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Very low birth weight preterm (PT) children are at high risk for brain injury. This study 

investigates microstructural differences in the brains of PT adolescents relative to term control 

subjects using diffusion tensor imaging (DTI), as well as studying their neurodevelopmental 

outcomes. Forty-four PT subjects (600 - 1250 grams birth weight) without neonatal brain injury 

and 41 term controls were evaluated at age 16 years with DTI, the Wechsler Intelligence Scale for 

Children - III (WISC), the Peabody Picture Vocabulary Test - Revised (PPVT), and the 

Comprehensive Test of Phonological Processing (CTOPP).  

PT subjects scored lower than term subjects on WISC full scale (p = 0.002), verbal (p = 

0.027), and performance IQ tests (p = 0.001), as well as CTOPP phonological awareness (p = 

0.005), but scored comparably to term subjects on PPVT and CTOPP Rapid Naming tests. PT 

subjects had lower fractional anisotropy (FA) values, suggestive of white matter disorganization, 

in multiple regions including bilateral uncinate fasciculi (left: p = 0.004; right: p = 0.002), 

bilateral external capsules (left: p < 0.0001; right: p = 0.001), the splenium of the corpus callosum 

(p = 0.014), and white matter serving the inferior frontal gyrus bilaterally (left: p < 0.0001; right: 

p = 0.005). FA values in both the left and right uncinate fasciculi correlated with PPVT scores (a 

semantic language task) in the PT subjects (left: R = 0.314, p = 0.038; right: R = 0.336, p = 

0.026). FA values in the left and right arcuate fasciculi correlated with CTOPP Rapid Naming 

scores (a phonologic task) in the PT subjects (left: R = 0.424, p = 0.004; right: R = 0.301, p = 

0.047).  

These data support for the first time that the recently proposed concept of dual pathways 

underlying language function are present in PT adolescents. These include a left-sided dorsal 

pathway associated with phonological and articulatory processing (arcuate fasciculus), and a 

bilateral ventral pathway for semantic, receptive language processing (uncinate fasciculus). The 

striking bilateral dorsal correlations for the PT group suggest that prematurely born subjects rely 

more heavily on the right hemisphere than typically developing adolescents for performance of 

phonological language tasks.  These findings may represent either a delay in maturation or the 

engagement of alternative neural pathways for language in the developing PT brain. 
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Introduction 

Consequences of preterm birth in the brain 

Premature birth is a pressing public health matter, as nearly 13% of infants in the 

United States are born preterm and infants weighing under 1500 grams at birth comprise 

1.5% of births (1). Premature infants suffer a high risk of perinatal brain damage 

compared to term infants (2-4). Though survival of infants weighing 501-1500 grams at 

birth has increased to 85% (5), these children face a range of developmental disabilities 

ranging from cerebral palsy to learning disabilities (4, 6). The brains of infants born 

prematurely face both increased challenge and increased susceptibility to a number of 

factors resulting in brain injury and secondary disturbance of growth. Active migration, 

axonal growth, proliferation and maturation of oligodendrocytes, and development of 

synaptic connections typically occur during the third trimester of fetal development, and 

all may be disrupted by premature birth.  

Severe brain injuries such as intraventricular hemorrhage, periventricular 

hemorrhagic infarction, and ventricular dilatation are recognized as potentially 

devastating complications of preterm birth. Apart from these three catastrophic but rare 

complications, preterm neonates may suffer a characteristic pattern of brain injury known 

as encephalopathy of prematurity (7). Typically, these infants suffer injury to cerebral 

white matter known as periventricular leukomalacia (PVL). PVL has multiple forms, and 

may include either localized or diffuse changes. The pathology of localized PVL is 

characterized by necrosis of all cell types on a microscopic or macroscopic scale. 

Macroscopic foci of necrosis lead to cystic structures observable by ultrasound, leading 

to the characterization of this subgroup as “cystic PVL”, which is the subtype most likely 
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to result in severe developmental abnormalities such as cerebral palsy (7). Non-cystic 

PVL, on the other hand, is characterized by microscopic necrotic foci, which lead to 

nonspecific glial scars which may not be detected by ultrasound.  

Preterm birth damages the development of the brain through multiple 

mechanisms. Ischemia and inflammation are initiating factors which potentiate each 

other, with excitotoxicity and free-radical attack as downstream effectors of this damage. 

Pathological correlates of diffuse injury include the disruption of premyelinating 

oligodendrocytes, which are particularly susceptible to injury, with subsequent reactive 

proliferation of oligodendrocyte precursors which unfortunately have impaired ability to 

myelinate axons (7).  There is evidence in an animal model that the pattern of injury in 

preterm birth may be influenced by the distribution of immature oligodendrocytes in the 

brain (8, 9). In addition to glial disruption, diffuse disruption of axons has been reported 

in the brains of preterm infants (10). Deep gray matter is also commonly affected, 

including the thalamus, basal ganglia, and cerebellum, though it is unknown whether this 

is a primary injury or secondary trophic disturbance (7).  

Investigation of the neuropathology of preterm birth has utilized post-mortem 

pathological analysis and study of animal models of prematurity, including subjecting 

animals to hypoxia, hypoxia in conjunction with ischemia through ligation of the carotid 

artery, or premature delivery (11). However, neuroimaging of premature infants presents 

a vital non-invasive method for studying changes within the still-developing brain.      

 

Longterm effects of preterm birth on cognitive ability 
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In addition to feared neurological complications of preterm birth such as cerebral 

palsy, a range of developmental deficits in cognitive and motor function in preterm 

children have been observed to persist until early adulthood, indicating long-term 

disruption of brain function (6, 12). Preterm children have the greatest risk of 

neurodevelopmental deficits with severe brain injury such as intraventricular hemorrhage, 

periventricular hemorrhagic infarction, periventricular leukomalacia, or severe 

ventriculomegaly; however, even preterm children without these forms of brain injury are 

more likely than control term children to have lower IQ scores and require more support 

in reading, writing, and mathematics (13) at 12 years of age. Male infants are at particular 

risk for poor outcome after premature birth (14-17). The mechanism for these differences 

is as yet unknown.  

