17 research outputs found

    Simulation and Design of an UWB Imaging System for Breast Cancer Detection

    Get PDF
    Breast cancer is the most frequently diagnosed cancer among women. In recent years, the mortality rate due to this disease is greatly decreased thanks to both enormous progress in cancer research, and screening campaigns which have allowed the increase in the number of early diagnoses of the disease. In fact, if the tumor is identied in its early stage, e.g. when it has a diameter of less than one centimeter, the possibility of a cure can reach 93%. However, statistics show that more young aged women are suered breast cancer. The goal of screening exams for early breast cancer detection is to nd cancers before they start to cause symptoms. Regular mass screening of all women at risk is a good option to achieve that. Instead of meeting very high diagnostic standards, it is expected to yield an early warning, not a denitive diagnosis. In the last decades, X-ray mammography is the most ecient screening technique. However, it uses ionizing radiation and, therefore, should not be used for frequent check-ups. Besides, it requires signicant breast compression, which is often painful. In this scenario many alternative technologies were developed to overcome the limitations of mammography. Among these possibilities, Magnetic Resonance Imaging (MRI) is too expensive and time-consuming, Ultrasound is considered to be too operatordependent and low specicity, which are not suitable for mass screening. Microwave imaging techniques, especially Ultra WideBand (UWB) radar imaging, is the most interesting one. The reason of this interest relies on the fact that microwaves are non-ionizing thus permitting frequent examinations. Moreover, it is potentially lowcost and more ecient for young women. Since it has been demonstrated in the literatures that the dielectric constants between cancerous and healthy tissues are quite dierent, the technique consists in illuminating these biological tissues with microwave radiations by one or more antennas and analyzing the re ected signals. An UWB imaging system consists of transmitters, receivers and antennas for the RF part, the transmission channel and of a digital backend imaging unit for processing the received signals. When an UWB pulse strikes the breast, the pulse is re ected due to the dielectric discontinuity in tissues, the bigger the dierence, the bigger the backscatter. The re ected signals are acquired and processed to create the energy maps. This thesis aims to develop an UWB system at high resolution for the detection of carcinoma breast already in its initial phase. To favor the adoption of this method in screening campaigns, it is necessary to replace the expensive and bulky RF instrumentation used so far with ad-hoc designed circuits and systems. In order to realize that, at the very beginning, the overall system environment must be built and veried, which mainly consists of the transmission channel{the breast model and the imaging unit. The used transmission channel data come from MRI of the prone patient. In order to correctly use this numerical model, a simulator was built, which was implemented in Matlab, according to the Finite-Dierence-Time- Domain (FDTD) method. FDTD algorithm solves the electric and magnetic eld both in time and in space, thus, simulates the propagation of electromagnetic waves in the breast model. To better understand the eect of the system non-idealities, two 2D breast models are investigated, one is homogeneous, the other is heterogeneous. Moreover, the modeling takes into account all critical aspects, including stability and medium dispersion. Given the types of tissues under examination, the frequency dependence of tissue dielectric properties is incorporated into wideband FDTD simulations using Debye dispersion parameters. A performed further study is in the implementation of the boundary conditions. The Convolution Perfectly Matched Layer (CPML) is used to implement the absorbing boundaries. The objective of the imaging unit is to obtain an energy map representing the amount of energy re ected from each point of the breast, by recombining the sampled backscattered signals. For this purpose, the study has been carried out on various beamforming in the literature. The basic idea is called as "delay and sum", which is to align the received signals in such a way as to focus a given point in space and then add up all the contributions, so as to obtain a constructive interference at that point if this is a diseased tissue. In this work, Microwave Imaging via Space Time (MIST) Beamforming algorithm is applied, which is based on the above principle and add more elaborations of the signals in order to make the algorithm less sensitive to propagation phenomena in the medium and to the non-idealities of the system. It is divided into two distinct steps: the rst step, called SKin Artifact Removal (SKAR), takes care of removing the contributions from the signal caused by the direct path between the transmitter and receiver, the re ection of skin, as they are orders of magnitude higher compared to the re ections caused by cancers; the second step, which is BEAmForming (BEAF), performs the algorithm of reconstruction by forming a weighted combination of time delayed version of the calibrated re ected signals. As discussed above, more attention must be paid on the implementation of the ad-hoc integration circuits. In this scenario, due to the strict requirements on the RF receiver component, two dierent approaches of the implementation of the RF front-end, Direct Conversion (DC) receiver and Coherent Equivalent Time Sampling (CETS) receiver are compared. They are modeled behaviorally and the eects of various impairments, such as thermal, jitter, and phase noise, as well as phase inaccuracies, non-linearity, ADC quantization noise and distortion, on energy maps and on quantitative metrics such as SCR and SMR are evaluated. Dierential Gaussian pulse is chosen as the exciting source. Results show that DC receiver performs higher sensitivity to phase inaccuracies, which makes it less robust than the CETS receiver. Another advantage of the CETS receiver is that it can work in time domain with UWB pulses, other than in frequency domain with stepped frequency continuous waves like the DC one, which reduces the acquisition time without impacting the performance. Based on the results of the behavioral simulations, low noise amplier (LNA) and Track and Hold Amplier (THA) can be regarded as the most critical parts for the proposed CETS receiver, as well as the UWB antenna. This work therefore focuses on their hardware implementations. The LNA, which shows critical performance limitation at bandwidth and noise gure of receiver, has been developed based on common-gate conguration. And the THA based on Switched Source Follower (SSF) scheme has been presented and improved to obtain high input bandwidth, high sampling rate, high linearity and low power consumption. LNA and THA are implemented in CMOS 130nm technology and the circuit performance evaluation has been taken place separately and together. The small size UWB wide-slot antenna is designed and simulated in HFSS. Finally, in order to evaluate the eect of the implemented transistor level components on system performance, a multi-resolution top-down system methodology is applied. Therfore, the entire ow is analyzed for dierent levels of the RF frontend. Initially the system components are described behaviorally as ideal elements. The main activity consists in the analysis and development of the entire frontend system, observing and complementing each other blocks in a single ow simulation, clear and well-dened in its various interfaces. To achieve that the receiver is modeled and analyzed using VHDL-AMS language block by block, moreover, the impact of quantization, noise, jitter, and non-linearity is also evaluated. At last, the behavioral description of antenna, LNA and THA is replaced with a circuit-level one without changing the rest of the system, which permits a system-level assessment of low-level issues

