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Abstract. The quality of an algebraic geometry code depends on the
curve from which the code has been defined. In this paper we consider
codes obtained from Castle curves, namely those whose number of ra-
tional points attains Lewittes’ bound for some rational point Q and the
Weierstrass semigroup at Q is symmetric.

1 Introduction

Goppa constructed error correcting linear codes by using tools from Algebraic
Geometry: a nonsingular, projective, geometrically irreducible, algebraic curve
X of genus g defined over Fq, the finite field with q elements, and two rational
divisors D and G on X ; see [12, 13, 30]. These divisors are chosen in such a
way that they have disjoint supports and D equals to a sum of pairwise distinct
rational points, D = P1 + . . . + Pn. The algebraic geometry (or simply AG) code
defined by the triple (X , D,G) is the q-ary linear space

C(X , D, G) := {ev(f) := (f(P1), . . . , f(Pn)) : f ∈ L(G)} ,

where L(G) = {f ∈ Fq(X )∗ : G + div(f) � 0} ∪ {0} is the Riemann-Roch space
associated to G. Soon after its introduction, AG codes become an important
instrument in Coding Theory; for example, Tsfasman, Vlǎduţ and Zink showed
that the Gilbert-Varshamov bound can be improved by using them, [32]. Later,
Pellikaan, Shen and van Wee [28] noticed that any arbitrary linear code is in
fact an AG-code.

The study of AG codes, which is based on resources from algebraic geometry,
is usually difficult. For example, it is well known that the parameters k and d
(the dimension and the minimum distance) of C(X , D,G) verify

1. k = `(G)−`(G−D), where `(·) denotes the dimension of the Riemann-Roch
space L(·); and

2. d ≥ d(X , D, G) := n− deg(G) (the Goppa bound).

However the exact determination of k and d is often not possible. If 2g − 2 <
deg(G) < n then the code C(X , D,G) is called strongly AG; in this case, the
Riemann-Roch theorem gives k = deg(G) − 1 + g. In other cases `(G) and/or
`(G − D) are rather difficult to compute. On the other hand, if deg(G) ≥ n,
the above bound on d does not give any information; nevertheless, Munuera [24]
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improved (2) by using another geometric invariant of the curve, see (1) below.
For an integer r ≥ 1, set

γr = γr(X , q) := min{deg(A) : A is a Fq-rational divisor on X with `(A) ≥ r} .

The number γ(X , q) := γ2 and the sequence (γr)r≥1 are called respectively the
gonality (resp. gonality sequence) of X over Fq; cf. [34]. We have

d ≥ n− deg(G) + γa+1 , (1)

where a is the abundance of the code, namely a := `(G−D); unfortunately both
the genus and the gonality sequence of curves are usually very hard to compute.

Other lower bounds on the minimum distance on AG-codes have been de-
veloped by several authors; it seems that the more interesting of them is the
order (or Feng-Rao) bound cf. [19], but it can be applied only to the duals of
one-point AG codes; i.e., those AG codes for which G is a multiple of a rational
point (although there is an analogous for “two-point” AG codes, see [5, 27]). We
stress that, in general, the minimum distance of the dual C⊥ of C does not give
information on the minimum distance of C.

Let C(X , D, mQ) be a one-point AG code. The space L(G) is closely related
to the Weierstrass semigroup at Q

S(Q) = {0 = ρ1(Q) < ρ2(Q) < . . .} = {−vQ(f) : f ∈ ∪∞r=0L(rQ)}

where vQ is the valuation at Q. The element ρ2(Q) is usually called the mul-
tiplicity at (resp. of) Q (resp. S(Q)). As we mentioned above, k = m − 1 + g
for 2g − 2 < m < n. In any case, if ρi(Q) ≤ m < ρi+1(Q) then k = i, so S(Q)
gives the dimension of C(X , D, mQ). Annalogously, the computation of the or-
der bound of the code C(X , D, mQ)⊥ depends also on the semigroup S(Q), see
[19]. Therefore, the problems of computing the dimension and the minimum dis-
tance of (the duals of) one-point AG codes go through the problem of computing
Weierstrass semigroups, which is not an easy problem at all.

