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Traditionally, WiFi has been used for indoors localization purposes due
to its important advantages. There are WiFi access points in most build-
ings and measuring WiFi signal is free of charge even for private WiFi
networks. Unfortunately, it also has some disadvantages: when extend-
ing WiFi-based localization systems to large environments their accu-
racy decreases. This has been previously solved by manually dividing
the environment into zones. In this paper, an automatic partition of the
environment is proposed to increase the localization accuracy in large
environments. To do so, a hierarchical partition of the environment is
performed using K-Means and the Caliński-Harabasz Index. Then, dif-
ferent classification techniques have been compared to achieve high
localization rates. The new approach is tested in a real environment with
more than 200 access points and 133 topological positions, obtaining an
overall increase in the accuracy of approximately 10% and reducing the
mean error to 2.45 metres.

Keywords: WiFi indoor localization, large environments, learning algorithms,

clustering, classification

1 INTRODUCTION

Recent years have seen a rapid growth of smartphone and tablet applica-

tions [1]. Many of these applications make use of the localization capabili-

ties of these devices and are emerging in very different areas: medical staff
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and equipment localization [2, 3], medical assistance [4], inventory control

at warehouses [5], robotics [6], assistance and guidance for disabled peo-

ple [7], guidance at museums or public buildings [8], security [3], etc. All

these applications require accurate indoor localization for the strategic plan-

ning of the navigation or to provide guidance to the final target. Traditionally,

this localization has been carried out through GPS [9] which provides accu-

rate localization when working outdoors. Unfortunately, satellite signals are

attenuated and scattered by roofs, walls and other elements making indoor

GPS localization not suitable. Thus, providing indoor localization requires

the use of other technologies.

Different technologies are being used to provide indoor localization:

infrared [10], ultrasound [11], laser [12], computer vision [13], radio fre-

quency (RF) [14, 15] or cellular communication [16]. Among them, WiFi

technology is arising as one of the most popular. The use of WiFi for indoor

localization is motivated by its two main advantages: WiFi is widely deployed

in almost every building and measuring the WiFi signal is free of charge even

for private networks. Unfortunately, it has also some disadvantages: although

the Received Signal Strength (RSS) decays logarithmically on free space, the

multipath effect, obstacles and the small scale effect [17] make the RSS a

complex function of the distance. In addition, the presence of people heav-

ily affects the RSS absorbing part of the electromagnetic signal [18]. As a

result, it is very difficult to model the RSS in indoor environments and prop-

agation models, which have been proved very effective tools outdoors, are

not generalizable and hard to adjust indoors. For this reason, most of indoor

WiFi localization systems rely on a pre-learned set of fingerprints to infer the

position of the device.

Generally, this kind of systems provide localization using a map as ref-

erence. Two map representations have been traditionally used: discrete and

continuous. On a discrete map representation, the environment is divided into

discrete positions and the localization is obtained in an estimation stage com-

paring the measures with a previously stored pattern (known as radio map or

fingerprint database) [14, 19]. When the discrete positions are selected based

on their topological significance it is called a topological representation. On a

continuous map representation the environment is considered continuous and

the position is obtained updating a probabilistic distribution of the position

through action and propagation models as in particle filters [20, 21]. Contin-

uous maps are more often used in robotics where the actuation and motion

models are known, although some attempts have been made to model the

human movement using Inertial Measurement Units as described in [22].

Topological representations [23–25] discretise the environment using

nodes that correspond to a differentiating feature of the environment. These

approaches have been especially useful in WiFi-based localization systems

where no movement models are available and topological information is more
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relevant than metric one (e.g. been at the doorway of office 15 versus being

at coordinates x,y,z).

In a previous work, a WiFi-based localization system that uses a fuzzy

rule-based classifier [26,27] was designed to estimate the topological position

of WiFi devices in indoors [28]. Nevertheless, even though the localization

system reported good performance dealing with small sized environments, a

decrease in the performance has been observed when the number of positions

and Access Points (APs) increased.