    Non-Contact Human Motion Sensing Using Radar Techniques

    Get PDF
    Human motion analysis has recently gained a lot of interest in the research community due to its widespread applications. A full understanding of normal motion from human limb joint trajectory tracking could be essential to develop and establish a scientific basis for correcting any abnormalities. Technology to analyze human motion has significantly advanced in the last few years. However, there is a need to develop a non-invasive, cost effective gait analysis system that can be functional indoors or outdoors 24/7 without hindering the normal daily activities for the subjects being monitored or invading their privacy. Out of the various methods for human gait analysis, radar technique is a non-invasive method, and can be carried out remotely. For one subject monitoring, single tone radars can be utilized for motion capturing of a single target, while ultra-wideband radars can be used for multi-subject tracking. But there are still some challenges that need to be overcome for utilizing radars for motion analysis, such as sophisticated signal processing requirements, sensitivity to noise, and hardware imperfections. The goal of this research is to overcome these challenges and realize a non-contact gait analysis system capable of extracting different organ trajectories (like the torso, hands and legs) from a complex human motion such as walking. The implemented system can be hugely beneficial for applications such as treating patients with joint problems, athlete performance analysis, motion classification, and so on

    Development of electronics for microultrasound capsule endoscopy

    Get PDF
    Development of intracorporeal devices has surged in the last decade due to advancements in the semiconductor industry, energy storage and low-power sensing systems. This work aims to present a thorough systematic overview and exploration of the microultrasound (”US) capsule endoscopy (CE) field as the development of electronic components will be key to a successful applicable ”USCE device. The research focused on investigating and designing high-voltage (HV, < 36 V) generating and driving circuits as well as a low-noise amplifier (LNA) for battery-powered and volume-limited systems. In implantable applications, HV generation with maximum efficiency is required to improve the operational lifetime whilst reducing the cost of the device. A fully integrated hybrid (H) charge pump (CP) comprising a serial-parallel (SP) stage was designed and manufactured for > 20 V and 0 - 100 ”A output capabilities. The results were compared to a Dickson (DKCP) occupying the same chip area; further improvements in the SPCP topology were explored and a new switching scheme for SPCPs was introduced. A second regulated CP version was excogitated and manufactured to use with an integrated ”US pulse generator. The CP was manufactured and tested at different output currents and capacitive loads; its operation with an US pulser was evaluated and a novel self-oscillating CP mechanism to eliminate the need of an auxiliary clock generator with a minimum area overhead was devised. A single-output universal US pulser was designed, manufactured and tested with 1.5 MHz, 3 MHz, and 28 MHz arrays to achieve a means of fully-integrated, low-power transducer driving. The circuit was evaluated for power consumption and pulse generation capabilities with different loads. Pulse-echo measurements were carried out and compared with those from a commercial US research system to characterise and understand the quality of the generated pulse. A second pulser version for a 28 MHz array was derived to allow control of individual elements. The work involved its optimisation methodology and design of a novel HV feedback-based level-shifter. A low-noise amplifier (LNA) was designed for a wide bandwidth ”US array with a centre frequency of 28 MHz. The LNA was based on an energy-efficient inverter architecture. The circuit encompassed a full power-down functionality and was investigated for a self-biased operation to achieve lower chip area. The explored concepts enable realisation of low power and high performance LNAs for ”US frequencies

