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Abstract. Polygonal hybrid systems (SPDIs) are planar hybrid systems, whose
dynamics are defined in terms of constant differential inclusions, one for each of
a number of polygonal regions partitioning the plane. The reachability problem
for SPDIs is known to be decidable, but depends on thegoodnessassumption —
which states that the dynamics do not allow a trajectory to both enter and leave
a region through the same edge. In this paper we extend the decidability result
to generalised SPDIs(GSPDI), SPDIs not satisfying the goodness property, and
give an algorithmic solution to decide reachability of suchsystems.

1 Introduction

A hybrid system is one in which discrete and continuous behaviours interact. Some sys-
tems are inherently hybrid — consider a robot, with differential equations determining
its speed, together with an embedded computer taking discrete decisions based on the
continuous input values coming from sensors. In other cases, a system consisting only
of continuous behaviour, can behybridised,introducing discrete behaviour in order to
facilitate the analysis. For example, exact solutions can be difficult to obtain for a non-
linear differential equation, making a qualitative and approximative analysis necessary.
An interesting class of hybrid systems for which the reachability question is known to
be decidable, is the class of Polygonal Hybrid Systems (SPDIs) — a subclass of hybrid
systems on the plane whose dynamics is defined by constant differential inclusions
[ASY01,ASY07]. Informally, an SPDI consists of a partitionof the plane into polygonal
regions, each of which enforces different dynamics given bytwo vectors determining
the possible directions a trajectory might take; a simple SPDI is depicted in Fig. 1-
(a). A constructive proof for deciding reachability on SPDIs can be found in [ASY07].
The proof is restricted to SPDIs which have the so-calledgoodnessproperty — the
dynamics of any region of the SPDI do not allow a trajectory totraverse any edge of
the polygonal region in opposite directions. An SPDI without the goodness property is
called aGeneralised SPDI(GSPDI).
Fig. 1-(b) shows an example of a good and a ‘bad’ region (here ‘bad’ indicates that the
region does not satisfy the goodness criterion). In the figure on the left we can see a
good region, where the two vectorsa andb make it impossible for a trajectory to enter
and leave the regionP through the same edge of the polygon delimiting the region. On
the other hand, the figure on the right shows a bad region: Bothe2 ande5 can be crossed
in both directions by a trajectory entering and leavingP , as shown in the figure.
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Fig. 1. (a) Example of an SPDI; (b) Good and bad regions.

Fig. 2. Approximating a non-linear differential equation using different partitioning of the plane.

The algorithm presented in [ASY07] for deciding reachability on SPDI depends on pre-
processing of trajectory segments and a qualitative analysis to guarantee that it is possi-
ble to review the behaviour of all the possiblesignatures1, by looking at only a finite set
of abstract signatures. Informally, this is achieved as follows: (1) Trajectory segments
are simplified — it is sufficient to look at trajectories made up of straight segments
across regions, and which do not cross themselves; (2) Trajectory segments are ab-
stracted into signatures, based on thePoincaŕe map[HS74], that relatesn-dimensional
continuous-time systems with(n−1)-dimensional discrete-time systems; (3) It is shown
that it is sufficient to look at signatures which consist onlyof sequences of edges and
simple cycles; (4) Such signatures can be abstracted intotypes of signatures— signa-
tures which do not take into account the number of times each simple cycle is iterated.

Many of the lemmas for proving that the above guarantee the finiteness of types of sig-
natures critically depend on the goodness assumption, which propagate this dependency
to the constructive proof given for deciding reachability of SPDIs.

Restricting oneself only to SPDIs satisfying the goodness assumption makes it very
difficult to model real-life examples. Unfortunately, extending the SPDI model in most
ways, such as allowing jumps with resets (from one edge to another remote one), in-

1 We callsignaturethe sequence of traversed edges by the trajectory. A more formal definition
will be given in a later section.



creasing the number of dimensions and allowing non-linear differential inclusions, have
been shown to make the model undecidable [AS02].
A potentially interesting and useful application of SPDIs is that of the approximation
and analysis of two-dimensional non-linear differential equations. By splitting the plane
into polygons, and by setting the dynamics of each polygon tobe over-approximations
of the non-linear differential equation in that region, onecan ask reachability questions
about the equation, and obtain answers accordingly. When over-approximating the dy-
namics, a negative reachability answer implies a negative answer in the exact equation.
Using more and smaller polygons enables more precise approximations.
The problem with using this approach is that for most differential equations, using a
fixed partition breaks the goodness assumption, since almost invariably, some edges
of some regions will lie within the differential inclusion of that region. One solution
would be to try to derive an intelligent partition of the plane which maintains goodness,
which in some cases may be impossible, or by extending the SPDI analysis algorithms
to relax the goodness assumption, thus enabling the modelling of non-linear differential
equations in a straightforward manner.
As a simple example, consider a pendulum with friction coefficientk, massM , pen-
dulum lengthR and gravitational constantg. If θ is the angle subtended with the
vertical, the behaviour of such a pendulum is described by the differential equation:
MR2θ̈ + kθ̇ + MgR sin θ = 0. By taking x = θ, andy = θ̇, we getẋ = y and
ẏ = − ky

MR2 − g sin(x)
R

. Using these formulae, we can produce SPDIs expressing these
constraints, possibly with different plane partitions. Fig. 2 gives two such partitions for
k = 1, R = 10, M = 10, andg = −10. Visual inspection of the SPDIs, shows that
various polygons are not good. By presenting an algorithm showing the decidability of
reachability on GSPDIs, we can automatically analyse such systems.
In this paper, we present a constructive decidable algorithm for solving the reacha-
bility problem for GSPDIs. This decidability result contributes towards narrowing the
undecidability frontier of low dimension hybrid systems [AS02,MP05], and it allows
GSPDIs to be used to approximate planar non-linear differential equations.
The paper is organised as follows. In the next section we define the notation used, and
outline definitions and results about SPDIs. Section 3 is concerned with the extension of
these results to enable analysis of GSPDIs, including the decision algorithm for reach-
ability. We conclude in the last section.