Despite the prevalence of these difficulties, the brains of infants and children 

exhibit remarkable plasticity, and many catch up over time to children born at term in 

terms of both developmental and neuroimaging parameters (18, 19). Some studies have 

proposed that this compensation relates to utilization of alternative pathways in order to 

bypass injured white matter structures (20-22).  

 

Neuroimaging and principles of diffusion tensor imaging  

Multiple neuroimaging techniques have been used to better identify and describe 

the sequelae of preterm birth in the brains of these infants (23-25). While ultrasound and 

computed tomography have been used for some time in the identification of 

intraventricular hemorrhage and periventricular leukomalacia, the advent of magnetic 

resonance imaging (MRI) became crucial to identifying more subtle changes in the brains 
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of preterm infants (26). Subtle changes such as delays in gray-white differentiation, 

hyperintensity of white matter, smaller corpus callosum, and ventriculomegaly were 

appreciated with much greater sensitivity with MRI (2, 27). Methods such as voxel-based 

morphometry, providing volumetric analysis of white and gray matter in the developing 

brain, have identified relative decreases in volume of widespread white matter regions in 

preterm infants, suggestive of neuronal loss (15, 28-31).  

Diffusion tensor imaging (DTI) is a relatively recent magnetic resonance imaging 

technique which provides a means of assessing the integrity of white matter tracts at a 

microstructural level. It is more sensitive than conventional magnetic resonance imaging 

for detecting subtle abnormalities (32-38). As part of DTI analyses, fractional anisotropy 

(FA) values indicate the degree to which water diffusion is restricted along one axis 

relative to all others. Within cerebral white matter, water preferentially diffuses along 

axons, with diffusion perpendicular to this axis restricted by structural barriers including 

cell membranes. Higher FA values serve as a marker for the coherence of white matter 

tracts, as the constraints of the tissue organization into axon bundles within well-formed 

tracts limit the direction of water flow. Alterations in FA may result from changes in fiber 

organization, axonal size (39), or activity-dependent changes in myelination (18).  DTI 

has become a valuable tool in assessing white matter integrity on a microstructural level 

in the developing preterm brain (40-42).  

FA values in white matter tracts tend to increase both over the course of fetal 

development and after birth. DTI conducted on fetuses in utero confirms increases in FA 

as the fetuses progress closer to term, particularly in the corticospinal tract and corpus 

callosum (43).FA values in multiple white matter tracts including the splenium and 
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posterior body of the corpus callosum, the posterior limb of the internal capsule, the left 

frontal white matter, and the left inferior longitudinal white matter at term equivalent age 

demonstrate a linear correlation with gestational age at birth (44).  

Lower birthweight has also been associated with lower FA values. FA values in 

the corpus callosum at 11 years of age have been shown to be correlated with birthweight 

(45). Indeed, in studies of healthy infants born between 34 and 41 weeks gestation, FA 

values are higher in subcortical white matter tracts such as the corticospinal tract, callosal 

radiations, and thalamic radiations in infants born closer to term (46).  

One study has suggested that this increase in FA in early development may be 

accelerated by preterm birth, as evidenced by higher FA values in preterm infants at term 

equivalent than in control term infants; this difference is hypothesized to be due to the 

increased stimulation associated with premature birth (47). The implications of this 

intriguing finding for later development have not been fully explored; studies comparing 

FA in older preterm children and adolescents to term controls have more commonly 

found lower FA values in the preterm subjects, as will be discussed later.   

In addition to the insult of prematurity, multiple other confounding factors may 

impact FA values and brain development in these infants. Independent of factors 

including age at scan and degree of prematurity, lung disease has been shown to be 

associated with white matter abnormalities in preterm children (44). In this study using 

tract-based spatial statistics, a method based in DTI data, infants with greater than two 

days of mechanical ventilation showed reduced FA in the genu of the corpus callosum at 

term equivalent age, and infants who developed chronic lung disease showed reduced FA 

in the left inferior longitudinal fasciculus (44). In addition, postnatal infections and 
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hypotension have also been indicated to confer an increased risk of white matter injury, 

as measured by lower FA on DTI and lower N-acetylaspartate/choline on MR 

spectroscopy (48). 

 

Brain areas found to be affected by preterm birth 

Multiple previous studies have shown deficits in FA values in white matter tracts 

in premature infants at term-equivalent age as compared to term infants (41, 42, 44, 47, 

49-55). For example, in a study using tract-based spatial statistics, a DTI-based method, 

reductions in FA were founds in term-equivalent preterm infants in regions including the 

centrum semiovale, frontal white matter, and genu of the corpus callosum (52). In this 

study, infants born at 28 weeks of gestation or less were found to have lower FA in the 

external capsule and portions of the posterior limb of the internal capsule and body of the 

corpus callosum than infants born at greater gestational ages (52).  

Studies have also been conducted to study changes in neuroimaging parameters 

persisting to late childhood and adolescence (14, 29, 30, 56-63).  Lower FA values in the 

external capsules, posterior corpus callosum, and fornix have also been reported in 

adolescents born preterm (64), and in the internal and external capsule, corpus callosum, 

and superior, middle superior, and inferior fasciculi of 15 year olds born with very low 

birthweight (60). In a study of 12 year old children born preterm (30), multiple areas of 

decreased FA were found in preterm children compared to term children, including 

bilateral anterior portions of the uncinate fasciculi, the splenium of the corpus callosum, 

and the right inferior fronto-occipital fasciculus.  
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The relationship between FA and developmental outcome, however, is complex; 

not all studies demonstrate globally lower FA values in preterm children than term 

children. For example, significantly higher FA values were found in the corticospinal 

tracts of preterm infants at term equivalent age than term controls, though within the 

same cohort FA values were reduced in the splenium of the corpus callosum in the 

preterm group (54). This may represent a rearrangement of white matter tracts 

compensating for white matter injury in preterm infants, effects of differences in water 

concentration, or the presence of crossing fibers, and calls attention to the complex tissue 

properties that may affect FA values.  

