8 research outputs found

    Automated Probabilistic Reconstruction of White-Matter Pathways in Health and Disease Using an Atlas of the Underlying Anatomy

    Get PDF
    We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy) and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls

    PRETERM BIRTH RESULTS IN ALTERATIONS IN NEURAL CONNECTIVITY AT AGE 16 YEARS

    Get PDF
    Very low birth weight preterm (PT) children are at high risk for brain injury. This study investigates microstructural differences in the brains of PT adolescents relative to term control subjects using diffusion tensor imaging (DTI), as well as studying their neurodevelopmental outcomes. Forty-four PT subjects (600 - 1250 grams birth weight) without neonatal brain injury and 41 term controls were evaluated at age 16 years with DTI, the Wechsler Intelligence Scale for Children - III (WISC), the Peabody Picture Vocabulary Test - Revised (PPVT), and the Comprehensive Test of Phonological Processing (CTOPP). PT subjects scored lower than term subjects on WISC full scale (p = 0.002), verbal (p = 0.027), and performance IQ tests (p = 0.001), as well as CTOPP phonological awareness (p = 0.005), but scored comparably to term subjects on PPVT and CTOPP Rapid Naming tests. PT subjects had lower fractional anisotropy (FA) values, suggestive of white matter disorganization, in multiple regions including bilateral uncinate fasciculi (left: p = 0.004; right: p = 0.002), bilateral external capsules (left: p \u3c 0.0001; right: p = 0.001), the splenium of the corpus callosum (p = 0.014), and white matter serving the inferior frontal gyrus bilaterally (left: p \u3c 0.0001; right: p = 0.005). FA values in both the left and right uncinate fasciculi correlated with PPVT scores (a semantic language task) in the PT subjects (left: R = 0.314, p = 0.038; right: R = 0.336, p = 0.026). FA values in the left and right arcuate fasciculi correlated with CTOPP Rapid Naming scores (a phonologic task) in the PT subjects (left: R = 0.424, p = 0.004; right: R = 0.301, p = 0.047). These data support for the first time that the recently proposed concept of dual pathways underlying language function are present in PT adolescents. These include a left-sided dorsal pathway associated with phonological and articulatory processing (arcuate fasciculus), and a bilateral ventral pathway for semantic, receptive language processing (uncinate fasciculus). The striking bilateral dorsal correlations for the PT group suggest that prematurely born subjects rely more heavily on the right hemisphere than typically developing adolescents for performance of phonological language tasks. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain

    Darstellung des Fasciculus Arcuatus durch deterministische Faserbahnenberechnungen aus diffusionsgewichteteten MR-Aufnahmen im Rahmen einer retrospektiven Studie

