11,718 research outputs found

    A Review on Classification of White Blood Cells Using Machine Learning Models

    Full text link
    The machine learning (ML) and deep learning (DL) models contribute to exceptional medical image analysis improvement. The models enhance the prediction and improve the accuracy by prediction and classification. It helps the hematologist to diagnose the blood cancer and brain tumor based on calculations and facts. This review focuses on an in-depth analysis of modern techniques applied in the domain of medical image analysis of white blood cell classification. For this review, the methodologies are discussed that have used blood smear images, magnetic resonance imaging (MRI), X-rays, and similar medical imaging domains. The main impact of this review is to present a detailed analysis of machine learning techniques applied for the classification of white blood cells (WBCs). This analysis provides valuable insight, such as the most widely used techniques and best-performing white blood cell classification methods. It was found that in recent decades researchers have been using ML and DL for white blood cell classification, but there are still some challenges. 1) Availability of the dataset is the main challenge, and it could be resolved using data augmentation techniques. 2) Medical training of researchers is recommended to help them understand the structure of white blood cells and select appropriate classification models. 3) Advanced DL networks such as Generative Adversarial Networks, R-CNN, Fast R-CNN, and faster R-CNN can also be used in future techniques.Comment: 23 page

    Review on Photomicrography based Full Blood Count (FBC) Testing and Recent Advancements

    Get PDF
    With advancements in related sub-fields, research on photomicrography in life science is emerging and this is a review on its application towards human full blood count testing which is a primary test in medical practices. For a prolonged period of time, analysis of blood samples is the basis for bio medical observations of living creatures. Cell size, shape, constituents, count, ratios are few of the features identified using DIP based analysis and these features provide an overview of the state of human body which is important in identifying present medical conditions and indicating possible future complications. In addition, functionality of the immune system is observed using results of blood tests. In FBC tests, identification of different blood cell types and counting the number of cells of each type is required to obtain results. Literature discuss various techniques and methods and this article presents an insightful review on human blood cell morphology, photomicrography, digital image processing of photomicrographs, feature extraction and classification, and recent advances. Integration of emerging technologies such as microfluidics, micro-electromechanical systems, and artificial intelligence based image processing algorithms and classifiers with cell sensing have enabled exploration of novel research directions in blood testing applications.

    Analysis and automated classification of images of blood cells to diagnose acute lymphoblastic leukemia

    Get PDF
    Analysis of white blood cells from blood can help to detect Acute Lymphoblastic Leukemia, a potentially fatal blood cancer if left untreated. The morphological analysis of blood cells images is typically performed manually by an expert; however, this method has numerous drawbacks, including slow analysis, low precision, and the results depend on the operator’s skill. We have developed and present here an automated method for the identification and classification of white blood cells using microscopic images of peripheral blood smears. Once the image has been obtained, we propose describing it using brightness, contrast, and micro-contour orientation histograms. Each of these descriptions provides a coding of the image, which in turn provides n parameters. The extracted characteristics are presented to an encoder’s input. The encoder generates a high-dimensional binary output vector, which is presented to the input of the neural classifier. This paper presents the performance of one classifier, the Random Threshold Classifier. The classifier’s output is the recognized class, which is either a healthy cell or an Acute Lymphoblastic Leukemia-affected cell. As shown below, the proposed neural Random Threshold Classifier achieved a recognition rate of 98.3 % when the data has partitioned on 80 % training set and 20 % testing set for. Our system of image recognition is evaluated using the public dataset of peripheral blood samples from Acute Lymphoblastic Leukemia Image Database. It is important to mention that our system could be implemented as a computational tool for detection of other diseases, where blood cells undergo alterations, such as Covid-1

    Automatic detection of white blood cancer from bone marrow microscopic images using convolutional neural networks

