

55

from failure situations at the highest logical level. In order to tackle

the dynamic information, they represent all the sensing information

as temporal information by attaching each observation with the time

of its observation. The gathered information will also need to decay

and update after certain time steps so that out-dated information will

not mislead the high-level planning process. In their work, two types

of sensing actions exist in the system: one is operated along-side the

execution of the plan, for instance, when the robot is approaching the

target position in a corridor, the information about the door in the

corridor will be updated because sensing actions are performed con-

currently with the execution of the moving actions. The other type of

sensory processing is active sensing which is required directly by the

planner. When either of the sensing actions obtain new information

about the world, it will be announced to all the levels in the system.

One difference between their work and previous 3T-based applica-

tions is that they are able to infer the faulty situations and generate

recovery actions in the logical planning level. As described before,

IDEA only performs state estimation and recovery at the lower two

levels and does not allow the planning level to perform high-level

reasoning and recovery.

3.1.3 Other execution monitoring approaches

After the discussion of execution monitoring on one specific plan and

reactive planning, we are going to briefly list a number of other exe-

cution monitoring techniques.

56

3.1.3.1 Continual planning

The work on continual planning focuses on interleaving planning and

execution given a dynamic environment [27]. According to [27], con-

tinual planning is defined as follows:

Definition 10 (Continual Planning). Continual planning is an ongoing

dynamic process in which planning and execution are interleaved.

Continual planning and the previously mentioned execution mon-

itoring all tend to revise the plan during execution, but continual

planning considers the revision of the plan as an ongoing process

rather than one that is triggered only by failure of current plans [27].

In particular, continual planning is not only dealing with failure situ-

ations due to the dynamic world but also seeking new opportunities

to accomplish the task more efficiently. For example, suppose an of-

fice robot is performing a delivery task in a building, which might

involve taking an object O to a desired location L, the robot needs to

reason which is the targeted location by navigating around the build-

ing. Let us say a person appears in the middle of the robot’s route,

on one hand, the robot should check whether the human appearance

violates the existing plan (preconditions or goals), on the other hand,

the robot can also take advantage of the human participants, for ex-

ample, asking the people directly for the location. The continual plan-

ning will be concerned with whether to follow the existing plan or

make some refinement to the current plan. According to [27], reactive

planning which was discussed previously, can be viewed as a special

case of continual planning, because RAPs pre-compute reactive ac-

tions in order to deal with certain changes in the world and do not

trigger the time-consuming high level deliberation process when the

world changes unexpectedly.

57

The main concern of continual planning is when and how to refine

or revise the original plan. The trade-off is how to allow the agent to

react to the changes of the world appropriately without consuming

too much computation and time. Pollack [82] then introduced a Bold

agent which rarely reconsiders the current best plan and a Cautious

agent which always tries to evaluate the current situation at every

time step at run-time. It is not difficult to see that not only is the

Bold agent not going to consume any computational resources in re-

planning during execution time, but that it will also fail to respond

to any unexpected change in the environment. On the other hand,

the Cautious agent will waste too much time and computation on un-

necessary replanning. Kinny et al. [58] improved this approach by

adding more parameters in the agent and the environment. For ex-

ample, the rate of the environment change is characterized as one pa-

rameter. In their experiment, they tried to investigate how the agent’s

effectiveness changes as those parameters vary. As explained in [58],

the effectiveness of the agent is the score it collects during execution

divided by the maximum possible score it could have gained.

3.1.3.2 Explanatory execution monitoring

Explanatory diagnosis was first introduced by McIlraith [71] and aims

to produce a sequence of actions that can explain the current inconsis-

tent observations. It differs from model-based diagnosis (discussed in

Section 3.2.1) which is trying to answer the question "what is wrong"

in the system, it integrates plan actions into the diagnosis process in

order to answer the question "what happened" to the system. Action

failure and exogenous events are modelled in the system using the

situation calculus language. McIlraith [71] claimed that explanatory

diagnosis is analogous to generating plans for certain goals because

explanatory diagnosis essentially generates a sequence of actions to

58

satisfy current observations. Since explanatory diagnosis will suffer

from incomplete initial state and potentially large search space, re-

gression and several other assumptions are made in order to focus

the search to generate explanatory diagnosis.

Belief Management [44] shares the same basic idea as explanatory

diagnosis and is integrated into IndiGolog [22] which is a robot pro-

gramming language. Belief management is trying to generate all hy-

potheses about alternative outcomes of actions that might explain the

inconsistency. Variations of actions and exogenous actions are also

modelled in the domain, for example, the action pickUpNothing and

pickUpWrongObjects can be two alternative outcomes of pickUp action.

Since the difficulty of finding the most promising explanatory diag-

nosis from a large set of potential candidates remains, several tech-

niques [97, 98] are proposed to efficiently produce results at run-time.

Inspired by Fritz [37], they improve the belief management system

by examining the relevance of the inconsistency situation [97] and

only when the current situation affects the successful execution of

the program, is the belief management system triggered to generate

explanatory diagnosis. Belief management also pushes explanatory

diagnosis one step forward by recovering from action failure or ex-

ogenous events and showing that it increases the success rate of the

tasks.

3.1.3.3 Semantic-Knowledge based Execution Monitoring

Most of the previous execution monitoring approaches assume the

agent has the ability to detect a discrepancy between the effects of

the actions and the real state of the world. However, in some cases,

it is not a trivial task to do so. For instance, if a robot is asked to

delivery a book to an office but ends up in the kitchen, visual sens-

ing might detect a microwave or sink in this room, but questions

59

remain about how to derive the current location from this implicit in-

formation. Execution monitoring incorporating semantic knowledge

[12] has been developed to address this problem where a discrep-

ancy between the agent’s belief and the current state of the world can

not be directly observed and needs to be reasoned with additional

implicit information. More specifically, semantic knowledge refers to

the meaning of objects expressed in terms of their properties and

relations to other objects [12] and is coded using description logics.

Instead of answering the question "Is the robot in Room A" in only

three ways, namely "yes", "no" or "unknown", work in [13] extends

this model to deal with a probabilistic representation and noisy sen-

sors. The idea of semantic-knowledge based execution monitoring is

intuitive. Suppose a robot has a 0.6 probability of being in a living

room and 0.4 probability of being in a kitchen, seeing a sofa is going

to give robot greater confidence that it is currently in a living room,

because it has semantic-knowledge that "sofas" are more commonly

associated with living rooms than kitchens. A choice of which sensing

action to use arises during this monitoring. A measure of information

gained from information theory is employed for this purpose, which

means it will always choose sensing actions that maximise informa-

tion gain. It is believed this approach complements other execution

monitoring approaches, which work on different layers of the robots,

such as hardware layer or high-level planning layer.

3.1.3.4 Rationale-Based Monitoring

The work on Rationale-Based Monitoring [108, 67] also tried to re-

lax the assumption of static environments in classical planning and

allows the world to change frequently and unexpectedly. However,

they realized the sensing actions for gaining information about the

state of the world are not free and it is computationally infeasible

60

to monitor all changes in the world. One major contribution from

rationale-based monitoring is that they not only monitor conditions

of the current best plan but also consider alternative plans, because

the world can change in such a way that alternative plans become

more attractive than the current optimal plan. They called monitor-

ing of conditions that are relevant to current best plan as "Plan-based

monitors" and monitoring of features in the world that could affect

selecting alternative plans as "Alternative-based monitors". The objec-

tive of rationale-based monitoring is ensuring a new plan is valid and

optimal after the change of the world occurs. One major difference be-

tween rationale-based monitoring and other monitoring approaches

is they consider the changes and response occurring at plan gener-

ation stage rather than plan execution stage. They claimed that the

planning task itself might takes a lot of time, for example, a large-

scale military operation might require a large amount of time to plan

and need to respond to the changes happening at the planning stage.

In terms of the response, they defined several types of plan trans-

formations for this purpose, namely adding to the plan, cutting from

the plan and jumping in the plan. This is a set of pre-defined rules for

unexpected changes in the world as SIPE defined replanning actions

for dynamic environment. It might be necessary to add to the plan

when true preconditions of the current best plan become false, an-

other sequence of actions will be added to the plan to achieve these

preconditions. This process is essentially adding new sub-goals to

the existing plan; if sub-goals of the current best plan become true

after the changes, they can eliminate those actions which are used

to achieve these sub-goals, and this process is called cutting from

the plan. Finally, when the current best plan become less attractive

than alternative plans, for example if the utility of alternative plans is

larger than current best plan, they can jump to alternative plans.

61

3.1.3.5 Approximately Optimal Monitoring on Straight-line plans

Boutilier [14] addresses the problem of approximately optimal mon-

itoring of preconditions of the action on a straight-line plan. He no-

ticed that, on one hand, monitoring all preconditions of actions in

a plan at every step of execution is too expensive, but, on the other

hand, if we only monitor the current state of the world, it is often too

late to repair the plan when we actually discover the fault later. So the

approach tries to take into account monitoring actions costs, the prob-

ability of each precondition failure and the value of alternative plans

in order to determine which precondition to monitor and which plan

to follow. From the agent’s perspective, there are two stages during

each time step of execution, one is selecting the best monitoring ac-

tion over corresponding preconditions, the other is deciding whether

to continue the current plan or switch to an alternative plan after re-

ceiving noisy observation actions (monitoring actions). One trade-off

that needs to be made for this approach is between information gain

from monitoring actions and action costs. The information gain that

we can obtain from monitoring precondition B can be computed as

follows:

VOI(B) = Pr(B) ∗ (v(πB) − v(πfail)) (12)

where Pr(B) is probability of precondition B’s failure, v(πB) repre-

sents value of best plan if we detect the failure and πfail denotes

value of executing current plan without detecting the failure. Al-

though the plan he considered here is only a simple straight-line plan,

there is a large amount of prior information that needs to be gained,

such as:

• the probability that preconditions may fail.

62

• the cost of attempting to execute a plan action when its precon-

dition has failed.

• the value of the best alternative plan at any point during plan

execution.

• a model of monitoring processes which defines the accuracy of

observation monitoring actions.

Because Boutilier wants to find an optimal sequence of asserting

monitoring actions and selecting alternative plans at run-time, the

problem is then formulated as a POMDP problem (as described in

Chapter 2). As mentioned in [14], one limitation of this approach

is the computationally intractability of finding optimal solutions for

large POMDP problems; for instance, a plan with n preconditions

might need an observation space with size 2n and also as many as

2n states. Another limitation of this approach is that much of the

prior information about the model is hard to obtain in reality; for

example, finding a utility value of executing the current plan with

failure preconditions is not trivial.

3.1.3.6 MBD for plan execution monitoring

The work in [107] proposes using model-based diagnosis (MBD) tech-

nique for plan execution monitoring. MBD is a consistency-based ap-

proach to search for the most likely diagnoses based on discrepancies

between the actual observed state of the system and the predicted

state of the system. More details of MBD will be in the next section.

[107] characterise the execution monitoring on an autonomous robot

in three different layers, viz action level, plan level and world level.

Execution monitoring on an action level only checks the current ac-

tion’s preconditions in order to make it applicable and also to make

sure the postconditions appear after the execution of the current ac-

63

tion. Secondly, PLANEX or SIPE are characterised by [107] as execu-

tion monitoring on plan level, which makes use of the rich structure

from the planning to enhance the plan execution. Steinbauer et al.

[107] argue that additional information about how the world evolves

could make the execution of the plan more robust, so they add an

extended background theory to the world model to describe axioms

of the world, such as if a robot perceives an object in a location, and,

even if the robot moves to another position, the object should remain

in the same position with the assumption that no exogenous events

will happen. Besides this, certain unexpected events or action failure

can also be modelled in this background theory. During execution of

the plans, a robot can derive possible diagnoses to explain discrepan-

cies between the states we derived from the background model and

the belief state from sensor information.

An illustrated example of an extended background sentence in

[107] is:

¬abnormal(vis)∧ see(obj)⇒ perceived(obj)

¬abnormal(loc)∧ at(pos)⇒ isat(obj,pos)

the former states that if the robot’s vision system vis is working prop-

erly and it sees the object obj then object obj is perceived. Similarly, the

latter indicates that if the localisation system of the robot loc works

correctly, then its output will represent the robot’s current location.

An inconsistency is said to be found when the robot’s belief is con-

tradictory to the predicted state of world. For instance, after perform-

ing action Move(A,B), if the agent determines its current location is

C rather than B, then it will report that a discrepancy is detected.

Another capability of this approach is that it can reason about the

64

cause of this discrepancy. A conflict-directed algorithm [113] in MBD

can be used to guide the search to find possible diagnoses that can

explain the current discrepancy. However, even given a single discrep-

ancy, there are potentially many diagnoses that can result in this dis-

crepancy. For instance, when the robot found itself in an unexpected

room after performing moving actions, the cause could be failure of

a localisation component or failure of a moving action. Additional

information gathering actions are required to reduce the number of

possible diagnoses; for example, normally if we can grab something

we can make sure it really exists. So if a robot can grab an object then

it can reason that the chance of the vision component malfunctioning

to produce a ghost object is zero. The author in [107] is also aware

that different sensing actions can have different costs and risks, but

he does not explicitly address the problem of how to choose from

these sensing actions.

3.2 state estimation

Previously discussed execution monitoring techniques aim to make

sure the current plan is either valid or optimal no matter which sit-

uation occurs at run-time. There are many other execution monitor-

ing techniques in literature that try to estimate the current state of

the system given the current observation or a history of observations.

These techniques can be seen as the first step of previously discussed

plan-related execution monitoring approaches, because the informa-

tion about current state estimation can be used to decide whether

to continue executing the existing plan or to modify the plan if nec-

essary. However, this section is not necessary for understanding the

rest of the thesis, the purpose of which is to show current develop-

ments of state estimation techniques. In general, there is a model to

65

describe how each component in the system works and how the obser-

vation action works. Each component in the system has its own state,

such as normal state and abnormal state. The goal of these fault di-

agnosis techniques is to find a diagnosis which is usually a complete

assignment of the states of all components in the system that will

keep the observations consistent. We describe traditional consistency-

based diagnosis Model-Based Diagnosis (MBD), which will identify a

discrepancy between expected observation and real observation and

infer the faulty components that cause such a discrepancy, as well as

sampled-based Bayesian filtering methods in this section.

3.2.1 Model-Based Diagnosis

Model-Based Diagnosis (MBD) [24, 86, 113] provides a general frame-

work to solve diagnosis problems in AI. A comprehensive first order

logic representation of the model needs to be built with the ability to

represent how each component works when it is in a normal state or

abnormal state and which observations we will get when everything

is working correctly.

Formally, a system [23] is a triple (SD, COMPS, OBS) where:

1. SD is a first order description of the system

2. COMPS is a finite set of constants in the system

3. OBS is a set of first order sentences that describe observations

of the system.

One of the most popular model-based diagnosis algorithms is called

conflict-directed A∗ search algorithm [24], introduced in 1987. The

goal of the algorithm is finding a diagnosis from a set of candidates

that will explain the current observation. According to [24], a candi-

date is defined as follows:

66

A1

A2

M1

M2

A
B

C

D
E

F

G

X

Y

ZM3

4
3

4
4

3

24

20

Figure 14: An example of MBD approach, adapted from [23]

Definition 11 (A candidate). A candidate is a possible assignment of the

status of all components in the system based on the description of the compo-

nents COMPS.

A diagnosis candidate is a candidate, but it will generate consistent

observation. The search algorithm relies on a concept called a conflict.

Formally, [24] defines a conflict as follows:

Definition 12 (A conflict). A conflict is a set of components that cannot

work normally at the same time because of current observations OBS and

system description SD.

The search procedure can benefit from the concept of conflict in

two ways: one is that a diagnosis of the system is a complete assign-

ment of the components that can resolve all conflicts; the other is that

the candidates that contain existing conflicts will be pruned during

the search because they will never generate consistent observation

according to the definition of the conflict.

Figure 14 illustrates a basic example of an MBD model. The compo-

nents in the system are ADDERs (A) and MULTIPLIERs (M) respec-

tively. In MBD, the adder and multiplier can be modelled as:

67

ADDER(x) : ¬AB(x)⇒ out(x) = input1(x) + input2(x)

MULTIPLIER(x) : ¬AB(x)⇒ out(x) = input1(x) ∗ input2(x)

where AB(x) specifies that component x is abnormal in the system, so

¬AB(x) means component x is currently working correctly. These two

sentences govern component ADDER and MULTIPLIER behaviours,

specifying how they are working when they are in normal states. In

this example, the inputs of the system are A = 4,B = 3,C = 3,D = 4

and E = 4 and the outputs of the systems are F = 20 and G = 24.

Once we have information about the inputs and the outputs of the

system, the conflicts can be decided from them. In this case, if the

components M1, M2 and M3 are all working normally, the output

F should be 24. Since we had observation that the value of F is 20,

we conclude that the set of M1,M2,A1 is one conflict that should

be resolved, which means components M1, M2 and M3 cannot be

working correctly at the same time. After seeing the value of G is 24,

we can derive another conflict which is M1,A1,A2,M3, because if all

components in this set are working correctly, the value of F and the

value of G should be the same. In this example, we can produce two

distinguishing single faults A1 and M1 that can resolve the previous

two conflicts.

3.2.2 Bayesian Filtering Methods

Another category of diagnosis approach is the Bayesian filtering method

[72]. A dynamic Bayesian network, which is a probabilistic temporal

model, is used to represent how a dynamic system evolves. Given a

history of noisy observations, Bayesian filtering methods are able to

68

estimate the current state of the system using a statistical approach.

The main difference between Bayesian filtering methods and consistency-

based diagnosis is that we need to infer the hidden current state of

the system because the observation actions are noisy. Thus we cannot

just simulate the expected behaviour and rely on the discrepancy to

tell us when it is wrong. In general, there is a system model and an

observation model for Bayesian filtering methods which are shown

as follows:

xt+1 = f(xt,ut, vt) (13)

yt+1 = g(xt+1,wt+1) (14)

where xt is the n-dimensional state of the system at time t, which

is governed by a stochastic difference Equation (13), an input vector

ut and a q-dimensional state noise vector vt. yt is an m-dimensional

observation vector and wt is the observation noise.

Normally, the random variables vk and wk are assumed to be inde-

pendent and to have multinomial probability distributions:

p(v) ∼ N(0,Q) (15)

p(w) ∼ N(0,R) (16)

where Q is an n ∗n covariance matrix and R is an m ∗m covariance

matrix.

69

Filtering, which is the estimation of the current state given the ob-

servations so far, is one of the inferences we can perform on this

model. The goal of filtering is to compute the probability distribution

P(xt|y1...t) often referred to as the belief distribution which repre-

sents the probability that the system is on each possible state. This

is actually the state estimation step in solving POMDPs, as shown in

Chapter 2.

According to Bayes rule, the posterior distribution P(xt|y1...t) can

be written as

P(xt|y1...t) =
p(yt|xty1...t−1)p(xt|y1...t−1)

p(yt|y1...t−1)
(17)

=
p(yt|xt)

∫
P(xt|xt−1)P(xt−1|y1...t−1)d(xt−1)

p(yt|y1...t−1)
(18)

where p(yt|y1...t−1) is a normalizing constant.

The integral here plays an important part in determining how hard

it is to solve Equation 18. If the stochastic difference equations f and

g are linear equations, and the system and observation noise is Gaus-

sian, then Equation 18 has an analytical and closed form solution

called the Kalman filter equations[110]. If stochastic difference equa-

tions f and g are non-linear equations, people often try to linearise

the difference equation using the Taylor series expansion of Equation

13. This results in the extended Kalman filter algorithm or EKF [3].

There are some fundamental drawbacks of the EKF. Firstly, the EKF

needs to evaluate Jacobians at every time step, which is computation-

ally expensive. Secondly, since the EKF neglects the second order and

higher order terms in the mean and fourth and higher order terms

in the covariance, the accuracy of the estimated mean is only up to

the first order. The Unscented Kalman Filter or UKF [54], a variant

of the EKF, was developed to address these problems. It converts the

70

1. For N samples pi0 = (xi0), sample each pi0 from the prior
P(X0).

2. For each time-step t do

a) Prediction: For each sample p, do:

i. Sample a new continuous state:

x̂it ∼ P(Xt|x
i
t−1)

b) Weighting: For each sample:

wit ← P(yt|x̂
i
t)

c) Resampling: Sample N new samples pit where

P(pit) ∝ wit

Figure 15: The particle filtering algorithm for a continuous state model.

distribution into a set of sigma points then applies equations to each

point and computes a weighted mean and covariance of the resulting

points. More details about UKF can be found in [55].