    Get PDF
    Diffusion Tensor Imaging (kurz DTI) ist Gegenstand aktueller Forschung, um subkortikale neuronale Netzwerke in Ihrer Anatomie und Funktion zu verstehen. Durch den Vorteil der Nicht-Invasivität und der kurzen Untersuchungszeit für den Patienten im Vergleich zur etablierten funktionellen Magnetresonanztomographie (kurz fMRT), sollte die klinische Relevanz zum Beispiel für eine präoperative neurochirurgische Diagnostik eruiert werden. Insbesondere kortikale Hirnregionen und Assoziationsfasern, die im Zusammenhang mit Sprachproduktion und Sprachverständnis stehen, müssen bei neurochirurgischen Eingriffen möglichst geschont werden. Mehrere Forschungsgruppen konnten bereits relevante Assoziationsfasern innerhalb der weißen Hirnsubstanz, zu der der Fasciculus Arcuatus zählt, mittels Fasertraktographie darstellen und in Zusammenhang mit den Ergebnissen etablierter fMRT-Methoden zur Identifikation von kortikalen Spracharealen bringen. Aus diesen Überlegung ergaben sich drei Zielsetzungen für diese Arbeit. Als erstes Ziel sollte ein Fasertraktographie-Algorithmus entworfen werden, der mithilfe weniger Datenprozessierungsschritte aus den Diffusionsdaten den Arcuatus Fasciculus als wichtige Assoziationsfaser der Sprachdomäne identifiziert und welcher zudem für Patienten mit neuropathologischen Erkrankungen verwendbar ist. Als zweite Zielsetzung sollte untersucht werden, ob eine strukturelle interhemisphärische Seitendifferenz in der Anzahl der zum Arcuatus Fasciculus zugehörigen Fasern gefunden werden kann. Die dritte Zielsetzung widmet sich der Untersuchung der Sprachdominanz des Patienten im Rahmen dessen die Seitendifferenz in Anzahl der Fasern mit den funktionellen Ergebnissen aus der fMRT korreliert werden. Diffusionsdatensätze von 34 Patienten mit epileptischen Erkrankungen und extra- sowie intraaxialen Hirntumoren wurden mittels deterministischer Fasertraktographie verarbeitet, um für jeden Patienten die Gesamtheit der zerebralen Faserbahnen zu identifizieren. Anschließend wurde aus dieser Gesamtheit mittels weniger Prozessierungsschritte der Arcuatus Fasciculus für beide Hemisphären getrennt dargestellt und die Anzahl der zugehörigen Fasern bestimmt. Bei sechs Patienten konnten aufgrund mangelnder Datenqualität nicht ausreichend Faserbahnen im Arcuatus Fasciculus erfasst werden. Die Ergebnisse der restlichen 28 Patienten wurden mit den zugehörigen fMRT-Befunde korreliert. Der in dieser Arbeit aufgeführte Algorithmus zur Fasertraktographie des Arcuatus Fasciculus konnte anhand weniger Datenverarbeitungsschritte bei 28 von 34 Patienten der Arcuatus Fasciculus für beide Hemisphären darstellen. Außerdem konnte gezeigt werden, dass eine individuelle Platzierung von Regions-of-Interest die Sensitivität für die Erfassung der neuronalen Fasern erhöht. Zusätzlich fanden sich bei 25 von 28 Patienten interhemisphärische Unterschiede von mehr als 10 Fasern, sodass eine Untersuchung der Sprachdominanz anhand dieser Differenzen möglich ist. Schließlich konnte gezeigt werden, dass in 91% der Fälle die interhemisphärische Seitendifferenz im Fasertraktographie mit den funktionellen Seitendifferenzen im fMRT übereinstimmt. Daher demonstriert diese Arbeit die klinische Relevanz der DTI als nicht-invasive Bildgebung subkortikaler Sprachnetzwerke zu Forschungszwecken und zur präoperativen Diagnostik vor neurochirurgischen und interventionellen Eingriffen. Durch Anpassung des Algorithmus kann der Anwendungsbereich auf andere subkortikale Netzwerke erweitert und durch Anwendung an größeren und definierten Patientengruppen die Signifikanz der Ergebnisse gesichert werden

    HARDI Methods: tractography reconstructions and automatic parcellation of brain connectivity