Fortunately, we know some curves that combine the good properties of hav-
ing a reasonable handling and giving one-point codes with excellent parameters
(some times records in the tables [18]); such curves include the Deligne-Lusztig
varieties of dimension one [6] (namely the projective line, the Hermitian curve,
the Suzuki curve and the Ree curve), the generalized Hermitian curves [9], the
Norm-Trace curves [10], etc. It is natural to ask if these curves share some com-
mon characteristic that motives all these good properties. At the first look, all
the aforementioned curves have ’many’ rational points; as a matter of fact, the
Deligne-Lusztig curves are optimal in the sense that they have the maximum
number of rational points that curves of its genus defined over the same ground
field can have, see [15]. Several bounds on the number of rational points of curves
are available in the literature, see e.g. [30]. For our purposes it is relevant the
one given by Lewittes in [21]: if Q is a rational point of X , then

#X (Fq) ≤ qρ2(Q) + 1 . (2)



This bound was proved by using the theory of Algebraic Function Fields of
one variable (or see Theorem 1 below). It was recently improved by Geil and
Matsumoto in [11].

In this paper we are interested in curves reaching equality in (2) and for
which the semigroup S(Q) is symmetric (in the sense that ρ ∈ S(Q) if and only
if 2g − 1 − ρ 6∈ S(Q)). We shall refer to these curves as Castle curves (here
the word ’castle’ is used to honoring the place where this meeting is realized!).
The aforementioned Norme-Trace curve, the generalized Hermitian curve and
Deligne-Lusztig curves are all of them Castle curves. Also we shall show some
common properties of one-point Goppa codes arising from Castle curves.

2 Castle curves

Let X be a curve over Fq with (n + 1) Fq-rational points. Write X (Fq) =
{Q,P1, . . . , Pn}. The following Theorem, due to Geil and Matsumoto [11, Thm.
1], gives an upper bound on #X (Fq). It generalizes a previous result of Lewittes
[21, Thm. 1]. For the convenience of the reader we shall include a short proof of
the Lewittes bound.

Theorem1. Let S(Q) be the Weierstrasas semigroup at Q. Set s + S(Q) :=
{s + ρ : ρ ∈ S(Q)} and S∗(Q) := S(Q) \ {0}. Then

#X (Fq) ≤ #(S(Q) \ (qS∗(Q) + S(Q))) + 1 .

In particular #X (Fq) ≤ qρ2(Q) + 1.

Proof. Set ρ2 = ρ2(Q) and let f ∈ L(ρ2Q) be a rational function such that
ρ2 = −vQ(f). Then fq ∈ L(qρ2Q) and ev(fq) = ev(f). Since ev is injective for
m = qρ2 < n = #X (Fq)−1 and fq 6= f , we have qρ2 ≥ n, which is the Lewittes’
bound. A similar reasonning leads to the Geil-Matsumoto bound.

Example 1. A rational curve is clearly a Castle curve. A hyperelliptic curve is
a Castle curve if and only if it has just one hyperelliptic rational point and
attains equality in the hyperelliptic bound #{rational nonhyperelliptic points}+
2#{rational hyperelliptic points} ≤ 2q + 2.

Example 2. (The Norm-Trace curve). Let us consider the curve defined over Fqr

by the affine equation

x(qr−1)/(q−1) = yqr−1
+ yqr−2

+ . . . + y

or equivalently by NFqr |Fq
(x) = TFqr |Fq

(y), where the maps N and T are re-
spectively the norm and trace from Fqr to Fq. This curve has 22r−1 +1 rational
points and the Weierstrass semigroup at the unique pole Q of x is given by

S(Q) = 〈qr−1, (qr − 1)/(q − 1)〉 .

Since every semigroup generated by two elements is symmetric, this is a Castle
curve. Codes on these curves have been studied by Geil, [10].



Example 3. (Generalized Hermitian curves) For r ≥ 2 let us consider the curve
Xr over Fqr defined by the afine equation

yqr−1
+ . . . + yq + y = x1+q + . . . + xqr−2+qr−1

or equivalently by sr,1(y, yq, . . . , yqr−1
) = sr,2(x, xq, . . . , xqr−1

), where sr,1 and
sr,2 are respectively the first and second symmetric polynomials in r variables.
Note that X2 is the Hermitian curve. These curves were introduced by Garcia
and Stichtenoth in [9] and they have q2r−1 +1 rational points. Let Q be the only
pole of x. Then S(Q) = 〈qr−1, qr−1 + qr−2, qr + 1〉. This semigroup is telescopic
(loc. cit.) and hence symmetric (see e.g. [22]). Therefore, Xr is a Castle curve.
AG-codes based on these curves were studied by Bulygin [4] in the binary case
and by Sepúlveda [29] in the general case.