The particle filter algorithm [29], also known as sequential impor-

tant sampling (SIS), approximates the belief distribution by a set of

samples. As shown in 15, the algorithm consists of three main steps:

prediction, in which a new state xt is computed according to the sys-

tem Equation 13; weighting, in which the predicted sample is com-

pared with the observation yt to obtain a weight for each sample

proportional to the likelihood of the sample generating the observa-

tion; re-sampling, in which the set of weighted samples are converted

into a set of samples of uniform weight. The Particle filter can deal

with non-linear dynamic equations and non-Gaussian noise much

better but one of its weaknesses is requiring a large number of sample

points when the dimensionality of the system increases. More details

about the particle filter can be found in [28].

71

3.3 summary

We have listed a number of execution monitoring approaches in this

chapter. In the context of monitoring plan execution, three procedures

need to be included: the first one is deciding what is the current state

of the system according to the observation received so far. Most of the

fault diagnosis techniques fall into this category and other techniques

which are used to detect unexpected situations also serve this pur-

pose. Secondly, once we decide something is going wrong, we have

to determine how severe this will be. The current situation might af-

fect the execution of the action or the future steps of the plans. Finally,

a plan modifying procedure needs to be called in order to repair the

current plan or improve the current plan according to the current

situation. Some execution monitoring approaches shown above used

pre-fined rules to associate repair actions to different situations in

order to avoid time consuming replanning for every situation.

The execution monitoring approaches which will be discussed in

the next two chapters are tackling the planning problem with stochas-

tic actions and noisy observations. Therefore, we do not have to con-

sider state estimation problem because no unexpected situations such

as exogenous events will occur during execution time: the system will

evolve as we expect. The reason for proposing execution monitoring

approaches in such a planning problem is that exact solutions to find

optimal plans or policies are infeasible so that only approximate so-

lutions are generated at planning time. The main difference between

our execution monitoring approach and other execution monitoring

approaches is that we are seeking opportunities, which are more ac-

tive than the previously discussed approach, to improve our existing

approximate plans or policies. The execution monitoring techniques

that are closest to our approach are rational-based monitoring and

72

policy monitoring where alternative solutions are considered to en-

sure the best plan is executing. However, they do not consider the

partially observable environment in the domain.

73

4
E X E C U T I O N M O N I T O R I N G O N

Q U A S I - D E T E R M I N I S T I C P O M D P

In the previous chapter, we surveyed a variety of execution monitor-

ing approaches ranging from the diagnosis community to the plan-

ning community. In the diagnosis community, execution monitoring

techniques usually do not consider the high-level plan that is cur-

rently being executed but aim to identify and recover from any faults

that could potentially occur to the components of the system. In the

planning community, things are much more complicated because the

current state of the system, the current state of the environment, and

the current and future steps of the plan need to be taken into account.

Generally speaking, there are two steps for monitoring the execution

of a plan. Firstly, an execution monitoring approach needs to be able

to realize something is going wrong given the current information.

It has to detect the situation where initial plans are not valid or op-

timal at run-time, which could be due to exogenous events such as

malicious actions occurring in the environment or the approximation

solutions generated by the planner during plan generation do not per-

form well for the current state. Different criteria (preserving plan’s

validity or optimality) and different planning domains (complete or

incomplete model) often require varieties of monitoring ability in the

system. For instance, if the world domain is assumed to be complete,

it is not necessary to include sensing ability in the monitoring mod-

ule to identify unexpected outcomes of the actions because all the

outcomes are included in the planning model. Once it has been de-

cided it is time to repair or improve existing plans, execution moni-

75

toring approaches need to exploit the structure or the information of

the original plans at run-time in order to guide the plan modification

procedure.

Recent improvements in the robustness and reliability of mobile

robots have led to a number of interesting planning problems charac-

terised by partially observable worlds with deterministic or nearly

deterministic actions. Examples include planning for Mars rovers,

where we generally assume the rovers will execute the commands

correctly but we do not know what data each observation will pro-

duce, and robotic security and monitoring tasks, where again the ve-

hicle can move reliably to locations but uses unreliable vision and

other sensors to detect the objects and people it must interact with.

A somewhat different example is the algorithm selection planning

problem of [106], where the task is to identify the objects in a scene.

Quasi-deterministic problems are closely related to partially ob-

servable Markov decision problems (POMDPs). They can be thought

of as POMDPs where the actions are divided into two sets, those

that change the state but produce no (informative) observations, and

those that provide observations without changing the state. In terms

of complexity, finding ε-optimal policies for quasi-deterministic prob-

lems is in PSPACE [6]. A policy π will be called a ε-optimal policy if

p{Vπ > Vπ ′ − ε} = 1 for all policies π ′, which means the difference

between its return value and optimal policy’s return value is also less

than ε. Therefore, it is no easier than solving general POMDPs. How-

ever, POMDP algorithms do not scale to the size of the problems we

are interested in. Even using point-based approximations and a struc-

tured representation [83] we can only solve problems with tens of

millions of states, corresponding to classical planning problems with

around 25 binary variables.

76

In this chapter we propose an approach to solving the above quasi-

deterministic problems that uses a mixture of plan time and execution

time components. At plan time, we remove the stochasticity from the

actions to generate completely observable planning problems which

we then generate plans for using either a classical contingency plan-

ning approach (described in Section 4.2) or a Markov decision prob-

lem planner (Section 4.4). At execution time we monitor the actual

belief state of the agent as the plan is executed, and re-evaluate the

plan in light of that belief state. We use a value of information cal-

culation to determine if there are information gathering actions that

will change the belief state in such a way as to improve the expected

quality of the remainder of the plan and, if so, we add them to the

execution of the plan.

One way to think of this approach is to examine the belief space of

the agent as it executes the plan. Plans generated for MDPs or using

a classical contingency planner are finding good/optimal actions for

the vertices of this space (vertices correspond to belief states where

only one state has non-zero probability) and these actions will tend

to become further from optimal for beliefs further from the vertices—

those that are less certain about the true state of the world. Due to the

uncertain initial belief state, at execution time the agent will typically

not be at a vertex, so the plan may be arbitrarily poor. The execution

monitoring attempts to gather information that will move the agent

closer to the vertices, thereby improving the expected performance of

the plan.

A more detailed explanation of the translation will be given in Sec-

tion 4.2 and Section 4.4. Execution monitoring on both contingency

plans and MDP policies will be given in Section 4.3 and 4.5. Empirical

results for these two approaches will be shown in Section 4.6.

77

4.1 quasi-deterministic pomdps

Quasi-deterministic planning problems can be defined as POMDP

problems in which the actions are of two types: state-changing actions

and observation-making actions as follows:

Definition 13. A state changing action a is one such that:

∀s∃s ′ : P(s,a, s ′) = 1∧ P(s,a, s ′′) = 0 if s ′′ 6= s ′

∀s, s ′, t, t ′∃o : P(s,a, s ′,o) = P(t,a, t ′,o)

That is, for every state in which the action is performed, there is

one exact state it can transition to, and there is one observation that

happens no matter what the current state is.

Definition 14. An observation-making action a has a noisy observation

function O and:

∀s : P(s,a, s) = 1∧ P(s,a, s ′) = 0 if s ′ 6= s

∀s∃o1,o2 : P(s,a, s,o1) 6= 0∧ P(s,a, s,o2) 6= 0

Definition 15. A quasi-deterministic POMDP is a POMDP in which

every action is either state changing or observation-making.

One thing to note here is that Quasi-deterministic POMDPs are

different from Deterministic POMDP (Det-POMDP) where the latter

assumes both deterministic actions and observations. The only un-

certainty which comes from Det-POMDPs is initial belief state. Tra-

ditional POMDP solver, such as dynamic programming algorithms

described in Chapter 2, needs to enumerate all possible states for tran-

sition, observation and reward functions which is problematic if the

problems have large state space. Therefore, much effort has been put

78

X1

x2

A1

x1'

x2'

O1

P(x1'|x1, x2,A1)

P(x2'|x2,A1)

P(O1|x2',A1)

Figure 16: An example of dynamic Bayesian network

into representing these functions in a more compact way [15, 46]. As

in classical planning, a system state in a POMDP can be represented

as a finite set of state variables X. Each variable Xi is assumed with a

domain Di, so the size of the system states is |D1|× |D2|× . . .× |Dn|

if we have n state variables. Given the representation of this system,

one way of efficiently representing state transition and observation

transition is using dynamic Bayesian network, which is a graphical

form of representing stochastic processes. Figure 16 shows a state

transition and an observation transition under action A1. The prob-

lem has two state variables x1 and x2 and one observation variable

O1. Current state is {x1, x2} and next future state is {x
′
1, x

′
2}. Arcs in

the graph represent the dependency of current variables and next

step state variables. This compact representation allows computing

the distribution of each state variable by looking-at relevant parent

variables. For example, next belief state in Figure 16 can be computed

as follows: P(x
′
1, x

′
2|x1, x2,A1) = P(x

′
1|x1, x2,A1)P(x

′
2|x2,A1), which

is a product of the conditional distribution of two state variables.

79

In practice, the Quasi-deterministic problems we are interested in

are unlikely to be specified as flat POMDPs. Rather, we expect them

to be specified using this dynamic Bayesian representation as shown

above.

4.2 generating contingency plans

Given a quasi-deterministic planning problem as described in the pre-

vious section, we seek to generate complete contingency plans where

each branch point in a plan is associated with one possible outcome of

an observation action. We use the simple approach of Warplan-C [109]

to generate contingency plans. Warplan-C algorithm tries to generate

contingent plans for problems with non-deterministic actions. They

assume some actions can have two possible outcomes O1 and O2. A

straight-line plan which assumes all non-deterministic actions will

produce O1 outcome, was first generated, then incrementally added

plan branches accounting for the other outcome O2. As an example

shown in Figure 17, the only non-deterministic action in the domain

is action A1. After a plan without any branching was generated, a

newly generated plan considering the O2 outcome of action A1 was

combined with the original plan to form the final contingency plan.

As for a quasi-deterministic planning problem, since only the ob-

servation action can have multiple outcomes, the initial straight-line

plan was constructed by considering the most likely probabilistic ef-

fect of each observation action. This is essentially the single-outcome

determinisation [115] in FF-replan. However, FF-replan only gener-

ates a straight-line plan on the deterministic variant of the planning

problem, and it executes this plan right away until observing an un-

expected effect, so no contingency plan is generated at any time. For

example, if there is an object detect action that can successfully iden-

80

S1

G

A1 A2

S1 A1 A2 G

O1

O2

O1

A3 A4

G

Figure 17: An example of Warplan-c algorithm. S1 is an initial state, G is a
goal state and only action A1 has two possible outcomes O1 and
O2

tify an object with 0.9 and miss out the object with 0.1when the object

really exists, the determinised version of this observation action will

assume it can always detect the object perfectly whenever the object

exists. Similarly, only the most likely state from the initial belief state

is used to define the initial state of the determinised problem. For

instance, suppose the initial belief state of road A is 0.7 clear and 0.3

unclear, road A’s initial state is assumed to be clear after determinisa-

tion. This approach will convert a quasi-deterministic planning prob-

lem into a standard classical deterministic model. We then forward

this determinised problem to the classical state-space planner FF [51]

(as described in Chapter 2). FF then generates a straight-line plan to

achieve the goal from the determinised initial state.

In this thesis, the Quasi-deterministic problems are represented us-

ing the probabilistic planning domain definition language (PPDDL)

[117] which is designed for completely observable problems. In PPDDL,

a database that captures the facts of the environment is sufficient for

planning and execution because the agent has complete knowledge of

81

the environment. However, quasi-deterministic problems assume in-

complete knowledge about the environment during planning and ex-

ecution. Therefore, to use PPDDL for a quasi-deterministic problem,

we need to represent the effects of the observation-making actions.

Following Wyatt et al. [114], we do this by adding a knowledge pred-

icate kval() to indicate the agent’s knowledge about an observation

variable. This knowledge-level action representation has been pro-

posed in PKS [80] which is able to construct contingency plans in

the presence of incomplete knowledge. In PKS [80], only the agent’s

knowledge is represented by a set of databases and actions are rep-

resented as updates to these databases. PPDDL with the additional

knowledge predicate kval() can be seen as a combination of facts rep-

resentation of the environment and knowledge representation of the

agents.

In this thesis, a RockSample domain will be used as an illustra-

tion example throughout this chapter to demonstrate the idea of the

translation-based approach of solving quasi-deterministic problems.

The goal of the RockSample domain is to try to sample as many good

rocks as possible and move into an exit zone at a grid map. The po-

sitions of the rocks are known to a rover and the movement of the

rover is also deterministic. The difficulty of this domain comes from

the value of each rock which is unknown at the beginning and only a

noisy observation action is available to the agent. The trade-off which

needs to be made here is when to perform observation actions for

each rock. On one hand, if the rover moves closer to the examined

rock, it can perform a more reliable, but costly, observation action.

On the other hand, the rover can execute a cheaper but less accurate

observation action in a position which is far away from the rock. If

the value of the rock turns out to be bad, the rover can quickly move

to other rocks without wasting too many movement actions. There

82

are five state-changing actions in this domain: four moving actions

and one sampling action. A reward of 20 will be given if the rover

samples a good rock and goes to the exit and a reward of −40 if a

bad rock is sampled. A large penalty is given if there is no rock at

the position of the rover when sampling, or if the rover moves out

of grid except to go to the exit. RockSample(n,k) denotes a n by n

grid with k rocks. The size of the state space is n2 × 2k. To capture

the idea that observation-making actions are faster and cheaper than

state-changing actions, we use a version of RockSample where the cost

of observation actions is less than the cost of movement actions.

In the RockSample problem [102], we use kval(rover0, rock0, good) to

reflect that rover0 knows rock0 has good scientific value. The knowl-

edge predicate is included in the effects of the observation-making

action and also appears in the preconditions of other state-changing

actions to ensure that the agent has to select observation action to

find the value. Because state-changing actions produce uninformative

observations, knowledge predicates will only appear in the effects

of observation-making actions. For example, a specification of initial

state and checkRock0 action for rock0 from the original RockSample

domain might look as follow:

init [
(rock0value (good (0.6)) (bad (0.4)))
(rock1value (good (0.6)) (bad (0.4)))
(rock2value (good (0.6)) (bad (0.4)))
(rock3value (good (0.6)) (bad (0.4)))

]

Action checkRock0
at_waypoint(SAMEat_waypoint)
out(outno)
exit(exitno)
rock0value (SAMErock0value)
rock1value (SAMErock1value)
rock2value (SAMErock2value)
rock3value (SAMErock3value)

83

asresult (asresultempty)
observe
ovalue (at_waypoint

(point0 (rock0value
(good (ovalue’ (ogood (0.7)) (obad (0.3))))
(bad (ovalue’ (ogood (0.3)) (obad (0.7))))))

(point1 (rock0value
(good (ovalue’ (ogood (0.8)) (obad (0.2))))
(bad (ovalue’ (ogood (0.2)) (obad (0.8)))))))

endobserve
cost (at_waypoint

(point0 (0.4))
(point1 (0.6)))

endAction

where only states with uncertainty (value of each rock) are shown

here and ovalue is an observation variable which is represented sepa-

rately from state variables. Depending on the current position of the

rover (point0 or point1), observation action checkRock0 will have differ-

ent accuracy and cost. A simpler PPDDL version of checking actions,

which have the same accuracy regardless of the current position of

the rover and the rock, might appears as follows:

(:init
(probabilistic 0.6(rock_value rock0 good)

0.4 (rock_value rock0 bad))
(probabilistic 0.6(rock_value rock1 good)

0.4 (rock_value rock1 bad))
(probabilistic 0.6(rock_value rock2 good)

0.4 (rock_value rock2 bad))
(probabilistic 0.6(rock_value rock3 good)

0.4 (rock_value rock3 bad))
)

(:action checkRock
:parameters
(?r -rover ?rock -rocksample
?value -rockvalue)

:preconditions
(not (measured ?r ?rock ?value))

:effect
(and (when (and (rock_value ?rock ?value)

(= ?value good))

84

(probabilistic
0.8 (and (measured ?r ?rock good)

(kval ?r ?rock good)))
0.2 (and (measured ?r ?rock bad)

(kval ?r ?rock bad)))
(when (and (rock_value ?rock ?value)

(= ?value bad))
(probabilistic
0.8 (and (measured ?r ?rock bad)

(kval ?r ?rock bad)))
0.2 (and (measured ?r ?rock good)

(kval ?r ?rock good))))
:cost (0.6))

As can be seen, the accuracy of the observation action checkRock is

always 0.8 and the cost of this action is always 0.6 and the action has

a parameter rock so it can represent checking actions for all the rocks

and has a knowledge predicate kval in the conditional effect.

After single-outcome determinisation, the initial belief state and the

action checkRock in PPDDL then become as follows:

(:init
(rock_value rock0 good)
(rock_value rock1 good)
(rock_value rock2 good)
(rock_value rock3 good))
(:action checkRock
:parameters
(?r -rover ?rock -rocksample
?value -rockvalue)

:preconditions
(not (measured ?r ?rock ?value))

:effect
(and (when (and (rock_value ?rock ?value)

(= ?value good))
(and (measured ?r ?rock good)
(kval ?r ?rock good)))

(when (and (rock_value ?rock ?value)
(= ?value bad))

(and (measured ?r ?rock bad)
(kval ?r ?rock bad)))))

85

So far we have shown how to translate from a QDET-POMDP prob-

lem into a classical planning problem. Since in reality each observation-

making action in the plan could have an outcome other than the one

selected in the determinisation, as Warplan-C algorithm, we then tra-

verse the straight-line plan produced by FF and update the current

state as we go, until an observation-making action is encountered.

This then forms a branch point in the plan. For each possible value

of the observed state variable, apart from the one already planned

for, we call FF again to generate a new branch which can be attached

to the plan at this point. This process repeats itself until all obser-

vation making actions have branches for every possible value of the

observed variable. The full algorithm is displayed in Algorithm 3.

Algorithm 3 Generating the contingency plan using FF
plan=FF(initial-state,goal)
while plan contains observation actions without branches do

Let o be an initial observation making variable v = v1 without a
branch in plan
Let s be the belief state after executing all actions preceding o
from the initial state
for each value vi, i 6= 1 of v with non-zero probability in s do

branch = FF(s∪ (v = vi), goal)
Insert branch as a branch at o

end for
end while

Since the approach in Algorithm 3 enumerates all the possible

contingencies that could happen during execution, the number of

branches in the contingency plan is exponential in the number of

observation-making actions in the plan. This is precisely why it is

useful that the state-changing actions do not generate observations—

to keep the number of branches as low as possible. Also, since the

determinised problem assumes the observation-making actions are

perfectly accurate, in any branch of the plan at most one observation-

making action will appear for each state variable in Sp. Thus, in prac-

tice, we expect there to be a relatively small number of branches. In

86

E
x
it

E

R
1

R
2

E

E

E

E

ESample R
2

S

E

E

E

E

ESample R
1

S

good

good

bad

badR
1

R
2

Figure 18: An example of the RockSample(4,2) domain and a contingency
plan generated for that problem. The rectangles in the plan
are state-changing (mostly moving) actions and the circles are
observation-making actions for the specified rock. S stands for
moving south, E stands for moving east, and R stands for exam-
ining action.

the RockSample domain, for example, there is one branch per rock in

the problem. This is illustrated in Figure 18. On the left, is an exam-

ple problem from the RockSample domain with a 4x4 grid and two

rocks, while the right-hand side shows the plan generated by the con-

tingency planner. We assume the checking action can reveal the true

state of the rock. If the first rock turns out to be a bad one, the agent

will try to examine the second one; otherwise, it samples the current

rock and moves to the exit position.