2 Polygonal Hybrid Systems (SPDIs)

In this section we recall the main definitions and concepts required in the rest of the
paper, and give an outline of the results for SPDIs, upon which the results presented in
this paper are built. For a more detailed presentation see [ASY07]. In what follows, we
will usea = (a1, a2) andx = (x1, x2) to represent 2-dimensional vectors (a,x ∈ R

2).
An angle∠

b
a on the plane, defined by two non-zero vectorsa andb is the set of all

positive linear combinationsx = α a + β b, with α, β ≥ 0, andα + β > 0. We can
always assume thatb is situated in the counter-clockwise direction froma.

Definition 1. A polygonal hybrid system(SPDI) is a pairH = 〈P, F〉, whereP is
a finite partition of the plane (with eachP ∈ P being a convex polygon), called the



regionsof the SPDI, andF is a function which associates a pair of vectors to each
polygon:F(P ) = (aP ,bP ).
In an SPDI every point on the plane has its dynamics defined according to which poly-
gon it belongs to: ifx ∈ P , thenẋ ∈ ∠

bP
aP

.

Example 1.Consider the SPDI illustrated in Fig. 1-(a), with eight regionsR1, R2, . . . , R8.
A pair of vectors(ai,bi) is also associated to each regionRi: a1 = b1 = (1, 5),
a2 = b2 = (−1, 1

2 ), a3 = (−1, 11
60 ) andb3 = (−1,− 1

4 ), a4 = b4 = (−1,−1),
a5 = b5 = (0,−1), a6 = b6 = (1,−1), a7 = b7 = (1, 0), a8 = b8 = (1, 1).

We defineE(P ) to be the set of edges of regionP . We say that an edgee (e ∈ E(P ))
is an entry-onlyof P if for all x ∈ e and for allc ∈ ∠

bP
aP

, x + cǫ ∈ P for some
ǫ > 0. We say thate is anexit-onlyof P if the same condition holds for someǫ < 0.
Intuitively, an entry-only (exit-only) edge of a regionP allows at least a trajectory inP
starting (terminating) on edgee, but allows no trajectories inP terminating (starting)
on edgee. We write In(P ) (In(P ) ⊆ E(P )) to denote the set of all entry-only edges
of P andOut(P )(Out(P ) ⊆ E(P )) to denote the set of exit-only edges ofP . From
the definition, it follows immediately that no edge can be both an entry-only and an
exit-only edge of a region:In(P ) ∩ Out(P ) = ∅.
A regionP is said to begood, if all the edges of that region are either entry-only or exit-
only: E(P ) = In(P ) ∪ Out(P ). An SPDI is said to begood, or satisfy thegoodness
property, if it consists of only good regions:∀P ∈ P · E(P ) = In(P ) ∪ Out(P ).

Assumption 1 In the rest of this section, we will consider only good SPDIs.

Example 2.In Fig. 1-(b), the regionP shown on the left is good since all edges are
either entry-only or exit-only. The region depicted on the right shows a region that is
not good, since neither edgee2 nor edgee5 are inIn(P ) ∪ Out(P ).

We will use the notationeP
� to indicate the directed edgee such that it follows a clock-

wise direction around regionP , and similarlyeP
	 to indicate the directed edgee follow-

ing an anticlockwise direction around regionP . Given a directed edgee, its inverse will
be written ase−1.

Definition 2. The set of directed edges of an SPDIH with partitionP, writtenEd(H),
is defined to be:Ed(H) = {eP

� | P ∈ P, e ∈ In(P )} ∪ {eP
	 | P ∈ P, e ∈ Out(P )}.

Similarly, we defineInd(P ) andOutd(P ) to correspond toIn(P ) andOut(P ) but with
directed edges.

Since an edge typically appears in two adjacent regions, thedirection induced in the two
regions may be different. However, it was proved that edges which are entry-only in one
region, and exit-only in the other result in matching induced directions:e ∈ Ed(H) or
e−1 ∈ Ed(H), but not both [ASY01,MP93]. In an SPDI satisfying goodness,the only
case where one can have bothe ande−1 is whene is an entry-only (or exit-only) edge
in both adjacent regions it belongs to.
A trajectory segmentof an SPDIH, is a continuous functionξ ∈ [0, T ] → R

2 such that
for all t ∈ [0, T ], if ξ(t) ∈ P andξ̇(t) is defined theṅξ(t) ∈ ∠

bP
aP

. Thesignatureof a



trajectory segmentξ, writtenSig(ξ), is the ordered sequence of edges traversed by the
trajectory, that is,e1, e2, . . . en resulting fromξ ∩ Ed(H).
One of the most important results presented in [ASY07] is that the behaviour of any
trajectory is equivalent to the behaviour of some trajectory which does not cross itself
and follows straight-line segments within regions.

Lemma 1. Given a trajectory segmentξ ∈ [0, T ] → R
2, there exists another trajectory

segmentξ′ ∈ [0, T ′] → R
2 starting and finishing at the same points asξ (ξ(0) = ξ′(0)

and ξ(T ) = ξ′(T ′)) such that (i)ξ′ does not cross itself (ξ is injective); and (ii)ξ′

follows straight-line segments inside regions. ⊓⊔

This result shows that to decide reachability, it is sufficient to look at non-self-crossing
trajectories consisting of straight-line segments. In therest of the discussion, we will re-
strict our use of trajectory to mean ‘a non-self-crossing trajectory composed of straight-
line segments between edges’. Similarly, the term signature will be used to indicate the
signature of a trajectory with these constraints. Note thatthe result is true of any SPDI,
not only ones satisfying the goodness constraint.
Truncated Affine Multi-Valued Functions. An affinefunctionf ∈ R → R is such
thatf(x) = ax + b. If a > 0 we say thatf is positive affine, and ifa < 0 we say thatf
is negative affine; we call this the parity of the affine function.
An affine multivaluedfunction (AMF) F ∈ R → 2R, writtenF = 〈fl, fu〉, is defined
by F (x) = 〈fl(x), fu(x)〉 wherefl andfu are affine and〈·, ·〉 denotes an interval.
For notational convenience, we do not make explicit whetherintervals are open, closed,
left-open or right-open, unless required for comprehension. For an intervalI = 〈l, u〉
we have thatF (〈l, u〉) = 〈fl(l), fu(u)〉. An inverted affine multivaluedfunctionF ∈
R → 2R, writtenF = 〈fl, fu〉, is defined byF (x) = 〈fu(x), fl(x)〉 wherefl andfu

are both negative affine and〈·, ·〉 denotes an interval.
Given an AMFF and two intervalsS ⊆ R