    Get PDF
    Leukocytes, produced in the bone marrow, make up around one percent of all blood cells. Uncontrolled growth of these white blood cells leads to the birth of blood cancer. Out of the three different types of cancers, the proposed study provides a robust mechanism for the classification of Acute Lymphoblastic Leukemia (ALL) and Multiple Myeloma (MM) using the SN-AM dataset. Acute lymphoblastic leukemia (ALL) is a type of cancer where the bone marrow forms too many lymphocytes. On the other hand, Multiple myeloma (MM), a different kind of cancer, causes cancer cells to accumulate in the bone marrow rather than releasing them into the bloodstream. Therefore, they crowd out and prevent the production of healthy blood cells. Conventionally, the process was carried out manually by a skilled professional in a considerable amount of time. The proposed model eradicates the probability of errors in the manual process by employing deep learning techniques, namely convolutional neural networks. The model, trained on cells' images, first pre-processes the images and extracts the best features. This is followed by training the model with the optimized Dense Convolutional neural network framework (termed DCNN here) and finally predicting the type of cancer present in the cells. The model was able to reproduce all the measurements correctly while it recollected the samples exactly 94 times out of 100. The overall accuracy was recorded to be 97.2%, which is better than the conventional machine learning methods like Support Vector Machine (SVMs), Decision Trees, Random Forests, Naive Bayes, etc. This study indicates that the DCNN model's performance is close to that of the established CNN architectures with far fewer parameters and computation time tested on the retrieved dataset. Thus, the model can be used effectively as a tool for determining the type of cancer in the bone marrow. © 2013 IEEE

    Preliminary process in blast cell morphology identification based on image segmentation methods

    Get PDF
    The diagnosis of blood disorders in developing countries usually uses the diagnostic procedure Complete Blood Count (CBC). This is due to the limitations of existing health facilities so that examinations use standard microscopes as required in CBC examinations. However, the CBC process still poses a problem, namely that the procedure for manually counting blood cells with a microscope requires a lot of energy and time, and is expensive. This paper will discuss alternative uses of image processing technology in blast cell identification by using microscope images. In this paper, we will discuss in detail the morphological measurements which include the diameter, circumference and area of blast cell cells based on watershed segmentation methods and active contour. As a basis for further development, we compare the performance between the uses of both methods. The results show that the active contour method has an error percentage of 5.15% while the watershed method has an error percentage of 8.25%

    A PCNN Framework for Blood Cell Image Segmentation

    Get PDF
    This research presents novel methods for segmenting digital blood cell images under a Pulse Coupled Neural Network (PCNN) framework. A blood cell image contains different types of blood cells found in the peripheral blood stream such as red blood cells (RBCs), white blood cells (WBCs), and platelets. WBCs can be classified into five normal types – neutrophil, monocyte, lymphocyte, eosinophil, and basophil – as well as abnormal types such as lymphoblasts and others. The focus of this research is on identifying and counting RBCs, normal types of WBCs, and lymphoblasts. The total number of RBCs and WBCs, along with classification of WBCs, has important medical significance which includes providing a physician with valuable information for diagnosis of diseases such as leukemia. The approach comprises two phases – segmentation and cell separation – followed by classification of WBC types including detection of lymphoblasts. The first phase presents two methods based on PCNN and region growing to segment followed by a separate method that combines Circular Hough Transform (CHT) with a separation algorithm to find and separate each RBC and WBC object into separate images. The first method uses a standard PCNN to segment. The second method uses a region growing PCNN with a maximum region size to segment. The second phase presents a WBC classification method based on PCNN. It uses a PCNN to capture the texture features of an image as a sequence of entropy values known as a texture vector. First, the parameters of the texture vector PCNN are defined. This is then used to produce texture vectors for the training images. Each cell type is represented by several texture vectors across its instances. Then, given a test image to be classified, the texture vector PCNN is used to capture its texture vector, which is compared to the texture vectors for classification. This two-phase approach yields metrics based on the RBC and WBC counts, WBC classification, and identification of lymphoblasts. Both the standard and region growing PCNNs were successful in segmenting RBC and WBC objects, with better accuracy when using the standard PCNN. The separate method introduced with this research provided accurate WBC counts but less accurate RBC counts. The WBC subimages created with the separate method facilitated cell counting and WBC classification. Using a standard PCNN as a WBC classifier, introduced with this research, proved to be a successful classifier and lymphoblast detector. While RBC accuracy was low, WBC accuracy for total counts, WBC classification, and lymphoblast detection were overall above 96%
    • …
    corecore