4.3 execution monitoring

The approach we described in Section 4.2 uses FF to generate branch-

ing plans relying on a relaxation of the uncertainty in the initial states

and observation actions. The results of this are plans that account for

every possible state the world might be in but do not account for the

87

observations needed to discover that state. That is, they are executable

only if we assume complete observability at execution time (or equiv-

alently, that the observation actions are perfectly reliable as in DET-

POMDPs). If, as is the case in the RockSample domain, the sensing is

not perfectly reliable and therefore the state is not known with cer-

tainty, they may perform arbitrarily badly. To overcome this problem

a novel execution monitoring and plan modification approach was

proposed to increase the quality of the contingency plan that is actu-

ally executed. The execution monitoring approach proposed here can

work on contingency plans that are generated by other contingency

planners (not just FF), as long as those plans also account for every

possible state of the world but do not account for the observation

needed to discover the state. During execution, we keep track of the

agent’s belief state after each selected action via a straightforward ap-

plication of Bayes rule (Equation 6 in Chapter 2), just as a POMDP

planner would. One thing worth noting here is that all the uncertain-

ties from the original Quasi-Deterministic problems are taken into

account to update belief state, including initial belief state and noisy

observation actions. To select actions to perform when we reach an

observation-making action in the plan, we utilise a value of informa-

tion calculation [52, 92]. Suppose the plan consists of state-changing

action sequence a1, followed by observation action o1, which mea-

sures state variable c. If c is true, branch T1 will be executed, and if

c is false, branch T2 will be executed. When execution reaches o1, ex-

ecution monitoring calculates the expected utility of the current best

branch T∗ based on the belief state b(c) over the value of c after a1 as

follows:

Ub(T
∗) = max

Ti
U(Ti,b) (19)

88

where Ub(T∗) represents the value in belief state b of making no

observations and simply executing the best branch. U(Ti,b) is the

expected value of executing branch Ti in belief state b. The number

of branches Ti depends on the number of outcomes from the corre-

sponding observation action. Building the complete contingency plan

allows us to estimate this value when deciding what observation ac-

tions to perform. We do this by a straightforward backup of the ex-

pected rewards of each plan branch given our current belief state. The

value of U(T ,b) (the utility of branch T in belief state b) is computed

as follows:

• if T is an empty branch, then U(T ,b) is the reward achieved by

that branch of the plan.

• if T consists of a state-changing action a followed by the rest

of the branch T ′, then U(T ,b) = U(T ′,b) − cost(a), that is, we

subtract the cost of this action from the utility of the branch.

• if T consists of an observation-making action o on some variable

d (observation-making actions for each variable will appear at

most once), then U(T ,b) =
∑
d b(di)U(Ti,b) − cost(o), that is,

we weight the value of each branch at o by our current belief

about d.

Next we examine the value of performing an observation-making

action o (not necessarily the same o1 as planned) that gives informa-

tion about c. Performing o will change the belief state depending on

the observation that is returned. Let B be the set of all such possible

belief states, one for each possible observation returned by o, and let

P(b ′) be the probability of getting an observation that produces belief

state b ′ ∈ B. Let cost(o) be the cost of performing action o. The value

of the information gained by performing o, is the value of the best

89

branch to take in each b ′, weighted by the probability of b ′, less the

cost of performing o and the value of the current best branch:

Value Gain(VG)(o) =
∑
b ′∈B

P(b ′)Ub ′(T
b ′) −Ub(T

∗) − cost(o) (20)

Where Tb
′

is the best branch to take given belief state b ′ according to

Equation 19. Both Equation 19 and Equation 20 rely on the ability to

compute the utility of executing a branch of the plan, U(T ,b).

This ability to estimate the value of each branch is in contrast to

the alternative approach of replanning (e.g. see [41], which we dis-

cuss in more detail in Chapter 6) where the utility of the future plan

is impossible to determine since you cannot be sure what plan will

actually be executed until the replanning has occurred. Even in our

case, we cannot compute this value exactly as we do not know what

additional actions execution monitoring will add to the plan. How-

ever, since FF will choose the minimum cost observational action1 we

can be sure that the cost we estimate for the tree by the procedure de-

scribed above will be an underestimate, thus ensuring that execution

monitoring will never perform fewer observational actions than are

needed to determine which branch to execute.

For the plan in Figure 18, assuming we get rewards of V+, 0, and

V− for sampling a good rock, taking no sample, and sampling a bad

rock respectively, and costs of Co for observation actions, Cs for sam-

pling actions and Cm for moving actions, when we reach the obser-

vation action for rock R1 in a belief state b, the value of the “good”

branch is:

U(Tgood,b) = b(R1 = good)V+ + b(R1 = bad)V− − 4Cm −Cs

1 This is due to the fact that the determinised versions of the observation-making
actions are identical apart from their costs.

90

while the value of the “bad” branch is:

U(Tbad,b) = max

 b(R2 = good)V+ + b(R2 = bad)V− − 3Cm −Cs,

−3Cm

− (2Cm +Co)

Here the first line of max operator is the value of taking the left

branch at R2, the second line is the value of the right branch, which

is simply the cost of moving to the exit without sampling any rocks,

and the (2Cm + Co) is the cost for moving to R2 and observing its

value, which applies to both branches. Note that if the "bad" branch

is taken at R1, then in neither case is any reward gained from R1, so

the belief we have in that rock becomes irrelevant to the plan value.

These two equations can be used to compute the value of current best

branch Ub(T∗) according to Equation 19. To compute the value gain

for an action o, we compare the value of the best branch given our cur-

rent belief state with the value of the best branch given each possible

outcome of o, weighted by the probability according to our current

belief state of getting that outcome. Given the current belief state and

the observation model from original Quasi-Det POMDP problems,

we can easily get probabilities of receiving observations Ogood and

Obad and newly generated belief state b1 and b2. Value of perform-

ing observation action checkRock1 is just computed as follows:

VG(checkRock1) = P(Ogood)×Ub1(T
∗)+P(Obad)×Ub2(T

∗)−Ub(T
∗)−Co

where Ub1(T
∗) and Ub2(T

∗) are values of best branch with new belief

state and can be computed again using Equation 19.

Our execution monitoring approach works on the contingency plans

where branching points are noisy observation-making actions. If a

state-changing action is selected to be executed from the contingency

plan, we do nothing. If an observation-making action is selected from

91

the contingency plan, we use the value of information approach (Equa-

tions 20) to choose between multiple observation actions by looking

at the value gained by every observation action and picking the one

that has the highest value. After that action is executed, we continue

to choose and execute the best observation-making action until there

is no action owith VG(o) > 0. At that point, execution selects the best

branch and continues by executing it. We might expect that in some

circumstances this greedy approach to observation-making action se-

lection could be sub-optimal. The execution monitoring algorithm at

an observation action is given in Algorithm 4

Algorithm 4 Execution monitoring at observation-making action o
Let c be the variable being observed by o
Let A be the set of actions that provide information about c
repeat

Let VG(a) be the value gain for a ∈ A according to Equation 20

Let a∗ = arg maxa VG(a)
if VG(a∗) > 0 then

execute a∗ and update the belief state b ′ based on the observa-
tion returned

end if
until VG(a∗) 6 0
Execute the best branch given the new belief state b ′ according to
Equation 19

The restriction that execution monitoring can only choose among

the observation-making actions is important (if we allow state-changing

actions to have non-trivial observations, they may have positive value

of information). If execution monitoring was allowed to select ac-

tions that changed the state, the rest of the plan might not be exe-

cutable from the changed state. Because the initial contingency plan

was constructed to account for different observation outcomes, chang-

ing world state will invalidate the rest of the branch plans. Therefore,

this fact limits the applicability of this approach in general POMDPs

where actions can have both state-changing and information-getting

effects. Suppose when we reach a branch point at execution time for

92

a general POMDP problem, the current best action is selected accord-

ing to our value of information approach. Once the new belief state

is updated after performing this action, the associate branch plan is

not valid any more because not only the knowledge about world but

also the actual world state has changed.

4.4 mdp planning approach

One feature of the RockSample domain is that observations of the rocks

become less reliable the further away from the rock they are made.

Our approach of treating the observation actions as completely reli-

able during plan generation ignores this, so the plans we find tend

to observe all the rocks from the starting position rather than driv-

ing closer to make better observations. This is an example of a com-

mon feature of many quasi-deterministic problems: an observation-

making action that requires a state changing setup step. The approach

we described in the previous section performs particularly poorly for

domains where these are present because, as we have just seen, chang-

ing the state of the world might invalidate the rest of the plan.

In this section we present an alternative approach based on com-

puting an MDP policy rather than a contingency plan. This has the

advantage that the policy specifies an action to perform in any state,

rather than just those that appear in the plan. However, it is compu-

tational more expensive than generating a contingency plan because

it needs to enumerate all possible states in the world.

The approach we described in Section 4.2 needs to generate con-

tingency plans which are based on determinised version of QDET-

POMDPs models. The translation from POMDPs to classical deter-

ministic domains do not consider any probability from the initial

state and observation model at planning stage (except choosing the

93

maximum ones) and needs to add a knowledge predicate kval() into

the domains. We present a similar approach in this section, which

uses an MDP solver to produce an MDP policy for the problem and

perform our value of information monitoring technique at run-time

to improve the initial MDP policy. It differs from previous translation

by taking into account the probability from the initial state and the ob-

servation model and not asserting any other knowledge variables. In

the past, QMDP[18] has been a widely used method to generate MDP

policies for POMDP problems by ignoring the observation model af-

ter one step of belief update. As mentioned in [18], the drawback of

the QMDP is that it treats information gathering actions in the same

way as NOOPs actions and often causes the agent to loop forever in

the same belief state. NOOPs actions will not change the state of the

world and often have zero cost. In order to incorporate observation

models into the MDP problems as much as possible, we propose a

novel translation from POMDPs to MDPs, which encodes both the ini-

tial state and partial observability into the translated MDP domains

and allows observation actions to appear in the MDP policies.

4.4.1 Problem Translation

A naive approach to applying our execution monitoring technique in

an MDP setting would be to convert the quasi-deterministic POMDP

into an MDP by simply deleting the observations and initial state un-

certainty from the model. The problem with this approach is that it

makes all the observation-making actions into NOOPs, so they will

never appear in the plan. In the case of the RockSample domain, this

results in a plan where the rock with good scientific value is imme-

diately sampled and no others are even examined. We would prefer

a plan where each rock is investigated, and to do this the MDP plan-

94

ner needs a notion of what it does and does not know. To achieve

this we treat observation actions as actions that switch their respec-

tive variables from unknown state to known state, and set all the

variables that are initially uncertain (i.e. their probability in the initial

belief state is neither zero nor one) to be unknown in the MDP initial

state. So for each variable p with domain D, the corresponding vari-

able in the MDP domain, p ′, has as its domain D ∪ unknown, and

in the initial state p ′ = unknown. We then need to define the transi-

tion functions for these observation actions. We use the probability of

getting an observation oi from the initial state as the transition proba-

bility from unknown to each value di ∈ D for an observation action

ao:

P(unknown,ao,di) =
∑
di∈D

b(di)P(oi|di) (21)

where oi is the observation corresponding to value di of p.

In the RockSample domain, assuming we have a uniform distri-

bution over rock0’s value at the initial state and a sensing action

checkRock0 that has 60% accuracy to detect true value of Rock0 at

the initial state, which is shown as follows:

(rock0value

(good (ovalue’ (ogood (0.6)) (obad (0.4))))

(bad (ovalue’(ogood (0.4)) (obad (0.6)))))

where ovalue is an observation variable in POMDP specification.

95

For instance, the transition probability of moving unknown to

good for variable rock0value computed by Equation 21 looks as fol-

low:

P(unknown,ao,Sgood) =
∑
s∈S

b(s)P(Ogood|s)

= b(good)P(ogood|good) + b(bad)P(ogood|bad)

= 0.6(0.6) + 0.4(0.4)

= 0.52

(22)

A description of the state variables and checkRock0 action in this

translated MDP domain looks as follows:

(variables

(rock0value unknown good bad)

(rock1value unknown good bad)

(rock2value unknown good bad)

(rock3value unknown good bad)

)

Action checkRock0

at_waypoint(SAMEat_waypoint)

out(outno)

exit(exitno)

rock0value (at_waypoint

(point0 (rock0value

(unknown (rock0value’ (unknown (0.0))

(good (0.5))

(bad (0.5))))

(good (rock0valuegood))

(bad (rock0valuebad))))

(point1 (rock0value

(unknown (rock0value’ (unknown (0.0))

(good (0.5))

(bad (0.5))))

(good (rock0valuegood))

(bad (rock0valuebad)))))

rock1value (SAMErock1value)

rock2value (SAMErock2value)

96

rock3value (SAMErock3value)

cost (at_waypoint

(point0 (0.4))

(point1 (0.6)))

endAction

Only when variables have unknown value can observation actions

take place and assign known values to the state variables according

to probability using Equation 21. Initially all the uncertain variables

are at unknown state.

Note that this translated model makes the assumption that the ob-

servation actions are perfectly reliable, so the true value of a state

variable is known after performing the corresponding observation ac-

tion once. However, in reality the observation actions are still noisy,

so execution monitoring is still required to improve the plan.

4.5 monitoring for mdp policies

For the MDP case, the execution monitoring is largely the same as in

the contingency plan monitoring case described in Section 4.2. The

value of information calculation is exactly that given in Equations

19 and 20. The difference comes in the definition of the “branches”

in the plan. For the MDP, the branches being chosen are the actions

according to the MDP policy for the states corresponding to the pos-

sible values of the variable being observed. That is, when we use an

observation-making action for a binary variable p, the policies in the

MDP states corresponding to p = true and p = false are evaluated.

This means that during execution we have to maintain both the belief

state according to the original quasi-deterministic POMDP and the

current state according to the MDP in order to select actions correctly.

97

The belief state is used to calculate value of information in order to

select appropriate observation action as shown in Equation 20 and

current discrete state of MDP is used to generate the appropriate

branch plan from the MDP policy.

In the case that no observation action has greater than zero informa-

tion gain, as before, we pick the best “branch” of the plan to execute

given our belief state. For the MDP, we use the policies for all the

MDP states that have non-zero probability of occurring according to

the MDP translation of the observation-making action. That is, if the

MDP policy for the current state s and current belief state b says do

observation-making action o (information gain of o is greater than

zero), which observes a state variable p with domain D (which must

be unknown in the current MDP state or the policy would not choose

an observation-making action), after getting an observation value at

run-time, the belief state is updated to b
′

according to the original

POMDP model. If our monitoring algorithm decides no other obser-

vation actions are necessary by making sure the information gain of

all the observation actions is less than zero, then we compute the ex-

pected value given our current POMDP belief state b
′

for each branch

according to Equation 19 and select the best branch to follow.

4.5.1 Macro Actions

As stated above, the major difference between the output of the con-

tingency planner in Section 4.2 and the MDP planner is that the MDP

planner provides an action for every possible state. This means that

we can allow execution monitoring to perform state-changing actions,

and we will still know what future policy should be performed in

the state that results. This is important because it allows us to make

observations that require setup actions. To achieve this we allow ex-

98

ecution monitoring to evaluate the information gain from macro ac-

tions consisting of a state-changing action followed by an observation-

making action. In the literature, macro actions usually consist of an

sequence of actions that will appear multiple times in solutions [21].

Many learning techniques were proposed to generate macro-actions

so that the plan can reuse these actions when it faces a similar situ-

ation. Off-line learning techniques, such as Macro-FF [11], generate

macro-actions from a set of training examples before planning pro-

cess, while on-line learning techniques, such as Marvin [20], iden-

tify macro-actions during the search process. Both techniques need

to memorise existing macro actions in order to guide the search later

on. In this thesis, macro actions mean we can calculate information

gain of two types of action. One is an observation-making action as

shown in Equation 20, the other is a sequence of a state-changing

action followed by an observation-making one. For example, in the

RockSample domain this allows execution monitoring to calculate the

value of information gained from moving one step towards a rock be-

fore observing it, thus making a more reliable observation of the rock.

The information gain for a macro action made up of state-changing

action a followed by observation-making action o becomes:

VGb ′(a+ o) = R(b
′,a) + VG(o) (23)

Once we decide the current best action, the two situations need

to be considered separately as well. If the current best action is a

macro action, and hence the immediate action to execute is a state-

change action, we simply execute this action and repeat the above

procedure. Since it is possible that a macro action will again be best

at the next step, we can execute a sequence of state changing actions

before making an observation, for example, taking a series of steps

closer to a rock before observing it. If the current best action is an

99

observation action, this tells us that there is no better macro action. If

this action has value gain greater than zero, we again execute it and

repeat. Otherwise, we pick the best policy given our current belief

state as described above. The algorithm is given in detail in Algorithm

5.

Algorithm 5 Execution Monitoring with Macro Actions

Let the current MDP state be s
Let o be the observation-making action which is the policy for s,
where the observation is of variable V
Let b be the current belief state
repeat

a∗ = arg max
a

VG(a),

if a is an observation action

R(b,a) + VG(o ′),

if a is a macro action (a,o ′)

(24)

if a∗ is a macro action (a,o) then
Execute action a and update the MDP state s and the belief
state b

else
Execute action a, getting observation Z
b = beliefUpdate(b,a,Z)

end if
until VG(a∗) < 0
Let S be the set of MDP states
{s ′ : s ′ = s− (V = unknown)∪ (V = v)}
Let πs be the policy at state s ∈ S
Let a∗ be the first action in policy π∗ where:

π∗ = arg max
πs

∑
c

b(c)U(πs, c) (25)

where c is the POMDP state space
Execute action a∗

b = beliefUpdate(b,a∗)

100

Quasi-Det POMDP problems

FF to generate a contingency
 plan (Algorithm 1)

Spudd to generate an MDP policy

1.knowledge predicate
2.single-outcome determinisation

1.unknown value for state variables
2.observation actions to
change the state of the world

Execution monitoring
Algorithm 2

Execution monitoring + Macro Actions
Algorithm 3

Planning stage

Execution stage

In
it
ia

l
b

e
li
e

f
s
ta

te
O

b
s
e

rv
a

ti
o

n
 m

o
d

e
l

R
e

w
a

rd
 f
u

n
c
ti
o

n
Figure 19: A diagram of the complete planning and monitoring process for

QDET-POMDPs.

A diagram to describe the above two execution monitoring ap-

proaches on Quasi-Deterministic POMDPs is shown in Figure 19. The

true initial state and observation actions are used to update the belief

state at execution time and we apply value of information monitoring

techniques to improve the original approximate contingency plan or

MDP policy.

4.6 experimental evaluation

We test our approaches on the classical POMDP problem RockSample

[102] and a modified version of the HiPPo domain from [106], which

involves finding objects in a scene using vision algorithms.

For comparison purpose, we use Symbolic Perseus [83], a state-

of-the-art point-based solver that uses a structured representation to

solve POMDPs. This algorithm is only approximately optimal and

the quality of the policies found depends strongly on how the points

for the approximation are selected. However, having run the algo-

rithm with a range of different parameters, we are confident that the

policies reported are very close to optimal. Besides, all the sensing

101

models, the costs of the actions, and the reward functions of the prob-

lmes are tuned in Symbolic Perseus so that the POMDP solver can

produce sensible plans, they are not selected in favor of our transla-

tion approaches. That is the main reason I did not perform a broader

range of the experiments. After translating the problem as described

in Sections 4.2 and 4.4, we use FF [51] and SPUDD [48] respectively to

generate contingency plans and MDP policies. The standard RockSam-

ple problem allows any rock to be observed from any position with

noise depending on the distance between the rover and the rock. This

makes the translation between the symbolic Perseus domain specifi-

cation and PPDDL for contingency plans quite difficult, so we only

perform contingency plan execution monitoring in the HiPPo domain.

We tested RockSample domain with two different initial states, one is

all the rocks have 0.5 probability of being good, the other is all the

rocks have 0.7 probability of being good. If all the rocks have less than

0.5 probability of being good initially, our translation approaches will

not generate the plans that examine any rocks at the first place, there-

fore, there will be no any branching points for executing value of

information at run time. We also performed MDP execution monitor-

ing with and without macro actions as described in Section 4.4 in the

RockSample domain (macro actions give no advantage in the HiPPo

domain).