 

Neurodevelopmental testing correlates with FA values 

FA values have been shown to correlate with performance on multiple measures 

of neurodevelopmental function (18, 60, 65-72). In school age preterm children, whole-

brain FA was an independent variable affecting full scale IQ after adjusting for 

birthweight, gestational age, and gender (59). Other studies have correlated cognitive 

scores with FA in specific regions of the brain. DTI of low birthweight preterm infants 

showed lower FA values in the posterior limb of the internal capsule in infants with 

cerebral palsy or other neurological deficits compared to neurologically intact infants (67, 

70). In older children (mean 5 years of age), those with cerebral palsy also showed lower 

FA in thalamocortical radiations, correlating with reduced contralateral touch threshold, 

proprioception, and motor deficits (73).  
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DTI data has also been used to correlate FA values in the optic radiations, defined 

using probabilistic diffusion tractography (71) or quantitative fiber tracking analysis (72), 

with measures of visual function at term equivalent age (71) or earlier (72).  

Preterm children studied with DTI and the Griffiths Mental Development Scale at 

2 years of corrected age showed linear relations of developmental quotient to FA values 

in the corpus callosum and right cingulum, correlations between performance sub-scores 

and the corpus callosum and right cingulum, and correlations between eye-hand 

coordination scores to FA in the cingulum, fornix, anterior commissure, corpus callosum, 

and right uncinate fasciculus (61).  

Reading performance scores have been found to positively correlate with FA 

values in the genu and body of the corpus callosum in a group of 11 year old preterm 

children (45). In 12 year old children born preterm, correlations were found between the 

left anterior uncinate fasciculus with WISC verbal IQ and full scale IQ, in addition to 

PPVT scores (30). In adolescents at 15 years of age with birthweight less than 1500 

grams, correlations were found between low IQ and low FA in the external capsule and 

inferior and middle superior fasciculus, as well as between low FA in the external 

capsule, posterior internal capsule, and inferior fasciculus with visual motor and visual 

perceptual deficits (60). In a cohort of young adults born preterm, increases in mean 

diffusivity in the genu of the corpus callosum were correlated with lower performance IQ 

(63). 

Multiple studies, therefore, indicate a link between DTI/FA findings in the 

preterm brain and neurodevelopmental and cognitive outcome. It is important to note, 

however, that statements of causation cannot be made. It is not clear whether changes in 
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white matter microstructure, as measured by differences in FA in specific pathways, are 

the cause or the result of poor test performance.  

 

Language processing: lateralization and the dual pathway system 

 Understanding of the brain structures underlying language function has become 

more complex since initial pathologic-deficit correlations identifying Wernicke’s area, 

important for semantically appropriate language comprehension and production, and 

Broca’s area, important for production of speech sounds. Recent investigations have 

proposed dual systems of language processing, analogous to dual pathways identified in 

visual processing (74-76). In the visual system, a ventral pathway carries “what” 

information for object recognition, and a dorsal pathway carries “how” information for 

spatial and sensorimotor processing. In the language processing model, a ventral pathway 

processes comprehension of speech, with mapping of sounds to semantic representations, 

while a dorsal pathway is involved in matching speech signals to phonological and 

articulatory representations. The prototypical task calling upon the dorsal pathway is 

repetition, while the ventral pathway is vital in understanding meaningful speech. 

Further studies have studied the white matter tract correlates of these theoretical 

pathways. Each pathway involves fibers traveling from the superior temporal gyrus. The 

superior longitudinal fasciculus (arcuate fasciculus) has been identified as the primary 

component of the dorsal pathway, while the ventral pathways are likely comprised of 

fibers traveling through the extreme capsule (76). The uncinate fasciculus, a ventral 

pathway connecting the temporal and frontal lobes which runs close to the projected 

ventral pathway through the extreme capsule, has also been implicated in language 
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processing (77, 78). The ventral pathway is thought to be bilateral, while the dorsal 

pathway tends to be strongly left-dominant (74, 77). 

Of note, the above investigations of the dual pathway language systems have 

taken place in adult subjects. In fact, in young children (5 years of age), there appears to 

be less specialization of semantic vs. syntactic tasks than in adults (79). Though the 

developmental timing of specialization of these pathways is not fully understood, fMRI 

studies in older children (10-12 years of age) have described differential patterns of 

activation in response to semantic and phonologic tasks (21, 81-82). These studies have 

not yet elucidated the white matter correlates of this functional separation in developing 

children.  

Further, preterm children may develop language pathways differently than 

normally developing term children (78). In an fMRI task analyzing passive listening to 

language, children born preterm were shown to preferentially engage areas involved in 

phonological processing, while children born at term were more likely to activate 

semantic processing systems (21, 80).  Functional connectivity analyses performed with 

fMRI techniques have shown stronger connections between Wernicke’s area and right-

sided cortical regions in preterm children than in term children, implying changes in 

lateralization of language processing (78).  

 

Summary 

In summary, children born preterm are at significant risk of brain injury and 

developmental disability. Neuroimaging measures such as DTI are valuable in 

investigating microstructural changes in the preterm brain, and in multiple previous 
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studies have shown longstanding alterations in white matter microstructure in preterm 

children correlating with cognitive and developmental performance. For language tasks 

in particular, preterm children may engage alternative pathways, including increased 

utilization of the right hemisphere.  These findings may represent a delay in maturation 

compared to term control subjects – or they may be employed by the preterm group to 

compensate underlying changes in glio- and/or neurogenesis.
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Statement of Purpose 

 Overall, this project will examine the long-term impact of preterm birth on neural 

connectivity, using DTI data as an indicator of the microstructural integrity of white 

matter tracts and cognitive testing from preterm and term 16 year old subjects.  

First, FA values in a variety of regions of interest will be statistically compared by 

group and gender. We hypothesize that FA values will be lower in preterm than term 

children at 16 years of age, indicating more disorganization of white matter tracts, in 

regions such as the uncinate fasciculus, which is the major ventral pathway involved in 

semantic language processing.  Since previous studies have found differences in male and 

female subsets, we hypothesize that gender will influence differences between preterm 

and term adolescents.  