    Studies on Effects of Optical Feedback Based Micro-Ring Resonator on the Integrated 40 GHz Opto-Electronic Oscillator

    Get PDF
    This thesis presents the design and simulation of 40 GHz Integrated Opto-Electronic Oscillator (IOEO) with highspectralpurity,minimumphasenoise,high quality factor as well a sbetter thermal and frequency stability. Simulation studies of the designed IOEO have been carried out using a novel Linear Time Invariant (LTI) architecture having all optical components in the feedback path which is contrary to the conventionalI OEO.The long optical ïŹber present in the conventionalI OEO has been replaced by an Integrated Optical Microring Resonator (IOMR). The proposed IOMR replaces the few km long ïŹber cable making the IOEO compact. The designed IOEO exhibits a minimum phase noise of -245 dBcHz−1 at 100 kHz offset compared to phase noise of -160 dBcHz−1 of conventional design. The computation of the phase noise of the designed IOEO has been carried out using variance method. The proposed design of IOEO also eliminates the ïŹber loss thereby improving the Quality (Q) factor of the IOEO. The simulation study on the effect of IOMR on the Q factor of the IOEO reveals the loaded quality factor of 1000. Through simulation studies invoking Sellmeier model ,the thermal stability of the designed IOEO is found to be ±0.325 ppmK−1 over a temperature range of 150-300K.Frequency stability analysis of the designed IOEO has been studied analytically using two port network theory. Effect of Butt-coupling coefïŹcient on the stability is also explored. This thesis presents a novel analytical model for the straight and curved waveguides of IOMR, invoking the Coupled Mode Theory (CMT). The potential utility of derived mathematical expressions has been illustrated in the calculation of quality factor, coupling length and gap between straight and curved waveguides of the ring resonator. The signiïŹcance of Butt-coupling coefïŹcient in the CMT has been explored and its effects on resonance and output power of IOMR have been analyzed for a novel resonance condition. The analysis of the effects of gap between straight and curved waveguides on the output power of IOEO facilitates additional insight into the underlying principles and its phase noise. The phase noise contribution of IOMR in the IOEO is found to be extremely small and is insigniïŹcant. The fabrication tolerance of the designed IOMR has been computed using derived analytical model to support the feasibility of manufacturing the IOEO. The simulation model of proposed IOEO has been utilized for design and simulation of an optical beam steering system. The simulation study directed towards Wavelength Division Multiplexing (WDM) substantiates the utility and relevance of IOEO as modulator and modulation frequency generator simultaneously. This thesisalso presents designand simulationstudies onan IOEObased novel architecture for label-free optical Bio-sensor. The proposed IOEO based label free sensor eliminates the laborious labeling procedure and its associated cumbersome effects. The proposed Bio-sensor exhibits a bulk refractive index sensitivity of -140 MHzRIU−1