To measure plan quality, we compute total reward and discounted

reward for both domains. Generation time is recorded, as well as

average execution time per run. On the RockSample domain, evalu-

ation is done over 200 runs, on each of 200 steps. Since HiPPo do-

mains have a larger belief space and do not return to initial state after

reaching the goal, we performed 1000 runs on each of 20 steps except

for HiPPo(5,4) where only 100 runs were performed due to long run-

times. We also compared with QMDP [18] in both domains. Since ob-

102

servation actions in our domains are not changing states at the same

time, QMDP would treat them as do-nothing actions for MDPs and

performed poorly in both domains. Both translation approaches are

implemented in C++. They were compiled with g++ v4.1.2. All the

experiments were performed on a PC with 2.33 GHz Intel processor

and 2GB memory.

4.6.1 RockSample

As Table 5 shows, symbolic Perseus obtained the best plans in terms

of total reward and discounted reward for all RockSample problems,

which is expected as it computes approximately optimal policies for

the initial belief state. However, the MDP solutions required much

less time to generate the policy. As illustrated in Table 5, adding exe-

cution monitoring can substantially improve plan quality, and allow-

ing execution monitoring to choose macro actions also significantly

improves plan quality in terms of total reward and discount reward.

Although it requires more computation at run-time, the overhead of

execution monitoring with macro actions is still far less costly than

solving the POMDP directly. This domain also shows the importance

of the macro actions where setup actions are needed. Because our im-

plementation of PPDDL does not support functions, it consequently

lacks ability to represent observation actions in RockSample problems

where observation accuracy depends on the distance between the

rover and the rock and its inability to use macro actions would have

severely restricted its effectiveness (we would expect it to work ap-

proximately as well as the MDP solver without macro actions). Table

6 shows a similar result of initial state being (0.7, 0.3), where the MDP

solutions, whether with or without execution monitoring are gener-

ally closer to the optimal solution compared to results in uniform ini-

103

Table 5: Results for the RockSample Domain comparing symbolic Perseus
(POMDP) with the MDP approach(initial state [0.5,.0.5]).

Algorithm Gen.
Time
(s)

Exec.
Time
(s)

Total
Reward

Disc. Re-
ward

RS (4,4)

POMDP 274 0.6 251.8 ±
69.1

6.9± 8.4

MDP with
macro actions

13 3.5 161± 61.5 2.3± 9.5

MDP with EM 13 1.8 141± 61.3 1.9± 6.9
MDP without
EM

13 1.1 41± 107.3 −3.5± 13.3

RS (5,5)

POMDP 893 0.8 213± 66.8 4.5± 8.0
MDP with
macro actions

99 4 179± 77.3 2.9± 10.9

MDP with EM 99 2.4 96± 70.2 −0.3± 8.0
MDP without
EM

99 1.2 61± 100.5 −2.8± 13.3

RS (6,6)

POMDP 1098 1.3 188± 55.5 3.4± 1.8
MDP with
macro actions

476 5.0 150± 78.5 0.5± 9.3

MDP with EM 476 2.6 137± 73.3 1.9± 10.9
MDP without
EM

476 1.7 58± 101.3 −2.1± 12.8

RS (7,7)

POMDP 3520 2.4 154± 52.1 2.6± 8.5
MDP with
macro actions

2096 7.2 147± 82.3 −0.2± 10.7

MDP with EM 2096 3.5 125± 75.5 −0.7± 10.7
MDP without
EM

2096 4.5 78± 106.9 −2.2± 13.4

104

Table 6: Results for the RockSample Domain comparing symbolic Perseus
(POMDP) with the MDP approach (initial state [0.7,.0.3]).

Algorithm Gen.
Time
(s)

Exec.
Time
(s)

Total Re-
ward

Disc. Re-
ward

RS (4,4)

POMDP 342 0.29 455± 64 11.63± 6.05
MDP with
macro actions

13 3.11 334± 68 9.31± 8.53

MDP with EM 13 1.28 363± 61 10.46± 6.56
MDP without
EM

13 1.06 254± 110 7.72± 13.71

RS (5,5)

POMDP 1052 0.42 406± 61 10.05± 5.83
MDP with
macro actions

99 7.55 325± 74 8.47± 8.77

MDP with EM 99 1.52 273± 94 6.63± 13.63
MDP without
EM

99 1.20 269± 105 6.77± 13.82

RS (6,6)

POMDP 2115 1.08 377± 65 10.65± 4.35
MDP with
macro actions

476 4.50 342± 86 9.38± 9.99

MDP with EM 476 0.52 270± 28 6.04± 10.08
MDP without
EM

476 1.65 196± 101 4.07± 15.09

RS (7,7)

POMDP 3431 2.85 430± 64 10.37± 4.85
MDP with
macro actions

2096 6.9 392± 76 7.61± 10.61

MDP with EM 2096 3.94 222± 124 5.65± 11.08
MDP without
EM

2096 3.35 226± 124 2.66± 16.01

105

tial state. The reason is that all the rocks are more likely to be good, so

there is less likely to be false negative from observation action which

would result in a large penalty.

4.6.2 HiPPo

We also tested our approach in a modified HiPPo domain [106]. Orig-

inally, the HiPPo problem is to find a sequence of visual actions to

apply to the regions of interest (ROIs) in a scene in order to for a

robot to answer queries, such as “where is the red triangular object".

Each object in the domain has both color and shape properties, and

there are five different values for each. For color property, the un-

derlying class values could be red(R), green(G), blue(B), empty(E) or

multiple(M). For shape property, the underlying class values could

be circle(C), triangle(T), square(S), empty(E), or multiple(M). Empty la-

bel means there is no match to any of these values and multiple in-

dicates there might be more than two labels to the objects. Two ob-

servation actions, Color and Shape, can be applied to detect the state

of each object with some sensing noise, the observation domain Ω

is {Eoc ,Roc ,Goc ,Boc ,Mo
c ,Eos ,Cos , Tos ,Sos ,Mo

s }. The question is how many

color and shape detecting actions need to be applied before we can

determine the properties of the object. Originally, the objects are all

shown in one scene (e.g. on a table), so the planner also needs to

decide which object (ROI) to look at. We modified the problem by

putting the objects in a grid map, and making sensing actions us-

able only when the agent is at the same position as the object. If the

agent is not at the same position as the object and executes one of the

sensing actions, either Eo or Mo observation only will be received

with 0.5 probability. Again, HiPPo(n,k) denotes a n by n grid with k

objects. Therefore, in order to decide which object has desired prop-

106

Table 7: Results for the HiPPo Domains comparing symbolic Perseus
(POMDP) with the MDP and the contingency planning (FF) ap-
proaches.

Algorithm Gen.
Time
(s)

Exec.
Time
(s)

Total Re-
ward

Disc. Re-
ward

HiPPo (3,2)

POMDP 196.25 0.26 −7.35± 29.9 −2.13± 12.0
MDP with EM 1.04 1.42 −7.45± 17.3 −2.28± 9.5
MDP without
EM

1.04 0.06 −6.57± 15.4 −2.83± 9.8

FF with EM 4.04 1.32 −7.04± 17.3 −3.04± 8.9
FF without
EM

4.04 0.06 −7.41± 16.9 −2.90± 9.3

HiPPo (4,3)

POMDP 4059 9.95 −3.26± 11.5 −1.21± 10.6
MDP with EM 11.88 4.03 −3.75± 23.3 −1.21 ±

11.43

MDP without
EM

11.88 0.13 −5.78± 21.5 −1.69± 12.5

FF with EM 8.05 3.48 −5.79± 18.8 −1.87± 9.8
FF without
EM

8.05 0.12 −5.95± 18.5 −1.87± 9.7

HiPPo (5,4)

POMDP - - - -

MDP with EM 207.65 56.74 −3.60± 27.5 −0.61± 11.1
MDP without
EM

207.65 0.46 −2.31± 9.8 −1.42± 22.6

FF with EM 16.15 37.38 −3.24± 22.2 −0.80± 10.4
FF without
EM

16.15 0.44 −3.30± 20.7 −2.01± 9.4

107

erties, the agent also needs to move to the place of the object and exe-

cute sensing actions. State changing actions in this domain consist of

four moving actions and termination actions. Termination actions ap-

pear when the agent has gained enough information about the objects

and is able to answer the query. For example, if the query is “where

is the red triangular object", the termination action can be “say red"

and “say triangular" on an object, which terminates the process.

Since HiPPo domains have a large state space (n2× 52k) and a large

observation space 10, problems which are larger than size (4,3) can-

not be solved by symbolic Perseus within reasonable time (two hours)

and memory usage. As Table 7 shows, although symbolic Perseus

still managed to achieve the best plan quality in terms of discounted

reward, it requires orders of magnitude more time in generating poli-

cies. In this domain the MDP policies are quite good (they run the

observation actions once on each object, while the optimal policy is

to run them twice if they return the value you are looking for, to

ensure reliability), so there is less improvement from adding execu-

tion monitoring. The interesting result is the performance difference

between the contingency plans and the MDP planner. This is largely

because the contingency planner only plans for the initial state while

the MDP policy is for every possible state. When we perform obser-

vation actions and the robot is not in the same position as the object,

it is only possible to get two observation outcomes, which are E and

M , so there is no transition probability of turning the color property

of an object from unknown to R, G, or B in MDP domains, which

would make the robot always move to the place where the objects are

and perform observation actions. In this case, macro actions are not

necessary because it is always the time to do information gathering

when the robot is in the same position as the object. For these do-

mains, because our MDP policies and contingency plans are already

108

quite similar to the optimal POMDP solutions, they all had unsur-

prisingly good reward. Furthermore, it also shows that solutions with

our execution monitoring can still improve original plans or policies

at run-time.

4.7 conclusion

In this chapter we have presented an approach to solve QDET-POMDPs

which uses a mixture of off-line planning and on-line planning. At the

planning stage we removed the stochasticity from the actions to gen-

erate completely observable planning problems, then we produced

plans using either a classical contingency planner or a Markov deci-

sion problem solver. At execution time we monitord the actual belief

state of the agent as the plan was executed, and re-evaluate in light of

that belief state. We used a value of information calculation to deter-

mine if there were information gathering actions that would change

the belief state in such a way as to improve the expected quality of

the remainder of the plan and, if so, we added them to the execution

of the plan.

For contingency planning, QDET-POMDPs were determinised us-

ing most-likely determinisation methods. The state with the largest

probability from the initial state was chosen and only the most likely

outcome was selected for stochastic observation actions. The trans-

lated problem was then fed to the classical planner FF to generate a

sequence of actions. The contingency plans were then constructed by

enumerating all the possible outcomes from the observation actions

which appear in the straight-line plan. At run-time, we put extra exe-

cution monitoring to repair the plans by making the choice of sensing

actions. A value of information wass applied to monitor the belief

state and determine the observation actions that could gain most in-

109

formation about the current belief state. The trade-off we mad here

was how much uncertainty we could remove by applying this obser-

vation action against the cost of this observation action. The heuris-

tic value of executing this observation action will be computed by

considering all possible branches from the rest of the plans and the

reward we collected from the node of the contingency plans will be

backtracked to the root of the contingency which is our current mon-

itoring point. We have shown in the experiment section that greedily

selecting observation actions can improve the original approximated

contingency plans. Although the approach does not produce a better

policy than a state-of-art POMDP solver, a lot of the planning time is

saved by using a classical planner.

One limitation of the contingency plans is that our execution mon-

itoring will only decide whether or not to continue executing the

current observation action, and it will not change state of the world

which will invalidate the rest of the plans.

The second part of the work translated the QDET-POMDPs into

MDPs. This approach has some advantages over the contingency ap-

proach. First of all, there are more similarities between MDPs and

POMDPs so the translation is easier than classical contingency plan-

ning. Because state-changing actions are non-informative and are also

deterministic we can represent these actions in the same way as in an

MDP. As for initial states, we assigned all uncertain state variables

with a discrete state value “unknown", so that observation actions in

the MDP can make these variables transit from the unknown state

to a known state with a certain probability. Our experimental results

showed that our approach is fairly close to optimal but is orders of

magnitude faster than using a POMDP solver. The comparison be-

tween contingency and MDP approach also demonstrated that the

110

latter usually takes more time to generate a policy which covers all

states in the space.

111

5
E X E C U T I O N M O N I T O R I N G O N P O M D P P O L I C E S

In the previous chapter, we addressed the issue of planning in Quasi-

Deterministic POMDPs which is a subset of general POMDPs where

only observation actions have stochastic outcomes. Execution moni-

toring is done at run-time by greedily modifying approximate solu-

tions using value of information techniques. The main idea is that we

are generating off-line solutions using a deterministic planner or an

MDP planner rather than a POMDP solver, and enhance the solutions

at execution time. In this chapter, we are going to tackle execution

monitoring of general POMDPs where there is no longer a distinc-

tion between observation-making actions and state-changing actions.

A similar idea is adapted for general POMDPs. Since finding optimal

policies for large POMDPs using exact solvers is problematic, many

approximate POMDP solvers are proposed so as to be able to pro-

duce a good solution within reasonable time. Our execution monitor-

ing procedure then tries to improve these good solutions at run-time.

The goal of execution monitoring for approximate POMDP solvers is

using extra computation for replanning at run-time in order to get

a better policy in the end. Unlike the work in the previous chapter

where monitoring was triggered automatically whenever it encoun-

tered observation actions, the correct timing of replanning needs to

be done to decide when the current policy is not working properly

for the current belief state. Therefore, the main contribution of this

work is proposing several cheap heuristic functions to decide when

to replan at execution time.

113

As explained in Chapter 2, partially observable Markov decision

processes (POMDPs) are powerful models for capturing uncertainty

in both action outcomes and observation variables. Exact solutions

such as value iterations, as demonstrated in Chapter 2, are introduced

to generate optimal policies off-line. Unfortunately, finding optimal

policies for large POMDPs is intractable due to two curses: the curse

of dimensionality and the curse of history. The curse of dimensional-

ity requires POMDP solvers to compute optimal policies in an n− 1

dimensional continuous space if there are n states in the planning

domain. The curse of history means the number of possible action

and observation combinations grows double exponentially with the

planning horizon. Exact solutions will suffer from these two curses at

the same time.

In response to the two curses, many approximate POMDPs solvers

have been proposed in order to generate good solutions within rea-

sonable time. In this work, we focus on point-based POMDPs solvers

[102] which utilize the idea of finding optimal policies in a represen-

tative belief space which is finite, rather than in the entire continuous

belief space. This can be seen as one of the solutions to tackle the curse

of dimensionality. Point-based algorithms differ from grid-based algo-

rithms [47] in their selection strategies for belief points. Point-based

approaches sample from simulated forward trajectories, while grid-

based algorithms sample points uniformly. SARSOP [61], one of the

most promising point-based POMDPs solvers, takes this one step fur-

ther by generating policies in a reachable belief space under optimal

policies. However, most point-based algorithms tend to generate sam-

ple points with high probabilities to transit to and ignore less likely

belief points along the planning trajectory. In this chapter, we would

like to detect the situation at execution time where the current belief

point is not well sampled which results in bad performance with re-

114

spect to policy quality. Furthermore, a replanning procedure is called

when such a situation occurs in order to produce a better policy for

our current belief state.

Take a factory domain for example, suppose we have an assembling

machine which is trying to assemble different parts of components for

a working product. During the assembly procedure, each component

in the system has a small possibility of being damaged which would

result in the failure of the whole assembly action. There are noisy

observations about the current state of the components and also re-

covery actions that can repair damaged components. This problem

can be formulated as a POMDP problem. As mentioned before, if we

choose state-of-the-art point-based algorithms to solve this POMDP

problem, because each component only becomes faulty with a very

low probability, it is quite likely that point-based solvers will not sam-

ple belief points in these areas but focus on states that are more likely

to occur such as the components are all working correctly in this case.

When we do encounter faulty components at execution time, there

will be no appropriate recovery actions available for us to execute

because these repair actions are not included in the initial policy. In

our approach, we would like to investigate the idea of detecting such

a situation and perform replanning at run-time to increase the over-

all quality of our policy. In the factory domain, when a component

accidentally becomes damaged at run-time, our execution monitor-

ing approach will identify this situation and include the appropriate

repair actions into the existing policy after replanning.

Replanning is done by performing normal backup operations on

newly sampled belief points at execution time. Even though exact

backup operations are computationally expensive at run-time [45],

we only trigger those operations in a less frequent way compared to

other on-line POMDPs solvers which will compute the current best

115

action at every time step. We showed in the experiments Section 5.3

that it can outperform state-of-the-art POMDP solvers in terms of

plan quality and computation time when both planning time and ex-

ecution time are considered. This can be viewed as complementary

for point-based algorithms, which can generate reasonably good poli-

cies for most of the domains, but not for the domains where low

probability transition exists.

5.1 point-based algorithms

Let us recall the POMDP model from Chapter 2, where a POMDP is

specified as a tuple 〈S,A, T ,Ω,O,R,β〉. The goal of a POMDP solver is

to find an optimal policy that can maximise the expected discounted

reward, which is defined as follows:

E[

∞∑
t=0

βtR(st,aa)] (26)

where β is a discount rate, 0 6 β < 1 and st and at denote the

agent’s state and action at time t. As described in Chapter 2, the

optimal policy π∗ maps any belief point b from the belief space B

into a particular action a ∈ A and also induces an optimal value

function Vπ∗(b) that is computed as the expected discounted reward

for following this optimal policy π∗.

In Chapter 2 we described one of the most popular POMDP solvers

which is value iteration. This classic method represents a value func-

tion V(b) as a set of vectors α0,α1, . . . which are piecewise linear and

convex. The value of a belief point b can be computed as follows:

V(b) = max
α
b ·α (27)

116

Given a value function V , the best action for the current belief point

b can be extracted as follows:

πV(b) = arg max
a
αa · b (28)

where each α-vector defines the expected future reward, starting

with action a and then continuing to execute the action with the high-

est α-vector in subsequent belief states.

To compute optimal α-vectors, one of the key operators in POMDP

solvers is to build n-horizon value functions from n− 1-horizon ones

using the backup operator H:

Vn = HVn−1 (29)

= max
a

[∑
s∈S

R(s,a)b(s) +β
∑
o∈Ω

P(o|a,b)Vn−1(b ′)P(b ′|b,a,o)

]
(30)

where P(o|a,b) =
∑
s,s ′∈SO(s,a, s,o)b(s)T(s,a, s ′) is the probability

of getting observation o when doing action a in belief state b.

For each observation o, there is only one deterministic transition

from the current belief state b to a new belief state b ′, so P(b ′|b,a,o)

is an indicator function which can be computed via Bayes rule.

Since the belief space is continuous and high-dimensional, generat-

ing α-vectors over the entire space is computational expensive. How-

ever, the computation time of the backup operation for a single belief

point is O(|S|2|A||O||Vn−1|) where |Vn−1| is the number of α-vectors

in previous set Vn−1, which takes only polynomial time. Point-based

value iteration was introduced to take advantage of this by planning

in a representative subset of the belief space. If the size of this sub-

117

Algorithm 6 SARSOP

Initialize V and V̄
repeat

SAMPLE(b0,V , V̄)
for all b ∈ B do
V ← BACKUP(b,V))
V̄ ← BACKUP(b, V̄)
PRUNE(V), V̄)

end for
until V has converged

set is constrained, the number of α-vectors in the value function is

also limited, because one belief point at most is mapped to a best α-

vector. When it comes to backup operations, we only need to backup

α-vectors that dominate at our representative belief points rather then

searching for α-vectors for the entire space.

SARSOP [61] use both lower bounds and upper bounds to approxi-

mate value functions in POMDPs. As you can see from the Algorithm

6, there are three main functions in SARSOP approach, viz, SAMPLE,

BACKUP and PRUNE. It first samples a set of points from the be-

lief space using the forward exploration heuristics and updates each

point’s upper bound and lower bound locally in a reverse order. The

pruning techniques are applied to reduce the computation time on

backing up α-vectors as lower bounds. During the sampling stage, it

uses an action selecting strategy: picking the action with the highest

upper bound:

a∗ = arg max
a
QV̄a (b) (31)

As mentioned in [57], selecting actions with the greatest upper

bound can guarantee convergence because once its upper bound is

lower than other action’s upper bound, we can discover this action’s

118

sub-optimality. This does not hold if we select actions with highest

lower bound because lower bound is always increasing afterwards.