Second, we will statistically compare cognitive testing scores, taking group and 

gender into account. We hypothesize that preterm children will suffer deficits in 

cognitive scores, particularly on verbal testing, compared to term children. 

Finally, we hypothesize that scores on language subsets of cognitive tests will 

positively correlate with FA values in white matter regions known to be important in 

language processing, such as the arcuate and uncinate fasciculi. We further hypothesize 

that these correlations will exist in both hemispheres of preterm children, given previous 

fMRI research showing activation of bilateral language networks in preterm children 

(78). 
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Methods  

 This study was performed at the Yale University School of Medicine, New 

Haven, CT and Brown Medical School, Providence, RI. The protocols were reviewed and 

approved by institutional review boards at each location. Children provided written 

assent; parent(s) provided written consent for the study. All scans were obtained and 

analyzed at Yale University. 

 

Subjects 

 The preterm cohort consisted of 44 children with no evidence for intraventricular 

hemorrhage (IVH), periventricular leukomalacia and/or low pressure ventriculomegaly. 

Subjects had normal neurologic findings and total ventricular CSF volume within 2 SD of 

the mean ventricular volume of term control subjects at 12 years of age and no 

contraindications to MRI. All preterm subjects enrolled in the follow-up component of 

the “Multicenter Randomized Indomethacin IVH Prevention Trial” (83, 84) were 

sequentially recruited for the MRI study when they reached 16 years of age. These 

children are representative of the cohort of subjects with no evidence of neonatal brain 

injury from which they were selected with respect to gender, handedness, FSIQ scores, 

minority status, and maternal education.  Forty-one healthy term children, aged 16 years, 

were recruited from the local community and group-matched with the PT group by age, 

sex and minority status.  

The assessments of neonatal health status and neurologic outcome have been 

previously described (66). Blinded assessment of intelligence was performed using the 

Wechsler Intelligence Scale for Children-III (WISC) (85). Children also received the 
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Peabody Picture Vocabulary Test –Revised (PPVT), and the Developmental Test of 

Visual Motor Integration (VMI), the Comprehensive Test of Phonological Processing 

(CTOPP), and the Total Word Reading Efficiency test (TOWRE). 

 

Diffusion Tensor Imaging 

Imaging was performed on a Siemens Sonata 1.5 T scanner. DTI data were 

obtained using a double spin echo EPI sequence with 32 directions, 1 b values 

(1000s/mm2) and 1 average with TE=87, TR=6200, 128x128 acquisition matrix, 

Bandwidth 1630, Flip Angle 90, FOV=20x20cm, with 40 slices, 3mm thick, skip 0mm. 

Thirty-two separate acquisitions were averaged and the diffusion tensor computed from 

these data. FA values were calculated by KM from the tensor data using BioImageSuite 

software (Yale University) and nonlinearly registered to a single subject FA map selected 

from the control group of children. Both groups of subjects were registered by KM to this 

single subject template to form composite maps.  

An average tensor across subjects was also computed by KM after nonlinear 

registration of all subjects to a reference FA map, and the control group tensor was used 

to create a composite tricolor directionality map. This tricolor directionality map from the 

control group allows fiber bundles to be delineated according to the direction of diffusion 

along the fibers, and it was used by KM to manually define anatomical regions of interest 

(ROIs) based on fiber bundle location with reference to a previously published DTI atlas 

of white matter tracts(86). Since all of the subjects are registered in the same composite 

space, these ROIs were directly applied by KM to each single subject and to group FA 
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maps to generate individual FA values for each ROI for each subject for second level 

statistical analysis.   

 

Fiber Tracking 

ROIs defining the splenium of the corpus callosum and bilateral external capsules 

were defined using fiber tracking. We used fiber tracking on the tensor data of each 

subject to extract and define these regions as customized individual ROIs.  

 

Statistical Methods 

Demographic and cognitive data were analyzed using standard chi-squared 

statistics for categorical data. Continuous-valued data were analyzed using analysis of 

covariance (ANCOVA) including the terms group, gender, and group-by-gender 

interaction. For the DTI data, the ROI-based FA values were entered into an ANCOVA 

model to examine main effects of group and gender, and an interaction term for group-

by-gender. General Linear Models were used for evaluating associations between 

selected cognitive scores and FA in specific ROIs adjusting for prognostic factors.  
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Results 

Table 1. Neonatal data 

Neonatal characteristics of the preterm population are shown in Table 1. The 

included preterm subjects weighed between 600 and 1250 grams at birth, with an average 

birthweight of 994 grams ± 184 grams. The average gestational age of preterm subjects 

was 28.3 weeks ± 1.9 weeks. No subjects had evidence of intraventricular hemorrhage, 

periventricular leukomalacia, or ventriculomegaly by ultrasound as neonates. One quarter 

of the subjects (26%) developed bronchopulmonary dysplasia.  
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Table 2. Demographic data 

Demographic data of the term and preterm cohorts is presented in Table 2. 

Notably, there was a higher percentage of male subjects in the preterm cohort (59%) than 

in the term cohort (41%). There was no significant difference in the preterm and term 

cohorts in age at scan.  

There was a trend for higher weight in males than females among both preterm 

and term groups, with no difference between preterm and term cohorts. There was a 

significant gender effect on height, with males taller than females in both preterm and 

term groups. In addition, there was a significant group by gender interaction in height 

(p=0.0320), such that preterm males were slightly taller than term males (170.4 ± 9.2 cm 

vs. 169.2 ± 9.8 cm) while preterm females on average lagged notably behind term 

females (156.0 ± 9.9 cm vs. 163.3 ± 5.6 cm).   

Among the preterm subjects, 92% of males and 78% of females were right-

handed, while 88% of male term subjects and 100% of female term subjects were right-

handed, but these differences did not show significant group or gender effects. 

There were no significant differences in percentage of non-white subjects or 

percentage of subjects who had received special services as children.  