+ andJ ⊆ R
+, a truncated affine multival-

uedfunction (TAMF)FF,S,J ∈ R → 2R is defined as follows:FF,S,J(x) = F (x) ∩ J

if x ∈ S, otherwiseFF,S,J(x) = ∅. In what follows we will writeF instead ofFF,S,J

whenever no confusion may arise. Moreover, in the rest of thepaperF will always
denote an AMF andF a TAMF. For convenience we writeF(x) = F ({x} ∩ S) ∩ J

instead ofF(x) = F (x) ∩ J if x ∈ S. We overload the application of a TAMF on an
intervalI: F(I) = F (I ∩S)∩ J . We say thatF is normalisedif S = Dom(F) = {x |
F (x) ∩ J 6= ∅} andJ = Im(F) = F(S).
As in the case of affine multivalued functions, aninverted truncated affine multivalued
function (inverted TAMF) is similar to a TAMF, but defined in terms of an inverted
affine multivalued function as opposed to a normal one. An important result is that
normal TAMFs are closed under composition.

Theorem 1. The functional composition of two normal TAMFsF1(I) = F1(I ∩S1)∩
J1 andF2(I) = F2(I ∩S2)∩ J2, is the TAMF(F2 ◦F1)(I) = F(I) = F (I ∩S)∩ J ,
whereF = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) andJ = J2 ∩ F2(J1 ∩ S2). ⊓⊔

The following new corollary extends the above result.



Corollary 1. The composition of two inverted TAMFs gives a normal TAMF. Con-
versely, the composition of one normal and one inverted TAMF(in either order) gives
an inverted TAMF. ⊓⊔

To avoid having to reason about the length of every edge, we normalise every edgee
such that its TAMF has the domain[0, 1] (that is, the normalised version ofe has length
1, with 0 corresponding to the starting point of the directededge, and 1 to the end point).
SuccessorsGiven an SPDI, we fix a one-dimensional coordinate system on each edge
to represent points lying on edges. For notational convenience, we will usee to denote
both the directed edge and its one-dimensional representation. Accordingly, we write
x ∈ e andx ∈ e, to mean “pointx lies on edgee” and “coordinatex in the one-
dimensional coordinate system ofe” respectively. The same convention applied to sets
of points ofe represented as intervals (for example,x ∈ I andx ∈ I, whereI ⊆ e) and
to trajectories (for example, “ξ starting atx” or “ ξ starting atx”).
Consider a polygonP ∈ P, with e0 ∈ Ind(P ) and e1 ∈ Outd(P ). For I ⊆ e0,
Succe0e1

(I) is defined to be the set of all points lying one1 reachable from some
point in I by a trajectory segmentξ ∈ [0, t] → R

2 in P (that is,ξ(0) ∈ I ∧ ξ(t) ∈
e1 ∧ Sig(ξ) = e0e1). GivenI = [l, u], Succe0e1

(I) = F (I ∩ Se0e1
) ∩ Je0e1

, where
Se0e1

andJe0e1
are intervals,F ([l, u]) = 〈fl(l), fu(u)〉 andfl andfu are positive affine

functions. Successors are thus normal TAMFs.
Qualitative analysis of simple edge-cyclesLet σ = (e1 . . . ek) be a simple edge-cycle
— that is, a signature that can be repeated a number of times, and such that all edges
are distinct (ei 6= ej for all 1 ≤ i < j ≤ k). Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ with
F = 〈fl, fu〉.
We assume that neither of the two functionsfl, fu is the identity function. The fol-
lowing analysis, taken from [ASY01], allows us to calculatethe behaviour of cycles
provided that the path along the cycle has a normal (not inverted) TAMF. Since, in good
SPDIs, the TAMF between a pair of edges is normal, and the composition of two nor-
mal TAMFs is itself a normal TAMF, this approach is universally applicable as long as
the goodness assumption holds.
Let σ be a simple cycle, andl∗ andu∗ be the fix-points2 of fl andfu, respectively,
andSσ ∩ Jσ = 〈L, U〉. It can be shown thatσ is of one of the following types:STAY:
The cycle is not abandoned neither by the leftmost nor the rightmost trajectory, that
is, L ≤ l∗ ≤ u∗ ≤ U . DIE: The rightmost trajectory exits the cycle through the
left (consequently the leftmost one also exits) or the leftmost trajectory exits the cycle
through the right (consequently the rightmost one also exits), that is,u∗ < L∨ l∗ > U .
EXIT-BOTH: The leftmost trajectory exits the cycle through the left andthe rightmost
one through the right, that is,l∗ < L ∧ u∗ > U . EXIT-LEFT: The leftmost trajectory
exits the cycle (through the left) but the rightmost one stays inside, that is,l∗ < L ≤
u∗ ≤ U . EXIT-RIGHT: The rightmost trajectory exits the cycle (through the right) but
the leftmost one stays inside, that is,L ≤ l∗ ≤ U < u∗.
The classification above provides useful information aboutthe qualitative behaviour of
trajectories. Any trajectory that enters a cycle of type DIEwill eventually leave it after a

2 The fix-pointx∗ is the solution off(x∗) = x∗, wheref(·) is positive affine. The existence
and computation of such fix-points are detailed in [ASY07].
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Fig. 3. (a) An SPDI with matching order of edges; (b) a GSPDI showing that the order breaks the
contiguity of the edge directions; (c) a GSPDI with a duplicated inout edge; (d) a path through
the GSPDI using edgee1 in both directions.

finite number of turns. In the case of a cycle is of type STAY, all trajectories that happen
to enter it will keep turning inside it forever. In all other cases, some trajectories will turn
for a while and then exit, and others will continue turning forever. This information is
crucial for solving the reachability problem for SPDIs. Also note that the above analysis
gives us a non-iterative solution of cycle behaviour for most cycles. An important result
to prove the decidability of SPDIs is that any valid signature can be expressed in a
normal form, consisting of alternating sequential paths and simple loops:

