17 research outputs found

    Fast Erasure-and-Error Decoding and Systematic Encoding of a Class of Affine Variety Codes

    Full text link
    In this paper, a lemma in algebraic coding theory is established, which is frequently appeared in the encoding and decoding for algebraic codes such as Reed-Solomon codes and algebraic geometry codes. This lemma states that two vector spaces, one corresponds to information symbols and the other is indexed by the support of Grobner basis, are canonically isomorphic, and moreover, the isomorphism is given by the extension through linear feedback shift registers from Grobner basis and discrete Fourier transforms. Next, the lemma is applied to fast unified system of encoding and decoding erasures and errors in a certain class of affine variety codes.Comment: 6 pages, 2 columns, presented at The 34th Symposium on Information Theory and Its Applications (SITA2011

    Lemma for Linear Feedback Shift Registers and DFTs Applied to Affine Variety Codes

    Full text link
    In this paper, we establish a lemma in algebraic coding theory that frequently appears in the encoding and decoding of, e.g., Reed-Solomon codes, algebraic geometry codes, and affine variety codes. Our lemma corresponds to the non-systematic encoding of affine variety codes, and can be stated by giving a canonical linear map as the composition of an extension through linear feedback shift registers from a Grobner basis and a generalized inverse discrete Fourier transform. We clarify that our lemma yields the error-value estimation in the fast erasure-and-error decoding of a class of dual affine variety codes. Moreover, we show that systematic encoding corresponds to a special case of erasure-only decoding. The lemma enables us to reduce the computational complexity of error-evaluation from O(n^3) using Gaussian elimination to O(qn^2) with some mild conditions on n and q, where n is the code length and q is the finite-field size.Comment: 37 pages, 1 column, 10 figures, 2 tables, resubmitted to IEEE Transactions on Information Theory on Jan. 8, 201

    Quantum codes from a new construction of self-orthogonal algebraic geometry codes

    Get PDF
    [EN] We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes. These results demonstrate that there is a lot more scope for constructing self-orthogonal AG codes than was previously known.G. McGuire was partially supported by Science Foundation Ireland Grant 13/IA/1914. The remainder authors were partially supported by the Spanish Government and the EU funding program FEDER, Grants MTM2015-65764-C3-2-P and PGC2018-096446-B-C22. F. Hernando and J. J. Moyano-Fernandez are also partially supported by Universitat Jaume I, Grant UJI-B2018-10.Hernando, F.; Mcguire, G.; Monserrat Delpalillo, FJ.; Moyano-Fernández, JJ. (2020). Quantum codes from a new construction of self-orthogonal algebraic geometry codes. Quantum Information Processing. 19(4):1-25. https://doi.org/10.1007/s11128-020-2616-8S125194Abhyankar, S.S.: Irreducibility criterion for germs of analytic functions of two complex variables. Adv. Math. 74, 190–257 (1989)Abhyankar, S.S.: Algebraic Geometry for Scientists and Engineers. Mathematical Surveys and Monographs, American Mathematical Society, Providence (1990)Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection I: statement of the problem. IEEE Trans. Inf. Theory 46, 778–788 (2000)Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection II: bounds. IEEE Trans. Inf. Theory 46, 789–800 (2000)Ashikhmin, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000)Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 76, 405–409 (1997)Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)Campillo, A., Farrán, J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)Duursma, I.M.: Algebraic geometry codes: general theory. In: Advances in Algebraic Geometry Codes, Series of Coding Theory and Cryptology, vol. 5. World Scientific, Singapore (2008)Feng, K.: Quantum error correcting codes. In: Coding Theory and Cryptology, pp. 91–142. Word Scientific (2002)Feng, K., Ma, Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)Galindo, C., Geil, O., Hernando, F., Ruano, D.: On the distance of stabilizer quantum codes from JJ-affine variety codes. Quantum Inf. Process 16, 111 (2017)Galindo, C., Hernando, F., Matsumoto, R.: Quasi-cyclic construction of quantum codes. Finite Fields Appl. 52, 261–280 (2018)Galindo, C., Hernando, F., Ruano, D.: Stabilizer quantum codes from JJ-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process 14, 3211–3231 (2015)Galindo, C., Hernando, F., Ruano, D.: Classical and quantum evaluation codes at the trace roots. IEEE Trans. Inf. Theory 16, 2593–2602 (2019)Garcia, A.: On AG codes and Artin–Schreier extensions. Commun. Algebra 20(12), 3683–3689 (1992)Goppa, V.D.: Geometry and Codes. Mathematics and its Applications, vol. 24. Kluwer, Dordrecht (1991)Goppa, V.D.: Codes associated with divisors. Probl. Inf. Transm. 13, 22–26 (1977)Gottesman, D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)Grassl, M., Rötteler, M.: Quantum BCH codes. In: Proceedings X International Symposium Theory Electrical Engineering, pp. 207–212. Germany (1999)Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2, 757–775 (2004)He, X., Xu, L., Chen, H.: New qq-ary quantum MDS codes with distances bigger than q/2q/2. Quantum Inf. Process. 15(7), 2745–2758 (2016)Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves Over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008)Høholdt, T., van Lint, J., Pellikaan, R.: Algebraic geometry codes. Handb. Coding Theory 1, 871–961 (1998)Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58, 4489–5484 (2012)Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4924 (2006)La Guardia, G.G.: Construction of new families of nonbinary quantum BCH codes. Phys. Rev. A 80, 042331 (2009)La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60, 1528–1535 (2014)Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)Matsumoto, R., Uyematsu, T.: Constructing quantum error correcting codes for pmp^m state systems from classical error correcting codes. IEICE Trans. Fund. E83–A, 1878–1883 (2000)McGuire, G., Yılmaz, E.S.: Divisibility of L-polynomials for a family of Artin–Schreier curves. J. Pure Appl. Algebra 223(8), 3341–3358 (2019)Munuera, C., Sepúlveda, A., Torres, F.: Castle curves and codes. Adv. Math. Commun. 3, 399–408 (2009)Munuera, C., Tenório, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of castle type. Quantum Inf. Process. 15, 4071–4088 (2016)Pellikaan, R., Shen, B.Z., van Wee, G.J.M.: Which linear codes are algebraic-geometric. IEEE Trans. Inf. Theory 37, 583–602 (1991)Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2557 (1996)Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009)Tsfasman, M.A., Vlăduţ, S.G., Zink, T.: Modular curves, Shimura curves and AG codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982