As for observation strategy, it selects the observation that makes

the largest contribution to excess uncertainty at parent node. An excess

uncertainty is defined as follows:

excess(b, t) = width(V̂(b)) − εβ−t (32)

where width(V̂(b)) is the value difference between the upper bound

V̄ and the lower bound V . This excess uncertainty defines how far the

current bound is from the terminated condition εβ−t. Therefore, the

observation o∗ is selected as follows:

o∗ = arg max
o

[p(o|b,a∗)excess(τ(b,a∗,o), t+ 1)] (33)

Thisese action selection strategy and observation selection strategy

in SARSOP are the same as in HSVI [102, 103]. The belief points sam-

pled in SARSOP are in reachable belief space, what is more, SARSOP

proposed the idea of generating belief points which are in the opti-

mally reachable belief region at belief expansion stage. This belief region

consists essentially of the belief points we are going to visit under op-

timal policy. So it is more compact than other sets of belief points that

are generated by random walk or other selection strategies. Since we

do not know the optimal policy at the sampling stage, SARSOP ap-

plies a simple on-line learning technique to predict the optimal value

V∗(b) during sampling. This clustered the belief points into several

discrete belief spaces according to their upper bound and entropy.

Suppose current expanding node b is in a discretized belief region ri,

the predicted optimal value of node b is the average value of belief

points in ri. This estimate value can be used to determine whether to

119

b_currentb0 b1 b2 b3 b4

α0

α1

α2

Figure 20: Point-based value iteration needs to interpolate belief point from
the sampled one. In this example, b0,b1,b2,b3 and b4 are sam-
pled points at planning stage. bcurrent is the belief point encoun-
tered at run-time. Current policy includes α0 and α1. α2 is a po-
tentially better α-vector which we would like to find at run-time
for bcurrent. This figure is reproduced from [81]

continue expanding the current node or not. By doing so, SARSOP

can focus planning on the most likely belief states in the space.

SARSOP and other point-based algorithms (shown in Chapter 6)

are trying to reduce computation cost by working on a subset of the

belief space, and empirical results show that previously unsolvable

large POMDP domains can be tackled using these techniques. How-

ever, since the value for belief points other than those sampled is

interpolated from the sample points, the policies can be much worse

for points far from the sampled ones. Since the full belief space is too

large to be densely sampled, many point-based algorithms choose

sample points with a high probability of being reached and ignore

less likely belief points. At run-time, point-based algorithms will com-

pute the best α-vector from our existing vector set for the current be-

lief point at each time step. Thus, when the current belief point, or its

neighbour, is not sampled during planning stage, its performance is

going to be poor, especially in the domain where there are many low

probability action outcomes;for example domains with exogenous ac-

tions, or where numerous low probability faults can occur. This prob-

120

lem could occur in all approximate off-line solutions for POMDPs

where at run-time there is no mechanism to improve the existing so-

lutions when the current solution is not suitable for the current belief

point. Figure 20 shows a set of α vectors and its representative point

set B = {b0,b1,b2,b3,b4} which are used to generate the policy. As

we can see from the figure, our current policy only includes two vec-

tors α0 and α1, which are generated by using point set B. When, at

execution time, our current belief point bcurrent is far from all the

points we used to generate the vectors, it is time to ask the question

“Is there a better policy to follow at this point", because there might

be a better α-vector (α2) for current belief point.

5.2 execution monitoring

We are proposing execution monitoring on point-based algorithms

to address the issues that some belief points might not be well cov-

ered by the off-line generated solutions. As explained in the previous

section, traditional point-based algorithms simply compute the best

α-vector from the approximated solution for the current belief point

at each time step and ignore the question of whether the current sub-

optimal solution is good enough or not.

Generally, there are two parts in our execution monitoring. The first

is applying heuristic measurements to estimate the quality of the cur-

rent solution. Such information is difficult to compute for traditional

point-based POMDP solvers because α-vectors are the only output for

point-based algorithms and there is no additional information about

how those off-line solutions were generated when we are executing

the polices at run-time. Therefore, additional information such as the

belief points used for generating those approximate solutions need to

be stored along with the α-vectors.

121

There should be some requirements for these heuristic measure-

ments. One is that they should be easy to compute. Since these mea-

surements need to be computed at every step of plan execution, ex-

pensive heuristic functions will put too much computation cost on

running the policies. Second, they should provide the best informa-

tion about whether the current policy is doing well for the current

belief point, this is the reason we propose several measures in this

section. During execution, we introduce a threshold θ to decide when

to trigger the replanning. By doing experiments in different domains,

we would like to see whether this threshold parameter is domain in-

dependent or whether general values can be established for all the

domains.

The second part of our plan repair strategy is replanning when our

heuristic functions indicate that the current policy for our current

belief point should be improved. A naive replanning from scratch

would be too costly. Instead, we treat the current belief point as a

new initial state, use the already computed lower and upper bounds

provided by the previous invocation of SARSOP, and ask SARSOP to

generate new belief points and a new policy. To do this we not only

need to store belief points from the off-line stage, but we also need

to keep a record of the upper bounds of the optimal policy: the set of

belief points and their upper values. Newly generated belief points

will be added to the existing belief point set which can be used for

determining the quality of the policy for subsequently encountered

belief points. In addition, new lower bounds and upper bounds are

computed as part of replanning. We limit the time available to SAR-

SOP to prevent replanning taking too long. The plan repair algorithm

is displayed in Algorithm 7.

We now describe the several candidate heuristics, and compare

their performance in Section 5.3.

122

Algorithm 7 Execution Monitoring on PBVI

Let b be the initial belief state
Let B be the sampled belief point set from off-line SARSOP genera-
tion.
Let V be the set of α-vectors from off-line SARSOP generation.
Let V̄ be the pair of belief point and its upper value from off-line
SARSOP generation.
Set θ and τwhere θ is the threshold value for triggering replanning
and τ is the replanning time constraint.
repeat

if Measurement(b, B) > θ then
B
′
V
′
V̄
′ ← SARSOP (b,τ, B, V , V̄) {Needs to replan} { Run

SARSOP for τ seconds for current belief b }
B← B

′
{store newly generated belief set}

V ← V
′

{store newly generated lower bound}
V̄ ← V̄

′
{store newly generated upper bound}

end if
execute from V

until reach of plan horizon

5.2.1 Gap heuristic

The first heuristic function is using the gap between the upper bound

and the lower bound of the current belief point b as shown in Equa-

tion 34. The intuition is that if the gap is too large, there is more

opportunity of there being a better policy to reduce the gap. How-

ever, this heuristic function only works with point-based algorithms

that generate both upper bounds and lower bounds such as SARSOP

or HSVI. Therefore, we also proposed other heuristic functions that

can work on general point-based algorithms.

Mgap(b) = Vupper(b) − Vlower(b) (34)

Theorem 1. The time complexity of gap heuristic is O(|Γ |) where Γ is the

set of α-vectors.

Proof. For any b
′
, Vlower(b

′
) = maxα∈Γ b

′ ·α

123

b
current

α
1

α
0

b
2

b
1

b
0

va
lu
e

belief

M
1

Figure 21: L1 distance measurement.

5.2.2 L1 Distance

The second heuristic we use is simply the L1 norm distance1 from

bcurrent to the nearest point in B where B is the current belief point

set. Intuitively, if the current belief point is far away from any points

that are used to generate the initial policy, it is quite likely that we

can find some better α vectors for the current belief. Figure 21 demon-

strates this idea. b0, b1, b2 and bcurrent share the same best α-vector.

We use an L1 metric to measure the distance between the points, so in

this case the distance between bcurrent and b2 is computed to make

a decision about whether to trigger plan repair.

Theorem 2. The time complexity of L1 heuristic is O(|B|).

Formally, the L1 heuristic for approximating the value function er-

ror at some belief point b given belief point set B is computed as

follows:

ML1(b,B) = min
bi∈B

‖b− bi‖1 (35)

1 The L1 norm distance is the sum of the absolute value of the distance between two
vectors.

124

v
0
b
0

b
current

α
1

α
0

b
1 b

2
v
1
v
2

v
current

va
lu
e

belief

V(B)
M
2

Figure 22: Value distance measurement

If ML1(b,B) > θ, we execute our replanning operations where θ is

the pre-defined threshold parameter. The best value of θ and replan-

ning time τ are tuned for all the benchmarks at the experiment.

5.2.3 Value Difference

The third heuristic we propose is based on the difference between

the value of the best α-vector at b and the average value of all the

belief points Bα that share the same best α-vector. To produce a scale-

invariant heuristic we divide this difference by the average value of

the belief points that share the same α-vector. This is again thresh-

olded to trigger plan repair. Figure 22 illustrates this second heuristic

measurement. Our current belief point bcurrent shares the same α-

vector α0 with belief points b0, b1 and b2. The intuition is that since

the current belief point shares the same α-vectors with these points,

it should come from a similar region of the belief space and should

have a similar value. Therefore, the average value of belief points b0,

b1 and b2 is computed as vaverage and compared with current value

vcurrent. Figure 22 shows that the value of the current belief point is

125

far from the average of the other points and possibly indicates there

is a need for replanning.

Formally, the lower bound value measurement is computed as fol-

lows:

Mval(b,B) =
‖V(b) − Vα(B)‖

Vα(B)
(36)

where Vα(B) is the average value of all belief points which have the

same best α-vector as point b.

Theorem 3. The time complexity of value heuristic isO(|Bα||Γ |) where |Bα|

is the number of belief points that share the same best α-vector with b and Γ

is the set of α-vectors.

5.2.4 Belief Point Entropy and Number of Iterations

We observe that, in addition to the proposed distance measures above

there are two other factors which affect the overall performance of the

execution of the POMDP policy. One is the number of times we have

triggered our replanning during plan execution. Obviously, we ex-

pect the improvement from replanning to decrease with the number

of replannings that have occurred so far, because we are improving

our policy gradually each time, so the additional improvement that

is possible should, therefore, decrease each time. The second factor is

the entropy of the belief point: we find that when the current belief

point has larger entropy, it often leads to a bigger improvement from

replanning compared to ones with small entropy. One explanation

could be that belief points with less entropy are less uncertain and

more likely to be in the corners of the belief space and will have al-

ready been covered by the initial upper and lower bounds generated

by SARSOP.

126

Unlike the previous two heuristic measurements, these two factors

are not related to the sampled belief point set but can be seen as

independent properties that will affect our overall performance. We

combine the previous two heuristics with these two additional fac-

tors to form another two heuristic functions as follows (λ and γ are

weights for combining the two factors).

M3(b,B) = λEntropy(b) + γIter+ML1(b,B) (37)

M4(b,B) = λEntropy(b) + γIter+Mval(b,B) (38)

Since we have more parameters in these equations than in the first

two heuristics, there is a risk that by optimising the parameters we

will get better performance than with the other heuristics simply be-

cause we are trying more variants. To prevent this, for each measure

we calculate a "standard” setting of the parameters which work rea-

sonably well on a variety of domains, rather than the best setting for

a particular domain.

Theorem 4. The complexity of M3 and M4 are O(|S|+ |B|) and O(|S|+

|Bα||Γ |) respectively

Proof. For each b, calculating its entropy takes |S| time. According to

Theorem 2 and 3, it takes |B| and |Bα||Γ | to calculate ML1 and Mval

127

5.3 experiment

There are several questions we would like to answer in the experi-

ment section. First, how much is our execution monitoring improv-

ing straight SARSOP in terms of total reward and total time. If we

ignore the time cost for actions, the only difference in terms of exe-

cution time would be our extra computation on heuristic functions

and replanning. There is an obvious trade-off between the threshold

we use to trigger the replanning procedure and the time allowed for

replanning. One can easily imagine that a large value of threshold

and a small value of replanning time can make the agent replan less

and possibly produce the same result as standard SARSOP, while a

small value of threshold and a large value of replanning time can pos-

sibly leads to a large improvement in the final total reward the agent

collected but also consume more computational power and time.

Secondly, we would like to investigate how the heuristic functions

affect our execution monitoring approach in three different domains.

The more effective the heuristic function we choose, the more accu-

rately we determine whether the current policy is good enough for

our current belief point. We would like to see which heuristic func-

tion with the best parameter setting can generate best performance

for all three domains in terms of total reward and total time. Finally,

we need to decide parameters for the heuristic functions. As for the

first three heuristic function (Mgap,ML1 ,andMval), threshold and

replanning time are only two parameters we would like to look at in

the experiment. However, the M3 and M4 heuristic function has two

additional parameters for the entropy of the belief point and number

of replanning so far.

128

5.3.1 Domains

We tested our approach on three general POMDP domains. The first

is a factory domain where the goal is to assemble different compo-

nents of a product using corresponding robot arms. There are three in-

dividual states for each arm, which are state "On", "Off" and "Faulty".

Two different actions are available in the domains which are TurnOn

action that turns on the robot arms from "Off" state to "On" state and

Assemble action that can assemble things. One precondition of Assem-

ble is all the arms turned on so that TurnOn action for each arm needs

to be executed before Assemble action. We are adding another inter-

esting element into this simple domain by making a low probability

(0.01) of transition when we execute the Assemble action. This transi-

tion will result in all robot arms becoming faulty. When we execute

the Assemble action with all arms turning on, a positive reward will

be assigned. Therefore, if we do not pick appropriate repair actions

to recover from faulty situations of the arms, no positive reward will

be gained by following the initial policy. Noisy observations are also

available after Assemble action in order to check the states of each

arms. Consider a factory domain with 2 components: the POMDP

associated with it is defined by the tuple 〈S,A, T ,Ω,O,R,β〉:

• S : S1 × S2 × Sready × Sgoal, where S1 and S2 are state spaces

for each component. S1 : {Off,On, Faulty}, S2 : {Off,On, Faulty}.

Sready is an intermediate state for the goal state Sgoal. Sready :

{Yes,No}, Sgoal : {Yes,No, Fail}

• A : {TurnOn1, TurnOn2,Ready,Assemble, Repair1, Repair2} is

the set of actions. The first two are TurnOn actions for the com-

ponents. Action Ready can make the intermediate state Sready

become Yes if all the components are On. Action Assemble rep-

129

resents the goal-achieving action and the last two are repair ac-

tions when components are damaged.

• T : S× A × S → [0, 1] represents the state transition function.

TurnOn action has no effect when the state of the component

is either On or Fail and will change the state of the component

from Off to On with 0.9 probability. When Sready = Yes, action

Assemble has 0.99 probability to make Sgoal become Yes but

also has 0.01 probability to make all the components become

Faulty.

• Ω : S×A×O → [0, 1] is the observation function where O =

{Onormal,Ofail}. This function reveal the true state of each

component with 0.9 accuracy. The state Off and state On are

both considered as normal state.

• R : S × A → R, specifies the reward function from the state-

action space to real number. In our case, R = 3 if Sgoal = yes.

This value is found manually so that the SARSOP can generate

a policy to achieve the goal state.

The second domain is the reconnaissance domain from the inter-

national planning competition [94], where an agent is equipped with

tools to detect water and life, and also take pictures when it finds

life on another planet. A positive reward will be gained if we finally

take pictures at the place where life exists. The first interesting part

of this domain is deciding between different sensing actions, such as

water-detecting actions or life-detecting actions which are noisy. As

in a RockSample domain, more accurate sensing actions usually have

larger costs while cheaper sensing actions often result in poorer obser-

vation ability. Therefore, a trade-off between the quality and the cost

needs to be made for the reconnaissance domain. Apart from that,

in their original setting, there are some hazardous places where the

130

agent’s equipment, such as a water detector, or cameras, have 0.01

probability of being damaged and it needs to return to the base to

get repaired. However, they assume there are observations available

about the states of the tools for all the actions in the domain, which

means moving actions also give us information about the status of

the tools. In order to make the damage to the tools harder to detect,

we assume there is observation about the state of tools only when

we move out of the hazard places. Consider a POMDP problem asso-

ciated with our modified version of the reconnaissance domain in a

2× 2 grid map. It can be defined by the tuple 〈S,A, T ,Ω,O,R,β〉:

• S : Sx × Sy × Sp0,1,2,3−has−water × Sp0,1,2,3−taken−picture

×Sdamaged−water−detector × Sdamaged−camera .

– Sx : {x0, x1} and Sy : {y0,y1} are rover’s position in the map.

The hazard place is at [x1,y1] and the base is at [x0,y0].

– Sp0,1,2,3−has−water : {Yes,No} represents the underlying

state of water value in each position .

– Sp0,1,2,3−picture−taken : {Yes,No} denotes whether the po-

sition is taken picture by the rover.

– Sdamaged−water−detector : {Yes,No} denotes the condi-

tion of the water detector. It only become Yes with 0.01

probability when the rover move out the hazard place.

– Sdamaged−camera : {Yes,No} denotes the condition of the

camera. It only become yes with 0.01 probability when the

rover moves out of the hazard place

• A : {Down,Up,Left,Right,Detect−Water0,1,2,3, Take−picture0,1,2,3,

repair − water − detector, repair − camera} is the set of ac-

tions.

• T : S×A× S→ [0, 1] represents the state transition function. All

the movement actions are deterministic. The observation action

131

Detect−Water has 0.9 probability to reveal underlying state of

the water existence in a position. The action Take−picutre can

take picture on a position when the rover believes it has water.

• Ω : S×A×O → [0, 1] is the observation function where O :

Ohas−water ×Odamaged−wd ×Odamaged−camera.

– Ohas−water : {Yes,No} is the observation variable for wa-

ter detection action.

– Odamaged−wd : {Yes,No} is the observation variable for

checking the water detector’s conditions, Yes only appears

with 0.9 probability when the rover moves out of the haz-

ard place and has a damaged water detector.

– Odamaged−camera : {Yes,No} is the observation variable

for checking the camera’s conditions, Yes only appears

with 0.9 probability when the rover moves out of the haz-

ard place and has a damaged camera.

• R : S × A → R, specifies the reward function from the state-

action space to real number. In our case,

R =

30 if Shas−water ∧ Spicture−taken

−28 if ¬Shas−water ∧ Spicture−taken

Again, these two values are manually set up so that the point-

based algorithms can find a policy to achieve the goal.

In the previous reconnaissance domain, there is only one repair ac-

tion for each tool. We are adding one more repair action {repair−

water− detector2, repair− camera2} with different recovery accu-

racy and action cost. This is to study the effect of more complex re-

covery actions on the execution monitoring performance.

132

Factory
(54s, 6a, 2o)

Gen. &
Exec. Time (s)

Total Reward

SARSOP
(no replanning)

400+ 0.01 286.68± 213.56

SARSOP
(no replanning)

200+ 0.01 280.41± 220.88

SARSOP
(no replanning)

100+ 0.01 292.6± 229.9

Random Replan 100+ 8.56 452.4± 201.9
Heuristic Mgap 100+ 0.32 261.7± 218.6
Heuristic Mgap 100+ 1449.8 589.5± 115.5
Heuristic ML1 100+ 5.64 566.2± 81.7

Heuristic Mval 100+ 3.09 581.2± 70.6

Heuristic M3 100+ 10.21 602.8± 3.0

Heuristic M4 100+ 3.93 608.3± 48.3
look-ahead

(blind strategy)
0.06+ 3.5 240.8± 192.7

look-ahead
(SARSOP offline)

100+ 343.9 611.9± 28.4

Table 8: Results for the factory domain.

5.3.2 Results

The five heuristic measurements and straight SARSOP are tested on

the three domains. Two general parameters are considered here. One

is the threshold θ, which is used for determining whether the current

policy is good enough for the current belief point. The other is the re-

planning time τ, which is applied as a time constraint for replanning.

We use the following function to find the best parameters for each

heuristic:

(θ, τ) = arg max
θ,τ

Reward(θ, τ)
Max(Reward)

−
Time(θ, τ)
Max(Time)

(39)

whereMax(Reward) is the maximum total reward andMax(Time)

is the maximum execution time. The parameter settings used were op-

133

Reconnaissance
(4096s, 14a, 8o)

Gen. &
Exec. Time (s)

Total Reward

SARSOP
(no replanning)

400+ 1.48 1730.4± 1382.0

SARSOP
(no replanning)

200+ 1.09 1559.5± 1279.0

SARSOP
(no replanning)

100+ 0.58 1507.3± 1244.9

Random Replan 100+ 21.11 2981.7± 871.8
Heuristic Mgap 100+ 14.73 3493.9± 584.7
Heuristic ML1 100+ 17.51 3597.2± 305.2

Heuristic Mval 100+ 11.14 3325.9± 864.6

Heuristic M3 100+ 17.28 3530.0± 1045.6

Heuristic M4 100+ 7.09 3357.5± 890.8
look-ahead

(blind strategy)
22.75+ 295.9 469.6± 421.2

look-ahead
(SARSOP offline)

100+ 1281.9 3698.5± 309.8

Table 9: Results for the reconnaissance domain.

timised over all three domains and then the same settings were used

for all experiments.