Theorem 2. Given an SPDI with the goodness constraint, any edge signature σ =
e1 . . . ep can be written asσA = r1s

k1

1 . . . rnskn
n rn+1, where for any1 ≤ i ≤ n + 1, ri

is a sequence of pairwise different edges and for all1 ≤ i ≤ n, si is a simple cycle (no
edges are repeated withinsi). ⊓⊔

This representation of signatures is the base to obtaintypes of signatureswith the fol-
lowing properties:

Lemma 2. Given a good SPDI, letσ = e0 . . . ep be a feasible signature, then its type,
type(σ) = r1, s1, . . . , rn, sn, rn+1 satisfies the following properties: (i) every1 ≤ i <

j ≤ n + 1, ri andrj are disjoint; (ii) every1 ≤ i < j ≤ n, si andsj are different. ⊓⊔

The finiteness of the different types of signatures is the basis of the proof of decidabil-
ity of (good) SPDI reachability, and of the termination of the reachability algorithm
(together with acceleration results for simple loops).

Theorem 3. The reachability problem for SPDIs (satisfying goodness) is decidable.

3 Relaxing Goodness: Generalised SPDIs

The original proof of the decidability of the reachability question for SPDIs, depended
on the concept of monotonicity of TAMFs and their composition. Before starting the
analysis, the algorithm fixed the direction of the edges separating regions. An interesting



result guaranteed that the orientation of the edges resulted in each polygon split into two
contiguous sequences of paths — one being the input edges, the other being the output
edges. Furthermore, the orientation of an edge in one regionis guaranteed to match the
orientation of the same edge in the adjacent region3, as shown in Fig. 3-(a). When one
moves on to GSPDIs,inoutedges (those that may be traversed in both directions) break
this result, since the direction of an edge when considered as an input edge clashes with
the direction it is given when used as an output edge in the same region. The previous
result however, still guaranteed that the entry-only edgesand the exit-only edges can be
assigned in one fixed direction (see Fig. 3-(b)).
To solve this problem, we use directed edges, and differentiate between the edge used as
an input, and when it is used as an output, just as though they were two different edges
in the GSPDI. Fig. 3-(c) shows how an inout edge can be seen in this manner. Note that
edgee1 is an input edge in regionR1, but an output edge in regionR2, and similarly,
e−1
1 is an output edge in regionR1 and an input edge in regionR2. In other words, any

path passing through the edge such asσ = e0e1e2 . . . e3e
−1
1 e4 (see Fig. 3-(d)) can be

analysed as before, and through monotonicity, one can deduce thatSuccσ is a positive
TAMF. e1 ande−1

1 are considered distinct edges, and the above path contains no loop.
It can be seen that the standard analysis for SPDIs works wellfor such cases. However,
paths can now ‘bounce’ off an edge. Recall that any pair of edgese0e1 is part of a path
if e0 is an input edge of a region, ande1 is an output edge of the same region. One
can calculate the TAMF for such a trajectory. However,ee−1 can now be a valid path,
whose behaviour cannot be expressed as a normal TAMF. This breaks the analysis used
in SPDIs, to accelerate the analysis of loops. The standard SPDI analysis thus needs to
be extended to handle such ‘bounces’ in paths.

3.1 Preliminary Results

Thegoodnessrestriction was originally introduced to simplify treatment of trajectories
and to guarantee that each region can be partitioned intoentry-onlyandexit-onlyedges
in an ordered way, a fact used in the proof of decidability of the reachability problem. In
this section, we will introduce further background, and provide new results concerning
GSPDIs, needed to prove our decidability result.

Definition 3. An edgee ∈ P is an inout edge ofP if e is neither an entry-only nor an
exit-only edge ofP .

An SPDI without the goodness restriction is called aGeneralised SPDI (GSPDI). Thus,
in GSPDIs there are three kinds of edges: inouts, entry-onlyand exit-only.
Self-crossing of trajectory segments of SPDIs can be eliminated which allow us to con-
sider only non-crossing trajectory (segments). Lemma 1 (the full proof of which can be
found in [ASY07]) also applies to GSPDIs. Therefore, in whatfollows, we will con-
sider only trajectory segments without self-crossings. Note that on GSPDIs, a trajectory
can “intersect” an edge at an infinite number of points byslidingalong it. A trace is thus
no longer a sequence of points, but rather, a sequence of intervals.

3 There are special cases when an edge is an entry-only to a region and an exit-only to an adjacent
region. From the reachability point of view this does not cause any problem as these cases can
be identified and treated accordingly.



Definition 4. Thetraceof a trajectoryξ is the sequencetrace(ξ) = I0I1 . . . In of the
intersection intervals ofξ with the set of edges:Ii ⊆ ξ ∩ Ed(H).

Definition 5. An edge signature(or simply asignature) of a GSPDI is a sequence of
edges. Theedge signature of a trajectoryξ, Sig(ξ), is the ordered sequence of tra-
versed edges by the trajectory segment, that is,Sig(ξ) = e0e1 . . . en, with trace(ξ) =
I0I1 . . . In andIi ⊆ ei.

Note that, in many cases, the intervals of a trace are in fact points. We say that a tra-
jectory with edge signatureSig(ξ) = e0e1 . . . en and tracetrace(ξ) = I0I1 . . . In

interval-crossesedgeei if Ii is not a point. Given a trajectory segment, we will distin-
guish betweenproper inoutedges andslidingedges.

Definition 6. Let ξ be a trajectory segment from pointx0 ∈ e0 to xf ∈ ef , with edge
signatureSig(ξ) = e0 . . . ei . . . en, andei ∈ E(P ) be an edge ofP . We say thatei is a
sliding edge ofP for ξ if ξ interval-crossesei, otherwisee is said to be aproper inout
edge ofP for ξ.

We say that a trajectory segmentξ slidesalong an edgee, if e is a sliding edge ofP for
ξ, and thatξ is asliding trajectoryif it contains at least one sliding edge.
The signatures that we will be analysing in GSPDIs are similar to ones in SPDIs, except
that they may include inverted edges of the forme ande−1. The behaviour between such
edges does not correspond to a normal TAMF, and thus has to be analysed separately.
One interesting property of inout edges is that the dynamicsof the region they are in
allow us toslidealong the edge to one of the end-points of the edge.