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia), apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012A neuroanatomia humana tem sido objecto de estudo científico desde que surgiu o interesse na organização do corpo humano e nas suas funções, quer como um todo quer através das partes que o constituem. Para atingir este fim, as autópsias foram a primeira forma de revelar algum conhecimento, o qual tem vindo a ser catalogado e sistematizado à medida que a medicina evolui. Passando por novas técnicas de conservação e tratamento de tecido humano, de que são exemplo as dissecções de Klinger, nas quais se fazem secções de material conservado criogenicamente, bem como por estudos histológicos através da utilização de corantes, conseguiu-se uma forma complementar de realizar estes estudos. Permanecia, no entanto, a impossibilidade de analisar in vivo a estrutura e função dos diferentes sistemas que constitutem o Homem. Com o surgimento das técnicas imagiológicas o diagnóstico e monitorização do corpo humano, bem como das patologias a ele associadas, melhoraram consideravelmente. Mais recentemente, com o aparecimento da ressonância magnética (MRI: do Inglês "Magnetic Resonance Imaging"), tornou-se possível estudar as propriedades magnéticas do tecido, reflectindo as suas características intrínsecas com base na aplicação de impulsos de radiofrequência. Através de ressonância magnética é possível estudar essas propriedades em vários núcleos atómicos, sendo mais comum o estudo do hidrogénio, pois somos maioritariamente consistituídos por água e gordura. Uma vez que só é possível medir variações do campo magnético, aplicam-se impulsos de radiofrequência para perturbar o equilíbrio dos spins e medir os seus mecanismos de relaxação, os quais, indirectamente, reflectem a estrutura do tecido. Contudo, o sinal medido é desprovido de qualquer informação espacial. De facto, para podermos proceder a essa quantificação, é necessária a utilização de gradientes de campo magnético, que permitem modificar localmente a frequência de precessão dos protões, através da alteração local do campo magnético, permitindo assim, adquirir o sinal de forma sequencial. A informação obtida constitui uma função variável no espaço e através da transformação de Fourier pode ser quantificada em frequências espaciais, sendo estes dados armazenados no espaço k. O preencimento deste espaço, caracterizado por frequências espaciais, bem como os gradientes de campo magnético que são aplicados, permitem determinar a resolução da imagem que podemos obter, aplicando uma transformação de Fourier inversa. O estudo da ressonância magnética não se restringe à análise da estrutura mas também ao estudo da função e difusão das moléculas de água. A difusão é um processo aleatório, que se traduz pelo movimento térmico das moléculas de água, e o seu estudo permite inferir sobre o estado do tecido e microestrutura associada, de uma forma não invasiva e in vivo. A técnica de imagiologia de ressonância magnética ponderada por difusão (DWI: do Inglês "Diffusion Weighted Imaging") permite o estudo da direccionalidade das moléculas de água e extracção de índices que reflectem directamente a integridade dos tecidos biológicos. De modo a sensibilizar as moléculas de água à difusão, é necessário aplicar sequências de ressonância magnética modificadas, nas quais se aplicam gradientes de campo magnético de difusão para quantificar o deslocamento das moléculas e a sua relação com o coeficiente de difusão das mesmas. Num ambiente livre e sem barreiras a difusão das moléculas de água é isotrópica, uma vez que se apresenta igual em todas as direcções. Todavia, tal não se verifica no corpo humano. A presença destas barreiras leva a que, na verdade, apenas possa ser medido um coeficiente de difusão aparente. Este, por sua vez, traduz a interacção entre as moléculas de água com a microestrutura e, como tal, uma anisotropia na sua difusão. Como caso particular de difusão anisotrópica a nível cerebral, tem-se a difusão das moléculas de água na matéria branca, uma vez que esta apresenta uma direccionalidade preferencial de acordo com a orientação dos axónios, visto estarem presentes menos restrições à sua propagação, ao contrário do que acontece com a direcção perpendicular (devido à membrana celular e às bainhas de mielina). Por oposição, a matéria cinzenta, constituída pelo aglomerado dos corpos celulares dos neurónios, e o líquido cefalorraquidiano apresentam uma difusão sem direcção preferencial (i.e. aproximadamente isotrópica). A informação obtida através da difusão das moléculas de água encontra-se limitada pelo número de direcções segundo o qual aplicamos os gradientes de difusão. Deste modo, surgiu a imagiologia por tensor de difusão (DTI: do Inglês "Diffusion Tensor Imaging"). Esta técnica permite extrair informação acerca da tridimensionalidade da distribuição da difusão de moléculas de água através da aplicação de seis gradientes de difusão não colineares entre si. A distribuição destas moléculas pode, então, ser vista como um elipsóide, no qual o principal vector próprio do tensor representa a contribuição da difusão das moléculas segundo a direcção do axónio (ou paralela), sendo os dois restantes componentes responsáveis