781 research outputs found

    Smart hierarchical WiFi localization system for indoors

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014En los últimos años, el número de aplicaciones para smartphones y tablets ha crecido rápidamente. Muchas de estas aplicaciones hacen uso de las capacidades de localización de estos dispositivos. Para poder proporcionar su localización, es necesario identificar la posición del usuario de forma robusta y en tiempo real. Tradicionalmente, esta localización se ha realizado mediante el uso del GPS que proporciona posicionamiento preciso en exteriores. Desafortunadamente, su baja precisión en interiores imposibilita su uso. Para proporcionar localización en interiores se utilizan diferentes tecnologías. Entre ellas, la tecnología WiFi es una de las más usadas debido a sus importantes ventajas tales como la disponibilidad de puntos de acceso WiFi en la mayoría de edificios y que medir la señal WiFi no tiene coste, incluso en redes privadas. Desafortunadamente, también tiene algunas desventajas, ya que en interiores la señal es altamente dependiente de la estructura del edificio por lo que aparecen otros efectos no deseados, como el efecto multicamino o las variaciones de pequeña escala. Además, las redes WiFi están instaladas para maximizar la conectividad sin tener en cuenta su posible uso para localización, por lo que los entornos suelen estar altamente poblados de puntos de acceso, aumentando las interferencias co-canal, que causan variaciones en el nivel de señal recibido. El objetivo de esta tesis es la localización de dispositivos móviles en interiores utilizando como única información el nivel de señal recibido de los puntos de acceso existentes en el entorno. La meta final es desarrollar un sistema de localización WiFi para dispositivos móviles, que pueda ser utilizado en cualquier entorno y por cualquier dispositivo, en tiempo real. Para alcanzar este objetivo, se propone un sistema de localización jerárquico basado en clasificadores borrosos que realizará la localización en entornos descritos topológicamente. Este sistema proporcionará una localización robusta en diferentes escenarios, prestando especial atención a los entornos grandes. Para ello, el sistema diseñado crea una partición jerárquica del entorno usando K-Means. Después, el sistema de localización se entrena utilizando diferentes algoritmos de clasificación supervisada para localizar las nuevas medidas WiFi. Finalmente, se ha diseñado un sistema probabilístico para seguir la posición del dispositivo en movimiento utilizando un filtro Bayesiano. Este sistema se ha probado en un entorno real, con varias plantas, obteniendo un error medio total por debajo de los 3 metros

    Fuzzy classifier ensembles for hierarchical WiFi-based semantic indoor localization

    Get PDF
    The number of applications for smartphones and tablets is growing exponentially in the last years. Many of these applications are supported by the so-called Location Based Services, which are expected to provide reliable real-time localization anytime and anywhere, no matter either outdoors or indoors. Even though outdoors world-wide localization has been successfully developed through the well-known Global Navigation Satellite System technology, its counterpart large-scale deployment indoors is not available yet. In previous work, we have already introduced a novel technology for indoor localization supported by a WiFi fingerprint approach. In this paper, we describe how to enhance such approach through the combination of hierarchical localization and fuzzy classifier ensembles. It has been tested and validated at the University of Edinburgh, yielding promising results.Ministerio de Economía y CompetitividadXunta de Galici

    Improving the Accuracy of Fuzzy Decision Tree by Direct Back Propagation with Adaptive Learning Rate and Momentum Factor for User Localization

    Get PDF
    AbstractMost prevailing availability of wireless networks has elevated an interest in developing a smart indoor environment by utilizing the hand held devices of the users. The user localization helps in automating the activities like automating switch on/off of the room lights, air conditioning etc., which makes the environment smart. Here, we consider locating the users as a pattern classification problem and use Fuzzy decision tree (FDT) as a knowledge discovery method to locate the users based on the wireless signal strength observed by their handheld devices. To increase the FDT accuracy and to achieve faster convergence, we came up with a novel strategy named Improved Neuro Fuzzy Decision Tree with an adaptive learning rate and momentum factor to optimize the parameters of FDT. The proposed approach can be used for any classification problem. From the results obtained, we observe that our proposed algorithm achieves better convergence and accuracy

    Hierarchical approach to enhancing topology-based WiFi indoor localization in large environments