In each domain we compare standard SARSOP with 100 seconds,

200 seconds, or 400 seconds available for policy generation. As well

as standard SARSOP and SARSOP with our plan repair, we also run

SARSOP with replanning triggered randomly. To make this a fair

comparison, we first calculate the average number of replannings

in each domain, where the average is over all the heuristics tested;

Then, for the random replanning variant, we set the probability of

replanning at each step so the expected number of replannings is the

same. The best number of replanning for the factory domain, recon-

naissance domain and modified reconnaissance domain are 2, 4, and

7.

We also compared our results with an on-line look-ahead algo-

rithm, where the current best action is computed by expanding the

search tree at each time step. Because on-line POMDP solvers require

134

an off-line policy to provide heuristic values for each state, we show

results using both a blind strategy [47] and a policy generated by

SARSOP for the heuristic. A blind strategy is sometimes called a

fixed-action , which generates a lower bound on the optimal value

function by always choosing the same action regardless of current

belief state. Therefore, there will be at most |A| vectors in the set

after applying the blind-strategy. The policy generated by SARSOP

usually has a tighter bound than blind strategy (also more computa-

tion time) because Bellman updates have been applied to the initial

bounds. Both policies are used to estimate the values of the fringe

nodes at the search tree expanding process and are propagated to the

starting node in order to choose the current best action.

The performance comparisons are displayed in Tables 8–10. Initial

policies are generated by SARSOP with a time limit of 100 seconds,

and execution time is the average CPU time for each problem over 100

trials. As the tables show, SARSOPs with heuristic approaches gen-

erally improve standard SARSOP in terms of total reward by more

than 100% in all three domains. Even when SARSOP has four times

as much computation time, our approach still performs much better,

and it is clear from the SARSOP performance, particularly in the Fac-

tory domain, that further computation will not improve the policy.

Random replanning does surprisingly well, largely because in these

domains there is no penalty for carrying on with normal actions after

a fault has occurred, so the system can keep acting badly until replan-

ning occurs, without a penalty. The on-line algorithm using the blind

strategy does not generate sensible policies and, with the SARSOP

policy, produces better results in total reward, but also requires much

more execution time. We did not inject faults into the runs, so if no

fault occurs at all, all the approaches will perform very well. This is

shown in the standard deviations of the rewards, which typically fall

135

Modified Recon.
(4096s, 16a, 8o)

Gen. &
Exec. Time (s)

Total Reward

SARSOP
(no replanning)

400+ 0.41 1470.8± 1321.4

SARSOP
(no replanning)

200+ 0.97 1511.1± 1138.8

SARSOP
(no replanning)

100+ 0.78 1704.7± 1367.0

Random Replan 100+ 15.48 2831.3± 861.2
Heuristic Mgap 100+ 20.4 3185.8± 1120.0
Heuristic ML1 100+ 44.68 3152.4± 1122.9

Heuristic Mval 100+ 11.76 3491.7± 641.5

Heuristic M3 100+ 18.05 3694.7± 332.5

Heuristic M4 100+ 12.69 3362.8± 843.4
look-ahead

(blind strategy)
28.7+ 625.7 400.4± 79.5

look-ahead
(SARSOP offline)

100+ 272.0 3582.9± 431.1

Table 10: Results for the modified reconnaissance domain.

as reward increases, reflecting the fact that the replanning improves

only the low reward runs.

Comparing the heuristics, we note that while the Gap heuristic

works well for the two reconnaissance domains, it performs very

poorly in the Factory domain, where the two different entries in the

table correspond to two different thresholds for replanning. The poor

performance is because it is extremely sensitive to this threshold as

the noisy observations mean the belief states change only gradually

from a belief that everything is OK to one in which a fault has oc-

curred. This results in a heuristic that either does not replan at all, or

replans far too often.

Heuristic Mval is cheaper to compute than ML1 because we store

the best α-vector for each point, so all that needs to be done is cal-

culate the averages, which for domains of this size is cheaper than

computing the L1 norm. The best total rewards in factory domains

and modified reconnaissance domain were generated by the heuristic

136

0 S400 S200 S100 Random M_gap M_gap M_l1 M_val M3 M4 Online1 Online2
−200

0

200

400

600

800

1000

A
v
e

ra
g

e
 T

o
ta

l
R

e
w

a
rd

Figure 23: Plotted graph for factory domain with 95% confidence interval

0 S400 S200 S100 Random M_gap M_l1 M_val M3 M4 Online1 Online2
−1000

0

1000

2000

3000

4000

5000

6000

A
ve

ra
g

e
 T

o
ta

l R
e

w
a

rd

Figure 24: Plotted graph for reconnaissance domain with 95% confidence
interval

M3 and M4 which combines three parameters and there is a statisti-

cal significant difference between the performance of M3 and M4 and

that of Mval and ML1 for the Factory and Modified reconnaissance

domains. The significant differences of average total reward between

the algorithms are shown in Figure 23–25. As you can see from the

Figure 23–25, our competitors results have much higher standard de-

viations than many of our approaches variations, because the policies

of the competitors will perform poorly if unlikely action outcomes ac-

tually occur at run time, while our approaches account for both likely

and unlikely outcomes.

137

0 S400 S200 S100 Random M_gap M_l1 M_val M3 M4 Online1 Online2
−2000

−1000

0

1000

2000

3000

4000

5000

6000

A
ve

ra
g

e
 T

o
ta

l R
e

w
a

rd

Figure 25: Plotted graph for reconnaissance2 domain with 95% confidence
interval

When comparing the two reconnaissance domains, it can be seen

that modified version with more recovery actions takes more exe-

cution time for all heuristic functions. This is what we ed because

more repair actions means more replanning time to perform Bellman

backup operations. One thing worth noting here is that standard SAR-

SOP also performs worse in the modified reconnaissance domain. The

execution time of the first heuristic function which computes the L1

distance between the current belief point and the existing belief point

set grows with the number of states in the domain. As you can see

from Table 8 and 9, it only takes an average of 5.64 seconds to finish

1000 steps for the factory domain, which has only 54 states, while it

needs an average of 17.51 seconds for the modified reconnaissance

domain, which has 4096 states.

To show performance in domains that do not have the properties

we expect to benefit our approach, we also compared with SARSOP in

the Hallway2 problem (92 states) and the rock sample domain (4096

states). As shown in table 11, SARSOP does a good job of covering

the policy for Hallway2 so replanning is rarely needed. On this kind

of domain our approach only evaluates the heuristic at each step, so

the overhead compared with standard SARSOP is small. On the rock

138

Hallway2

Gen. &
Exec. Time (s)

Total Reward

SARSOP
(no replanning)

100+ 0.01 6.91± 1.95

Heuristic ML1 100+ 0.68 7.02± 1.87
RockSample(4,4)

SARSOP
(no replanning)

100+ 6.43 1338.4± 208.17

Heuristic ML1 100+ 22.77 1343.0± 159.02

Table 11: Results for the RockSample and Hallway domain.

sample domain we see a small amount of replanning and a slight

improvement in performance.

In conclusion, we have demonstrated that our heuristic measure-

ments will all improve the initial policies, which are generated by

standard SARSOP in three different domains by committing compu-

tation for replanning at run-time. The second heuristic function out

performed the first heuristic function in both total reward and total

time for all three domains, while heuristic functions that combine

the previous heuristics with additional attributes will generate better

policies than the other two but also need more computational time.

All the heuristic functions tend to require more execution time when

the number of states in the domains becomes larger.

5.4 conclusion

We have shown how additional execution monitoring can be applied

to approximate off-line POMDPs solutions at run-time to increase the

robustness of the policies. Particularly, we are interested in the prob-

lems that arise from point-based POMDPs solvers, which are trying

to focus on the most promising belief points and tend to ignore the

points with low probability. After detecting the situations where cur-

rent polices are not performing well for our current belief points, we

139

use standard backup operations to trigger the replanning procedure

on-line in order to produce a better policy for agents to execute at

run-time. Because such a replanning procedure is computationally

expensive using standard backup operations at execution time, we

would like to trigger this procedure as little as possible. We proposed

several different heuristic functions that are used to detect such situ-

ations.

By doing this incremental modification of the initial policy, we

showed in experiments that our approach can have a better overall

performance in several POMDP domains.

140

6
R E L AT E D W O R K

6.1 related work on qdet-pomdp monitoring

Many execution monitoring approaches as described in Chapter 3

try to focus on detecting the discrepancies between the actual world

state and the agent’s knowledge of the world and incorporate plan

modifications or replanning at run-time to recover from any of the

faulty states or unexpected states. Many of them do not address the

same problem of partial observability as we investigate here, so their

approaches are not comparable with ours. The work of Fritz[37] on

monitoring MDP policies as mentioned before is the most related to

our MDP execution monitoring approach, although he tried to ad-

dress the problem of preserving the optimality of a plan given a dy-

namic environment. The dynamic environment means the planning

model is not complete, so exogenous events could occur to affect the

state at any time step. Once an external event happens at run-time,

his monitoring approach will examine the relevant conditions associ-

ated with the optimal solution and sub-optimal solutions in order to

select the current best action. However, our work is using execution

monitoring to fix an approximate plan or policy that is generated be-

cause of computational reasons. The noisy stochastic sensing actions

in QDET-POMDPs play a large part in the difficulties but we are not

concerned withthe dynamic environment here.

The other work closely related to ours from the execution monitor-

ing literature was undertaken by Boutilier[14] (as mentioned in Sec-

141

tion 3.1.3.5), which similarly used classical planning plus execution

monitoring to solve problems that could be represented as POMDPs.

In that work, the plans are non-branching and the problem is to de-

cide when to observe the preconditions of actions and determine if

they are true, as opposed to using execution monitoring to determine

which branch to take. In common with our approach, they use value

of information to measure whether monitoring is worthwhile, but

then formulate the monitoring decision problem as a set of POMDPs,

rather than using value of information directly to select observational

actions.

Ong et al.[74] exploited the structure of mixed observability, which

means some states are fully observable, while the others are partially

observable. Quasi-Deterministic models also fall into this category.

However, they apply point-based value iteration to compute an opti-

mal policy which could still be problematic when partially observable

states are larger. Our approach can also be viewed as generating MDP

policies or contingent plans for partially observable states and using

value of information monitoring to modify plans.

An alternative to execution monitoring for solving Quasi-Deterministic

problems efficiently is described in Goebelbecker et al. [41]. There a

classical planner and a decision-theoretic (DT) planner are used to

solve these problems, switching between them as they generate a

plan. The approach is similar to ours in that they use FF to plan

in a determinisation of the original problem augmented with actions

to determine the values of state variables, which they call assumption

actions. However, they build linear plans with FF and switch to the

DT planner to improve the plan whenever an observation action is

executed. The DT planner looks for a plan either to reach the goal,

or to disprove one of the assumptions. If this occurs, replanning is

triggered. The advantage of their approach is that it can find more

142

general plans using the DT planner, so we might expect it to produce

slightly better quality plans overall. However, the DT planner is much

more computationally expensive than the simple value of information

calculation we use.

Classical planners have also been applied in fully observable MDP

domains. By far the most successful of these approaches has been

FF-replan [115], from which we have taken the determinisation ideas

discussed above. Because these approaches rely on being able to de-

termine the state after each action, they cannot easily be applied in

POMDPs. Our approach can be thought of as FF-replan (although

we actually build the entire contingency plan rather than a single

branch), where we use execution monitoring to determine with suffi-

cient probability the relevant parts of the state.

Translation-based approaches have recently been popular for solv-

ing non-deterministic problems. One example is conformant plan-

ning where an agent is trying to generate a plan that works for every

possible initial state when the initial situation of the world is not fully

known in advance. The actions in conformant planning can also have

non-deterministic effects [42]. Although there are many initial states

that the agent can start in, the solution of conformant planning always

leads the agent to the goal, regardless of the initial state. Palacios et

al. [75] proposed a translation-based approach to solve conformant

problems with a classical planner. They have shown that the transla-

tion is sound but not complete, which means all the plans found by

the classical planner are conformant plans but the classical planner

cannot find every possible conformant plan. They extended the work

to produce a more powerful translation scheme so that the approach

is both sound and complete and its complexity can be characterized

in terms of a parameter in the problem [76]. However, they do sim-

plify the problems by making the actions deterministic so the only

143

uncertainty comes from the initial state. Although the belief state is

represented in conformant planning, it only maintains a set of possi-

ble states of the world while in our work a probability distribution

over possible states is maintained at run-time.

Another example is contingency planning where both sensing ac-

tions and incomplete information about the initial states are available.

Work in Albore et al.[1] extended the previous conformant translation

approach by encoding sensing actions as non-deterministic actions.

However, sensing actions are assumed to have the ability to reveal

the truth value of the unknown state variables during execution. In

our case, sensing actions can have more complex observation mod-

els where observations are not always correct. Shani et al. [96] take

a different approach for solving contingency planning where replan-

ning will occur when the current observation is inconsistent with the

current belief state. The idea is similar to FF-replan [115]. A concrete

initial state is firstly sampled from the uncertain initial state, so a clas-

sical planner can be applied to generate an initial plan. When the plan

is executed, the belief state will also be updated accordingly. Once the

observation received is inconsistent with current belief state, they will

replan with an updated state. Shani et al. also assume deterministic

actions and perfect sensing actions. Generally speaking, models of

contingency planning and conformant planning are not as complex

as POMDPs which capture noisy observations, incomplete informa-

tion about initial states and stochastic actions at the same time.

All the above translation-based approaches tend to put additional

constraints on a set of planning problems so that they can be trans-

lated into the classical planning. We adapted similar ideas where

QDET-POMDPs can be thought of as making state-changing actions

deterministic while keeping other properties of the general POMDP

the same. One major difference between our approach and other

144

Algorithm 8 PBVI

Let B be b0
repeat

for all b ∈ B do
α← Backup(b,V)
add(V ,α)

end for
B = B∪ arg maxb ′∈Successor(B) dist(B,b ′)

until V has converged

translation-based approaches is that we work on the reward-based

problems the object of which is to find an optimal solution that can

maximise the reward collected. That is the reason we proposed exe-

cution monitoring to improve the approximate plan’s quality at run-

time.

6.2 related work on execution monitoring of point-based

policies

The first point-based algorithm PBVI (point-based value iteration)

[81] solves POMDPs for a finite set of belief points. The key idea is it

only maintains one α-vector per point, so the number of α-vectors is

not going to be greater than the number of belief points. Moreover, in

the backup stage, updates of α-vectors are only performed on this rep-

resentative set of belief points. By doing this, Pineau et al. [81] have

pointed out a full point-based update only takes polynomial time and

the size of the solution remains constant. As for finding the relevant

belief point set, PBVI starts from a single belief point and incremen-

tally expands its belief set greedily by choosing the reachable belief

point which is furthest away from the existing belief set. This is done

by stochastically simulating a forward trajectory from any currently

selected point b0 in B. L1 distance is used to measure the distance be-

tween the simulated points and the currently selected point. Pineau

145

Algorithm 9 Perseus

Let B← points generated from random walk
repeat
B ′ ← B

while B ′ 6= ∅ do
b = random(B)
α = Backup(b, V)
if α · b > V(b) then
B ′ ← b ′ where α · b ′ 6 V(b)
add(V , α)

end if
end while

until V has converged

et al.[81] have also pointed out that the number of selected points is at

most double the previous set size because each current point is going

to contribute one new point at every iteration. A skeleton of PBVI is

shown in Algorithm 8.

The Perseus algorithm [105] is built on the main idea of PBVI, but

differs from PBVI in both belief point generating strategy and backup

strategy. It firstly explores the world with a random walk in order

to generate initial belief points set B. This subset remains the same

throughout the following backup operations. The other difference is

how to choose backup operations. Instead of updating α-vectors for

all the representative points one by one. Spaan et al. [105] observed

that a single update of the current α-vector for the current belief point

is going to be beneficial to other belief points at the same time. At the

beginning of each Bellman update iteration, all the belief points are

in a belief set B. After randomly selecting a belief point in B and

updating its α-vector, all the belief points that are improved by this

α-vector will be removed from the set B and backup operations are

performed randomly over the points which are still left in B. By doing

this, they expected that the number of backup operations could be

reduced at each iteration compared to PBVI algorithm. A skeleton of

Perseus is shown in Algorithm 9.

146

Algorithm 10 HSVI

Initialize V and V̄
while V̄ - V > ε do

explore(b0, V̄ ,V)
end while

Algorithm 11 explore(b, V̄ ,V)

Initialize V and V̄
if V̄ - V < εγ−t then

return
end if
a∗ ← arg maxaQV̄(b,a ′)
o∗ ← arg maxo V̄(τ(b,a∗,o)) − (V)(τ(b,a∗,o))
explore(τ(b,a∗,o∗),V̄ ,V)
add{V ,Backup(b,V)}
add{V̄ , (b,HV̄(b))}

The previous two point-based algorithms are using α-vectors to

represent value functions which can be seen as lower bounds on the

optimal value function. The process of value iteration incrementally

increases this lower bound V to approximate the optimal value V∗.

Heuristic search value iteration algorithms (HSVI) [102, 103] choose

another way of representing value functions by using both lower

bounds V and upper bounds V̄ on the value functions. Lower bounds

are again represented as α-vectors as represented in PBVI and Perseus.

Upper bounds are represented as a point set where each point stores

a belief value and its upper bound value. The upper bound is up-

dated by adding a point into the set. In order to evaluate a belief

point’s upper bound V̄(b) from the upper bound set, HSVI1 [102]

needs to compute the exact projection of b onto the convex hull of

the points in the set which involves solving a linear program. HSVI2

[103] introduces an approximate projection onto the convex hull in

order to avoid expensive linear programming. The goal of HSVI is

trying to minimise the gap between the lower bounds and the upper

bounds of value functions for the root belief point in order to approx-

imate the optimal value functions. Because the upper bounds only

147

have information about the expected value of belief points, α-vectors

are used as the final output for the agent to execute. A skeleton of

HSVI is shown in Algorithm 10. Instead of updating upper bounds

and lower bounds for each belief point at each iteration, HSVI first

needs to perform a heuristic search (Algorithm 11), which explores

new belief points by using the same action and observation choosing

strategies as in SARSOP. When the search is completed by satisfy-

ing a termination condition, such as the difference between the lower

bound and the upper bound of the leaf node is less than a certain

threshold, backup operations are executed backward from the newly

generated belief points to the initial belief point. This process will

continue until the difference between the lower bound and the upper

bound of the initial node satisfy the threshold condition. The main

idea of HSVI is that those belief points are generated according to

the action and observation selecting strategy so they can contribute

more in improving the lower bounds and upper bounds for the root

belief point. Backup operations are executed for both lower bounds

and upper bounds when a new point is added into the representative

set.

In general, our approach of execution monitoring on point-based

policies can be viewed as interleaving between on-line algorithms and

off-line algorithms of POMDPs solvers. On-line POMDP solvers com-

pute the current best action from the current belief state at every step

(see [90] for a survey of on-line techniques). On-line solutions gen-

erally generate a rough policy off-line, for example using PBVI, as

in [88], and then use local search at run-time to improve this. Most

recent algorithms use the off-line policy to generate a heuristic that

is then used to guide heuristic search on-line. This approach has two

disadvantages. First, the same amount of computation is used at run-

time whether the belief state is close to those used to generate the

148

initial policy or is far away from them. Second, the heuristic remains

fixed, so the computation used in calculating the best action from

one belief state provides no benefit when calculating the best action

at future belief states. Hybrid POMDP [64] attempted to solve the

second problem at each step by deciding whether to spend a small

portion of the on-line computation on improving the initial policy so

later search can benefit. However, they base their decisions on very

approximate lower and upper bounds on the value function. The ap-

proach we describe below can be thought of as a way to overcome

both the above disadvantages. We spend more time on the initial pol-

icy than an on-line algorithm might, so our initial policy is hopefully

better, and we then use heuristics to decide when to simply rely on

the current policy and when to do extra computation to improve it,

but unlike the on-line approaches we re-use the extra computation in

future by incorporating its results into the off-line generated policy.