    Learning-Based Hardware Design for Data Acquisition Systems

    Get PDF
    This multidisciplinary research work aims to investigate the optimized information extraction from signals or data volumes and to develop tailored hardware implementations that trade-off the complexity of data acquisition with that of data processing, conceptually allowing radically new device designs. The mathematical results in classical Compressive Sampling (CS) support the paradigm of Analog-to-Information Conversion (AIC) as a replacement for conventional ADC technologies. The AICs simultaneously perform data acquisition and compression, seeking to directly sample signals for achieving specific tasks as opposed to acquiring a full signal only at the Nyquist rate to throw most of it away via compression. Our contention is that in order for CS to live up its name, both theory and practice must leverage concepts from learning. This work demonstrates our contention in hardware prototypes, with key trade-offs, for two different fields of application as edge and big-data computing. In the framework of edge-data computing, such as wearable and implantable ecosystems, the power budget is defined by the battery capacity, which generally limits the device performance and usability. This is more evident in very challenging field, such as medical monitoring, where high performance requirements are necessary for the device to process the information with high accuracy. Furthermore, in applications like implantable medical monitoring, the system performances have to merge the small area as well as the low-power requirements, in order to facilitate the implant bio-compatibility, avoiding the rejection from the human body. Based on our new mathematical foundations, we built different prototypes to get a neural signal acquisition chip that not only rigorously trades off its area, energy consumption, and the quality of its signal output, but also significantly outperforms the state-of-the-art in all aspects. In the framework of big-data and high-performance computation, such as in high-end servers application, the RF circuits meant to transmit data from chip-to-chip or chip-to-memory are defined by low power requirements, since the heat generated by the integrated circuits is partially distributed by the chip package. Hence, the overall system power budget is defined by its affordable cooling capacity. For this reason, application specific architectures and innovative techniques are used for low-power implementation. In this work, we have developed a single-ended multi-lane receiver for high speed I/O link in servers application. The receiver operates at 7 Gbps by learning inter-symbol interference and electromagnetic coupling noise in chip-to-chip communication systems. A learning-based approach allows a versatile receiver circuit which not only copes with large channel attenuation but also implements novel crosstalk reduction techniques, to allow single-ended multiple lines transmission, without sacrificing its overall bandwidth for a given area within the interconnect's data-path

    Modelling, Analysis and Design of Optimised Electronic Circuits for Visible Light Communication Systems

    Get PDF
    This thesis explores new circuit design techniques and topologies to extend the bandwidth of visible light communication (VLC) transmitters and receivers, by ameliorating the bandwidth-limiting effects of commonly used optoelectronic devices. The thesis contains detailed literature review of transmitter and receiver designs, which inspired two directions of work. The first proposes new designs of optically lossless light emitting diode (LED) bandwidth extension technique that utilises a negative capacitance circuit to offset the diode’s bandwidth-limiting capacitance. The negative capacitance circuit was studied and verified through newly developed mathematical analysis, modelling and experimental demonstration. The bandwidth advantage of the proposed technique was demonstrated through measurements in conjunction with several colour LEDs, demonstrating up to 500% bandwidth extension with no loss of optical power. The second direction of work enhances the bandwidth of VLC receivers through new designs of ultra-low input impedance transimpedance amplifiers (TIAs), designed to be insensitive to the high photodiode capacitances (Cpd) of large area detectors. Moreover, the thesis proposes a new circuit, which modifies the traditional regulated cascode (RGC) circuit to enhance its bandwidth and gain. The modified RGC amplifier efficiently treats significant RGC inherent bandwidth limitations and is shown, through mathematical analysis, modelling and experimental measurements to extend the bandwidth further by up to 200%. The bandwidth advantage of such receivers was demonstrated in measurements, using several large area photodiodes of area up to 600 mm^2, resulting in a substantial bandwidth improvement of up to 1000%, relative to a standard 50 Ω termination. An inherent limitation of large area photodiodes, associated with internal resistive elements, was identified and ameliorated, through the design of negative resistance circuits. Altogether, this research resulted in a set of design methods and practical circuits, which will hopefully contribute to wider adoption of VLC systems and may be applied in areas beyond VLC

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    New Architectures for Low Complexity Scalable Phased Arrays

    Full text link
    Inspired by the unique advantages of phased arrays in communication and radar systems, i.e. their capability to increase the channel capacity, signal-to-noise ratio, directivity, and radar resolution, this dissertation presents novel architectures for low-complexity scalable phased arrays to facilitate their widespread use in commercial applications. In phased arrays, phase shifters are one of the key components responsible for adjusting the signal phase across the array elements. In general, phase shifters and their control circuitry play a significant role in determining the complexity and size of conventional phased arrays. To reduce phased arrays’ complexity and size without degrading their performance, two new circuit architectures for scalable phased arrays with a significantly reduced number of phase shifters and control signals are presented. These architectures can be utilized for designing phased arrays in receive as well as transmit mode. The phased arrays designed based on the proposed architectures are intended for applications such as 5G communications and automotive radars for advanced driver assistance systems (ADAS) and autonomous vehicles.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147494/1/noyan_1.pd
    corecore