4 research outputs found

    Task-related models for teaching and assessing iteration learning in high school

    Get PDF
    A number of studies report about students’ difficulties with basic flow-control constructs, and specifically with iteration. Although such issues are less explored in the context of pre-tertiary education, this seems to be especially the case for high-school programming learning, where the difficulties concern both the “mechanical” features of the notional machine as well as the logical aspects connected with the constructs, ranging from the implications of loop conditions to a more abstract grasp of the underlying algorithms. For these reasons, the aim of this work is to: i) identifying methodological tools to enhance a comprehensive understanding of the iteration constructs, ii) suggest strategies to teach iterations. We interviewed 20 experienced upper secondary teachers of introductory programming in different kinds of schools. The interviews were mainly aimed at ascertaining teachers’ beliefs about major sources of issues for basic programming concepts and their approach to the teaching and learning of iteration constructs. Once teachers’ perception of students’ difficulties have been identified, we have submitted, to a sample of 164 students, a survey which included both questions on their subjective perception of difficulty and simple tasks probing their understanding of iteration. Data collected from teachers and students confirm that iteration is a central programming concept and indicate that the treatment of conditions and nested constructs are major sources of students’ difficulties with iteration. The interviews allowed us to identify a list of problems that are typically presented by teachers to explain the iterations. Hence, a catalogue of significant program examples has been built to support students’ learning, tasks with characteristics different from those typically presented in class. Based on the outcome of previous steps, a survey to collect related information and good practices from a larger sample of teachers has been designed. Data collected have been analysed distinguishing an orientation towards more conceptual objectives, and one towards more practical objectives. Furthermore, regarding evaluation, a orientation focused on process-based assessment and another on product-based assessment. Finally, based on the outcome of previous students’ survey and drawing from the proposed examples catalogue, we have designed and submitted a new students’ survey, composed of a set of small tasks, or tasklets, to investigate in more depth on high-school students’ understanding of iteration in terms of code reading abilities. The chosen tasklets covered the different topics: technical program feature, correlation between tracing effort and abstraction, the role of flow-charts, students’ perception of self-confidence concerning high-level thinking skills.A number of studies report about students’ difficulties with basic flow-control constructs, and specifically with iteration. Although such issues are less explored in the context of pre-tertiary education, this seems to be especially the case for high-school programming learning, where the difficulties concern both the “mechanical” features of the notional machine as well as the logical aspects connected with the constructs, ranging from the implications of loop conditions to a more abstract grasp of the underlying algorithms. For these reasons, the aim of this work is to: i) identifying methodological tools to enhance a comprehensive understanding of the iteration constructs, ii) suggest strategies to teach iterations. We interviewed 20 experienced upper secondary teachers of introductory programming in different kinds of schools. The interviews were mainly aimed at ascertaining teachers’ beliefs about major sources of issues for basic programming concepts and their approach to the teaching and learning of iteration constructs. Once teachers’ perception of students’ difficulties have been identified, we have submitted, to a sample of 164 students, a survey which included both questions on their subjective perception of difficulty and simple tasks probing their understanding of iteration. Data collected from teachers and students confirm that iteration is a central programming concept and indicate that the treatment of conditions and nested constructs are major sources of students’ difficulties with iteration. The interviews allowed us to identify a list of problems that are typically presented by teachers to explain the iterations. Hence, a catalogue of significant program examples has been built to support students’ learning, tasks with characteristics different from those typically presented in class. Based on the outcome of previous steps, a survey to collect related information and good practices from a larger sample of teachers has been designed. Data collected have been analysed distinguishing an orientation towards more conceptual objectives, and one towards more practical objectives. Furthermore, regarding evaluation, a orientation focused on process-based assessment and another on product-based assessment. Finally, based on the outcome of previous students’ survey and drawing from the proposed examples catalogue, we have designed and submitted a new students’ survey, composed of a set of small tasks, or tasklets, to investigate in more depth on high-school students’ understanding of iteration in terms of code reading abilities. The chosen tasklets covered the different topics: technical program feature, correlation between tracing effort and abstraction, the role of flow-charts, students’ perception of self-confidence concerning high-level thinking skills

    Modelo para la Motivación del Aprendizaje de la Programación utilizando Gamification

    Get PDF
    Este trabajo describe un modelo para el aprendizaje de la programación utilizando técnicas de Gamification para resolver problemas motivacionales que surgen en el proceso de su aprendizaje y enseñanza. El modelo utiliza el framework D6, asegurando que el diseño de los elementos de Gamification sea apropiado, junto con principios pedagógicos para asegurar su utilidad para los estudiantes. Se realizó un prototipo de una herramienta computacional, incluyendo algunos elementos del modelo para demostrar la factibilidad técnica de su implementación. Un grupo de expertos determinó la validez del modelo y recomendó su implementación como herramienta para apoyar un curso tradicional de programación.This work describes a model for the learning of programming using Gamification techniques to solve the motivational problems behind the learning and teaching of programming. The proposed model uses the D6 Gamification framework to ensure its sane and proper design, along with educational principles that ensure the model is useful for students. A prototype for a software tool was developed using the WordPress CMS and the BadgeOS plugin to show the technical feasibility of implementing the model. A series of experts of different areas judged the model to be an innovative approach to trying to teach programming and recommend its implementation as a tool to support a traditional programming course.Ingeniero (a) de SistemasPregrad

    Teaching and learning introductory programming : a model-based approach

    Get PDF
    The dissertation identifies and discusses impact of a model-based approach to teaching and learning introductory object-oriented programming both for practitioners and for computer science education research.Learning to program is notoriously difficult. This dissertation investigates ways to teach introductory object-oriented programming at the university level. It focuses on a model-based approach, describes and argues for this approach and investigates several of its aspects. It gives an overview of the research in teaching introductory programming in an objects-first way. The dissertation also investigates ways for university teachers to share and document best practices in teaching introductory object-oriented programming through pedagogical patterns. The dissertation addresses both traditional young full-time students and experienced programmers (although not in object-orientation) participating in part-time education. It examines whether the same success factors for learning programming apply to a model-based approach as to introductory programming courses in general for full-time students and gives a general overview of research in success factors for introductory programming. Some factors are the same, because students‘ math competence is positively correlated with their success. The dissertation examines how experienced programmers link a model-based programming course to their professional practices. The general answer is that the part-time students do not need to have a direct link to their specific work-practice, they expect to create the link themselves; but the teacher must be aware of the conditions facing the part-time students in industry. Furthermore, the dissertation addresses interaction patterns for part-time students learning model-based introductory programming in a net-based environment. A previously prepared solution to an exercise is found to mediate the interaction in three different ways. Design patterns have had a major impact on the quality of object-oriented software. Inspired by this, researchers have suggested pedagogical patterns for sharing best practices in teaching introductory object-oriented programming. It was expected that university teachers‘ knowledge of pedagogical patterns was limited, but this research proved that to be wrong; about half of the teachers know pedagogical patterns. One of the problems this dissertation identifies is the lack of a structuring principle for pedagogical patterns; potential users have problems identifying the correct patterns to apply. An alternative structuring principle based on a constructivist learning theory is suggested and analysed

    Where is programming methodology these days?

    No full text
    corecore