14 research outputs found

    Computing omega-limit Sets in Linear Dynamical Systems

    Get PDF
    International audienceDynamical systems allow to modelize various phenomena or processes by only describing their local behaviour. It is an important matter to study the global and the limit behaviour of such systems. A possible description of this limit behaviour is via the omega-limit set: the set of points that can be limit of subtrajectories. The omega-limit set is in general uncomputable. It can be a set highly difficult to apprehend. Some systems have for example a fractal omega-limit set. However, in some specific cases, this set can be computed. This problem is important to verify properties of dynamical systems, in particular to predict its collapse or its infinite expansion. We prove in this paper that for linear continuous time dynamical systems, it is in fact computable. More, we also prove that the ω-limit set is a semi-algebraic set. The algorithm to compute this set can easily be derived from this proof

    Improving polygonal hybrid systems reachability analysis through the use of the phase portrait

    Get PDF
    Polygonal hybrid systems (SPDI) are a subclass of planar hybrid automata which can be represented by piecewise constant dierential inclusions. The computation of certain objects of the phase portrait of an SPDI, namely the viability, controllability, invariance kernels and semi-separatrix curves have been shown to be eciently decidable. On the other hand, although the reachability problem for SPDIs is known to be decidable, its complexity makes it unfeasible on large systems. We summarise our recent results on the use of the SPDI phase portraits for improving reachability analysis by (i) state-space reduction and (ii) decomposition techniques of the state space, enabling compositional parallelisation of the analysis. Both techniques contribute to increasing the feasability of reachability analysis on large SPDI systems.peer-reviewe

    Relaxing goodness is still good

    Get PDF
    Polygonal hybrid systems (SPDIs) are planar hybrid systems, whose dynamics are defined in terms of constant differential inclusions, one for each of a number of polygonal regions partitioning the plane. The reachability problem for SPDIs is known to be decidable, but depends on the goodnessassumption -- which states that the dynamics do not allow a trajectory to both enter and leave a region through the same edge. In this paper we extend the decidability result to generalised SPDIs(GSPDI), SPDIs not satisfying the goodness assumption, and give an algorithmic solution to decide reachability of such systems.peer-reviewe

    On undecidability bounds for matrix decision problems

    Get PDF
    In this paper we consider several reachability problems such as vector reachability, membership in matrix semigroups and reachability problems in piecewise linear maps. Since all of these questions are undecidable in general, we work on lowering the bounds for undecidability. In particular, we show an elementary proof of undecidability of the reachability problem for a set of 5 two-dimensional affine transformations. Then, using a modified version of a standard technique, we also prove that the vector reachability problem is undecidable for two (rational) matrices in dimension 11. The above result can be used to show that the system of piecewise linear functions of dimension 12 with only two intervals has an undecidable set-to-point reachability problem. We also show that the “zero in the upper right corner” problem is undecidable for two integral matrices of dimension 18 lowering the bound from 23

    The target discounted-sum problem

    Get PDF
    The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata

    IST Austria Technical Report

    Get PDF
    The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    On the decidability and complexity of problems for restricted hierarchical hybrid systems

    Get PDF
    We study variants of a recently introduced hybrid system model, called a Hierarchical Piecewise Constant Derivative (HPCD). These variants (loosely called Restricted HPCDs) form a class of natural models with similarities to many other well known hybrid system models in the literature such as Stopwatch Automata, Rectangular Automata and PCDs. We study the complexity of reachability and mortality problems for variants of RHPCDs and show a variety of results, depending upon the allowed powers. These models form a useful tool for the study of the complexity of such problems for hybrid systems, due to their connections with existing models. We show that the reachability problem and the mortality problem are co-NP-hard for bounded 3-dimensional RHPCDs (3-RHPCDs). Reachability is shown to be in PSPACE, even for n-dimensional RHPCDs. We show that for an unbounded 3-RHPCD, the reachability and mortality problems become undecidable. For a nondeterministic variant of 2-RHPCDs, the reachability problem is shown to be PSPACE-complete

    On the decidability and complexity of problems for restricted hierarchical hybrid systems

    Get PDF
    We study variants of a recently introduced hybrid system model, called a Hierarchical Piecewise Constant Derivative (HPCD). These variants (loosely called Restricted HPCDs) form a class of natural models with similarities to many other well known hybrid system models in the literature such as Stopwatch Automata, Rectangular Automata and PCDs. We study the complexity of reachability and mortality problems for variants of RHPCDs and show a variety of results, depending upon the allowed powers. These models form a useful tool for the study of the complexity of such problems for hybrid systems, due to their connections with existing models. We show that the reachability problem and the mortality problem are co-NP-hard for bounded 3-dimensional RHPCDs (3-RHPCDs). Reachability is shown to be in PSPACE, even for n-dimensional RHPCDs. We show that for an unbounded 3-RHPCD, the reachability and mortality problems become undecidable. For a nondeterministic variant of 2-RHPCDs, the reachability problem is shown to be PSPACE-complete

    Reachability problems for systems with linear dynamics

    Get PDF
    This thesis deals with reachability and freeness problems for systems with linear dynamics, including hybrid systems and matrix semigroups. Hybrid systems are a type of dynamical system that exhibit both continuous and discrete dynamic behaviour. Thus they are particularly useful in modelling practical real world systems which can both flow (continuous behaviour) and jump (discrete behaviour). Decision questions for matrix semigroups have attracted a great deal of attention in both the Mathematics and Theoretical Computer Science communities. They can also be used to model applications with only discrete components. For a computational model, the reachability problem asks whether we can reach a target point starting from an initial point, which is a natural question both in theoretical study and for real-world applications. By studying this problem and its variations, we shall prove in a formal mathematical sense that many problems are intractable or even unsolvable. Thus we know when such a problem appears in other areas like Biology, Physics or Chemistry, either the problem itself needs to be simplified, or it should by studied by approximation. In this thesis we concentrate on a specific hybrid system model, called an HPCD, and its variations. The objective of studying this model is twofold: to obtain the most expressive system for which reachability is algorithmically solvable and to explore the simplest system for which it is impossible to solve. For the solvable sub-cases, we shall also study whether reachability is in some sense easy or hard by determining which complexity classes the problem belongs to, such as P, NP(-hard) and PSPACE(-hard). Some undecidable results for matrix semigroups are also shown, which both strengthen our knowledge of the structure of matrix semigroups, and lead to some undecidability results for other models
    corecore