One final piece of related work, which proposes an online POMDP

learning algorithm which can be adapted for slow environment change

was carried out by Shani et al. [45]. Even though they did not charac-

terise their work as execution monitoring, the paper tried to address

the problem of a slowly changing dynamic environment occurring on

line, such as changes in reward functions or observation probability.

One similarity between their work and our work is incrementally im-

proving POMDP policies at run-time in order to increase plan quality.

They adapted an on-line version of HSVI algorithm to react to this

change in environment. More specifically, traditional HSVI is modi-

fied to become an on-line version of POMDP solver where both upper

bounds and lower bounds of value functions can be improved incre-

mentally at run-time. This is different from other on-line POMDP

solvers, which only use heuristic tree search to select the best action

for the current belief point. They realized that recomputing the pol-

149

icy whenever there is a change in the environment is costly, so they

checked whether the current best α-vector could actually achieve the

expected value during backup operations and remove the α-vectors

which are overoptimistic so that all remaining α-vectors are valid as

lower bounds of the value functions even after environment changes.

While this does modify the off-line policy in a way similar to ours, its

different motivation (a changing model, rather than poor approxima-

tion) leads to a rather different solution.

Authors in [61] claim that the benefits of keeping belief point set

B small usually out-weight the loss in the approximation quality due

to over-pruning. So they introduce a more robust pruning technique

called δ-dominance. Pruning α vectors for exact POMDP solvers re-

quires this α-vector to be dominated by another α-vector over en-

tire belief space, and pruning in point-based POMDP solvers only

requires the dominance over the sampled belief space B. They no-

ticed that computed approximately optimal policy might be poor at

certain regions, so that a more robust pruning requirement is needed.

This has the same motivation as our work in execution monitoring of

point-based policies but they try to address the problem at planning

stage. A α vector α1 dominates another α vector α2 at a belief point b

only if α1 × b
′
> α2 × b

′
at every point b

′
whose distance to b is less

than δ. This requirement of dominance forces the better α-vector not

only to dominate another one on the current sampled belief point but

also for its neighbourhood defined by constraint δ. One can imagine

if this constant δ is large enough, pruning in point-based algorithms

is the same as in general POMDP solvers, because it will cover entire

belief space when determining the dominance of the vectors.

While up until now, we have only been dealing with the problem

that point-based POMDP solvers have not been able to cover belief

region which is unlikely to occur. In future work, we would like to

150

find a more general execution monitoring approach that can address

the issue of dynamic environment where action effects can be differ-

ent from what we expect due to the parameters changing in POMDP

models or exogenous events.

151

7
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we have presented an idea of integrating both off-line

and on-line planning in order to tackle planning problems with par-

tial observability. In the early stage of planning development, due

to the lack of computational power, problems are often assumed to

be deterministic and can be observed completely. In order to solve

more realistic problems, these assumptions are often relaxed. The

problems we addressed in this thesis can naturally be modelled as

POMDPs which have the ability to capture uncertainty in both ac-

tion outcome and sensing ability. However, due to the complexity of

solving POMDPs using exact solutions, many approximate POMDP

solvers have been developed instead. The approximate solutions can

usually be divided into two categories. One is off-line POMDP solvers

where a near-optimal policy is generated at the off-line stage. The

policy is then executed without any change at each time step during

execution time. The other is on-line POMDP solvers where a heuristic

search needs to be called in order to find the best action for the cur-

rent belief state at each time step. On-line POMDPs usually require

an approximate policy generated off-line which is used to provide

a heuristic value at run-time. Compared to off-line solvers, on-line

solvers will spend many more computational resources at execution

time than at planning time. Our algorithms can be seen as a com-

bination of both off-line and off-line solvers. At the off-line stage,

we still use the traditional off-line POMDP solvers to generate the

near-optimal policies but try to improve the policies at run-time by

applying execution monitoring approaches. These approaches differ

153

from on-line POMDP solvers in the way of performing the plan re-

pair processes. Instead of performing plan repair at each time step as

on-line POMDP solvers do, our execution monitoring approach only

does it when it is decided the initial policy is not good enough at

the current time step. The main research question we answered in

this thesis is when and how to perform the plan modification pro-

cedure at run-time according to the planning structure and informa-

tion available. There has been a great deal of research that addressed

this problem by investigating a variety of execution monitoring ap-

proaches on different planning algorithms. Our algorithms can also

been seen as another execution monitoring approach that works on

POMDP algorithms but the objective of which is to improve approx-

imate policies not to cope with exogenous events or model changes.

In the evaluation section, we have compared our approach with stan-

dard off-line POMDP solvers and on-line POMDP solvers in several

simulated domains. It has been demonstrated that our additional ex-

ecution monitoring can out-perform other algorithms (on-line and

off-line) in terms of the plan generation time, plan quality and plan

execution time. In particular, two POMDP off-line solvers were con-

sidered here. One is applying translation-based approaches which

convert a constrained POMDP problem into a classical planning prob-

lem or an MDP and use a classical planner or an MDP solver to gen-

erate an initial policy. The other is using point-based POMDP solvers,

which are a group of approximate POMDP solvers to generate near-

optimal policies.

Translation-based POMDP solvers applied an idea of solving POMDPs

using classical planning, which has been very popular recently in the

planning community. Classic planners usually scale much better than

their non-classical counter-parts, although they can not capture all

the uncertainty in the environment. In particular, we considered a

154

sub class of POMDPs (QDET-POMDPs,) where only observation ac-

tions can have stochastic outcomes. Since there is no direct translation

between POMDP problems and classic planning problems, the plan

generated by the classical planner is not an optimal solution for the

original POMDP problems, which is why we deploy our execution

monitoring at run-time. At the off-line stage, a contingency plan or

an MDP policy is built which depends on the true state of the world,

and assumes that observation actions are reliable during execution

time. The translation is done by determinising the probability out-

comes of observation actions and initial state. At the on-line stage,

our execution monitoring approach is then used to select appropri-

ate observation actions by taking account of noise in the observation

actions, the current belief state and the information gain of execut-

ing the observation action. The major behaviour of our algorithm is

inserting additional observation actions at the branch points in or-

der to gain enough confidence about which state the agent is cur-

rently in so the associated plan branch can be followed. The timing

for triggering execution monitoring procedure is determined before

executing the policy, because it will only be triggered when the obser-

vation actions, which are the branch points in the decision tree, are

encountered. All other state-changing actions are assumed to have

deterministic outcome and do not need to be monitored if we as-

sume a static environment (no exogenous events) during execution

time. We have compared our approach with pure translation-based

POMDP solvers without any execution monitoring and a state-of-art

factored POMDP solver Symbolic Perseus. The comparison between

translation-based solver and Symbolic Perseus has shown that the for-

mer can scale better than a standard POMDP solver therefore much

less plan generation time is required for the translation-based solver.

The results of comparing translation-based solvers with and without

155

execution monitoring also demonstrated how additional action asser-

tions at run-time can improve the initial approximate policy in the

end.

The second part of this thesis focuses on the point-based POMDP

solvers which have shown great success in generating near-optimal

policy for large POMDP domains. The quality of policies produced

by point-based POMDP solvers largely depends on the set of belief

points that was sampled. When the number of possible execution

traces grows, collecting sufficient belief points to cover all possible

execution traces becomes infeasible. Therefore, it is possible that the

generated near-optimal policies are not suitable for the current belief

points at run-time. Our execution monitoring approach will compute

a policy for the more likely cases off-line and fix the policy on-line

when we encounter an unexpected outcome. Several heuristic func-

tions were proposed in this work in order to detect situations where

a better policy might be needed for the current belief point. Once

we decide it is time to perform plan repair procedures on the initial

policies, new belief points will be sampled and a new policy will be

computed based on the newly generated belief point set. Therefore

the heuristic functions play an important part in these algorithms to

trigger plan repair procedure. The main contribution of this work

came from the systematic evaluation of different heuristic functions

on several POMDP domains. We not only compared our approach

with a pure off-line POMDP solver (SARSOP) but also with an on-

line look-ahead algorithm. The results have shown that our approach

will sacrifice some computation time for replanning at run-time in

order to generate a better policy but does not need to re-plan for all

the steps as an on-line POMDP solver does. In terms of the POMDP

domains, we first investigated a family of domains where low proba-

bility transitions exist, such as a factory domain where a component

156

Table 12: Results for the RockSample Domain comparing both execution mon-
itoring approaches

Algorithm Gen.
Time
(s)

Exec.
Time
(s)

Total
Reward

Disc.
Reward

RS (4,4)

SARSOP 100 9.15 279 2.8

SARSOP ML1 100 12.14 251 3.3

POMDP 274 0.6 251 6.9

Macro Actions 13 3.5 161 2.3

EM 13 1.8 141 1.9

Without EM 13 1.1 41 -3.5

can become faulty with a very low probability. We also compared

all the algorithms on some POMDP benchmarks where point-based

algorithms can perform well, and the results have shown that our

execution monitoring will not perform worse than pure point-based

algorithms regarding the quality of the policy and only spend more

time on computing values of heuristic functions at run-time. In the ex-

periment, we have also made the trade-off between the execution time

and the quality of the plans by tuning the parameters that govern the

likelihood of re-planning and the time allowed for each re-planning.

We also compared the results between these two execution moni-

toring approaches on the RockSample domain. As can be seen from

Table 12, an MDP policy can be generated with much less compu-

tational effort compared with either SARSOP or Symbolic Perseus,

while execution monitoring on point-based policy can improve the

original policy generated by SARSOP. Both approaches share the same

core idea of exploiting the structure and information from the plan-

ning stage to guide the monitoring process. As described in Chapter

3, many execution monitoring approaches try to preserve the valid-

ity of the plan validity in the face of a dynamic environment or an

157

incomplete model, while our approach aims to improve the approxi-

mate solutions at run-time.

7.1 summary of contributions

The major contributions to this thesis are as follows

• Two translation-based approaches of solving Quasi-Deterministic

POMDP, which is a sub set of general POMDP. One is using

a classical planner FF to generate a contingency plan and the

other is using an MDP solver to generate an MDP policy. Both

contingency plans and policies are based on relaxed domains

where the world is assumed to be completely observable at exe-

cution time. The interesting part of translation-based approaches

is encoding the observation actions into the relaxed domains so

that observation actions can appear in the solutions.

• A novel execution monitoring approach which works on ap-

proximate solutions generated by translation-based solvers at

run-time. The monitoring approach can insert observation ac-

tions at the branch point in order to gain more information

about the current state of the world. A value of information

technique is utilised to determine the occurrence of observation

actions.

• A comparison of translation-based approaches with and with-

out execution monitoring on a range of simulated benchmarks.

It has been shown in Chapter 4 that our translation-based ap-

proaches with additional execution monitoring mechanism can

generate a better policy in the end compared to pure translation-

based approaches. A comparison of our translation-based ap-

proaches with an off-line POMDP solver (Symbolic Perseus),

158

which has shown that even though our translation-based ap-

proaches could not generate a better policy than the one from

Symbolic Perseus, it can scale much better than the general

POMDP solver for the large domains.

• A novel execution monitoring approach, which works on point-

based POMDP algorithms which are approximate off-line POMDP

solvers. This approach exploits the fact that point-based POMDP

algorithms only compute optimal policies for the belief points

with high probabilities but ignore unlikely belief points. The

key contribution here is evaluating several heuristic functions

which are proposed to detect the situation where current pol-

icy is not good enough for the current belief point at run-time.

Experiments have been undertaken to show that our approach

has both the advantage of off-line and on-line POMDP solvers.

Results from Chapter 5 have demonstrated that our execution

monitoring on point-based policies can generate a better policy

than the ones without any monitoring on the domains with low

probability transitions and will not generate a worse policy on

POMDP benchmarks where point-based algorithms are doing

well. We also compared the algorithms with an on-line look-

ahead POMDP solver where each action is computed by look-

ing ahead into a few future step at run-time. It clearly showed

that it is not necessary to perform action search for each time

step when initial policy has already covered the region with

high probability.

7.2 future work

There are a couple of things that we are considering doing in the

future:

159

• Proposing a universal execution monitoring framework which

can be embedded into an intelligent agent’s planning system.

This is quite difficult to achieve because different plan structures

usually require different monitor mechanism. What is more, the

varieties of assumptions about the problems also make it harder

to develop an general execution monitoring approach.

• Addressing the problem of incomplete model or dynamic en-

vironment where the world can be changed unexpectedly. For

instance, the current state of the world might change without

executing any actions in the domain. Sucha dynamic environ-

ment might need the agent to have the ability to observe the

world completely. If not, things might change without even be-

ing noticed so that it will be more problematic to react to such

unexpected situations. We can extend our point-based execu-

tion monitoring to handle the dynamic environment under the

assumption of knowing things have changed unexpectedly. For

example, in a robot hijack problem, where a robot might be

moved to a totally different position by a person at any time, the

first thing we need to do is correct our belief state by doing some

exploration in the environment. Once we gain enough informa-

tion about this new belief state, we can apply our execution

monitoring approach to decide whether or not to execute the ini-

tial policy. If the original policy is assumed to be not suitable for

current new belief point, we can apply plan-repair to improve

the initial policy. The difficulty of this problem will be what

types of exploration actions are available for unexpected events.

Moving around in the nearby environment might give you cor-

rect information about current state and possibly recover from

the hijack event, but that does not provide useful information

for other types of unexpected events. Knowledge about how to

160

perform plan-repair actions according to different exogenous

events might be provided by system expert in advance. Again,

the trade-off between exploration about current state and find-

ing appropriate action to execute needs to be made whenever

the unexpected events occur. This is slightly different from the

trade-off between exploration and exploitation in reinforcement

learning of MDP domains where transition model is assumed to

be inaccurate but the world is fully observed. Exogenous events

in POMDP domain are more difficult to handle because we only

maintain this belief state of the world rather than the exact state.

Since the belief state summarises the history of the agent includ-

ing previous executed actions and received observations, exoge-

nous events will break the link between previous belief state

and new belief state.

• Some execution monitoring approaches focus on the estimation

of the current state of the system. They usually examine directly

the low-lever components of the agent, such as a sensor, an

actuator or other hardware in the system. Our approach can

be seen as an execution monitoring approach that is only con-

cerned with the high-level of plan execution. We consider how

to change the plan at run-time to gain more reward in the end

but ignore the monitoring of executing individual actions which

is highly related to the system’s hardware component. These

two execution monitoring approaches affect each other in the

system. For instance, once we know a sequence of actions to

be executed from the high-level planner, we only need to exam-

ine the components that are associated with these actions and

ignore the components that will not affect current and future ex-

ecution of the plans at the low-level monitoring procedure. On

the other hand, if we determine some physical components are

161

not working properly at the low-level monitoring process, the

actions that need to use these components should be considered

as unavailable in the planning or execution phases. In the future,

we would like to tackle the relationship between low-level and

high-level execution monitoring in an intelligent robot so as to

develop a more complete execution monitoring system.

• All the experiments were done in the simulated planning do-

mains, it would be more advantageous to see how the algo-

rithms work on the real robot where off-line computation time

and on-line computation time might both be crucial to the per-

formance of the robot. We hope to extend our models to in-

clude the action duration at run-time. In this thesis, actions are

assumed to be atomic so the execution time for each action to

execute is ignored. In reality, we can take into account action

duration so that the on-line computation can be done in paral-

lel with the executing of the actions. This requires a scheduling

algorithm to order the execution of the actions and on-line com-

putation.

162

B I B L I O G R A P H Y

[1] Alexandre Albore, Héctor Palacios, and Héctor Geffner. A

Translation-based Approach to Contingent Planning. In Pro-

ceedings of the 21st International Joint Conference on Artificial Intel-

ligence (IJCAI). Morgan Kaufmann Publishers Inc., 2009.

[2] Eyal Amir. Planning with Nondeterministic Actions and Sens-

ing. In Proceedings of National Conference on Artificial Intelli-

gence(AAAI) Workshop on Cognitive Robotics, 2002.

[3] Brain D.O. Anderson and John B. Moore. Optimal Filtering. En-

glewood Cliffs, New Jersey: Prentice-Hall, 1979.

[4] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii,

A. Pardo, and F. Somenzi. Algebraic Decision Diagrams and

their Applications. In Proceedings of the International Conference

on Computer-Aided Design (ICCAD), 1993.

[5] Richard E. Bellman. Dynamic Programming. Princeton Univer-

sity Press, 1957.

[6] Camille Besse and Brahim Chaib-Draa. Quasi-Deterministic

Partially Observable Markov Decision Processes. In Proceedings

of the 16th International Conference on Neural Information Process-

ing, pages 237–246, 2009.

[7] Avrim L. Blum and Merrick L. Furst. Fast Planning Through

Planning Graph Analysis . In Proceedings of the Fourteenth Inter-

national Joint Conference on Artificial Intelligence (IJCAI-95), 1995.

163

[8] R. Peter Bonasso and David Kortenkamp. Using a Robot Con-

trol Architecture to Automate Space Shuttle Operations. In

Proceedings of National Conference on Artificial Intelligence (AAAI),

pages 949–956, 1997.

[9] Blai Bonet. Deterministic POMDPs revisited. In Proceedings of

the 25th Conference on Uncertainty in Artificial Intelligence (UAI),

pages 59–66, 2009.

[10] Blai Bonet and Hector Geffner. Planning with Incomplete In-

formation as Heuristic Search in Belief Space. In International

Conference on AI Planning and Scheduling (AIPS), pages 52–61.

AAAI Press, 2000.

[11] A. Botea, M. Müller, and J. Schaeffer. Using Component Ab-

straction for Automatic Generation of Macro-Actions. In Pro-

ceedings of the Fourteenth International Conference on Automated

Planning and Scheduling ICAPS-04, pages 181–190, Whistler,

Canada, June 2004. AAAI Press.

[12] Abdelbaki Bouguerra, Lars Karlsson, and Alessandro Saffiotti.

Semantic Knowledge-Based Execution Monitoring for Mobile

Robots. In Proceedings of IEEE International Conference on Robotics

and Automation, 2007.

[13] Abdelbaki Bouguerra, Lars Karlsson, and Alessandro Saffiotti.

Handling Uncertainty in Semantic-Knowledge Based Execution

Monitoring. In Proceedings of IEEE International Conference on

Intelligent Robots and Systems, 2007.

[14] Craig Boutilier. Approximately Optimal Monitoring of Plan

Preconditions. In Proceedings of the 16th Conference in Uncertainty

in Artificial Intelligence (UAI). Morgan Kaufmann, 2000.

164

[15] Craig Boutilier and David Poole. Computing Optimal Policies

for Partially Observable Decision Processes using Compact Rep-

resentations. In Proceedings of the Thirteenth National Conference

on Artificial Intelligence (AAAI), pages 1168–1175, 1996.

[16] Craig Boutilier, Richard Dearden, and Moises Goldszmidt.

Stochastic Dynamic Programming with Factored Representa-

tions. Artificial Intelligence, 1999.

[17] John Bresina, Richard Dearden, Nicolas Meuleau, David Smith,

and Rich Washington. Planning under Continuous Time and

Resource Uncertainty: A Challenge for AI. In Proceedings of

the Eighteenth Conference on Uncertainty in Artificial Intelligence

(UAI), pages 77–84. Morgan Kaufmann, 2002.

[18] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L.

Littman. Acting Optimally in Partially Observable Stochastic

Domains. In Proceedings of the Twelfth National Conference on Ar-

tificial Intelligence (AAAI), pages 1023–1028, 1994.

[19] Leo H. Chiang, Evan L. Russell, and Richard D Braatz. Fault De-

tection and Diagnosis in Industrial Systems. Advanced Textbooks

in Control and Signal Processing. Springer, 2001.

[20] A. I. Coles and A. J. Smith. Marvin: A heuristic search planner

with online macro-action learning. Journal of Artificial Intelli-

gence Research, 28:119–156, February 2007. ISSN 11076-9757.

[21] A. I. Coles, M. Fox, and A. J. Smith. Online identification of

useful macro-actions for planning. In Proceedings of the Seven-

teenth International Conference on Automated Planning and Schedul-

ing (ICAPS 07), 2007.