pela contribuição transversal. Além da difusividade média (MD: do Inglês "Mean Diffusivity") e das contribuições da difusão paralela (MD//) e perpendicular (MD ) às fibras, é também possível extrair outros índices, como a anisotropia fraccional (FA: do Inglês "Fractional Anisotropy"), que fornece informação acerca da percentagem de difusão anisotrópica num determinado voxel. Para a matéria branca, tal como já foi referido, existe difusão preferencial e, portanto, a anisotropia fraccional será elevada. Por outro lado, para a matéria cinzenta e para o líquido cefalorraquidiano, verificar-se-á uma FA reduzida, devido à ausência de anisotropia. Todavia, regiões com reduzida anisotropia fraccional podem camuflar regiões de conformação de cruzamento de fibras, ou fibras muito anguladas, que a imagiologia por tensor de difusão não consegue resolver. A razão para esta limitação reside no número reduzido de diferentes direcções de difusão que são exploradas, assim como o pressuposto de que a distribuição das moléculas de água é Gaussiana em todo o cérebro, o que não é necessariamente verdade. A fim de se ultrapassar estas limitações, novas técnicas surgiram, nomeadamente as de elevada resolução angular (HARDI: do Inglês "High Angular Resolution Diffusion Imaging"). Estas fazem uso de uma aquisição em função de múltiplas direcções de gradiente e de uma diferente modelação dos dados obtidos, dividindo-se em dois tipos. As técnicas livres de modelos permitem extrair uma função de distribuição da orientação das fibras num determinado voxel directamente do sinal e/ou transformações da função densidade de probabilidade do deslocamento das moléculas de água. Contrariamente, as técnicas baseadas em modelos admitem existir determinados constrangimentos anatómicos e que o sinal proveniente de um determinado voxel é originado por um conjunto de sinais individuais de fibras, caracterizados por uma distribuição preferencial das direcções das fibras. Todos estes métodos têm como objectivo principal recuperar a direcção preferencial da difusão das moléculas de água e reconstruir um trajecto tridimensional que represente a organização das fibras neuronais, pelo que se designam métodos de tractografia. Esta representa a única ferramenta não invasiva de visualização in vivo da matéria branca cerebral e o seu estudo tem revelado uma grande expansão associada ao estabelecimento de marcador biológico para diversas patologias. Adicionalmente, esta técnica tem vindo a tornar-se uma modalidade clínica de rotina e de diversos protocolos de investigação, sendo inclusivamente utilizada para complementar o planeamento em cirurgia, devido à natureza dos dados que gera. Particularmente no caso de dissecções manuais, nas quais os dados de tractografia são manuseados por pessoal especializado, com vista a realizar a parcelização de diferentes tractos de interesse, o processo é moroso e dependente do utilizador, revelando-se necessária a automatização do mesmo. Na realidade, já existem técnicas automáticas que fazem uso de algoritmos de agregação1, nos quais fibras são analisadas e agrupadas segundo características semelhantes, assim como técnicas baseadas em regiões de interesse, em que se extraem apenas os tractos seleccionados entre as regiões escolhidas. O objectivo principal desta dissertação prende-se com a análise automática de dados de tractografia, bem como a parcelização personalizada de tractos de interesse, também esta automática. Em primeiro lugar, foi desenvolvido um algoritmo capaz de lidar automaticamente com funções básicas de carregamento dos ficheiros de tractografia, o seu armazenamento em variáveis fáceis de manusear e a sua filtragem básica de acordo com regiões de interesse de teste. Neste processo de filtragem é feita a avaliação das fibras que atravessam a região de interesse considerada. Assim, após a localização das fibras entre as regiões de interesse os tractos resultantes podem ser guardados de duas formas, as quais têm, necessariamente, que ser especificadas antes de utilizar o software: um ficheiro que contém todas as fibras resultantes da parcelização e outro que contém o mapa de densidade associado, isto é, o número de fibras que se encontra em cada voxel. Após esta fase inicial, a flexibilidade e complexidade do software foi aumentando, uma vez que foram implementados novos filtros e a possibilidade de utilizar regiões de interesse de diferentes espaços anatómicos padrão. Fazendo uma análise a esta última melhoria, pode referir-se que, através de um procedimento de registo não linear da imagem anatómica do espaço padrão ao espaço individual de cada sujeito, foi possível, de forma automática, guardar o campo de deformações que caracteriza a transformação e, assim, gerar regiões de interesse personalizadas ao espaço do sujeito. Estas regiões de interesse serviram depois para a parcelização básica e para seleccionar tractos, mas também para filtragens adicionais, como a exclusão de fibras artefactuosas2 e um filtro especial, no qual apenas os pontos que ligam directamente as diferentes regiões são mantidos. Além do que já foi referido, recorreu-se também à aplicação de planos de interesse que actuam como constrangimentos neuroanatómicos, o que não permite, por exemplo, no