In this paper, the challenge of designing a WiFi localization system

for large environments, crowded with APs not deployed for localization

purposes, will be faced. This kind of environments have been previously

neglected in the literature, where most of the proposed systems have been

tested in small environments with a low number and a very uniform distribu-

tion of APs. This paper extends our previous work by automatically creating

a hierarchical partition of the environment to simplify the training and clas-

sifying stages at the cost of increasing the number of required classifiers,

but reducing the complexity of each one of them. In this new approach the

system will have to determine in which of the partitions the device is local-

ized to perform the final localization in a later stage. The effectiveness of this

hierarchical approach was previously tested with a manual partition of a sim-

ple environment in [29] with performance improvements of 5% in the final

localization accuracy. In this new approach the well-known K-Means clus-

tering algorithm [30] is used along with the Caliński-Harabasz Index [31]

to automatically create a hierarchical partition of the environment. This new

hierarchical approach has been tested in a real multi-floor environment. It

has reported a higher improvement than the system using manual partitions,

without the need of human intervention.

The remaining of the paper is as follows. Section 2 describes the architec-

ture of the system. Results and discussion are addressed in Section 3. Finally,

Section 4 highlights the main conclusions and future work.

2 HIERARCHICAL WIFI-BASED LOCALIZATION SYSTEM

This section presents a description of the proposed localization system. The

main objective is to achieve high accuracy even when working in large envi-

ronments. To do so, the system will create a hierarchical partition of the envi-

ronment with the objective of improving the localization task by reducing the

number of positions in each one of the partitions. First, the hierarchical par-

tition of the environment will be created using a clustering algorithm. Then,

different classifiers will be trained to localize the device through the different

levels of the hierarchy. This way, the device will be first located inside the

higher subzones, to finally decide the position of the device inside the lower

ones. A block diagram of the entire system is shown in Figure 1.
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FIGURE 1

General architecture of the system.

This block diagram will be thoroughly explained in the next subsections.

First, we will describe both training and localization stages. Then, the used

learning algorithms will be briefly presented.

2.1 Training stage

The goal is to obtain a hierarchical tree by dividing the environment into

zones. For each zone, a specific classifier will be trained to distinguish

between the different zones (zone classifiers) and, in the lowest level of each

one of the tree branches, one classifier will be trained to distinguish between

the different positions (position classifiers). The training stage consists of the

following steps:

� Visibility dataset generation: First, RSS is measured for every position of
the environment and stored in RSSTRAINDATA (Equation 1).

RSSTRAINDATA =
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where Z is the number of APs, Y is the number of positions and T is the

number of samples collected per position.

The division of the environment is performed using the so-called visibility.

The visibility of an AP (APi ) at a certain position (Pj ) is defined by

Equation 2:

VISAPi
(Pj ) =

1

T

T
∑

t=1

di j (t), di j (t) =

{

1 , RSSAPi
(Pj , t) > RSSthres

0 , otherwise
(2)

V I SAPi
(Pj ) is computed as the percentage of samples that were collected

with RSSAPi
(Pj , t) greater than a predefined threshold RSSthres . Currently,

this threshold is set to the minimum value, this way the sample t is taken

into account for visibility purposes for any RSSAPi
(Pj , t). In the future,

this threshold could be used to decrease the visibility of those APs with

low RSS.

Once the visibility of all APs for each position is evaluated, the visibility

dataset (VISTRAINDATA) is generated as described by Equation 3:

VISTRAINDATA =

⎛

⎜

⎜

⎜

⎝

V I SAP1
(P1) V I SAP2

(P1) . . . V I SAPZ
(P1)

V I SAP1
(P2) V I SAP2

(P2) . . . V I SAPZ
(P2)

...
...

...

V I SAP1
(PY ) V I SAP2

(PY ) . . . V I SAPZ
(PY )

⎞

⎟

⎟

⎟

⎠

(3)

� Automatic environment partition: The environment is automatically

divided into zones using K-Means clustering algorithm [30] and the

Caliński-Harabasz Index [31] over VISTRAINDATA. Figure 2(a) depicts

the flow diagram of the applied procedure. The environment is iteratively

divided into zones, in a hierarchical partition that can be represented by a

tree (Figure 2(b)). Each zone Zk is divided into k new sub-zones through

K-Means, being the value of k determined by the Caliński-Harabasz Index.