Proposition 1. If e is an inout edge, then any trajectory reaching the edge can always
slide on the edge (in one or the other direction, or both). ⊓⊔

As for SPDIs, we have the following property ofSucc: for any edge signaturesσ1 and
σ2 and edgee: Succeσ1

◦ Succσ2e = Succσ2eσ1
.

The following lemma shows that the edge-to-edge successor function is a normal TAMF
whenever the two edges are not the inverse of each other. It follows directly from the
similar result for SPDIs [ASY07], which makes no assumptionregarding goodness.

Lemma 3. For any two edgese0 ande1, Succe0e1
is always a normal TAMF, whenever

e1 6= e−1
0 . ⊓⊔

A bounceis a part of a trajectory which crosses an edge twice in immediate succession.
We define bounces formally within a signature as follows:

Definition 7. Given a signatureσ = e0e1 . . . en, a pair of edgeseiei+1 is said to be a
bounceif ei+1 = e−1

i . We say that a signaturee0e1 . . . en containsm bounces, if there
are exactlym distinct indicesI = {i1, i2, . . . im} such for everyi ∈ I, ei = e−1

i+1.

Let Flip[l, u] = [1 − u, 1 − l] be an interval function. The following result establishes
that the successor function for bounces can be defined in terms of theFlip function. The
result follows directly from the definition ofe−1:



Lemma 4. The behaviour of going from an edgee to its inversee−1 is equivalent to
Flip. In other words:Succee−1 = Flip.

One of the useful properties of SPDIs is that the successor function of any given signa-
ture is a normal TAMF. For GSPDIs, however, we need to take into account bounces,
and hence analyse the composition of normal TAMFs withFlip:

Lemma 5. ComposingFlip with an inverted TAMF gives a normal TAMF and an in-
verted TAMF if we compose it with a normal TAMF. ⊓⊔

The parity of the number of bounces occurring in a given signature influences the form
of the underlying TAMF, as shown in the following result, whose proof follows imme-
diately by induction on the number of bounces.

Corollary 2. Any signature with an even number of bounces has its behaviour charac-
terised by a normal TAMF, while a signature with an odd numberof bounces is charac-
terised by an inverted TAMF. ⊓⊔

Given a simple cycleσ, let σ+ be the cycle iterated one or more times. Recall that the
analysis of simple cycle behaviour given for SPDIs dependedonly on the assumption
that the TAMF of the cycle body is a normal one. From the previous result, it thus
follows that whenever the number of bounces is even on a givencyclic signature, the
composed TAMF is a normal one, so the loop analysis can be conducted as for SPDIs:

Lemma 6. Given a loopσ containing an even number of bounces, its iterated be-
haviourσ+ can be calculated as for SPDIs. ⊓⊔

Since we slide along inout edges, and can only bounce off inout edges, we can prove
that loops which include at least one bounce are never STAY loops:

Lemma 7. Loops which include bounces are not STAY loops. ⊓⊔

This leaves only simple cycles with an odd number of bounces to be analysed. Consid-
ering the case when a bounce appears as the first pair of elements of a loop body, we can
accelerate the analysis by running through the loop only once. The proof follows from
the fact that the initial bounce enables a slide, thus allowing us to identify the limits
through only one application of the loop body:

Lemma 8. Given a signatureσ = e0(e1e
−1
1 e2 . . . en)ke1 (i) with only one loop; (ii)

with k > 0; (iii) which has an odd number of bounces; and (iv) starts with a bounce;
the behaviour of signature is equivalent to following the loop only once as inσ′ =
e0e1e

−1
1 e2 . . . ene1. In other words:Succσ = Succσ′ . ⊓⊔

Based on the above lemma, we can prove that any loop containing an odd number of
bounces can be accelerated. The proof works by unwinding theloop body to push the
first bounce to the beginning, and then applying the previouslemma:

Lemma 9. Given a loops with an odd number of bounces, we can calculate the limit
of s+ without iterating. ⊓⊔

Therefore, we can now analyse any type of signature in GSPDIsusing the results from
lemma 3 (to deal with inout edges), and lemmas 6 and 9 (to deal with bounces).

Theorem 4. We can compute the behaviour of a signaturer1s
+
1 r2s

+
2 . . . rn. ⊓⊔



3.2 Decidability

The following lemma guarantees that it is sufficient to consider simple cycles which
occur in a type of signature only under certain patterns. Anytype of signature containing
two occurrences of the same simple cycle can be reduced to another type of signature
where the simple cycles occurs only once, provided the cycle with the edges in reverse
order (denoted reverse(s)) does not occur between them. The proof is based on the fact
that, assuming the path does not cross itself, between two instances of a repeated loop,
one can always find either (i) the reverse of the cycle; or (ii)a bounce. In the latter case,
it can be shown that the bounce can be eliminated to avoid leaving the loop.

Lemma 10. Given a GSPDI, and assuming only trajectories without self-crossing, if
there is a type of signature where a simple cycles = (e0, e1, . . . , en) appears twice, i.e.
type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′

, then if there is no reverse(s) between
the two occurrences ofs, thentype(Sig(ξ)) = σ′sk′′′

σ′′′. ⊓⊔

We also prove that a trajectory which takes a loop (any numberof times), then takes
it again (once again any number of times) but in reverse order, and finally takes it a
number of times in the forward direction, can be simulated byanother trajectory which
simply takes the loop a number of times. The proof is based on the fact that whichever
direction the first edge of the simple cycle under consideration allows sliding in, it is
possible to obtain a type of signature preserving reachability without such a pattern.

Lemma 11. Given a GSPDI, if there is a trajectory segmentξ : [0, T ] → R
2, with

ξ(0) = x andξ(t) = x
′ for somet > 0, such thattype(Sig(ξ)) = r1s

k1

1 r2s
k2

2 r3s
k3

3 r4,
with s2 = s−1

1 ands3 = s1, then it is always possible to find a trajectory segmentξ′ :
[0, T ] → R

2 such thatξ′(0) = x andξ′(t) = x
′ for somet > 0, andtype(Sig(ξ)) =

r1s
k′

1

1 r′4. ⊓⊔

Based on the above, we can conclude that for GSPDIs we can always transform a type
of signature into one where simple loops are not repeated.