caso da radiação óptica, que as fibras se propaguem para o lobo frontal. Esta ferramenta foi utilizada com sucesso para a parcelização automática do Fascículo Arcuado, Corpo Caloso e Radiação Óptica, tendo sido feita a comparação com a dissecção manual, em todos os casos. O estudo do Fasciculo Arcuado demonstrou ser o teste ideal para a ferramenta desenvolvida na medida que permitiu identificar o segmento longo, assim como descrito na literatura. O método automático de duas regiões de interesse deu a origem aos mesmos resultados obtidos manualmente e permitiu confirmar a necessidade de estudos mais aprofundados. Aumentando a complexidade do estudo, realizou-se a parcelização do Corpo Caloso de acordo com conectividade estrutural, isto é, com diferentes regiões envolvidas em funções distintas. Procedeu-se deste modo, e não com base em informação acerca de divisões geométricas, uma vez que estas já demonstraram incongruências quando correlacionadas com subdivisões funcionais. O uso adicional de regiões de interesse para a exclusão de fibras demonstrou-se benéfico na obtenção dos mapas finais. Finalmente, incluiu-se a utilização de um novo filtro para realizar a parcelização da Radiação Óptica, comparando os resultados para DTI e SD(do Inglês "Spherical Deconvolution"). Foi possível determinar limitações na primeira técnica que foram, no entanto, ultrapassadas pela utilização de SD. O atlas final gerado apresenta-se como uma mais-valia para o planeamento cirúrgico num ambiente clínico. O desenvolvimento desta ferramenta resultou em duas apresentações orais em conferências internacionais e encontra-se, de momento, a ser melhorada, a fim de se submeter um artigo de investigação original. Embora se tenha chegado a um resultado final positivo, tendo em conta a meta previamente estabelecida, está aberto o caminho para o seu aperfeiçoamento. Como exemplo disso, poder-se-á recorrer ao uso combinado das duas abordagens de parcelização automática e à utilização de índices específicos dos tractos, o que poderá trazer uma nova força à delineação dos tractos de interesse. Adicionalmente, é também possível melhorar os algoritmos de registo de imagem, tendo em conta a elevada variabilidade anatómica que alguns sujeitos apresentam. Como nota final, gostaria apenas de salientar que a imagiologia por difusão e, em particular, a tractografia, têm ainda muito espaço para progredir. A veracidade desta afirmação traduz-se pela existência de uma grande variedade de modelos e algoritmos implementados, sem que, no entanto, exista consenso na comunidade científica acerca da melhor abordagem a seguir.Diffusion weighted imaging (DWI) has provided us a non-invasive technique to determine physiological information and infer about tissue microstructure. The human body is filled with barriers affecting the mobility of molecules and preventing it from being constant in different directions (anisotropic diffusion). In the brain, the sources for this anisotropy arise from dense packing axons and from the myelin sheath that surrounds them. Only with Diffusion Tensor Imaging (DTI) it was possible to fully characterize anisotropy by offering estimations for average diffusivities in each voxel. However, these methods were limited, not being able to reflect the index of anisotropic diffusion in regions with complex fibre conformations. It was possible to reduce those problems through the acquisition of many gradient directions with High Angular Resolution Diffusion Imaging (HARDI). There are model-free approaches such as Diffusion Spectrum Imaging (DSI) and Q-ball Imaging (QBI) which retrieve an orientation distribution function (ODF) directly from the water molecular displacement. Another method is Spherical Deconvolution, which is a model-based approach based on the computation of a fibre orientation distribution (FOD) from the deconvolution of the diffusion signal and a chosen fibre response function. Reconstructing the fibre orientations from the diffusion profile, generates a three-dimensional reconstruction of neuronal fibres (Tractography) whether in a deterministic, probabilistic or global way. Tractography has two main purposes: non-invasive and in vivo mapping of human white matter and neurosurgical planning. In order to achieve those purposes it is common to apply parcellation techniques which can be subdivided into ROI-based or Clustering base. The aim of this project is to develop an automated method of tract-based parcellation of different brain regions. This tool is essential to retrieve information about the architecture and connectivity of the brain, overcoming time consuming and expertise related issues derived from manual dissections. Firstly we investigated basic functions to handle diffusion and tractography data. In particular, we focused on how to load track files, filter them according to regions of interest and save the output in different formats. Results were always compared with manual dissection. The developed tool increased complexity by introduction a new filtering and the use of regions of interest from different standard spaces, created trough non-linear registrations. Three major tracts of interest were analysed: Arcuate Fasciculus, Corpus Callosum and Optic Radiation