A zone is no further divided if it has less than 8 positions. This threshold

has been experimentally selected.
� Zone classifiers training: Once the environment is divided into hierarchi-

cal zones, a classifier is built over the train data with the aim of distin-

guishing between the different zones belonging to the same level (squares

in Figure 2(b)). Three classification algorithms (K-NN [32], FURIA [33]

and SVM [34]) have been tested as classifiers.
� Position classifiers training: Another classifier is trained for each zone

in the lowest level of the tree branches. These classifiers find the closest
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(a) Partition diagram. (b) Environment division tree.

FIGURE 2

Partition procedure.

topological position to the current location among all positions belonging

to the lower zones (circles in Figure 2(b)). Again, K-NN, FURIA and SVM

are used as classifiers.

2.2 Localization Stage

In this stage the WiFi device will obtain its current position using the RSS

from all visible APs. The set of classifiers trained in the previous section

are now used to hierarchically localize the device, first in the higher zones

and, at the end, determining the position of the device in the lower ones. The

localization stage comprises two steps as shown in Figure 1:

� Measurement: Using a WiFi device, 4 RSS samples are collected from

every AP and an averaged RSS sample is generated. This value has been

experimentally selected from the analysis carried out in [28].
� Classification: The averaged sample is classified through the different lev-

els of the hierarchy previously built in the training stage. Starting from

the first level of zone classifiers, the system finds out the zone the sample

belongs to. Then, the sample is classified again using the second level of

classifiers corresponding to the zone previously identified. This procedure

continues until the lowest level in the tree branch is reached. At the end,

the estimated position of the WiFi device is determined by the position

classifier associated to the lowest zone identified in the previous step.

2.3 Learning Algorithms

This section provides a brief revision of the algorithms tested in our system.
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� Clustering: K-Means clustering algorithm [30] along with the Caliński-

Harabasz Index [31], also known as Variance Ratio Criterion (VRC), is

used to obtain the hierarchical partition of the environment. The objective

is to create a partition of the environment maximizing intra-cluster sim-

ilarity. Setting the right number of clusters is a key task. To do so, the

VRC performs a quantitative evaluation of clusters looking for compact

and well-separated clusters within the feature space.

Caliński-Harabasz Index has been chosen since it is one of the criteria pro-

viding the highest hit rates while having the lowest computational com-

plexity as stated in the study carried out in [35].
� Classification: As explained in Sections 2.1 and 2.2, three different kinds

of classifiers have been tested to classify the RSS measures into zones at

each level and positions at the lowest level: Instance-based, rule induction

and kernel-based classifiers.

Among all existent instance-based classifiers, K Nearest Neighbours (K-

NN) [32] was selected because it is usually used as baseline to compare

with indoor WiFi localization systems [36,37]. K-NN was used in RADAR

[14] which is world-wide recognized as one of the pioneers in the research

field of WiFi indoor localization.

Rule induction classifiers have been proved as a powerful tool to deal

with noisy data [38]. We have selected the Fuzzy Unordered Rule Induction

Algorithm (FURIA) [33]. It is a fuzzy modelling method which extends the

well-known RIPPER algorithm [39], a state-of-the-art rule learner, while

preserving its advantages, such as simple rule sets.

Finally, we have chosen the Support Vector Machines (SVM) [34] as the

most outstanding kernel-based classifier.

The classifiers were implemented using K-NN, FURIA and SVM algo-

rithm versions provided by the data mining tool Weka [40, 41].

3 EXPERIMENTAL ANALYSIS

The hierarchical approach has been tested in a complex real-world environ-

ment. The experiments have been performed on the west wing of the Poly-

technic School at the University of Alcalá (UAH) (Figure 3). The environ-

ment is made up of four floors with a surface of 2400m2 each. In our exper-

iments we have detected 216 APs that were deployed over the environment

with the aim of providing Internet access to the students but disregarding

localization purposes. Notice that, in some related work the APs are delib-

erately placed for localization purposes what makes easier the localization

task. Our system performs the localization using the RSS from the APs with

no prior knowledge about their physical location. We have considered 133
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(a) Third Floor (30 Positions). (b) Second Floor (41 Positions).

(c) First Floor (31 Positions). (d) Ground Floor (31 Positions).

FIGURE 3

UAH test-bed environment.

significant topological positions (distributed over the four floors) represented

by circled numbers in Figure 3.