There was a trend for higher levels of maternal education in the term cohort 

compared to the preterm cohort. While the mothers of preterm male and female subjects 

had respectively 13.2 ± 2.2 and 13.4 ± 2.2 years of education, the mothers of term male 

and female subjects had 14.1 ± 3.0 and 14.8 ± 2.9 years of education respectively. There 

was not a significant gender interaction. There were not a significantly different number 

of mothers with less than a high school education in the preterm or term cohorts.  
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Table 3. Cognitive testing data by group and gender 

 Results of cognitive testing of all 16 year old subjects are presented in Table 3, 

including Wechsler Intelligence Scale for Children-III (WISC-III), Peabody Picture 

Vocabulary Test- Revised (PPVT-R), Visual Motor Integration (VMI), Comprehensive 

Test of Phonological Processing (CTOPP), and Test of Word Reading Efficiency 

(TOWRE).  

 For the WISC-III full scale intelligence quotient (IQ), male preterm subjects on 

average scored 95.3 ± 12.6 and female preterm subjects scored 92.9 ± 16.6, while male 

term subjects on average scored 107.7 ± 15.6 and female term subjects scored 102.4 

±16.8. There was a significant difference between term and preterm cohorts (p=0.0020).  

 The WISC-III Verbal IQ testing showed that male preterm subjects scored on 

average 98.5 ± 14.7, and female preterms scored 93.6 ± 16.1, while male term subjects on 

average scored 105.6 ± 15.1 and female term subjects scored 101.8 ± 15.4. This 

represented a significant difference between preterm and term groups (p=0.0269).  

 The WISC-III Verbal Comprehension IQ testing showed a trend for differences 

between the groups (p=0.0587), with average scores of 99.2 ± 14.4 in male preterms, 95.6 

± 16.7 in female preterms, 104.7 ± 13.5 in male terms, and 103.2 ± 16.0 in female terms.  

 The WISC-III Performance IQ statistics demonstrate significant group differences 

between term and preterm subjects, with subjects achieving average scores of 92.9 ± 14.9 

for male preterms, 93.4 ± 16.1 for female preterms, 108.8 ± 15.8 for male terms, and 

102.7 ± 18.4 for female terms.  
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There were no significant differences between groups or genders in PPVT scores; 

averages in male and female preterm and term groups ranged between 99 and 108 with 

standard deviations of 19 to 22. 

Preterm subjects on average scored significantly lower than term subjects on VMI 

testing (p=0.0015), and there was a trend for male subjects scoring better than female 

subjects (p=0.0935). Preterm males scored on average 78.8 ± 13.8 on this test, while 

preterm females scored 75.9 ± 11.1; meanwhile, term males scored 89.8 ± 11.7 and term 

females scored 83.2 ± 12.9.  

 While some subsets of CTOPP testing revealed differences between term and 

preterm cohorts, other scores were indistinguishable. Rapid Naming composite scores, 

which are composed of Rapid Digit Naming and Rapid Letter Naming tasks, revealed no 

significant differences between the groups. Within the Rapid Digit Naming subset, 

however, there was a significant group-by-gender effect (p=0.0402) such that preterm 

females scored higher than preterm males (11.3 ± 2.7 vs. 9.3 ± 2.8), while term males 

scored higher than preterm females (9.7 ± 3.3 vs. 9.2 ± 2.1). Preterm subjects also 

performed comparably to term subjects on Non-word Repetition and Phoneme Reversal 

tasks. The Phonemic Awareness Composite score, made up of tasks involving Blended 

Non-words and Segmented Non-words, showed a significant difference (p=0.0051) 

between term and preterm cohorts. While preterm males achieved an average score of 

81.0 ± 11.3 and preterm females scored 84.6 ± 16.8, term males scored 93.8 ± 15.9 and 

term females scored 89.8 ± 10.7. The subsets revealed significantly higher scores in terms 

than preterms in the Segmented Non-words task but no significant differences in the 

Blended Non-words task.  
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 TOWRE 16 year old standard scores revealed no significant differences among 

the term and preterm cohorts.  

 

Figure 1. Mapping regions of interest 

 Axial slices through a representative diffusion tensor image of a control brain, 

showing directional fractional anisotropy values, are shown in Figure 1A. Red represents 

left-right orientation of fibers, blue represents superior-inferior orientation of fibers, and 

green represents anterior-posterior orientation of fibers. Greater intensity of color 

represents higher values of fractional anisotropy. In Figures 1B-1C, representative ROIs 

are shown in blue overlying a grayscale fractional anisotropy map of a control brain, in 

which high levels of FA are white and low FA regions are black. Figure 1B shows the 

mapped region of the left arcuate fasciculus in blue in sagittal, coronal, and axial 

projections over a control brain. Figure 1C shows the left uncinate fasciculus in blue in 

sagittal, coronal, and axial planes over a control brain.  
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Table 4. Fractional anisotropy in regions of interest by group and gender 

 Quantitative fractional anisotropy values were obtained in each brain within a 

variety of regions of interest representing white matter tracts, and statistics regarding 

effects of group and gender were calculated for each cohort.  

 No significant differences were seen within the groups for multiple regions of 

interest, including left and right arcuate fasciculi, left and right AIFOF, left and right 

SFOF, left and right ILF, posterior limbs of the left and right internal capsules, left and 

right cingulum, left and right fornices, and left and right forceps major.  

 Term subjects had significantly higher fractional anisotropy values than preterm 

subjects in left and right PIFOF regions (p=0.0037 and p=0.0135 respectively). In 

addition, there was a trend in the left PIFOF for a gender effect (p=0.0638) and a 

significant group-by-gender interaction (p=0.0183), with lower fractional anisotropy 

values in male preterm subjects (0.395 ± 0.03) compared to female preterm subjects 

(0.418 ± 0.02), while male and female term subjects had very similar values (0.423 ± 

0.02 vs. 0.421 ± 0.02). 