    Doctor of Philosophy

    Get PDF
    dissertationRecent developments in magnetic resonance imaging (MRI) provide an in vivo and noninvasive tool for studying the human brain. In particular, the detection of anisotropic diffusion in biological tissues provides the foundation for diffusion-weighted imaging (DWI), an MRI modality. This modality opens new opportunities for discoveries of the brain's structural connections. Clinically, DWI is often used to analyze white matter tracts to understand neuropsychiatric disorders and the connectivity of the central nervous system. However, due to imaging time required, DWI used in clinical studies has a low angular resolution. In this dissertation, we aim to accurately track and segment the white matter tracts and estimate more representative models from low angular DWI. We first present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI), estimated from DWI. Geodesic approaches treat the geometry of brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. We propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. Using the computed geodesics, we develop an automatic way to compute binary segmentations of the white matter tracts. We demonstrate that our method is robust to noise and results in improved geodesics and segmentations. Then, based on binary segmentations, we present a novel Bayesian approach for fractional segmentation of white matter tracts and simultaneous estimation of a multitensor diffusion model. By incorporating a prior that assumes the tensor fields inside each tract are spatially correlated, we are able to reliably estimate multiple tensor compartments in fiber crossing regions, even with low angular diffusion-weighted imaging. This reduces the effects of partial voluming and achieves a more reliable analysis of diffusion measurements