    On cyclic algebraic-geometry codes

    Get PDF
    In this paper we initiate the study of cyclic algebraic geometry codes. We give conditions to construct cyclic algebraic geometry codes in the context of algebraic function fields over a finite field by using their group of automorphisms. We prove that cyclic algebraic geometry codes constructed in this way are closely related to cyclic extensions. We also give a detailed study of the monomial equivalence of cyclic algebraic geometry codes constructed with our method in the case of a rational function field.Fil: Cabaña, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ciencias Economicas; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; ArgentinaFil: Chara, María de Los Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; ArgentinaFil: Podestá, Ricardo César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Toledano, Ricardo. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentin

    Lifting iso-dual algebraic geometry codes

    Full text link
    In this work we investigate the problem of producing iso-dual algebraic geometry (AG) codes over a finite field Fq\mathbb{F}_q with qq elements. Given a finite separable extension M/F\mathcal{M}/\mathcal{F} of function fields and an iso-dual AG-code C\mathcal{C} defined over F\mathcal{F}, we provide a general method to lift the code C\mathcal{C} to another iso-dual AG-code C~\tilde{\mathcal{C}} defined over M\mathcal{M} under some assumptions on the parity of the involved different exponents. We apply this method to lift iso-dual AG-codes over the rational function field to elementary abelian pp-extensions, like the maximal function fields defined by the Hermitian, Suzuki, and one covered by the GGSGGS function field. We also obtain long binary and ternary iso-dual AG-codes defined over cyclotomic extensions.Comment: 26 pages, 3 figure

    Algebraic Geometry Codes from Castle curves

    Get PDF
    The quality of an algebraic geometry code depends on the curve from which the code has been defined. In this paper we consider codes obtained from Castle curves, namely those whose number of rational points attains Lewittes' bound for some rational point Q and the Weierstrass semigroup at Q is symmetric

    On cyclic algebraic-geometry codes

    Get PDF
    In this paper we initiate the study of cyclic algebraic geometry codes. We give conditions to construct cyclic algebraic geometry codes in the context of algebraic function fields over a finite field by using their group of automorphisms. We prove that cyclic algebraic geometry codes constructed in this way are closely related to cyclic extensions. We also give a detailed study of the monomial equivalence of cyclic algebraic geometry codes constructed with our method in the case of a rational function field.Comment: 25 pages, 1 figur
    corecore