63 research outputs found

    Ultra-wideband MIMO radio channel characterisation for body-centric wireless communication

    Get PDF
    No abstract available

    Performance Analysis of Multi-Antenna Hybrid Detectors and Optimization with Noise Variance Estimation

    Get PDF
    In this paper, a performance analysis of multi-antenna spectrum sensing techniques is carried out. Both well known algorithms, such as Energy Detector (ED) and eigenvalue based detectors, and an eigenvector based algorithm, are considered. With the idea of auxiliary noise variance estimation, the performance analysis is extended to the hybrid approaches of the considered detectors. Moreover, optimization for Hybrid ED under constant estimation plus detection time is performed. Performance results are evaluated in terms of Receiver Operating Characteristic (ROC) curves and performance curves, i.e., detection probability as a function of the Signal-to-Noise Ratio (SNR). It is concluded that the eigenvector based detector and its hybrid approach are able to approach the optimal Neyman-Pearson performance

    Delaunay Triangulation as a New Coverage Measurement Method in Wireless Sensor Network

    Get PDF
    Sensing and communication coverage are among the most important trade-offs in Wireless Sensor Network (WSN) design. A minimum bound of sensing coverage is vital in scheduling, target tracking and redeployment phases, as well as providing communication coverage. Some methods measure the coverage as a percentage value, but detailed information has been missing. Two scenarios with equal coverage percentage may not have the same Quality of Coverage (QoC). In this paper, we propose a new coverage measurement method using Delaunay Triangulation (DT). This can provide the value for all coverage measurement tools. Moreover, it categorizes sensors as ‘fat’, ‘healthy’ or ‘thin’ to show the dense, optimal and scattered areas. It can also yield the largest empty area of sensors in the field. Simulation results show that the proposed DT method can achieve accurate coverage information, and provides many tools to compare QoC between different scenarios

    Prediction of nodes mobility in 3-D space

    Get PDF
    Recently, mobility prediction researches attracted increasing interests, especially for mobile networks where nodes are free to move in the three-dimensional space. Accurate mobility prediction leads to an efficient data delivery for real time applications and enables the network to plan for future tasks such as route planning and data transmission in an adequate time and a suitable space. In this paper, we proposed, tested and validated an algorithm that predicts the future mobility of mobile networks in three-dimensional space. The prediction technique uses polynomial regression to model the spatial relation of a set of points along the mobile node’s path and then provides a time-space mapping for each of the three components of the node’s location coordinates along the trajectory of the node. The proposed algorithm was tested and validated in MATLAB simulation platform using real and computer generated location data. The algorithm achieved an accurate mobility prediction with minimal error and provides promising results for many applications

    Distributed Closed-Loop Quasi-Orthogonal Space Time Block Coding with four relay Nodes: overcoming Imperfect Synchronization

    Get PDF
    In this paper, closed-loop quasi-orthogonal space time block coding (QO-STBC) is exploited within a four relay node transmission scheme to achieve full-rate and increase the available diversity gain provided by earlier two relay approaches. The problem of imperfect synchronization between relay nodes is overcome by applying a parallel interference cancellation (PIC) detection scheme at the destination node. Bit error rate simulations confirm the advantages of the proposed methodology for a range of levels of imperfect synchronization and that only a small number of iterations is necessary within the PIC detectio

    Application and Performance Analysis of DSDV Routing Protocol in ad-hoc Wireless Sensor Network with Help of NS2 Knowledge

    Get PDF
    Wireless Sensor Networks (WSNs) are characterized by multi-hop wireless connectivity, frequently changing network topology and need for efficient routing protocols. The purpose of this paper is to evaluate performance of routing protocol DSDV in wireless sensor network (WSN) scales regarding the End-to-End delay and throughput PDR with mobility factor .Routing protocols are a critical aspect to performance in mobile wireless networks and play crucial role in determining network performance in terms of packet delivery fraction, end-to-end delay and packet loss. Destination-sequenced distance vector (DSDV) protocol is a proactive protocol depending on routing tables which are maintained at each node. The routing protocol should detect and maintain optimal route(s) between source and destination nodes. In this paper, we present application of DSDV in WSN as extend to our pervious study to the design and implementation the details of the DSDV routing protocol in MANET using the ns-2 network simulator. also, the performance of DSDV protocol in sensor network of randomly distributed mobile nodes with mobile source and sink nodes is investigated for MAC IEEE802.15.4 network by ns-2 simulator.

    A parallelized database damage assessment approach after cyberattack for healthcare systems

    Get PDF
    In the current Internet of things era, all companies shifted from paper-based data to the electronic format. Although this shift increased the efficiency of data processing, it has security drawbacks. Healthcare databases are a precious target for attackers because they facilitate identity theft and cybercrime. This paper presents an approach for database damage assessment for healthcare systems. Inspired by the current behavior of COVID-19 infections, our approach views the damage assessment problem the same way. The malicious transactions will be viewed as if they are COVID-19 viruses, taken from infection onward. The challenge of this research is to discover the infected transactions in a minimal time. The proposed parallel algorithm is based on the transaction dependency paradigm, with a time complexity O((M+NQ+Nˆ3)/L) (M = total number of transactions under scrutiny, N = number of malicious and affected transactions in the testing list, Q = time for dependency check, and L = number of threads used). The memory complexity of the algorithm is O(N+KL) (N = number of malicious and affected transactions, K = number of transactions in one area handled by one thread, and L = number of threads). Since the damage assessment time is directly proportional to the denial-of-service time, the proposed algorithm provides a minimized execution time. Our algorithm is a novel approach that outperforms other existing algorithms in this domain in terms of both time and memory, working up to four times faster in terms of time and with 120,000 fewer bytes in terms of memory

    A Cross-Layer Location-Based Approach for Mobile-Controlled Connectivity

    Get PDF
    We investigate into the potentiality of an enhanced Power and Location-based Vertical Handover (PLB-VHO) approach, based on a combination of physical parameters (i.e., location and power attenuation information), for mobile-controlled connectivity across UMTS and WLAN networks. We show that the location information in a multiparameter vertical handover can significantly enhance communication performance. In the presented approach a power attenuation map for the visited area is built and kept updated by exploiting the information sharing of power measurements with other cooperating mobile devices inside the visited networks. Such information is then used for connectivity switching in handover decisions. The analytical model for the proposed technique is first presented and then compared with a traditional Power-Based approach and a simplified Location-Based technique. Simulation results show the effectiveness of PLB-VHO approach, in terms of (i) network performance optimization and (ii) limitation of unnecessary handovers (i.e., mitigation ofping-pong effect)

    CSI-based fingerprinting for indoor localization using LTE Signals

    Get PDF
    Abstract This paper addresses the use of channel state information (CSI) for Long Term Evolution (LTE) signal fingerprinting localization. In particular, the paper proposes a novel CSI-based signal fingerprinting approach, where fingerprints are descriptors of the "shape" of the channel frequency response (CFR) calculated on CSI vectors, rather than direct CSI vectors. Experiments have been carried out to prove the feasibility and the effectiveness of the proposed method and to study the impact on the localization performance of (i) the bandwidth of the available LTE signal and (ii) the availability of more LTE signals transmitted by different eNodeB (cell diversity). Comparisons with other signal fingerprinting approaches, such as the ones based on received signal strength indicator or reference signal received power, clearly show that using LTE CSI, and in particular, descriptors as fingerprints, can bring relevant performance improvement
    corecore