    Principles of organisation within the pathways in the brainstem and thalamus

    Full text link
    There are few detailed studies on the pathways through the human brainstem and even fewer on those through the pons. This thesis aims to address this lack of fine detail, and used ultra-high-field magnetic resonance imaging (MRI) of human and macaque brains to identify and characterise fibre tracts connecting cortical and spinal areas as they traverse through brainstem and thalamic structures. The material in this thesis is based on a unique dataset of ultra-high-field (7 Tesla – Duke and 11, 7 Tesla – Johns Hopkins) MRI scans on postmortem specimens, on which deterministic tractography has been applied based on high-angular-resolution diffusion imaging (HARDI) and subsequently higher order tensor glyph models. The first results section of the thesis (Chapter 3) maps the descending fibre bundles associated with movement. From the motor cortical areas, the fibres of the internal capsule are traced through the crus cerebri, basilar pons and pyramids in three dimensions to reveal their organisation into functional and topographic subdivisions. While human cortico-pontine, -bulbar and -spinal tracts were traditionally considered to be dispersed, or a “melange”, I show here a much more discrete and defined organisation of these descending fibre bundles. Nine descending fibre bundles are identified and their anatomical location and terminations are described. A hitherto unknown pathway at the midline of the pons has been discovered and named herein as the Stria Pontis which connects the neocortex to the pontine tegmentum. Ten transverse fibre bundles connecting the pontine nuclei to the cerebellum are also identified. The second results section (Chapter 4) analyses the sensory pathways; the dorsal column - medial lemniscus pathway, the spinothalamic tract, the spinal trigeminal tract and the trigeminothalamic tracts. The third results section (Chapter 5) analyses the dentato-rubro-thalamic tract. The mapping identifies the superior cerebellar peduncle, the patterning of the fibres within the superior cerebellar decussation, the patterning of the fibres within the red nucleus and finally the projection of the dentato-rubro-thalamic tract from the red nucleus to the ventral lateral nucleus of the thalamus. Finally, I characterised 117 already known anatomical parts, areas and structures of the brainstem and thalamus in 3D

    Diffusion directions imaging (high resolution reconstruction of white matter fascicles from low angular resolution diffusion MRI)

    Get PDF
    L'objectif de cette thèse est de fournir une chaine de traitement complète pour la reconstruction des faisceaux de la matière blanche à partir d'images pondérées en diffusion caractérisées par une faible résolution angulaire. Cela implique (i) d'inférer en chaque voxel un modèle de diffusion à partir des images de diffusion et (ii) d'accomplir une ''tractographie", i.e., la reconstruction des faisceaux à partir de ces modèles locaux. Notre contribution en modélisation de la diffusion est une nouvelle distribution statistique dont les propriétés sont étudiées en détail. Nous modélisons le phénomène de diffusion par un mélange de telles distributions incluant un outil de sélection de modèle destiné à estimer le nombre de composantes du mélange. Nous montrons que le modèle peut être correctement estimé à partir d'images de diffusion ''single-shell" à faible résolution angulaire et qu'il fournit des biomarqueurs spécifiques pour l'étude des tumeurs. Notre contribution en tractographie est un algorithme qui approxime la distribution des faisceaux émanant d'un voxel donné. Pour cela, nous élaborons un filtre particulaire mieux adapté aux distributions multi-modales que les filtres traditionnels. Pour démontrer l'applicabilité de nos outils en usage clinique, nous avons participé aux trois éditions du MICCAI DTI Tractography challenge visant à reconstruire le faisceau cortico-spinal à partir d'images de diffusion ''single-shell" à faibles résolutions angulaire et spatiale. Les résultats montrent que nos outils permettent de reconstruire toute l'étendue de ce faisceau.The objective of this thesis is to provide a complete pipeline that achieves an accurate reconstruction of the white matter fascicles using clinical diffusion images characterized by a low angular resolution. This involves (i) a diffusion model inferred in each voxel from the diffusion images and (ii) a tractography algorithm fed with these local models to perform the actual reconstruction of fascicles. Our contribution in diffusion modeling is a new statistical distribution, the properties of which are extensively studied. We model the diffusion as a mixture of such distributions, for which we design a model selection tool that estimates the number of mixture components. We show that the model can be accurately estimated from single shell low angular resolution diffusion images and that it provides specific biomarkers for studying tumors. Our contribution in tractography is an algorithm that approximates the distribution of fascicles emanating from a seed voxel. We achieve that by means of a particle filter better adapted to multi-modal distributions than the traditional filters. To demonstrate the clinical applicability of our tools, we participated to all three editions of the MICCAI DTI Tractography challenge aiming at reconstructing the cortico-spinal tract from single-shell low angular and low spatial resolution diffusion images. Results show that our pipeline provides a reconstruction of the full extent of the CST.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF
    corecore