With the aim of evaluating the scalability of our proposal two different

scenarios have been tested. Table 1 summarizes the main characteristics of

both of them. The tests have been carried out with a laptop computer using its

internal Wireless device acquiring 1 sample per second. Two datasets (train

and test) have been collected on different days, one week apart, under real

conditions. Each dataset has 60 samples per position and per AP.

3.1 Simple scenario. Small test-bed environment

To illustrate the simple scenario division obtained by the proposed system

an environment division tree has been used (Figure 4). The horizontal dotted

lines show the division between the different levels, the squares represent the



INDOOR LOCALIZATION 229

Scenario Floors N Positions Visible APs

Simple 3rd Floor 30 105

Complete Four floors 133 216

TABLE 1

Main characteristics of the scenarios used to test the hierarchical approach.

zone classifiers and the circles denote the position classifiers, as explained

in Section 2.1, Figure 2(b). The number under the circles correspond to the

number of positions of the corresponding zone. Finally, the lines joining the

nodes represent the hierarchy between the different zones, showing the num-

ber of subzones in which a zone is divided. As can be seen, the scenario has

been divided in 4 different levels, obtaining 6 final zones with 3 to 7 positions

each.

After dividing the environment, the zone and position classifiers are

trained for each zone. Then, the test data are classified through the differ-

ent levels until an inferred position is obtained for each sample.

Figure 5 summarizes the results achieved by the proposed system. The

Y axis represents the accuracy of the system, while the X axis represents

the number of levels in which the environment is divided. “1 Level” means

all positions have been classified using only one classifier, without dividing

the environment, while the maximum number of levels means that the whole

hierarchical partition, shown in Figure 4, has been used for the classifica-

tion steps. The results corresponding to the intermediate number of levels are

shown just for comparison purposes and are obtained stopping the division

process once the corresponding level is reached.

Level 1

Level 2

Level 3

Level 4

ALL

Z1 Z2

Z1

3 5 7 5

7 3

FIGURE 4

Simple scenario division (30 positions in the 3rd floor).
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FIGURE 5

Results in the simple scenario (30 positions in the 3rd floor).

Four pictures are plotted, each one illustrating different approaches. On

the one hand, the two pictures on top (5(a) and 5(b)) depict the results when

using the RSS alone. On the other hand, the two pictures at the bottom (5(c)

and 5(d)) correspond to the case when the RSS and the Visibility are used.

The pictures on the left side of the figure (5(a) and 5(c)) show the results

using the same classifier (FURIA, K-NN or SVM) at every level of the clas-

sification hierarchy, while the pictures on the right side of the figure (5(b)

and 5(d)) show the results using K-NN in all the zone classifiers and FURIA,

K-NN and SVM only at the last classification level (position classifiers).

As can be seen in Figure 5, accuracy increases with the number of lev-

els, except using the FURIA classifier. Accuracy remains almost the same

with the first division of the environment into two levels, but it significantly

increases with the next hierarchical partition (three levels). Finally, using

four levels slightly increases accuracy. No matter the selected classification
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Single Classifier Hierarchical Classification Improvement

FURIA

RSS: 58.22%
SCAL: 59.56% 1.34%

ZCK-NN: 64.89% 6.67%

RSS + Visibility: 58.00%
SCAL: 57.11% -0.89%

ZCK-NN: 62.44% 4.44%

K-NN

RSS: 63.78%
SCAL: 77.56% 13.78%

ZCK-NN: 77.56% 13.78%

RSS + Visibility: 62.44%
SCAL: 71.56% 9.12%

ZCK-NN: 71.56% 9.12%

SVM

RSS: 65.33%
SCAL: 85.11% 19.78%

ZCK-NN: 86.44% 21.11%

RSS + Visibility: 65.33%
SCAL: 82.00% 16.67%

ZCK-NN: 82.67% 17.34%

TABLE 2

Summary of results in the simple scenario (30 positions in the 3rd Floor).

technique, adopting the hierarchical approach leads to an improvement of the

accuracy versus the “1 Level” except for one case (FURIA+FURIA).

Using the RSS (Figures 5(a) and 5(b)) achieve better results than using the

RSS and the Visibility (Figures 5(c) and 5(d)) in all the cases. K-NN and spe-

cially SVM significantly increase accuracy using the hierarchical approach

and both clearly overcome FURIA. Using K-NN in the zone classifiers (Fig-

ure 5(b) and 5(d)), FURIA is able to get better results but they are still worse

than those obtained by K-NN and SVM.