To show that the Deligne-Lusztig curves are Castle curves, we shall point out
an interesting interplay beetween Castle curves and Jacobian Varieties of curves
(cf. [8]). Let L(t) be the numerator of the Zeta function of X over Fq. Set

h(t) := t2gL(t−1) .

Then h(t) is monic of degree 2g and its independent term is nonzero. Moreover it
is the characteristic polynomial of the Frobenius morphism ΦJ on the Jacobian
J of X (here we see ΦJ as an endomorphism acting on the Tate module). Let

h(t) =
∏
j

h
rj

j (t)

be the factorization of h(t) in Z[t]. Since ΦJ is semisimple and the representation
of endomorphisms of J on the Tate module is faithfully (see [33, Thm. 2], [20,
VI§3]), it follows that ∏

j

hj(ΦJ ) = 0 . (3)

Let Φ : X → X denote the Frobenius morphism on X . Let π : X → J be the
natural morphism given by P 7→ [P −Q], Q ∈ X (Fq). Since π ◦ Φ = ΦJ ◦ π, (3)
implies the following equivalence of divisors on X∏

j

hj(Φ)(P ) ∼ mQ, with P ∈ X and m =
∏

j hj(1) . (4)

This suggests to study the linear series C := |mQ|. Remark that C is independent
of the rational point Q, and |m| belongs to the Weierstrass semigroup at any
rational point. Let us write∏

j

hj(t) = tU + α1t
U−1 + . . . + αU−1t + αU .

Proposition 2. Notation as above. Suppose that (i) α1 ≥ 1, (ii) αj+1 ≥ αj for
j = 1, . . . , U − 1, and (iii) #X (Fq) ≥ qαU + 1. Then, for any P ∈ X (Fq) we
have



1. #X (Fq) = qρ2(P ) + 1;
2. ρ2(P ) = αU ;
3. γ(X , q) = αU .

Proof. We first show that αU is a generic non-gap (that is, a non-gap at a point
which is not a Weierstrass point). In fact, by applying Φ∗ to (4) we get

αUR ∼ ΦU+1(R)+(α1−1)ΦU (R)+(α2−α1)ΦU−1(R)+ . . .+(αU −αU−1)Φ(R).

By (i) and (ii), αU is a non-gap at any point R such that φU+1(R) 6= R, i.e., at
any point which is not a fixed point of φU+1. Since the number of fixed points of
this morphism is finite, the claim follows. By standard Weierstrass point theory,
it holds that ρ2(P ) ≤ αU . Thus from (iii) and the Lewittes’ bound (2), we have

qαU + 1 ≤ #X (Fq) ≤ qρ2(P ) + 1 ≤ qαU + 1

and (1), (2) follow. Now set γ = γ(X , q). Then, as γ ≤ αU by definition of γ and
#X (Fq) ≤ (q + 1)γ, (iii) holds as αU ≤ q.

The polynomials h(t) for the Hermitian, H, the Suzuki, S, and the Ree curve,
R, are as follows see e.g. [15]:

(I) hH(t) = (t + `)2g, where q = `2 and g = `(`− 1)/2;
(II) hS(t) = (t2 + 2q0t + q)g, where q = 2q2

0 > 2 and g = q0(q − 1);
(III) hR(t) = (t2 + q)A(t2 + 3q0t + q)B , where q = 3q2

0 > 3, A = q0(q − 1)(q +
3q0 + 1)/2, B = q0(q2 − 1) and g = 2A + 2B.

By using these polynomials, and after some computations, we obtain the follow-
ing data for any rational point P

Curve X Hermitian Suzuki Ree
ρ2(P ) = γ(X , q) ` q q2

#X (Fq) `3 + 1 q2 + 1 q3 + 1
m 1 + ` 1 + 2q0 + q (1 + q)(1 + 3q0 + q))
C |(1 + `)P | |(1 + 2q0 + q)P | |(1 + q)(1 + 3q0 + q)P |

.