 The left and right uncinate fasciculi each had significantly higher FA values in the 

term group than the preterm group (left: p=0.0042, right: p=0.002), and there was a trend 

for an effect of gender in the left uncinate fasciculus (p=0.0639) such that males had 

higher FA values than females. In the left uncinate fasciculus, male and female preterms 

had FA values of 0.292 ± 0.02 and 0.288 ± 0.02 respectively, while male and female 

terms had respective FA values of 0.311 ± 0.02 and 0.297 ± 0.02. In the right uncinate 

fasciculus, male and female preterm subjects had FA values of 0.278 ± 0.02 and 0.277 ± 
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0.01 respectively, while male and female term subjects had FA values of 0.298 ± 0.02 

and 0.285 ± 0.02 respectively.  

 In the corpus callosum, there was a significant effect of gender in the genu 

(p=0.0377) and a trend in the body (p=0.0573) such that females had higher FA values in 

both term and preterm cohorts. In the splenium there was not a notable effect of gender, 

but the preterm group (male: 0.664 ± 0.05 and female: 0.672 ± 0.06) had significantly 

lower FA values than the term group (male 0.692 ± 0.04 and female 0.696 ± 0.03), with 

p=0.0140. 

 The anterior limb of the left internal capsule demonstrated a significant effect of 

gender (p=0.0219) such that male had higher FA values than females (0.397 ± 0.02 vs. 

0.394 ± 0.02 in the preterm group, and 0.413 ± 0.02 vs. 0.394 ± 0.02 in the term cohort). 

These values showed trends for effects of group (p=0.0623) and group by gender 

(p=0.0842). There were no significant effects in the anterior limb of the right internal 

capsule.  

 Preterm children on average had significantly lower FA values in both left and 

right external capsules than term children (p<0.0001 and p=0.0007 respectively). On the 

left, the average FA value in male preterms was 0.320 ± 0.02 and in female preterms was 

0.322 ± 0.01, while term children had average values of 0.353 ± 0.03 in males and 0.344 

± 0.03 in females. On the right, average FA values in preterms were 0.325 ± 0.03 in 

males and 0.329 ± 0.02 in females, while averages in term subjects were 0.348 ± 0.03 and 

0.344 ± 0.02 in males and females respectively.  

In addition to long white matter tracts, segments of subcortical white matter deep 

to important gyri were analyzed. Preterm children had lower FA values than term 
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children in white matter serving both left and right inferior precentral gyri (p=0.0181 and 

p=0.0462 respectively).  

There was a trend towards higher FA in preterms than terms in the white matter 

serving the posterior portion of the left superior temporal gyrus (p=0.0926). The average 

FA values in this region were 0.194 ± 0.03 and 0.200 ± 0.03 for male and female preterm 

subjects respectively, and in term subjects the average values were 0.193 ± 0.02 for males 

and 0.182 ± 0.02 for females. There was no significant difference between the groups in 

the right posterior STG.  

The white matter serving the inferior frontal gyrus showed significant effects of 

both group and gender, such that males had higher average FA values than females and 

the term subjects had higher FA than preterm subjects. On the left, average FA values 

were 0.251 ± 0.02 and 0.242 ± 0.02 in male and female preterms respectively, while term 

subjects had average values of 0.278 ± 0.03 in males and 0.261 ± 0.02 in females. Both 

group and gender differences were significant (p<0.0001 and p=0.0120 respectively). On 

the right, average values in preterms were 0.249 ± 0.03 and 0.247 ± 0.02 in males and 

females respectively, while male term subjects had average FA of 0.270 ± 0.03 and 

female term subjects had average FA of 0.256 ± 0.02. This difference between groups 

was significant (p=0.0049) while there was a trend for a gender effect (p=0.0909). 

The hippocampus was analyzed in anterior, middle, and posterior divisions. On 

the left, there were trends for higher FA in term subjects than preterm subjects in the 

anterior and posterior segments, but no difference in the middle portion. On the right, 

anterior and middle divisions showed no significant differences, but the posterior third 

showed a significantly higher average FA values in terms than preterms (p=0.0062), with 



 28 

  

values of 0.209 ± 0.02 and 0.211 ± 0.02 in male and female preterms respectively, while 

terms had average values of 0.221 ± 0.02 in males and 0.225 ± 0.02 in females.  

In the forceps minor, which is the frontal radiation of the corpus callosum, there 

was a significant group-by-gender effect (p=0.0240) such that female preterms had 

greater FA values than male preterms (0.398 ± 0.02 vs. 0.382 ± 0.03 respectively) while 

female term subjects had lower FA values than male term subjects (0.382 ± 0.02 vs. 

0.390 ± 0.02 respectively). Just inferior to this region, the right inferior frontal pole 

showed a significantly higher FA values in preterm subjects than terms (p=0.0398), with 

FA values of 0.248 ± 0.03 and 0.245 ± 0.03 in male and female subjects, compared to 

values of 0.237 ± 0.03 and 0.231 ± 0.02 in male and female term subjects. There were no 

significant differences in the left inferior frontal pole. Superior to this region, the left 

anterior superior frontal pole also showed higher FA values in preterm than term subjects 

(p=0.0188), with values of 0.224 ± 0.03 and 0.230 ± 0.02 in male and female preterm 

subjects, while term subjects had average values of 0.220 ± 0.02 in males and 0.210 ± 

0.02 in females. There was no significant effect in the right anterior superior frontal pole.  

While there were no significant differences in the anterior or posterior segments 

of the corona radiata, there were trends in the middle segment, such that in the left middle 

corona radiata, females tended to have higher FA values than males (p=0.0663), while in 

the right corona radiata, preterms tended to have higher FA values than terms (p=0.0594). 
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Table 5. Correlations between FA in specific ROIs and cognitive testing  

 Correlations between FA in specific ROIs and selected cognitive tests are 

presented in Table 5. Scores on PPVT, a measure of semantic processing, are correlated 

with left and right uncinate fasciculi, left and right external capsules, and white matter 

serving the left and right inferior frontal gyri. Rapid Naming Composite scores, a subset 

of CTOPP testing highlighting phonological processing, are correlated with left and right 

arcuate fasciculi.  

In Table 5A, these correlations are presented for all subjects (n=85), with 

statistical modeling taking into account age at scan, preterm vs. term status, and gender. 