Corollary 3. Given a GSPDI, letσ be an edge signature, then it can always be written
asσA = r1s

k1

1 . . . rnskn
n rn+1, where for any1 ≤ i ≤ n + 1, si is a simple cycle (i.e.,

without repetition of edges), and for every1 ≤ i < j ≤ n, si andsj are different. ⊓⊔

The following lemma, ensuring that there are a finite number of types of signatures in
GSPDIs, follows from the previous results and it is the basisfor the termination proof
of the reachability algorithm.

Corollary 4. For a GSPDI there are finitely many different types of signatures. ⊓⊔

3.3 Algorithm

Given a type of signatureσ where each edge is traversed in exactly one direction, let
Reachσ(x0,xf ) be the SPDI reachability algorithm presented in [ASY07]. The reach-
ability algorithm for a GSPDIH, Reach(H,x0,xf ), consists of the following steps: (1)
Generate the finite set of types of signaturesΣ = {σ0, . . . , σn} taking into accounte



ande−1 as different edges, and such that the loop signatures are alldistinct; (2) Ap-
ply the functionReachσi

(x0,xf ) for eachσi ∈ Σ; (3) If for at least oneσi ∈ Σ,
Reachσi

(x0,xf ) = Yes, thenReach(H,x0,xf ) = Yes, otherwise the answer isNo.
In step 2 we applySucc progressively on the abstract signature, using lemmas 6 and9
to compute the successor of a loop with bounces, and theSucc function as in the case of
SPDIs for the rest. Based on these results, it is possible to show termination, correctness
and completeness of GSPDI reachability.

Lemma 12. Reach(H,x0,xf ) is a terminating, correct and complete algorithm cal-
culating GSPDI reachability. ⊓⊔

From this, the main theoretical result of our paper follows immediately:

Theorem 5. The reachability problem for GSPDIs is decidable. ⊓⊔

4 Conclusions

We have proved that the reachability question for GSPDIs is decidable. The proof is
constructive, giving an algorithm which extends the one given in [ASY07] for SPDIs.
The key lies in showing that the previous analysis works in all cases except when a loop
contains an odd number of bounces. The algorithm is extendedto deal with such cases.
The algorithm needs to be extended to deal with inout edges which enable sliding, but
the overall effect is to accelerate the analysis of an SPDI, since at least one end of the
edge is immediately covered once the edge is reached.
The main contribution of our paper is interesting in a theoretical sense since it extends
the class of decidable hybrid systems, narrowing further the gap between what is known
to be be decidable and what is known to be undecidable [AS02,MP05]. The result is
also interesting in a practical sense, since it provides a good foundation to approximate
planar non-linear differential equations. We plan to implement the algorithm, extending
the SPeeDI+ toolkit [Spe] to treat GSPDIs, and use on case studies with non-linear
differential equations.
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A Proofs of Lemmas, Theorems and Propositions

This appendix is for reviewing purposes only. It contains the detailed proofs of the
results which could not be included for space reasons is being included at the end of the
paper. Should the paper be accepted for publication, the main paper merged with the
proofs will be published as a technical report for reference.

Section 3

Corollary 1 Composition of two TMAFs gives a TMAF. The composition of twoin-
verted TAMFs gives a normal TAMF. Conversely, the composition of one normal and
one inverted TAMF (in either order) gives an inverted TAMF.

Proof Sketch.The proof follows similarly to Theorem 1, where we note that the resulting
affine functions are switched when one of the TAMFs is inverted, and the gradient is
the product of the original two gradient values (hence positive when both positive or
negative, and negative otherwise). ⊓⊔

Section 4.1

Proposition 1 If e is an inout edge, then any trajectory reaching the edge can always
slide on the edge (in one or the other direction, or both).

Proof. The results follows from the fact that the director vector ofe can be expressed
as the positive linear combination of the two vectors of the region in consideration.⊓⊔

Proposition 2. If e0 is an inout edge, then for any other edgee1, and intervalI, such
thatSucce1e0

(I) is not empty, all such applied successors include the left orall include
the right end of the edge (equal to one of(0, x〉 or 〈x, 1) for some value ofx — depend-
ing on one ofI ’s extremities). ⊓⊔

Proof. This is a direct consequence of Proposition 1. ⊓⊔

Lemma 5Composition of the functionFlip with an inverted TAMF results in a normal
TAMF and in an inverted TAMF if we composeFlip with a normal TAMF.

Proof. Consider a normal TAMFf :



(Flip◦f)[x, y]
= { by definition of TAMFs}

Flip([alx
′ + bl, ary

′ + br] ∩ J) where[x′, y′] = [x, y] ∩ S

= { J = [Jl, Jr] and by definition of intersection}
Flip[max{alx

′ + bl, Jl}, min{ary
′ + br, Jr}] where[x′, y′] = [x, y] ∩ S

= { definition ofFlip }
[1 − min{ary

′ + br, Jr}, 1 − max{alx
′ + bl, Jl}] where[x′, y′] = [x, y] ∩ S

= { since−min{x, y} = max{−x,−y}, similarly formax }
[1 + max{−(ary

′ + br),−Jr}, 1 + min{−(alx
′ + bl),−Jl)] where[x′, y′] = [x, y] ∩ S

= { sincea + max{x, y} = max{a + x, a + y}, similarly for min }
[max{1 − (ary

′ + br), 1 − Jr}, min{1 − (alx
′ + bl), 1 − Jl}] where[x′, y′] = [x, y] ∩ S

= arithmetic}
[max{−ary

′ − (1 + br), 1 − Jr}, min{−alx
′ + (1 − bl)), 1 − Jl}] where[x′, y′] = [x, y] ∩ S

= { definition of intersection}
[−ary

′ − (1 + br),−alx
′ + (1 − bl)] ∩ [1 − Jr, 1 − Jl] where[x′, y′] = [x, y] ∩ S.

Note that the result is also an inverted TAMF. The other result follows identically. ⊓⊔

Corollary 2 Any signature with an even number of bounces has its behaviour charac-
terised by a normal TAMF, while a signature with an odd numberof bounces is charac-
terised by an inverted TAMF.

