331 research outputs found

    Securing Fog Federation from Behavior of Rogue Nodes

    Get PDF
    As the technological revolution advanced information security evolved with an increased need for confidential data protection on the internet. Individuals and organizations typically prefer outsourcing their confidential data to the cloud for processing and storage. As promising as the cloud computing paradigm is, it creates challenges; everything from data security to time latency issues with data computation and delivery to end-users. In response to these challenges CISCO introduced the fog computing paradigm in 2012. The intent was to overcome issues such as time latency and communication overhead and to bring computing and storage resources close to the ground and the end-users. Fog computing was, however, considered an extension of cloud computing and as such, inherited the same security and privacy challenges encountered by traditional cloud computing. These challenges accelerated the research community\u27s efforts to find practical solutions. In this dissertation, we present three approaches for individual and organizational data security and protection while that data is in storage in fog nodes or in the cloud. We also consider the protection of these data while in transit between fog nodes and the cloud, and against rogue fog nodes, man-in-the-middle attacks, and curious cloud service providers. The techniques described successfully satisfy each of the main security objectives of confidentiality, integrity, and availability. Further we study the impact of rogue fog nodes on end-user devices. These approaches include a new concept, the Fog-Federation (FF): its purpose to minimize communication overhead and time latency between the Fog Nodes (FNs) and the Cloud Service Provider (CSP) during the time the system is unavailable as a rogue Fog Node (FN) is being ousted. Further, we considered the minimization of data in danger of breach by rogue fog nodes. We demonstrate the efficiency and feasibility of each approach by implementing simulations and analyzing security and performance

    Private Actors, Corporate Data and National Security: What Assistance Do Tech Companies Owe Law Enforcement?

    Full text link
    When the government investigates a crime, do citizens have a duty to assist? This question was raised in the struggle between Apple and the FBI over whether the agency could compel Apple to defeat its own password protections on the iPhone of one of the San Bernardino shooters. That case was voluntarily dismissed as moot when the government found a way of accessing the data on the phone, but the issue remains unresolved. Because of advances in technology, software providers and device makers have been able to develop almost impenetrable protection for their customersā€™ information, effectively locking law enforcement out of accounts and devices, even when armed with a search warrant. Most privacy watchdogs, understandably shaken by Edward Snowdenā€™s revelations of NSA spying, argue that this is an unadulterated good. The prosecutorial view is that this is an unprecedented interference with lawful investigations. There is no question that the companies fashioning themselves as champions of privacy benefit financially from this position. Apple has openly admitted in court filings that complying with court orders to assist in the execution of search warrants could ā€œsubstantially tarnish Appleā€™s brand.ā€ But while Apple may bear some responsibility for creating a system that it could not access itself, does that mean they should be statutorily tasked with undoing it? Current statutory law, in particular the Communications Assistance for Law Enforcement Act (CALEA), does not cover the encrypted information on physical devices, or information companiesā€™ responsibilities to decrypt it. This Essay takes the question of whether CALEA should be amended as a starting point for a broader exploration of what assistance the government can justly ask of its citizens. There are strong arguments to be made that such obligations would not be reasonable, or that there should be a zone of privacy that the government cannot access. This would support a system in which some warrants are ineffectual. But if the functional impossibility of execution of these warrants is just the byproduct of a corporate strategy, ā€œthemā€™s the breaksā€ seems like an insufficient justification