[22] Giuseppe De Giacomo, Yves Lespérance, Hector J. Levesque,

and Sebastian Sardina. IndiGolog: A High-Level Programming

165

Language for Embedded Reasoning Agents. In Multi-Agent Pro-

gramming: Languages, Platforms and Applications. Springer, New

York, USA, 2009.

[23] Johan de Kleer and James Kurien. Fundamentals of Model-

based Diagnosis. In Proceedings of the Fifteenth International

Symposium on the Mathematical Theory of Networks and Systems

(MTNS 02), University of Notre Dame, 2003.

[24] Johan de Kleer and Brian C. Williams. Diagnosing Multiple

Faults. Artificial Intelligence, 32(1):97 – 130, 1987.

[25] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann

Nicholson. Planning With Deadlines in Stochastic Domains. In

Proceedings of the Eleventh National Conference on Artificial Intelli-

gence, pages 574–579, 1993.

[26] Richard Dearden and Craig Boutilier. Integrating Planning and

Execution in Stochastic Domains. In Proceedings of the Tenth Con-

ference on Uncertainty in Artificial Intelligence (UAI), 1994.

[27] Marie desJardins, Edmund H. Durfee, Charles L. Ortiz Jr., and

Michael Wolverton. A Survey of Research in Distributed, Con-

tinual Planning. AI Magazine, 20(4):13–22, 1999.

[28] Arnaud Doucet and Adam M. Johansen. A Tutorial on Parti-

cle Filtering and Smoothing: Fifteen years later. In Handbook of

Nonlinear Filtering. Oxford University Press, 2009.

[29] Arnaud. Doucet, Nando de Freitas, Neil. Gordon, and A. Smith.

Sequential Monte Carlo Methods in Practice. Springer, 2001.

[30] Richard J. Doyle, David Atkinson, and Rajkumar Doshi. Gen-

erating Perception Requests and Expectations to Verify the Exe-

cution of Plans. In Proceedings of National Conference on Artificial

Intelligence (AAAI), 1986.

166

[31] Denise Draper, Steve Hanks, and Daniel Weld. A Probabilistic

Model of Action for Least-Commitment Planning with Infor-

mation Gathering. In Proceedings of the Tenth Conference on Un-

certainty in Artificial Intelligence (UAI), pages 178–186. Morgan

Kaufmann, 1994.

[32] Matthias Fichtner, Axel Großmann, and Michael Thielscher. In-

telligent Execution Monitoring in Dynamic Environments. Fun-

damenta Informaticae, 57:371–392, Oct 2003.

[33] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to

the application of theorem proving to problem solving. Artificial

Intelligence, 2(3-4):189–208, 1971.

[34] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning

and Executing Generalized Robot Plans. Artificial Intelligence, 3:

251–288, 1972.

[35] Robert James Firby. Adaptive Execution in Complex Dynamic

Worlds. PhD thesis, Yale University, 1989.

[36] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL

for expressing temporal planning domains. Journal of Artificial

Intelligence Research, 2003.

[37] Christian Fritz. Monitoring the Generation and Execution of Op-

timal Plans. PhD thesis, University of Toronto, Canada, April

2009.

[38] Christian Fritz and Sheila A. McIlraith. Monitoring Plan Opti-

mality During Execution. In Proceedings of the 17th International

Conference on Automated Planning and Scheduling (ICAPS), 2007.

[39] Christian Fritz and Sheila A. McIlraith. Monitoring Policy Ex-

ecution. In Proceedings of the 3rd Workshop on Planning and Plan

167

Execution for Real-World Systems (ICAPS07), Providence, Rhode

Island, USA, September 22 2007.

[40] Erann Gat. On Three-Layer Architectures. In Artificial Intelli-

gence and Mobile Robots, pages 195–210. AAAI Press, 1997.

[41] Moritz Goebelbecker, Charles Gretton, and Richard Dearden.

A Switching Planner for Combined Task and Observation Plan-

ning. In Proceedings of the 25th Conference on Artificial Intelligence

(AAAI), 2011.

[42] Robert P. Goldman and Mark S. Boddy. Expressive Planning

and Explicit Knowledge. In Proceedings of Artificial Intelligence

Planning Systems, 1996.

[43] Nicola Muscettola Gregory, Gregory A. Dorais, Chuck Fry,

Richard Levinson, and Christian Plaunt. IDEA: Planning at

the Core of Autonomous Reactive Agents. In Proceedings of the

3rd International NASA Workshop on Planning and Scheduling for

Space, 2002.

[44] Stephan Gspandl, Ingo Pill, Michael Reip, Gerald Steinbauer,

and Alexander Ferrein. Belief Management for High-Level

Robot Programs. In Proceedings of the Twenty-Second International

Joint Conference on Artificial Intelligence (IJCAI). AAAI Press,

2011.

[45] Ronen I. Brafman Guy Shani and Solomon E. Shimony. Adap-

tation for Changing Stochastic Environments through Online

Pomdp Policy Learning. In Workshop on Reinforcement Learning

in Non-Stationary Environments, ECML, 2005.

[46] Eric A. Hansen and Zhengzhu Feng. Dynamic Programming

for POMDPs using a Factored State Representation. In Proceed-

168

ings of the Fifth International Conference on AI Planning Systems

(AIPS), pages 130–139, 2000.

[47] Milos Hauskrecht. Value-Function Approximations for Par-

tially Observable Markov Decision Processes. Journal of Artificial

Intelligence Research, 13:33–94, 2000.

[48] Jesse Hoey, Robert St-Aaubin, Alan Hu, and Craig Boutilier.

SPUDD: Stochastic Planning using Decision Diagrams. In Pro-

ceedings of the Fifteenth Conference on Uncertainty in Artificial In-

telligence (UAI), pages 279–288. Morgan Kaufmann, 1999.

[49] Jörg Hoffmann and Ronen Brafman. Contingent Planning via

Heuristic Forward Search with Implicit Belief States. In Proceed-

ings of the 15th International Conference on Automated Planning and

Scheduling (ICAPS-05). Morgan-Kaufmann, 2005.

[50] Jörg Hoffmann and Ronen I. Brafman. Conformant Planning

via Heuristic Forward Search: A new approach. Artificial Intelli-

gence, 170(6šC7):507 – 541, 2006.

[51] Jörg Hoffmann and Bernhard Nebel. The FF planning system:

Fast plan generation through heuristic search. Journal of Artifi-

cial Intelligence Research, 14:263–302, 2001.

[52] R.A. Howard. Information Value Theory. IEEE Transactions on

Systems Science and Cybernetics, pages 22 –26, 1966. ISSN 0536-

1567.

[53] Ronald A. Howard. Dynamic Programming And Markov Processes.

The MIT Press, Cambridge, Massachusetts, 1960.

[54] Simon Julier and Jeffrey K.Uhlmann. A New Extension of the

Kalman Filter to Nonlinear Systems. In Proceedings of AeroSense:

The 11th International Symposium on Aerospace/Defense Sensing,

Simulation and Controls, 1996.

169

[55] Simon Julier and Jeffrey K. Uhlmann. A General Method for

Approximating Nonlinear Transformations of Probability Dis-

tributions. Technical report, Robotics Research Group, Depart-

ment of Engineering Science, University of Oxford, 1996.

[56] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cas-

sandra. Planning and Acting in Partially Observable Stochastic

Domains. ARTIFICIAL INTELLIGENCE, 101:99–134, 1998.

[57] L.P. Kaelbling. Learning in embedded systems. A Bradford book.

1993 publisher=Mit Press. ISBN 9780262111744.

[58] David N. Kinny. Commitment and Effectiveness of Situated

Agents. In Proceedings of the Twelfth International Joint Conference

on Artificial Intelligence (IJCAI), pages 82–88, 1991.

[59] Sven Koenig, David Furcy, and Colin Bauer. Heuristic search-

based replanning. In Proceedings of the International Conference

on Artificial Intelligence Planning and Scheduling, pages 294–301,

2002.

[60] Roman Van Der Krogt and Mathijs De Weerdt. Plan repair as an

extension of planning. In Proceedings of the 15th International Con-

ference on Automated Planning and Scheduling (ICAPS-05, pages

161–170, 2005.

[61] H. Kurniawati, D. Hsu, and W. S. Lee. SARSOP: Efficient Point-

Based POMDP Planning by Approximating Optimally Reach-

able Belief Spaces. In Proceedings of Robotics: Science and Systems,

2008.

[62] Nicholas Kushmerick, Steve Hanks, and Daniel Weld. An Al-

gorithm for Probabilistic Least-commitment Planning. In Pro-

ceedings of the Twelfth National Conference on Artificial intelligence

170

(AAAI), Menlo Park, CA, USA, 1994. American Association for

Artificial Intelligence. ISBN 0-262-61102-3.

[63] Michael Lederman Littman. Algorithms for Sequential Decision

Making. PhD thesis, Department of Computer Science, Brown

University, 1996.

[64] Diego Maniloff and Piotr Gmytrasiewicz. Hybrid Value Itera-

tion for POMDPs. In Proceedings of Twenty-Fourth International

FLAIRS Conference, 2011.

[65] Matthew T. Mason. Automatic Planning of Fine Motions: Cor-

rectness and Completeness. In Robotics and Automation. Proceed-

ings. 1984 IEEE International Conference on, volume 1, pages 492–

503, 1984.

[66] David McAllester and David Rosenblitt. Systematic Nonlinear

Planning. In Proceedings of the Ninth National Conference on Arti-

ficial Intelligence (AAAI). AAAI Press/MIT Press, 1991.

[67] Colleen E. McCarthy and Martha E. Pollack. Towards Focused

Plan Monitoring: A Technique and an Application to Mobile

Robots. Autonomous Robots, pages 71–81, 2000.

[68] John McCarthy and Patrick J. Hayes. Some Philosophical Prob-

lems from the Standpoint of Artificial Intelligence. In B. Meltzer

and D. Michie, editors, Machine Intelligence 4, pages 463–502. Ed-

inburgh University Press, 1969. reprinted in McC90.

[69] Drew McDermott. PDDL the planning domain definition lan-

guage. Technical report, the AIPS-98 Planning Competition

Committee, 1998.

[70] Drew McDermott. The 1998 AI Planning Systems Competition.

AI Magazine, 21:35–55, 2000.

171

[71] Sheila A. Mcilraith. Explanatory Diagnosis: Conjecturing Ac-

tions to Explain Observations. In Proceedings of the Sixth Inter-

national Conference on Principles of Knowledge Representation and

Reasoning (KR), pages 167–177, 1998.

[72] Kevin P. Murphy. Dynamic Bayesian Networks: Representation, In-

ference and Learning. PhD thesis, University of California, Berke-

ley, 2002.

[73] Bernhard Nebel and Jana Koehler. Plan reuse versus plan gener-

ation: a theoretical and empirical analysis. Artificial Intelligence,

76(1šC2):427 – 454, 1995. ISSN 0004-3702.

[74] Sylvie C. W. Ong, Shao W. Png, David Hsu, and Wee S. Lee.

POMDPs for Robotic Tasks with Mixed Observability. In

Robotics: Science and Systems, volume 5, 2009.

[75] H. Palacios and H. Geffner. Compiling Uncertainty Away: Solv-

ing Conformant Planning Problems Using a Classical Planner

(sometimes). In Proceedings of 21st National Conference on Artifi-

cial Intelligence (AAAI), 2006.

[76] H. Palacios and H. Geffner. From Conformant into Classical

Planning: Efficient Translations that may be Complete Too. In

Proceedings 17th International Conference on Planning and Schedul-

ing (ICAPS-07), 2007.

[77] Christos Papadimitriou and John N. Tsitsiklis. The complex-

ity of Markov decision processes. Mathematics of Operations Re-

search, 12(3):441–450, August 1987. ISSN 0364-765X.

[78] Scott J. Penberthy and Daniel S. Weld. UCPOP: A sound, com-

plete, partial order planner for ADL. In Proceedings of the Third

International Conference on Principles of Knowledge Representation

and Reasoning, pages 103–114. Morgan Kaufmann, 1992.

172

[79] Mark A. Peot and David E. Smith. Conditional Nonlinear Plan-

ning. In Proceedings of the First International Conference on Artifi-

cial Intelligence Planning Systems, pages 189–197, San Francisco,

CA, USA, 1992. Morgan Kaufmann Publishers Inc. ISBN 1-

55860-250-X.

[80] Ronald P. A. Petrick and Fahiem Bacchus. A knowledge-based

approach to planning with incomplete information and sensing.

In Proceedings of the Sixth International Conference on Artificial In-

telligence Planning and Scheduling (AIPS-2002), Menlo Park, CA,

2002. AAAI Press.

[81] Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Point-

based value iteration: An anytime algorithm for POMDPs. In In-

ternational Joint Conference on Artificial Intelligence (IJCAI), pages

1025 – 1032, August 2003.

[82] Martha E. Pollack and Marc Ringuette. Introducing the Tile-

world: Experimentally Evaluating Agent Architectures. In Pro-

ceedings of the Eighth National Conference on Artificial Intelligence

(AAAI), volume 1, pages 183–189. AAAI Press, 1990. ISBN 0-

262-51057-X.

[83] Pascal Poupart. Exploiting Structure to Efficiently Solve Large Scale

Partially Observable Markov Decision Processes. PhD thesis, De-

partment of Computer Science, University of Toronto, 2005.

[84] L Pryer and G Collins. Planning for contingencies: A decision-

based approach. Journal of Artificial Intelligence Research, 4:287–

339, 1996.

[85] R. Reiter. Readings in Nonmonotonic Reasoning. chapter On

Closed World Databases, pages 300–310. Morgan Kaufmann

173

Publishers Inc., San Francisco, CA, USA, 1987. ISBN 0-934613-

45-1.

[86] R Reiter. A Theory of Diagnosis from First Principles. Artificial

Intelligence, 32(1):57–95, April 1987. ISSN 0004-3702.

[87] Ray Reiter. Knowledge in Action. Logical Foundations for Specifying

and Implementing Dynamical Systems. The MIT Press, 2001.

[88] Stéphane Ross and Brahim Chaib-draa. AEMS: An Anytime

Online Search Algorithm for Approximate Policy Refinement

in Large POMDPs. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence, IJCAI, pages 2592–2598, 2007.

[89] Stephane Ross, Joelle Pineau, and Brahim Chaib-draa. Theoret-

ical Analysis of Heuristic Search Methods for Online POMDPs.

In J.c. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances

in Neural Information Processing Systems, pages 1233–1240, Cam-

bridge, MA, 2007. MIT Press.

[90] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim

Chaib-draa. Online Planning Algorithms for POMDPs. Jour-

nal of Artificial Intelligence Research, 2008.

[91] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Mod-

ern Approach. Pearson Education, 2003. ISBN 0137903952.

[92] Stuart J. Russell and Eric H. Wefald. Do the Right Thing : Studies

in Limited Rationality. MIT Press, Cambridge, USA, 1991. ISBN

0262181444.

[93] Zeyn A Saigol. Automated Planning for Hydrothermal Vent

Prospecting Using AUVs. PhD thesis, School of Computer Sci-

ence, University of Birmingham, 2011.

174

[94] Scott Sanner and Sungwook Youn. The Seventh international

planning competition, Uncertainty track, 2011. 21st Interna-

tional Conference on Automated Planning and Scheduling,

Freiburg, Germany.

[95] M. J. Schoppers. Universal Plans for Reactive Robots in Un-

predictable Environments. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI), pages 1039–1046,

1987.

[96] Guy Shani and Ronen I. Brafman. Replanning in Domains

with Partial Information and Sensing actions. In Proceedings

of the Twenty-Second International Joint Conference on Artificial In-

telligence (IJCAI), 2011.

[97] Gerald Steinbauer Siegfried Podesser and Franz Wotawa. Se-

lective Belief Management for High-Level Robot Programs. In

Proceedings of the 14th International Workshop on Principles of Di-

agnosis, UK, 2012.

[98] Gerald Steinbauer Siegfried Podesser and Franz Wotawa. Im-

proving Belief Management for High-Level Robot Programs by

Using Diagnosis Templates. In Proceedings of the 14th Interna-

tional Workshop on Principles of Diagnosis, UK, 2012.

[99] Reid Simmons and Sven Koenig. Probabilistic Robot Naviga-

tion in Partially Observable Environments. In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI),

1995.

[100] Richard D. Smallwood and Edward J. Sondik. The Optimal

Control of Partially Observable Markov Processes Over a Fi-

nite Horizon. Operations Research, 21(5):1071–1088, 1973. ISSN

0030364X.

175

[101] David E. Smith and Daniel S. Weld. Conformant Graphplan. In

Proceedings of the Fifteenth National Conference on Artificial Intel-

ligence, pages 889–896, Menlo Park, CA, USA, 1998. American

Association for Artificial Intelligence.

[102] Trey Smith and Reid Simmons. Heuristic Search Value Iteration

for POMDPs. In Proceedings of the 20th Conference on Uncertainty

in Artificial Intelligence, UAI, pages 520–527, Arlington, Virginia,

United States, 2004. AUAI Press. ISBN 0-9749039-0-6.

[103] Trey Smith and Reid G. Simmons. Point-based POMDP Algo-

rithms: Improved analysis and implementation. In Proceedings

of International Conference on Uncertainty in Artificial Intelligence

(UAI), 2005.

[104] Edward Jay Sondik. The Optimal Control of Partially Observable

Markov Processes. PhD thesis, Stanford University, 1971.

[105] M.T.J. Spaan and N. Spaan. A point-based POMDP algorithm

for robot planning. In Robotics and Automation, 2004. Proceedings.

ICRA ’04. 2004 IEEE International Conference on, volume 3, pages

2399 – 2404 Vol.3, April-1 May 2004.

[106] Mohan Sridharan, Jeremy Wyatt, and Richard Dearden. HiPPo:

Hierarchical POMDPs for Planning Information Processing and

Sensing Actions on a Robot. In Proceedings of the 18th Interna-

tional Conference on Automated Planning and Scheduling (ICAPS),

2008.

[107] Gerald Steinbauer and Franz Wotawa. Enhancing Plan Execu-

tion in Dynamic Domains Using Model-Based Reasoning. In

Intelligent Robotics and Applications, First International Conference

(ICIRA), 2008.

176

[108] Manuela M. Veloso, Martha E. Pollack, and Michael T. Cox.

Rationale-based monitoring for planning in dynamic environ-

ments. pages 171–179. AAAI Press, 1998.

[109] David H. D. Warren. Generating Conditional Plans and Pro-

grams. In Proceedings of the Summer Conference on Artificial Intel-

ligence and Simulation of Behaviour (AISB), 1976.

[110] Greg Welch and Gary Bishop. An introduction to the Kalman

filter. Technical Report TR 95-041, Department of Computer

Science, University of North Carolina, 2006.

[111] David E. Wilkins. Recovering From Execution Errors in SIPE.

Computational Intelligence, pages 33–45, 1985.

[112] D.E. Wilkins. Practical Planning: Extending the Classical AI Plan-

ning Paradigm. Morgan Kaufmann series in representation

and reasoning. Morgan Kaufmann Publishers, 1988. ISBN

9780934613941.

[113] Brian C. Williams and Robert J. Ragno. Conflict-directed A*

and its Role in Model-based Embedded Systems. Discrete Appl.

Math., 155(12):1562–1595, June 2007.

[114] Jeremy L. Wyatt, Alper Aydemir, Michael Brenner, Marc Han-

heide, Nick Hawes, Patric Jensfelt, Matej Kristan, Geert-Jan M.

Kruijff, Pierre Lison, Andrzej Pronobis, Kristoffer Sjöö, Danijel

Skočaj, Alen Vrečko, Hendrik Zender, and Michael Zillich. Self-

understanding and self-extension: A systems and representa-

tional approach. IEEE Transactions on Autonomous Mental Devel-

opment, 2(4):282 – 303, December 2010.

[115] Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan:

A Baseline for Probabilistic Planning. In Proceedings of the Four-

177

teenth International Conference on Automated Planning and Schedul-

ing, 2007.

[116] Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan: A

Baseline for Probabilistic Planning. In International Conference on

Automated Planning and Scheduling/Artificial Intelligence Planning

Systems, 2007.

[117] H. L. S. Younes and M. Littman. PPDDL1.0: The language for

the probabilistic part of IPC-4. In Proceedings of the International

Planning Competition, 2004.

178

