21 research outputs found

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Calm Displays and Their Applications : Making Emissive Displays Mimic Reflective Surfaces Using Visual Psychophysics, Light Sensing and Colour Science

    Get PDF
    Ph. D. Thesis.Our environment is increasingly full of obtrusive display panels, which become illuminating surfaces when on, and void black rectangles when off. Some researchers argue that emissive displays are incompatible with Weiser and Seely Brown's vision of "calm technology", due to their inability to seamlessly blend into the background. Indeed, Mankoff has shown that for any ambient technology, the ability to move into the periphery is the most relevant factor in their usability. In this thesis, a background mode for displays is proposed based on the idea that displays can look like an ordinary piece of reflective paper showing the same content. The thesis consists of three main parts. In the first part (Chapter 4), human colour matching performance between an emissive display and reflective paper under chromatic lighting conditions is measured in a psychophysical experiment. We find that threshold discrimination ellipses vary with condition (16.0×6.0 ΔEab on average), with lower sensitivity to chroma than hue changes. Match distributions are bimodal for some conditions. In the second part (Chapter 5), an algorithm enabling emissive displays to look like reflective paper is described and evaluated, giving an average error of ΔEab = 10.2 between display and paper. A field study showed that paper-like displays are more acceptable in bedrooms and that people are more likely to keep them always on than normal displays. Finally, the third part (Chapter 6) concerns the development and four-week trial of a paper-like display application. Using the autobiographical design method, a system for sharing bedtime with a remote partner was developed. We see that once unobtrusive, display systems are desired for use even in spaces like bedrooms. Paper-like displays enable both emerging and existing devices to move into the periphery and become “invisible”, and therefore provide a new building block of calm technology that is not achievable using simple emissive displays

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    Colorimetric tolerances of various digital image displays

    Get PDF
    Visual experiments on four displays (two LCD, one CRT and hardcopy) were conducted to determine colorimetric tolerances of images systematically altered via three different transfer curves. The curves used were: Sigmoidal compression in L*, linear reduction in C*, and additive rotations in hab. More than 30 observers judged the detectability of these alterations on three pictorial images for each display. Standard probit analysis was then used to determine the detection thresholds for the alterations. It was found that the detection thresholds on LCD\u27s were similar or lower than for the CRT\u27s in this type of experiment. Summarizing pixel-by-pixel image differences using the 90th percentile color difference in E*ab was shown to be more consistent than similar measures in E94 and a prototype E2000. It was also shown that using the 90th percentile difference was more consistent than the average pixel wise difference. Furthermore, SCIELAB pre-filtering was shown to have little to no effect on the results of this experiment since only global color-changes were applied and no spatial alterations were used

    Quality of Experience in Immersive Video Technologies

    Get PDF
    Over the last decades, several technological revolutions have impacted the television industry, such as the shifts from black & white to color and from standard to high-definition. Nevertheless, further considerable improvements can still be achieved to provide a better multimedia experience, for example with ultra-high-definition, high dynamic range & wide color gamut, or 3D. These so-called immersive technologies aim at providing better, more realistic, and emotionally stronger experiences. To measure quality of experience (QoE), subjective evaluation is the ultimate means since it relies on a pool of human subjects. However, reliable and meaningful results can only be obtained if experiments are properly designed and conducted following a strict methodology. In this thesis, we build a rigorous framework for subjective evaluation of new types of image and video content. We propose different procedures and analysis tools for measuring QoE in immersive technologies. As immersive technologies capture more information than conventional technologies, they have the ability to provide more details, enhanced depth perception, as well as better color, contrast, and brightness. To measure the impact of immersive technologies on the viewersâ QoE, we apply the proposed framework for designing experiments and analyzing collected subjectsâ ratings. We also analyze eye movements to study human visual attention during immersive content playback. Since immersive content carries more information than conventional content, efficient compression algorithms are needed for storage and transmission using existing infrastructures. To determine the required bandwidth for high-quality transmission of immersive content, we use the proposed framework to conduct meticulous evaluations of recent image and video codecs in the context of immersive technologies. Subjective evaluation is time consuming, expensive, and is not always feasible. Consequently, researchers have developed objective metrics to automatically predict quality. To measure the performance of objective metrics in assessing immersive content quality, we perform several in-depth benchmarks of state-of-the-art and commonly used objective metrics. For this aim, we use ground truth quality scores, which are collected under our subjective evaluation framework. To improve QoE, we propose different systems for stereoscopic and autostereoscopic 3D displays in particular. The proposed systems can help reducing the artifacts generated at the visualization stage, which impact picture quality, depth quality, and visual comfort. To demonstrate the effectiveness of these systems, we use the proposed framework to measure viewersâ preference between these systems and standard 2D & 3D modes. In summary, this thesis tackles the problems of measuring, predicting, and improving QoE in immersive technologies. To address these problems, we build a rigorous framework and we apply it through several in-depth investigations. We put essential concepts of multimedia QoE under this framework. These concepts not only are of fundamental nature, but also have shown their impact in very practical applications. In particular, the JPEG, MPEG, and VCEG standardization bodies have adopted these concepts to select technologies that were proposed for standardization and to validate the resulting standards in terms of compression efficiency
    corecore