    Private Communication Detection via Side-Channel Attacks

    Get PDF
    Private communication detection (PCD) enables an ordinary network user to discover communication patterns (e.g., call time, length, frequency, and initiator) between two or more private parties. Analysis of communication patterns between private parties has historically been a powerful tool used by intelligence, military, law-enforcement and business organizations because it can reveal the strength of tie between these parties. Ordinary users are assumed to have neither eavesdropping capabilities (e.g., the network may employ strong anonymity measures) nor the legal authority (e.g. no ability to issue a warrant to network providers) to collect private-communication records. We show that PCD is possible by ordinary users merely by sending packets to various network end-nodes and analyzing the responses. Three approaches for PCD are proposed based on a new type of side channels caused by resource contention, and defenses are proposed. The Resource-Saturation PCD exploits the resource contention (e.g., a fixed-size buffer) by sending carefully designed packets and monitoring different responses. Its effectiveness has been demonstrated on three commercial closed-source VoIP phones. The Stochastic PCD shows that timing side channels in the form of probing responses, which are caused by distinct resource-contention responses when different applications run in end nodes, enable effective PCD despite network and proxy-generated noise (e.g., jitter, delays). It was applied to WiFi and Instant Messaging for resource contention in the radio channel and the keyboard, respectively. Similar analysis enables practical Sybil node detection. Finally, the Service-Priority PCD utilizes the fact that 3G/2G mobile communication systems give higher priority to voice service than data service. This allows detection of the busy status of smartphones, and then discovery of their call records by correlating the busy status. This approach was successfully applied to iPhone and Android phones in AT&T's network. An additional, unanticipated finding was that an Internet user could disable a 2G phone's voice service by probing it with short enough intervals (e.g., 1 second). PCD defenses can be traditional side-channel countermeasures or PCD-specific ones, e.g., monitoring and blocking suspicious periodic network traffic

    APCN: A Scalable Architecture for Balancing Accountability and Privacy in Large-scale Content-based Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.ā€ÆBalancing accountability and privacy has become extremely important in cyberspace, and the Internet has evolved to be dominated by content transmission. Several research efforts have been devoted to contributing to either accountability or privacy protection, but none of them has managed to consider both factors in content-based networks. An efficient solution is therefore urgently demanded by service and content providers. However, proposing such a solution is very challenging, because the following questions need to be considered simultaneously: (1) How can the conflict between privacy and accountability be avoided? (2) How is content identified and accountability performed based on packets belonging to that content? (3) How can the scalability issue be alleviated on massive content accountability in large-scale networks? To address these questions, we propose the first scalable architecture for balancing Accountability and Privacy in large-scale Content-based Networks (APCN). In particular, an innovative method for identifying content is proposed to effectively distinguish the content issued by different senders and from different flows, enabling the accountability of a content based on any of its packets. Furthermore, a new idea with double-delegate (i.e., source and local delegates) is proposed to improve the performance and alleviate the scalability issue on content accountability in large-scale networks. Extensive NS-3 experiments with real trace are conducted to validate the efficiency of the proposed APCN. The results demonstrate that APCN outperforms existing related solutions in terms of lower round-trip time and higher cache hit rate under different network configurations.National Key R&D Program of ChinaNational Science and Technology Major Project of the Ministry of Science and Technology of ChinaNational Natural Science Foundation of Chin

    Developing a Systematic Process for Mobile Surveying and Analysis of WLAN security

    Get PDF
    Wireless Local Area Network (WLAN), familiarly known as Wi-Fi, is one of the most used wireless networking technologies. WLANs have rapidly grown in popularity since the release of the original IEEE 802.11 WLAN standard in 1997. We are using our beloved wireless internet connection for everything and are connecting more and more devices into our wireless networks in every form imaginable. As the number of wireless network devices keeps increasing, so does the importance of wireless network security. During its now over twenty-year life cycle, a multitude of various security measures and protocols have been introduced into WLAN connections to keep our wireless communication secure. The most notable security measures presented in the 802.11 standard have been the encryption protocols Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). Both encryption protocols have had their share of flaws and vulnerabilities, some of them so severe that the use of WEP and the first generation of the WPA protocol have been deemed irredeemably broken and unfit to be used for WLAN encryption. Even though the aforementioned encryption protocols have been long since deemed fatally broken and insecure, research shows that both can still be found in use today. The purpose of this Masterā€™s Thesis is to develop a process for surveying wireless local area networks and to survey the current state of WLAN security in Finland. The goal has been to develop a WLAN surveying process that would at the same time be efficient, scalable, and easily replicable. The purpose of the survey is to determine to what extent are the deprecated encryption protocols used in Finland. Furthermore, we want to find out in what state is WLAN security currently in Finland by observing the use of other WLAN security practices. The survey process presented in this work is based on a WLAN scanning method called Wardriving. Despite its intimidating name, wardriving is simply a form of passive wireless network scanning. Passive wireless network scanning is used for collecting information about the surrounding wireless networks by listening to the messages broadcasted by wireless network devices. To collect our research data, we conducted wardriving surveys on three separate occasions between the spring of 2019 and early spring of 2020, in a typical medium-sized Finnish city. Our survey results show that 2.2% out of the located networks used insecure encryption protocols and 9.2% of the located networks did not use any encryption protocol. While the percentage of insecure networks is moderately low, we observed during our study that private consumers are reluctant to change the factory-set default settings of their wireless network devices, possibly exposing them to other security threats