In this analysis, there are significant positive correlations between PPVT scores and 

bilateral uncinate fasciculi: on the left, R
2
=0.1109, with p=0.0107, and on the right, 

R
2
=0.1138 with p=0.0092. Trends also exist for positive correlations between Rapid 

Naming Composite scores and bilateral arcuate fasciculi: on the left, R
2
=0.1077, with 

p=0.0774, while on the right, R
2
=0.1116, with p=0.0625. There are no significant 

associations between PPVT scores and left and right external capsules or white matter 

deep to the IFG.  

In Table 5B, the data from the preterm group alone is analyzed with statistical 

consideration of birthweight and the presence of bronchopulmonary dysplasia in addition 

to age at scan and gender. With this consideration, there remains a significant positive 

association between FA values in the right uncinate fasciculus and PPVT scores in the 

preterm group (R
2
=0.1712, p=0.0273) and a similar positive trend between these scores 

and values in the left uncinate (R
2
=0.1401, p=0.0605). The positive correlation between 

PPVT scores and the right uncinate fasciculus is now a trend (R
2
=0.1269, p=0.0848). FA 
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values in both left and right arcuate fasciculi again show significant positive correlations 

with CTOPP Rapid Naming Composite scores in the preterm group. On the left, 

correlations with Rapid Naming scores show R
2
=0.3374 and p=0.0051, while the right 

arcuate correlates with these scores such that R
2
=0.2796 and p=0.0284.  

Because previous studies in this cohort at age 12 demonstrated gender effects, we 

tested the effect of gender in the models for the correlations between uncinate and arcuate 

to language testing. FA in the right uncinate contributed to PPVT for the preterm males 

(R
2
=0.2559, p=0.0186), while FA in the left and right arcuate each contributed to CTOPP 

Rapid Naming scores in the preterm females (left: R
2
=0.5582, p=0.0167; right: 

R
2
=0.5364, p=0.0229).  

Finally, there were no significant correlations in the term population. 
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Figure 2. Correlations between FA in specific ROIs and cognitive testing  

 Graphic representations of significant correlations between FA values in select 

ROIs and scores on specific cognitive tests are presented in Figure 2, with dots 

representing each subject, a solid line representing the R value for the regression model, 

and dotted lines representing a 95% confidence interval for the correlation. Each graph 

represents data seen in Table 5.  

 In Figure 2A, correlations between PPVT scores and FA of the left uncinate for 

all subjects (n=85) are presented. Figure 2B shows the correlations between all subjects’ 

PPVT scores and right uncinate FA. Figure 2C focuses on preterm subjects’ correlation 

between PPVT scores and FA in the left uncinate. In Figure 2D, PPVT scores of preterm 

subjects are correlated with the FA values in the right uncinate fasciculus. Figure 2E 

shows the Rapid Naming Composite scores of all subjects correlating with FA in the left 

arcuate. In Figure 2F, all subjects’ Rapid Naming Composite scores correlate with FA in 

the right arcuate.  Figure 2G shows the Rapid Naming Composite scores of preterm 

subjects correlating with FA of the left arcuate. Finally, Figure 2H demonstrates preterm 

subjects’ Rapid Naming Composite scores correlating with FA of the right arcuate.  
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Discussion 

Neonatal data 

The group of infants participating in this study did not show evidence of severe 

brain injury as infants, but one quarter did develop bronchopulmonary dysplasia. Chronic 

lung disease has been shown to have an effect on FA measures in the brain independent 

of variables in preterm subject such as gestational age (52). The presence of BPD, along 

with birthweight, was taken into account in statistical modeling of the correlation 

between cognitive scoring and FA values in Tables 5c and 5d. Birthweight, which also 

has been shown to impact FA measures (45), was also taken into account in Tables 5c 

and 5d.  

 

Demographic data 

While males outnumbered females in the preterm group, there were more females 

than males in the control term group. Given previously reported differences in outcomes 

between male and female preterm subjects (14), gender was taken into account in 

statistical models for comparison of cognitive data, fractional anisotropy values, and 

correlations between the two, and average scores and values are presented separately for 

males and females in each table.  

Potential factors which could influence cognitive performance or brain structure 

include levels of maternal education, which is likely to affect performance on cognitive 

exams, and percentage of right-handed subjects, which impacts laterality of language 

within the brain. There were higher numbers of left-handed subjects and a trend for lower 
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levels of maternal education in the preterm cohort than in the term group, though neither 

was significant.  

 

Cognitive data  

Preterm subjects showed impairment relative to term control subjects on multiple 

tests, including WISC full scale IQ, verbal IQ, and performance IQ, VMI, and the 

CTOPP Phonological Awareness Composite score, with particular difficulties with 

Segmented Non-Words. Notably, while preterm subjects had lower average scores on 

multiple IQ measures than term controls, their scores were comparable to term subjects 

on certain tests.  Specifically, preterms performed well on PPVT, TOWRE, CTOPP 

Rapid Naming Composite scores, Non-Word Repetition, and Phoneme Reversal. Good 

performance on CTOPP components including repetition may indicate preserved 

phonological processing ability, PPVT measures semantic understanding through testing 

of receptive vocabulary, and TOWRE is a measure of reading ability. These preserved 

abilities span a range of different subsystems of linguistic processing and ability.  

 

Fractional anisotropy 

Our data show lower FA values, implying white matter microstructural 

disorganization, in multiple white matter areas in preterm subjects without evidence of 

severe neonatal brain injury. These alterations in white matter were seen in long 

intrahemispheric association tracts, interhemispheric connections, limbic structures, and 

frontal lobe white matter areas. The splenium, which has multiple cross-hemispheric 

connections and is the last part of the corpus callosum to develop, shows particular 
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deficits in FA in preterm subjects compared to term subjects; this is consistent with 

reports from multiple cohorts (30, 87-89). Deficits in FA in the white matter of the 

hippocampus may indicate barriers to working memory, and is consistent with evidence 

from an animal model showing anisotropy decreases in hippocampi along with 

difficulties in spatial memory (90). Previous reports in children have also suggested that 

preterm birth impacts the hippocampi, showing volume losses in the hippocampi of 

preterm children compared to controls (91). The posterior segment of the inferior fronto-

occipital fasciculus, a bundle of intrahemispheric connection fibers, again shows bilateral 

deficits in FA in preterm subjects relative to term subjects, consistent with the finding at 

12 years of age (30).  