Table 2 summarizes the results achieved in the simple scenario when con-

sidering the different algorithms and configurations.

The results labelled as “Single Classifier” are the results in the case of clas-

sifying all the positions without dividing the environment. The column enti-

tled as “Hierarchical Classification” shows the results achieved after apply-

ing the proposed hierarchical approach (all the four levels). SCAL stands for

“Same Classifier for All Levels” and it reports the accuracy using the same

classifier (FURIA, K-NN or SVM) at every level. ZCK-NN means “Zone

Classifiers using K-NN” and it reports the accuracy using K-NN in all the

zone classifiers and FURIA, K-NN or SVM (the one appearing in the first

column) in the position classifiers at the lowest level of the hierarchy. The

last column, “Improvement”, gives the difference between the two previous

columns, which is the increase (or decrease) in accuracy as result of apply-

ing the proposed hierarchical localization in contrast to the non-hierarchical

approach.

The following conclusions can be drawn after looking at Table 2:

� The hierarchical classification approach clearly overcomes the single clas-

sifier approach. In all cases, except considering FURIA using the RSS and
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the Visibility, there is an improvement. Moreover, no matter the selected

classification algorithm there is always at least one configuration yielding

a minimum improvement of 6%.
� The highest accuracy is obtained when using the RSS alone.
� With respect to FURIA and SVM, accuracy increases using K-NN in all

zone classifiers and FURIA or SVM only at the lowest level of the hierar-

chy (position classifiers) versus using FURIA or SVM in all the classifiers.

Such behaviour was expected since the environment was divided into zones

using K-Means, the “equivalent” clustering algorithm to K-NN.
� The highest accuracy (86.44%) and improvement (21.11%) are obtained

by SVM using the RSS, K-NN in all zone classifiers and SVM only at the

lowest level of the hierarchy (position classifiers).

Since reporting the accuracy expressed in terms of the misclassification

rate only may be misleading for the evaluation of localization systems, Fig-

ure 6 shows the Cumulative Distribution Function (CDF) along with the con-

fusion matrix for the configuration providing the highest accuracy. The CDF

(Figure 6(a)) shows an analysis of the distance to the real positions in the dif-

ferent levels of the hierarchical system. As can be seen, the error decreases

as the number of levels increases, obtaining 95% of the classified samples

with an error under 4 metres. The confusion matrix (Figure 6(b)) details the

predicted positions by the system related to the positions where the device

really was. Looking at the figure, it can be seen that most of the classifica-

tion errors occur within the nearest positions. Notice that, since we perform

a topology-based indoor localization, the minimum error in distance depends

on the minimum distance between the topological positions (2.25 metres in

this scenario).
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FIGURE 6

CDF and confusion matrix using ZCK-NN with SVM and RSS parameter. Simple scenario (30

positions in the 3rd floor).
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FIGURE 7

Complete scenario division (133 positions in the four floors).

Finally, the mean distance to the real position is 4.03 metres for the mis-

classified samples and 0.55 metres taking into account all (both correctly and

incorrectly classified) samples.

3.2 Complete scenario. Large test-bed environment

Figure 7 illustrates the environment division tree obtained by the proposed

hierarchical localization system in the complete scenario (all the four floors

depicted in Figure 3). As can be seen, the scenario has been divided in 5

different levels, obtaining 26 position zones with 2 to 8 positions each.

Figure 8 summarizes the results obtained by the proposed system. The for-

mat of this figure is the same as the one described for the simple scenario. The

Y axis represents the accuracy of the system, while the X axis represents the

number of levels in which the environment is divided (“1 Level” means the

environment has not been divided while “5 levels” means that the environ-

ment has been fully divided following the proposed hierarchical approach.

Four pictures are plotted, each one focusing on different learning algo-

rithms and datasets. On the one hand, the two pictures on top (8(a) and 8(b))

depict the results using the RSS alone. On the other hand, the two pictures at

the bottom (8(c) and 8(d)) correspond to the case when the RSS and the Visi-

bility are used. The pictures on the left side of the figure (8(a) and 8(c)) show

the results using the same classifier (FURIA, K-NN or SVM) at every level of

the classification hierarchy, while the pictures on the right side of the figure

(8(b) and 8(d)) show the results using K-NN in all the zone classifiers and

FURIA, K-NN and SVM at the last classification level (position classifiers).
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FIGURE 8

Results in the complete scenario (133 positions in the four floors).