In order to study the symmetry of the Weierstrass semigroups associated to
these curves, let us first recall some facts from the Stöhr-Voloch theory, concern-
ing to a geometric bound on the number of rational points of curves over finite
fields [31]. Let x, y be rational functions such that

div∞(x) = ρ2(P )P and div∞(y) = mP.

Consider the morphism φ = (1 : x : y) : X → P2(Fq). The linear series E
associated to φ is given by the divisors {div(`) + mP : ` = a + bx + cy , (a : b :
c) ∈ P2(Fq)}. Let v = vQ denote the valuation at Q ∈ X . For all but finitely
many points Q, there exist lines `0 = `0(Q), `1 = `1(Q) and `2 = `2(Q), such
that v(`0) = 0, v(`1) = 1 and v(`2) = ε2 > 1, this number being independent
of Q [31, Thm. 1.5]. To deal with rational points, we consider the sequence



0 = ν0 < ν1 where ν1 = 1 or ν1 = ε2 > 1. According to [31, Sect. 2], the last
case occurs if and only if Φ(Q) ∈ div(`2) + mP for all but finitely many points
Q. In our case, the last condition holds true by (4). Thus it holds that

yq − y =
dy

dx
(xq − x) . (5)

Proposition 3. Let P be a rational point of the Hermitian, Suzuki or Ree curve.
Then the Weierstrass semigroup at P is symmetric.

Proof. For Hermitian and Suzuki curves the Weierstrass semigroups are known
and the symmetry follows after some arithmetical computations (although alter-
native conceptual proofs can be done by using the above reasonning). We shall
omit them. For the Ree curve it seems that the structure of S(P ) (P ∈ X (Fq))
is no available; nevertheless, we can still prove the symmetry property via the
linear series E . Here we have ρ2(P ) = q2 and m = (1 + q)(1 + 3q0 + q). Let
t be a local parameter at P . We will show that v(dx

dt ) = 2g − 2. Remark that
#X (Fq) = q3 + 1 = (q − 3q0 + 1)m and 2g − 2 = (3q0 − 2)m. By applying the
chain rule to (5), and since gcd(m, q) = 1, we have

v(
dx

dt
)− qm = −m− 1− qρ2(P ) = −m−#X (Fq)

or equivalently

v(
dx

dt
) = (q − 1)m−m− (q − 3q0 + 1)m = (3q0 − 2)m.

Example 4. (Castle maximal curves) Let X be a maximal curve of genus g over
Fq, q = `2. Then X is a Castle curve if and only if there exists Q ∈ X (Fq) such
that 1+ `2 +2g` = 1+ `2ρ2(Q). Thus X must be a curve of genus g = `(ρ2(Q)−
1)/2. Apart from the Hermitian curve, such curves do exist. For example:

– The curve defined by y`/2 + y`/22
+ . . .+ y2 + y = x`+1 with ` even; here the

genus is `(`−2)/4 and ρ2(Q) = `/2 where Q is the unique pole of x (see [2]);
– The curve defined by y`/3 +y`/9 + . . .+y3 +y = ax`+1, where ` is a power of

three, a ∈ Fq with a`−1 = −1; here the genus is `(`− 3)/6 and ρ2(Q) = `/3
at P the unique pole of x (see [3]).

Further examples can be find in [1].

The next Proposition colects some properties of Castle curves. Let us remem-
ber that by γr = γr(X , q) we denote the r-th gonality of X over Fq.

Proposition 4. Let X be a Castle curve with respect to a point Q ∈ X (Fq),
where the multiplicity at Q satisfy ρ2(Q) ≤ q + 1. Then

1. γ2 = ρ2(Q);



2. γi = ρi(Q) for i ≥ g − γ + 2; that is,

γi = ρi(Q) =
{

i + g − 2 if g − γ + 2 ≤ i ≤ g;
i + g − 1 if i > g;

3. We have the equivalence of divisors on X∑
P∈X (Fq)

P ∼ (qρ2(Q) + 1)Q .