    Analyzing the Privacy and Societal Challenges Stemming from the Rise of Personal Genomic Testing

    Get PDF
    Progress in genomics is enabling researchers to better understand the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. At the same time, the rapid cost drop of genome sequencing has enabled the emergence of a booming market for direct-to-consumer (DTC) genetic testing. Nowadays, companies like 23andMe and AncestryDNA provide affordable health, genealogy, and ancestry reports, and have already tested tens of millions of customers. How- ever, while this technology has the potential to transform society by improving peopleā€™s lives, it also harbors dangers as it prompts important privacy and societal concerns. In this thesis, we shed light on these issues using a mixed-methods approach. We start by conducting a technical investigation of the limitations on privacy-enhancing technologies used for testing, storing, and sharing genomic data. We rely on a structured methodology to contextualize and provide a critical analysis of the current state-of-the-art and we identify and discuss ten open problems faced by the community. We then focus on the societal aspects of DTC genetic testing by conducting two large-scale analyses of the genetic testing discourse focusing on both mainstream and fringe social networks, specifically, Twitter, Reddit, and 4chan. Our analyses show that DTC genetic testing is a popular topic of discussion on all platforms. However, these discussions often include highly toxic language expressed through hateful and racist comments and openly antisemitic rhetoric, often conveyed through memes. Overall, our findings highlight that the rise in popularity of this new technology is accompanied by several societal implications that are unlikely to be addressed by only one research field and rather require a multi-disciplinary approach

    On Communication Privacy in the Internet of Things

    Get PDF
    We tackle the problem of privacy breaching in IPv6 Low power Wireless Personal Area Networks (6LoWPAN)-based Internet of Things (IoT) networks where an attacker may be able to identify the communicating entities. We propose three contributions which are: (i) survey: we thoroughly expose the prime focus of the existing solutions on communication identifiers privacy in 6LoWPANs, clarifying the important information about: at which layer the solutions operate, based on which protocol, against which attack, for which application, based on simulations or real prototypes, which sensitive information or communication identifiers are protected, which Privacy-Preserving Technique (PPT) is used, and how long is the duration of the protection against privacy attacks. (ii) uOTA: based on the One Time Address (OTA) approach proposed for the traditional Internet, with a focus on low complexity, memory footprint, and energy consumption, uOTA uses just one IPv6 address to send or to receive one packet. (iii) ACFI which is based on: (1) anonymizing both IP and MAC addresses, as well as port number at the source host, using a random pseudonyming scheme, and (2) anonymizing the IP address and port number of the destination host, using a Tor-like network. We analysed the effect of the Tor entry node location on the performance of our solution in three different scenarios: the Tor entry node is located (a) inside the 6LoWPAN, (b) at the 6LBR gateway, or (c) completely outside the 6LoWPAN. Using Cooja simulator, we showed that our solutions (uOTA and ACFI) outperformed stateof-the-art solutions by making it more difficult to identify communication flows by improving the anonymity and unlinkability of the communicating entities without significantly affecting energy consumption, communication delay, and network bandwidth

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue
    • ā€¦
    corecore