As it can be appreciated in Figures 5 and 8, the general trend is the same,

accuracy increases with the number of levels. Although in some intermediate

levels accuracy decreases, at the end the final accuracy always goes up. Even

though, K-NN and SVM seem to work better than FURIA, it is worthy to note

that no matter the selected classification technique, adopting the hierarchical

approach yields to an accuracy improvement of at least 5% versus the case

labelled as “1 Level” (non-hierarchical approach).

Table 3 summarizes the accuracy results achieved in the complete scenario

using the different algorithms and configurations. The format of this table is

the same as the one described for Table 2 in the case of the simple scenario.

The following conclusions can be drawn after analysing Table 3:

� The hierarchical approach always overcomes the non-hierarchical one. In

all cases the improvement is positive and in most of them greater than 5%.
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Single Classifier Hierarchical Classification Improvement

FURIA

RSS: 46.22%
SCAL: 51.43% 5.21%

ZCK-NN: 51.68% 5.46%

RSS + Visibility: 46.22%
SCAL: 49.72% 3.50%

ZCK-NN: 53.03% 6.81%

K-NN

RSS: 50.48%
SCAL: 59.20% 8.72%

ZCK-NN: 59.20% 8.72%

RSS + Visibility: 54.44%
SCAL: 61.15% 6.71%

ZCK-NN: 61.15% 6.71%

SVM

RSS: 59.25%
SCAL: 69.92% 10.67%

ZCK-NN: 66.42% 7.17%

RSS + Visibility: 58.75%
SCAL: 67.92% 9.17%

ZCK-NN: 67.87% 9.12%

TABLE 3

Summary of results in the complete scenario (133 positions in the four floors).

� Using the RSS and the Visibility the accuracy is higher than using the RSS

alone when using K-NN in all zone classifiers and FURIA, K-NN or SVM

only at the lowest level of the hierarchy (position classifiers) no matter

the selected classifier. However, the highest improvement and accuracy is

reached using the RSS alone (10.67% and 69.92%).
� Results are similar when using K-NN in all zone classifiers and FURIA, K-

NN or SVM only at the lowest level of the hierarchy versus using FURIA,

K-NN or SVM in all the classifiers. The FURIA results are slightly better

using K-NN in all zone classifiers while the SVM accuracy is higher using

SVM in all the classifiers.
� The highest accuracy (69.92%) and improvement (10.67%) are obtained

by using SVM in all the classifiers and the RSS alone.

Figure 9 shows the CDF along with the confusion matrix for the config-

uration providing the highest accuracy. As can be seen looking at the CDF

(Figure 9(a)), the distance to the real position decreases as the number of

levels increases, obtaining 95% of the classified samples with an error under

9 metres. On the other hand, the confusion matrix (Figure 9(b)) shows that,

although the distance error seems to be high, most of the classification errors

occur within the nearest positions. It is important to highlight that, since we

perform a topology-based indoor localization, the distance error depends on

the minimum distance between the topological positions (2.25 metres in this

scenario).

The mean distance to the real position is 7.30 metres for the misclassified

samples and 2.45 metres taking into account all (both correctly and incor-

rectly classified) samples.
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FIGURE 9

CDF and confusion matrix using SCAL with SVM and RSS parameter. Complete scenario (133

positions in the four floors).

It is important to remark that this scenario is larger than the previous one.

In the simple scenario there are only 30 positions placed in the same floor

while in the complete scenario there are 133 positions distributed over four

different floors. However, even though the complexity of the problem has

been increased (the number of positions is more than four times bigger), the

hierarchical approach is still able to yield good results, achieving an accu-

racy close to 70%. This fact proves that the proposed hierarchical WiFi-based

localization system works properly in large environments.