Proof. Set ρi := ρi(Q). (1) We have ρ2 − (ρ2 − 1)/(q + 1) ≤ γ ≤ ρ2 and the
hypothesis on ρ2 implies the result. (2) The statement about the gonalities of
high order follows from the fact that both, the semigroup S(Q) and the set of
gonalities GS(X ) = (γr)r≥1 verify the same symmetry property: for every integer
a, it holds that a ∈ S(Q) (resp. a ∈ GS(X )) if and only if 2g − 1 − a 6∈ S(Q)
(resp. 2g−1−a 6∈ GS(X )), cf. [26]. (3) As we have seen in the proof of Theorem
1, the code C(X , P1 + . . . + Pn, nQ) is abundant, hence `(nQ−D) = 1.

3 Codes on Castle curves

Let X be a curve of genus g over Fq with (n + 1) Fq-rational points, X (Fq) =
{Q,P1 . . . , Pn}. Consider the sequence of codes (Cm)m≥1, where Cm = C(X , P1+
. . . + Pn,mQ), and let km, dm be the dimension and the minimum distance of
Cm, respectively. Let S(Q) = {0 = ρ1 < ρ2 < . . .} be the Weierstrass semigroup
at Q. Define the function ι = ιQ : N0 → N by ι(m) = max{i : ρi ≤ m}. Note
that ι(m) = `(mQ). Let us remember that two Fq-codes C1 and C2 of the same
length n, are isometric if there is an n-uple x of nonzero elements in Fq such
that C1 = x ∗ C2 := {x ∗ c : c ∈ C2}, where ∗ stands for the coordinatewise
product, see [25].

Proposition 5. If X is a Castle curve with respect to Q, then

1. For m < n, the dimension of Cm is km = ι(m);
2. For m ≥ n, Cm is an abundant code of abundance ι(m− n) and dimension

km = ι(m)− ι(m− n);
3. The dual of Cm is isometric to Cn+2g−2−m;
4. For 1 ≤ m < n, dm reaches Goppa bound if and only if dn−m does;
5. The minimum distance of Cn verifies dn ≥ ρ2(Q).

Proof. (1) Since ev is injective over L(mQ) for m < n, the result follows from
the fact that ι(m) = `(mQ). (2) We have already seen that Cn is abundant.
Thus, in view of Proposition 4, if m ≥ n the abundance of Cm for m ≥ n is
`(mQ−D) = `(mQ−nQ) = ι(m−n). The statement about the dimension follows
trivially. (3) The dual of Cm is C(D,D + W − mQ), where W is a differential
form with simple poles and residue 1 at each Pi (see [25]). Now, in view of
Proposition 4, P1 + . . . + Pn ∼ nQ and (2g − 2)Q ∼ W (as the semigroup S is
symmetric). Thus P1 + . . . + Pn + W −mQ ∼ (n + 2g− 2−m)Q and codes Cm,



Cn+2g−2−m are isometric, see [25]. (4) For m < n, Cm reaches equality in the
Goppa bound if and only if then there exists D′, 0 ≤ D′ ≤ D such that mQ ∼ D′.
Let D′′ = D−D′. Thus mQ ∼ D−D′′ ∼ nQ−D′′, hence (n−m)Q ∼ D′′ and
the code Cn−m also reaches equality in the Goppa bound. (5) Since γ2 = ρ2,
this is just the improved Goppa bound on the minimum distance.

Remark. Since isometric codes have the same parameters, property 3 of the
above Proposition allows us to use the order bound to estimate the minimum
distance of these codes.

Example 5. Let us consider codes on the Suzuki curve S over F8. Here g =
2(8− 1) = 14 and #S(F8) = 82 + 1 = 65.

Let m = 50. We have k50 = 50 + 1 − 14 = 37. The Goppa bound gives
d50 ≥ 14 and by applying the order bound we in fact obtain a [64, 37,≥ 16] code
over F8. Note that according to the Grassl tables [14], it is not known a [64, 37]
code over F8 having minimum distance d > 16.

Analogously, for m = 73 we obtain a [64, 58,≥ 4] which have the best known
parameters.

Finally, by applying now the bound stated in item 5 of the above proposition
for m = 63, we get a [64, 50,≥ 8] code, which is again a record. All these facts
were unkown up the the moment (even if the codes are known longtime ago). By
the way, note that the order bound on the minimum distance of this last code
gives d([64, 50]) ≥ 6. This shows that the order bound is not always better that
the improved Goppa bound.