    Get PDF
    Traditionally, WiFi has been used for indoors localization purposes due to its important advantages. There are WiFi access points in most buildings and measuring WiFi signal is free of charge even for private WiFi networks. Unfortunately, it also has some disadvantages: when extending WiFi-based localization systems to large environments their accuracy decreases. This has been previously solved by manually dividing the environment into zones. In this paper, an automatic partition of the environment is proposed to increase the localization accuracy in large environments. To do so, a hierarchical partition of the environment is performed using K-Means and the Calinski-Harabasz Index. Then, different classification techniques have been compared to achieve high localization rates. The new approach is tested in a real environment with more than 200 access points and 133 topological positions, obtaining an overall increase in the accuracy of approximately 10% and reducing the error to the real position to 2.45 metres.Ministerio de Ciencia e InnovaciónUniversidad de AlcaláPrincipado de Asturia

    A survey of fuzzy logic in wireless localization

    Get PDF

    An Intelligent Management System for Hybrid Network between Visible Light Communication and Radio Frequency

    Get PDF
    This thesis investigates the challenges and potential solutions associated with hybrid Visible Light Communication (VLC) and Radio Frequency (RF) systems for indoor network environments. The rapid development of VLC technology, characterized by its high data rates, energy efficiency, and inherent security features, offers promising opportunities to complement RF networks in providing seamless connectivity and improved performance. However, integrating VLC and RF technologies effectively requires addressing a range of research and engineering challenges, including network coexistence, handover mechanisms, resource allocation, localization, and standardization.We begin by conducting a comprehensive literature review encompassing existing research, technologies, and solutions related to hybrid VLC/RF architectures, handover management, indoor localization techniques, and the challenges faced by these systems. This background provides a solid foundation for understanding the current state-of-the-art and identifying research gaps in the field of hybrid VLC/RF networks.Next, we propose a novel hybrid network architecture that integrates VLC and RF communication systems to enhance their strengths while mitigating their weaknesses. We discuss various types of hybrid VLC/RF architectures found in the literature and present our proposed design, which addresses the identified challenges through innovative strategies and mechanisms.To improve system performance in our hybrid system, we develop an enhanced priority feedback channel that optimizes the traffic priority based on user preferences and network conditions. This approach minimizes service disruptions, reduces latency, and maintains user Quality of Experience (QoE)\nomenclature{QoE}{Quality of Experience}.Furthermore, we introduce a novel intelligent management system architecture tailored for hybrid VLC/RF networks. This system employs advanced algorithms and techniques to optimize resource allocation, load balancing, localization, and handover management, ensuring efficient operation and seamless connectivity.We evaluate the performance of our proposed solutions through extensive simulations and testbed experiments, considering different network scenarios and metrics. The results demonstrate significant improvements in terms of data rate, latency, handover success rate, and localization accuracy, validating the effectiveness of our proposed architecture and management system.Lastly, we explore several real-world applications and case studies of our intelligent management system in various indoor environments, such as retail stores, offices, and hospitals. These examples illustrate the practical benefits of our solution in enhancing customer experiences, optimizing operational efficiency, facilitating targeted marketing, and improving energy management.In conclusion, this thesis contributes to the advancement of hybrid VLC/RF networks by proposing an innovative architecture and intelligent management system that address the key challenges faced by these systems in indoor environments. The findings and solutions presented in this work provided the backbone for the future research and development efforts aimed at fully harnessing the potential of VLC technology in combination with RF networks

    A fuzzy logic approach to localisation in wireless local area networks

    Get PDF
    This thesis examines the use and value of fuzzy sets, fuzzy logic and fuzzy inference in wireless positioning systems and solutions. Various fuzzy-related techniques and methodologies are reviewed and investigated, including a comprehensive review of fuzzy-based positioning and localisation systems. The thesis is aimed at the development of a novel positioning technique which enhances well-known multi-nearest-neighbour (kNN) and fingerprinting algorithms with received signal strength (RSS) measurements. A fuzzy inference system is put forward for the generation of weightings for selected nearest-neighbours and the elimination of outliers. In this study, Monte Carlo simulations of a proposed multivariable fuzzy localisation (MVFL) system showed a significant improvement in the root mean square error (RMSE) in position estimation, compared with well-known localisation algorithms. The simulation outcomes were confirmed empirically in laboratory tests under various scenarios. The proposed technique uses available indoor wireless local area network (WLAN) infrastructure and requires no additional hardware or modification to the network, nor any active user participation. The thesis aims to benefit practitioners and academic researchers of system positioning

    Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort

    Get PDF
    Abstract Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effortThis work has been funded by TIN2014-56633-C3-3-R (ABS4SOWproject) from the Ministerio de Economía y Competitividad and the University of Alcalá Postdoctoral Research program (30400M000.541A.640.17)S

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions
    corecore