Finally, Figure 10 shows a comparison of the accuracy and mean error

variation with the number of positions using the hierarchical approach versus

using a single classifier (no environment division).
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FIGURE 10

Accuracy and mean error variation with the number of positions. Single classifier vs. hierarchical

approach using SCAL with SVM and RSS parameter.
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System Accuracy (%) Mean error (m)

Hierarchical system using SVM 69.92% 2.45 m

RADAR [14] 50.48% 3.55 m

SAM-based system [42] - 2.12 m

TABLE 4

Comparison of results achieved by different systems.

3.3 Comparing the proposed method with others in the literature

In this section, we will compare the results obtained by the proposed hierar-

chical system, the RADAR system [14] and the SAM-based (Smoothing and

Mapping) system proposed in [42]. The RADAR system is an in-building

user location system based on a KNN approach that has been traditionally

used as baseline for WiFi localization algorithms. While the first two are

fingerprint-based systems, the third one is a propagation model-based system

that makes use of a robot odometry including a motion model. Therefore,

this last system is expected to achieve better results thanks to the use of the

motion information from the robot.

Table 4 shows the results obtained by the three systems on the UAH envi-

ronment. RADAR and the hierarchical approach were tested using the same

datasets, while the SAM-based system was tested on the same environment

but with a different dataset. As can be seen, the proposed system clearly over-

comes the RADAR system improving its accuracy about a 19% and reducing

the mean error around a 30%. The SAM-based system achieved a mean error

of 2.12 metres using a continuous map representation and a movement model

to locate a robot. As explained before, both systems are not directly compa-

rable since they address completely different problems, but the mean error

achieved by the SAM-based system can be used as a reference of the mini-

mum expectable error without using a movement model and a tracking and

filtering algorithm.

4 CONCLUSIONS AND FUTURE WORK

This work has presented a generic method for the automatic environment

division into hierarchical zones with the aim of improving the accuracy of

topology-based WiFi localization systems in large environments. This hier-

archical approach simplifies the classification task, reducing the number of

outputs in the first level and the number of inputs and outputs in the fol-

lowing ones. With this approach the loss of accuracy when the number of

positions in the environment increases is reduced. As a result, the mean error

of the system is also reduced.
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The proposal was tested in a real-world environment considering two dif-

ferent scenarios. The first one was a quite simple but highly illustrative sce-

nario (of relatively small size), while the complete scenario was a much

larger environment. The aim of using two different scenarios was to show

how thanks to the proposed hierarchical approach our localization system

was able to yield very good results no matter the size of the test-bed environ-

ment under consideration. Thus, we have proved our proposal successfully

deals with indoor localization in large environments.

On the light of the results we can conclude that our proposal emerges as a

powerful tool. The highest accuracy was around 86% in the simple scenario

and it was slightly reduced in the complete scenario where it was around 70%.

In both cases, the best results were reported when considering the RSS and

SVM as position classifier at the lowest classification level of the hierarchy.

The accuracy improvement due to the hierarchical approach was around 21%

in the simple scenario and 11% in the complete scenario. Finally, 95% of the

samples were classified with a distance to the real position under 4 metres

getting a mean distance of 0.55 metres in the simple scenario, while in the

complete scenario 95% of the samples were classified with a distance to the

real position under 9 metres getting a mean distance of 2.45 metres. These

results outperform the standard RADAR (reporting mean error of 3.55m) but

they are also very competitive in comparison with a system performing prob-

abilistic localization including continuous map representation and a move-

ment model which is expected to yield the highest accuracy (reporting mean

error of 2.12m).

It is important to highlight that it is not necessary to know where the APs

are located to deploy the localization system. This aspect is especially inter-

esting regarding its deployment in new unknown environments. Moreover,

since the localization is performed directly on the device, the system can be

safely used without dealing with privacy issues.

Moreover, we have proved the goodness of the proposed hierarchi-

cal localization approach even though we considered only basic well-

established algorithms for each involved task (clustering, classification, and

so on).

In the future, we will explore other more advanced classification tech-

niques, for example the fuzzy rule-based classifier previously designed in

[28] or a multiclassifier [43] in combination with our hierarchical approach.

In addition, alternative and more advanced methods for finding out an optimal

partition of the environment will be further analysed [44]. Finally, a proce-

dure for selecting some of the APs will be tested. This AP selection may

be made according to the visibility criteria introduced in this work paying

attention to the top APs with the highest RSS.
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