4 A worked example

In [7], Deolalikar constructed a subcover of the Garcia-Stichtenoth curve (see
Example 3) in the particular case r = 3. In this section, we generalize his con-
struction obtaining Castle curves.

Proposition 6. Let Xr be a Garcia-Stichtenoth curve over Fqr and let b ∈ F∗qr

such that TFqr |Fq
(b) = 0, being T the trace function. Then for j = 1, . . . , r − 2,

the curve X j
r defined over Fqr by the affine aquation

sr,2(x, xq, . . . , xqr−1
) =

yqj

j −
(

1
bqj−qj−1 + · · ·+ 1

bqj−1

)
yqj−1

j − · · · −
(

1
bq2−q

+
1

bq2−1

)
yq

j −
1

bq−1
yj ,

where sr,2 is the second symmetric polynomial, is covered by Xr.

Proof. A covering map c : Xr → X j
r is given by c(x, y) =

(x, yqr−j−1
+(bqr−1−1+· · ·+bqr−j−1+1)yqr−j−2

+· · ·+(bqr−1−1+· · ·+bq2−1+1)y)

Let Qj ∈ X j
r be the only pole of x.



Proposition 7. The curve X j
r , j = 1, . . . , r−2, verifies the following properties.

1. Qj is totally ramified.
2. The genus of X j

r is g = (qj − 1)qr−1/2.
3. The number of rational points of X j

r is qr+j + 1.
4. The Weierstrass semigroup at Qj ∈ X j

r is S(Qj) =
〈
qj , qr−1 + 1

〉
.

Proof. (1) Q ∈ Xr is totally ramified. (2) and (3) follow from [7, Thm. 3.5]. (4)
It is clear that −vQ(x) = qj . Let us consider the rational function z := x1+q +
x1+q2

+ · · ·+xqr−3+qr−2−yqj−1

j . Then zq = xq+q2
+xq+q3

+ · · ·+xqr−2+qr−1−yqj

and, by using the defining equation of X j
r , we obtain −vQ(z) = qr−1 + 1. Now,

since the genus of
〈
qj , qr−1 + 1

〉
is g, we get the equality.

In particular, X j
r is a Castle curve. Other consequence of the above Proposi-

tion is the following.

Proposition 8. Let z = x1+q+x1+q2
+· · ·+xqr−3+qr−2−yqj−1

j . Then L(mQj) =〈
{xizk : i · qj + k · (qr−1 + 1) ≤ m, 0 ≤ i and 0 ≤ k < qj}

〉
, for all m ≥ 0.

For m = 0, 1, 2, . . ., we can consider the codes Cj
r,m := C(X j

r , D, mQj
∞), where

D is the sum of all rational points of X j
r except Qj . The length of these codes

is n = qr+j . The dimension and minimum distance can be estimated as shown
in Proposition 5.

Example 6. For q = 2 and r = 3, the curve X 1
3 is hiperelliptic of genus 2 over F8.

It has 17 rational points. By using the order bound, we show that for m = 13
we get a [16, 12, 4] code over F8. Note that, according to the main conjecture on
MDS codes, there is no [16, 12, > 4] code over F8.

When q = 2 and j = 1, then X j
r is a hyperelliptic curve and Qj

∞ a hyperellip-
tic point. Let us consider the code C1

r,m = C(X 1
r , D, mQ1

∞). Assume m < n. If m
is even then there exists a divisor D′ ≤ D such that D′ ∼ sQ (simply write D′ as
a sum of s/2 pairs of conjugated points). Then the minimum distance of C1

r,m is
d = n−m. Thus, for m odd we have n− s ≤ d(C1

r,m) ≤ n−m+1. In particular,
for m ≤ 2r−1, if m even then C1

r,m has dimension (m/2)+1 and if m is odd then
C1

r,m = C1
r,m−1. Since this code does not meet the Goppa bound, according to

Proposition 5, item (4), the same happens for m′ = n − m. We conclude that
for m odd, n − 2r−1 ≤ m < n, the code C1

r,m has dimension m + 1 − 2r−2 and
minimum distance n−m + 1.
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