Proof. The proof follows by induction on the number of edges appearing in the signa-
ture.
The base case is when the signature consists of exactly two edges (shorter sequences of
edges are not signatures by definition). Let the signature beσ = e0e1. Now either (i)
e1 = e−1

0 , in which case we have an odd number (exactly one) bounce, andSuccσ =
Flip (by definition 7) which is an inverted TAMF (by definition ofFlip); or (ii) e1 6= e−1

0 ,
in which case we have an odd number of bounces (zero) andSuccσ is a normal TAMF
by the result in [ASY07]. In both cases, the result holds.
Now let us assume that the result holds for signatures of length n, and we will consider
a signature of lengthn + 1, namely:σ = e0e1 . . . en. Once again, eitheren = e−1

n−1 or
it is not. We will consider the cases separately:

– If en = e−1
n−1, then the signaturee0e1 . . . en−1 contains one bounce less that the

original signature.

Succe0e1...en

= { property ofSucc }
Succen−1en ◦ Succe0e1...en−1

= { definition ofSucc on a bounce}
Flip ◦ Succe0e1...en−1

Now, if e0e1 . . . en has an even number of bounces,e0e1 . . . en−1 has an odd num-
ber of bounces (since the last pair were a bounce), and thus, by the inductive hy-
pothesis,Succe0e1...en−1

is an inverted TAMF. But by the above equational reason-
ing, and lemma 5, it follows thatSucce0e1...en

is a normal TAMF.
The case whene0e1 . . . en has an odd number of bounces follows similarly.



– On the other hand, ifen 6= e−1
n−1, then the signaturee0e1 . . . en−1 contains the same

number of bounces as the original signature.

Succe0e1...en

= { property ofSucc }
Succen−1en ◦ Succe0e1...en−1

As before, ife0e1 . . . en contains an even number of bounces, so thuse0e1 . . . en−1

(since the last pair were not a bounce), and thus, by the inductive hypothesis,
Succe0e1...en−1

is a normal TAMF. But by the above equational reasoning, and
lemma 1, it follows thatSucce0e1...en

is a normal TAMF.
The case whene0e1 . . . en has an odd number of bounces follows similarly. ⊓⊔

Lemma 7Loops which include bounces are not STAY loops.

Proof. The proof follows from Proposition 1, which guarantees thatonce we reach the
first inout edge, we can always slide to one end of the edge. Hence any loop containing
such edge cannot be a STAY, by definition. ⊓⊔

Lemma 6 The behaviour of any loopσ containing an even number of bounces can be
calculated as for SPDIs.

Proof. Corollary 2 ensures thatSuccσ is a normal TAMF. Earlier, in Section 2, we have
summarised the analysis from [ASY01] which enables us to calculate the behaviour of
a cycle whose TAMF is not inverted, in a non-iterative manner. We can thus use this
technique to calculate the iterated behaviour ofσ in a non-iterative way. ⊓⊔

Lemma 8 Given a signature with one loopσ = e0(e1e
−1
1 e2 . . . en)ke1 (with k > 0,

which has an odd number of bounces, and starts with a bounce),the behaviour of sig-
nature is equivalent to following the loop only once as inσ′ = e0e1e

−1
1 e2 . . . ene1. In

other words:Succσ = Succσ′ .

Proof. Sincee1 is an inout edge, by proposition 2, we know that we can slide in(at
least) one direction. without loss of generality, let’s assume that for anye, Succee1

(I) =
(0, x). Note that due to the definition of TAMFs,x is only dependant on the right bound
of I.
Let F = Succe

−1

1
e2...ene1

. Since this includes an even number of bounces, composed
TAMF (thusF ) is a normal (non-inverted)TAMF. Moreover, sinceF (I) = Succene1

(Succe
−1

1
e2...en

(I)),
thenF (I) = (0, x) for some value ofx. Finally, we note that sinceF is a normal TAMF,
x is dependant only on the right bound ofI, we can conclude that there existsα such
that for anyx, F (x, 1) = (0, α).
We can now proceed to prove the result by induction onk. Trivially, the result holds for
k = 1. Now considerk > 1:



Succe0(e1e
−1

1
e2...en)ke1

(I)

= { k > 1 }
Succe0(e1e−1

1
e2...en)(e1e−1

1
e2...en)k−1e1

(I)

= { by induction}
Succe0(e1e

−1

1
e2...en)(e1e

−1

1
e2...en)e1

(I)

= { by definition ofSucc andF }
F ◦ Succe1e−1

◦ FSucce1e−1
◦ Succe0e1

(I)
= { by definition ofFlip }

F ◦ Flip ◦ F ◦ Flip ◦ Succe0e1
(I)

= { by sliding argument given above}
F ◦ Flip ◦ F ◦ Flip(0, x)

= { by definition ofFlip }
F ◦ Flip ◦ F (1 − x, 1)

= { by property ofF given above}
F ◦ Flip(0, α)

= { by definition ofFlip }
F (1 − α, 1)

= { by property ofF given above}
(0, α)

= { by property ofF given above}
F (1 − x′, 1)

= { by definition ofFlip }
F ◦ Flip(0, x′)

= { by sliding argument given above}
F ◦ Flip ◦ Succe0e1

(I)
= { by definition ofFlip }

F ◦ Succe1e
−1

1

◦ Succe0e1
(I)

= { by definition ofSucc andF }
Succe0(e1e

−1

1
e2...en)e1

(I)

By induction the result thus follows.

⊓⊔

Lemma 9Given a loopσ with an odd number of bounces, we can calculate the limit of
σ+ without iterating.

Proof. Let σ = e0e1 . . . eie
−1
i ei+1 . . . en, whereeie

−1
i is the first bounce of the se-

quence. Sinceσ contains inout edges, it cannot be a STAY loop, and we only consider
the case where the loop finally exits. Consider the exiting loopσ+e′.