There are significant differences between terms and preterms in the areas 

implicated in the ventral pathway of language processing. Bilateral uncinate fasciculi 

show decreased FA in preterm subjects. In addition, bilateral external capsules, areas 

which include fibers in the extreme capsule (since the resolution of the study did not 

permit separation of the two tracts), show decreased FA in preterms. The white matter 

serving the IFG, which is contiguous with the uncinate fasciculus, also shows bilateral 

deficits in FA in the preterm group. Of note, the arcuate fasciculus, the primary 

component of the dorsal, phonological language processing pathway, shows no 

significant FA differences between terms and preterms.  

While previous reports have noted FA deficits in the posterior limb of the internal 

capsule in preterm subjects, no such deficit was noted in our cohort. These previous 

studies included higher percentage of subjects with severe brain injury at birth leading to 

cerebral palsy and severe neurological deficits. White matter deep to the inferior portion 
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of the precentral gyrus, however, does show decreased FA in preterms bilaterally in our 

study; deficits in this region, which supplies motor fibers to the hands and face, may 

imply alterations in gyration or subtle rearrangement of motor pathways at a subcortical 

level.  

Several regions, in contrast, showed higher average FA values in preterms then 

term subjects. These regions included white matter of the right inferior frontal pole, and 

white matter of the left anterior superior frontal pole. The significance of these 

differences is uncertain; it is possible that preterms have developed different patterns of 

gyration in the deep white matter of the frontal lobe which map differently onto our 

ROIs. This could represent an alternate pattern of frontal white matter development in 

preterm children.  

 

Correlations  

In preterm subjects, better scores on language tests were associated with higher 

FA values in regions associated with language processing. Language scores which 

showed correlations with FA represented tests which preterm subjects performed, on 

average, as well as term controls. These score subsets, in other words, were those in 

which preterm subjects had been successful in compensating for the injury of preterm 

birth.  

The strength of anatomical connectivity in a dorsal pathway, the arcuate 

fasciculus, is correlated bilaterally with performance on a phonologic task (CTOPP Rapid 

Naming Composite score), as shown in Table 5. This correlation between a phonological 

task and bilateral dorsal pathways, in place of the typical left-sided dominance (74), may 
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imply that preterm subjects rely more heavily on the right hemisphere for performance of 

language tasks than in normally developing subjects. This effect was strongest in preterm 

females, who also had the highest average Rapid Naming Composite score, implying 

successful compensation for the injury of prematurity on this task. Of note, preterm 

females have previously been reported to have better immediate and longterm outcomes 

than males born at equivalent gestational age (14, 15).  

Connectivity in a ventral pathway (the uncinate fasciculus) correlated bilaterally 

with performance on a semantic language task (PPVT). Within the preterm group, right-

sided correlations were stronger than left-sided correlations, again highlighting the 

importance of right hemispheric pathways for language function in this cohort.  

Term subjects did not show correlations between language scores and FA values 

in the tested regions. Since their FA values and testing scores were within the normal 

range, the variability within these parameters may not have permitted adequate power for 

these analyses. 

 

Limitations and future directions 

Limitations of our study include the sample size and the lack of advanced imaging 

in the neonatal period; though our cohort lacked severe brain injury such as 

intraventricular hemorrhage, subtle white matter injury undetectable by cranial 

ultrasonography is not excluded and may have influenced the outcomes of these children. 

We have not yet explored the impact of environmental factors, particularly level of 

maternal education and the impact of receiving special services. Further, the relationship 

between fractional anisotropy and white matter structure is still being explored; changes 
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seen in preterm brains may be due to changes in axonal size, edema, or myelination 

patterns. While the correlation of FA in selected regions and scores on language subsets 

indicates a relationship between white matter microstructure and test performance, this 

does not give information about causation. High FA may represent structural organization 

which develops secondary to high levels of activity and performance within a white 

matter pathway; conversely, high FA may represent a necessary primary foundation for 

use of that pathway.  

 In the future, longitudinal studies including both cognitive testing and 

neuroimaging correlations will be helpful in confirming the sites of injury in the preterm 

brain and identifying biomarkers and mechanisms for recovery. The relationship between 

cognitive development, white matter tracts, and gender are still poorly understood and 

should continue to be actively investigated. Strategies for automatic segmentation of 

images or development of a neonatal neuroimaging atlas will be useful to develop 

uniform terminology in reference to brain regions. This will avoid the possible 

subjectivity of manual segmentation of ROIs and engender a common language for 

disparate studies of closely related neuroanatomic structures. Further, our understanding 

of the relationship of structure to function will be refined through the use of functional 

MRI, particularly resting state functional connectivity MRI.  

 

Conclusion 

These data, overall, present a complex picture of cognitive deficits and 

microstructural change in the brains of preterm adolescents. Sixteen years after the insult 

of preterm birth, preterm subjects continue to show impaired performance on multiple 



 45 

  

aspects of neuropsychological testing including verbal, performance, and visuomotor 

subsets. Imaging of these subjects also shows microstructural abnormalities in multiple 

white matter tracts including interhemispheric and intrahemispheric association fibers.   

Further, our data provide the first evidence that dual processing systems underlie 

language function in adolescents born preterm. The dual language system has been 

proposed to include a left-sided dorsal pathway associated with phonological and 

articulatory processing (arcuate fasciculus), and a bilateral ventral pathway for semantic, 

receptive language processing (uncinate fasciculus). Moreover, the marked correlations 

found in our preterm population between phonological test performance and FA of the 

dorsal pathway are bilateral. This represents a departure from the left-sided lateralization 

of the dorsal articulatory pathway in typically developing subjects, and suggests 

increased utilization of the right hemisphere in preterm subjects compared to those born 

at term. This may represent either a delay in maturation or the engagement of alternative 

neural pathways for language in the developing preterm brain. 
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