The case whenσ is never repeated or repeated only once, can be easily handled. When
the number of repetitions is at least twice, we can use the following reasoning:



Succσke′

= { definition ofσ }
Succ(e0e1...eie

−1

i
ei+1...en)ke′

= { definition of path repetition}
Succe0e1...ei−1(eie

−1

i
ei+1...ene0eq...ei−1)k−1eie

−1

i
ei+1...e′

= { using Lemma 8}
Succe0e1...ei−1(eie

−1

i
ei+1...ene0eq...ei−1)eie

−1

i
ei+1...ene′

This reduces the analysis of such loops to a simple path analysis which we know how
to perform. ⊓⊔

Theorem 4We can (constructively) compute the behaviour of a signaturer1s
+
1 r2s

+
2 . . . rn.

Proof. We use the standard techniques presented in [ASY07], but useTheorems 6 and
9 to analyse loops with bounces. ⊓⊔

Section 4.2

Lemma 10 Given a GSPDI, and assuming only trajectories without self-crossing, if
there is a type of signature where a simple cycles = (e0, e1, . . . , en) appears twice, i.e.
type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk′′

, then if there is no reverse(s) between
the two occurrences ofs, thentype(Sig(ξ)) = σ′sk′′′

σ′′′.

Proof Sketch.There are two cases:

1. σ′′ = skrsk′′

: In this caser must be of the forme−1
n e−1

n−1 . . . e−1
i with i > 0. We

must have a bouncing ate−1
i , then we can slide and we getσ′′ = sk′′′

.
2. σ′′ = skωsk′′

: Hereω is any finite sequence of alternatingr’s ands′s. It can be
shown that either we reduce to the previous case, orω must contain reverse(s), or
there must be a self-crossing. ⊓⊔

Lemma 11 Given a GSPDI, if there is a trajectory segmentξ : [0, T ] → R
2, with

ξ(0) = x andξ(t) = x
′ for somet > 0, such thattype(Sig(ξ)) = r1s

k1

1 r2s
k2

2 r3s
k3

3 r4,
with s2 = reverse(s1) ands3 = s1, then it is always possible to find a trajectory seg-
ment ξ′ : [0, T ] → R

2 such thatξ′(0) = x and ξ′(t) = x
′ for somet > 0, and

type(Sig(ξ)) = r1s
k′

1

1 r′4.

Proof Sketch.Let s1 = (e0, e1, . . . , en) be a simple cycle whereξ is a clockwise spiral
turning inwards. Due to Proposition 1, we have the followingtwo cases:

1. e0 allows sliding inwards.We can always eliminate the firsts, i.e.,type(Sig(ξ)) =
r′1s

k2

2 r3s
k3

3 r4. See Fig. 6.
2. e0 allows sliding outwards.Two cases:

(a) reverse(s1) loops outwards.In this case we can eliminates2 since once we
start that loop, we can slide outwards tills3 starts, and we gettype(Sig(ξ)) =
r1s

k1

1 sk3

3 r4, which istype(Sig(ξ)) = r1s
k′

1 r4. See Fig. 4-(a).
(b) reverse(s1) loops inwards.Two cases:



(b)(a)
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Fig. 4. Proof of Lemma 11 - Case sliding outwards: (a) case reverse(s) looping outwards; (b)
case reverse(s) looping inwards and exiting.

(b)(a)
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Fig. 5.Proof of Lemma 11 - Case sliding outwards: (a) case bouncing inwards; (b) case bouncing
outwards.

i. r2 contains only edges ins1 and s2. This implies bouncing. Two cases.
A. Bouncing inwards. Implies sliding inwards, which contradicts the as-

sumption. See Fig. 5-(a).
B. Bouncing outwards.Implies reverse(s1) must loop outwards, contra-

dicts the assumption that reverse(s1) loops inwards. See Fig. 5-(b).
ii. r2 contains edges not ins1 and s2. This means that the trajectory exits1

through the ’right’. Let us assume the last visited point ins1 is x ∈ en,
and thatx′ ∈ e such thatξ(t) = x andξ(t′) = x

′ with Sig(ξ[t..t′]) = ene,
wheree ∈ first(r2). Then the segment of linexx′ partition the regionR
into two subregionsR1 andR2. Clearly the only way to haver2s2 with
s2 going inwards is from a trajectory segment from regionR1 to R2 by
crossingxx′, which breaks the assumption of non-crossing trajectories.
Thus the patterns2r3s3 is not possible in this case. See Fig. 4-(b). ⊓⊔

Corollary 3 Given a GSPDI, letσ = e1 . . . ep be an edge signature, then it can always
be written asσA = r1s

k1

1 . . . rnskn
n rn+1, where for any1 ≤ i ≤ n + 1, si is a simple



x

x
′

e0

e1

e2

e3

Fig. 6.Proof of Lemma 11 –Case sliding inwards.

cycle (i.e., without repetition of edges), and for every1 ≤ i 6= j ≤ n, si andsj are
different.

Proof. If there arei 6= j such thatsi = sj , the only possibility is to satisfy or the
assumptions of Lemma 10 or Lemma 11. In both cases we can always obtain a signature
without repeatingsi. ⊓⊔

Corollary 4 The number of different types of abstract signatures of a given GSPDI is
finite.

Proof. Based on Lemma 3, it suffices to analyse signatures of the formσA = r1s
+
1 . . . rns+

n rn+1

such that provided thati 6= j, si 6= sj and with eachrk containing no repeated edges.
Hence, since the number of edges is finite, the number of possible values eachrk can
take is finite. Similarly, the number of distinct simple loops is finite. Therefore, the
number of abstract signatures to analyse is finite. ⊓⊔

Section 4.3

Lemma 12 Reach(H,x0,xf ) is a terminating, correct and complete algorithm calcu-
lating GSPDI reachability.

Proof. Termination of step 1 follows from the fact that GSPDIs have finite partitions.
Step 2 terminates by corollary 4. Using Theorems 9 and 6 we canalso compute steps 3
and 4, hence guaranteeing termination of the algorithm.
Correctness of the algorithm follows from Theorems 9 and 6 (on accelerating loops
with bounces) and the results in [Sch02,ASY07] on the correctness of SPDI reachability
checking.
Finally, completeness is guaranteed by Theorem 4.
Therefore,Reach(Hi,x0,xf ) (for all Hi ∈ Hred, 1 ≤ i ≤ n), is a terminating com-
plete and sound algorithm for deciding GSPDI reachability. ⊓⊔
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