
Università degli Studi di Udine

Dipartimento di Scienze Matematiche, Informatiche e Fisiche

Dottorato di Ricerca in Informatica, Matematica e Fisica

Ciclo XXXIV

Ph.D. Thesis

Task-related models for teaching and

assessing iteration learning in high school

Candidate

Emanuele Scapin

Supervisor Co-Supervisor

Prof. Alberto Policriti Dr. Claudio Mirolo

Year 2022

Author's e-mail: emanuele.scapin@uniud.it; emanuele.scapin@escapin.it

Author's address:

Department of Mathematics, Computer Science and Physics
University of Udine
via delle Scienze, 206
33100 Udine
Italy

To Alessandra and to my family

I know nothing and my heart aches

Fernando Pessoa, The Book of Disquiet

Abstract

A number of studies report students' di�culties with basic �ow-control constructs,
and speci�cally with iteration. Although such issues are less explored in the context
of pre-tertiary education, this seems to be especially the case for high-school pro-
gramming learning, where the di�culties concern both the �mechanical� features of
the notional machine as well as the logical aspects connected with the constructs,
ranging from the implications of loop conditions to a more abstract grasp of the
underlying algorithms.

The overall picture with regard to the teaching and learning of iteration at the
upper secondary level of education is, however, still rather fragmentary and calls for
more systematic studies. Thus, the present work is a contribution to stimulate such
an undertaking, in the context of the Italian high school. This study has multiple
purposes: i) to obtain some insight on teachers' perception and instructional prac-
tice; ii) to investigate students' perception, comprehension and self-con�dence when
engaging in programming tasks focused on iteration; iii) to develop methodological
tools to enhance the understanding of the iteration constructs.

To begin with, we interviewed a few experienced upper secondary teachers of
introductory programming in di�erent kinds of schools. The interviews were mainly
aimed at ascertaining teachers' beliefs about major sources of issues for basic pro-
gramming concepts and their approach to the teaching and learning of iteration
constructs. Once teachers' perception of students' di�culties were identi�ed, we ad-
ministered a survey to a sample of students, which included both questions on their
subjective perception of di�culty and simple tasks probing their understanding of
iteration. Data collected from teachers and students con�rm that iteration is a cen-
tral programming concept and indicate that loop conditions and nested constructs
are major sources of di�culties with iteration.

These two preliminary explorations raised a number of questions worth further
investigation. In addition, the feedback from teachers and students provided helpful
clues leading to the development of a catalog of signi�cant (small) programming
tasks with the twofold aim of assessing students' understanding, as well as supporting
the learning of iteration constructs.

We tried to answer some of the questions emerging from the previous steps

iv ABSTRACT

by designing two online surveys, respectively addressed to teachers and students.
The former survey was meant to collect information about teachers' pedagogical
content knowledge and good practices. As to the pedagogical content knowledge,
we distinguished two meaningful frameworks to structure the data analysis. On the
one hand, an orientation towards `conceptual versus practical objectives' and, on
the other hand, between `process-based versus product-based assessments'.

Finally, based on the preliminary feedback from students and drawing from the
tasks listed in the catalog, we designed and administered a (new) student survey to
investigate in more depth high-school students' understanding of iteration in terms of
code reading abilities. The proposed tasks covered a variety of features in connection
with iteration: technical program features, correlation between tracing e�ort and
abstraction, implications of the use of �ow-charts, and subjective perception of self-
con�dence.

To sum up, the main implications of this work are twofold. Firstly, the data
collected from teachers and students provide a clearer and more detailed picture
of how the teaching of iteration is approached in the high-school and of students'
understanding of iterative programs. Secondly, the nature of the proposed tasks and
the structure of the survey can lay the basis for further developments, both from an
instructional perspective � in particular, a �rst draft of a catalog of programming
tasks addressing di�erent facets of the understanding of iteration � and from an
educational research perspective � the structure of the student survey can be the
starting point to broaden the scope of investigation.

Contents

Abstract iii

List of Figures ix

List of Tables xiii

Acknowledgements xv

Prologue xvii

Introduction 1

1 Literature review 11

1.1 Aims and scope of the review . 11
1.2 Research on novice programmers . 12
1.3 Concept Inventories . 13

1.3.1 Concept Inventories in Computer Science 14
1.4 Students' di�culties with Iteration 15
1.5 The Role of Abstraction . 17

1.5.1 Abstraction as a process vs. abstraction as a product 19
1.5.2 Relationships between abstraction and iteration 20

1.6 Teachers' Pedagogical Content Knowledge 22
1.6.1 Questions to elicit PCK . 22
1.6.2 Content Representation (CoRe) questions 24

1.7 Summary of the review . 25

2 Pilot studies 41

2.1 Teacher interviews . 41
2.1.1 Aims and scope of the interviews 42
2.1.2 Methodology . 42
2.1.3 Characterization of the instrument 43
2.1.4 Data collection . 45
2.1.5 Results . 46
2.1.6 Discussion . 52

vi CONTENTS

2.2 Student pilot survey . 54
2.2.1 Aims and scope of the pilot survey 54
2.2.2 Methodology . 54
2.2.3 Instrument . 55
2.2.4 Tasklets and questions . 56
2.2.5 Data collection . 59
2.2.6 Results . 59
2.2.7 Discussion . 66

2.3 Teachers' vs. students' perception . 69
2.3.1 Comparison of teachers' vs. students' perceptions 71

3 Teacher Survey 77

3.1 Aims and scope of the teacher survey 77
3.2 Methodology . 77
3.3 Instrument . 78
3.4 Data collection and results . 80

3.4.1 General information . 80
3.4.2 Learning programming in general 81
3.4.3 Focus on iteration . 82
3.4.4 Pedagogical approach . 90
3.4.5 Assessment . 95
3.4.6 Students' aptitudes . 98
3.4.7 Other suggestions . 98

3.5 Discussion . 99
3.5.1 Focus on iteration . 102
3.5.2 Pedagogical approach . 102
3.5.3 Assessment . 103
3.5.4 Implications for instructors . 104

3.6 Concluding remarks . 105

4 Student Survey 113

4.1 Aims and scope of the student survey 113
4.2 Methodology . 114
4.3 Characterization of the instrument 115
4.4 Tasklets . 124
4.5 Data collection and results . 134

4.5.1 General information . 134
4.5.2 Tasklets . 136

4.6 Discussion . 145
4.6.1 Students' grasp of technical features implied by iteration . . . 146
4.6.2 Tracing and higher-level thinking 148
4.6.3 Flow-chart vs. code representation 149
4.6.4 Students' self-con�dence . 151

0.0. CONTENTS vii

4.6.5 Implications for instructors . 156
4.7 Concluding remarks . 158

5 Conclusions 167

5.1 Work summary and major insights 167
5.2 Curricular implications . 170
5.3 Future directions of work . 171

Appendices 173

A Publications 175

A.1 List of papers . 175
A.2 Abstracts . 177

B Catalog 181

B.1 Loop condition . 181
B.1.1 Tasklet L1 . 181
B.1.2 Tasklet L2 . 182
B.1.3 Tasklet L3 . 183

B.2 Loop complex condition . 183
B.2.1 Tasklet LC1 . 183
B.2.2 Tasklet LC2 . 184
B.2.3 Tasklet LC3 . 184
B.2.4 Tasklet LC4 . 185
B.2.5 Tasklet LC5 . 185
B.2.6 Tasklet LC6 . 186
B.2.7 Tasklet LC7 . 186
B.2.8 Tasklet LC8 . 187

B.3 Equivalence . 187
B.3.1 Tasklet E1 . 187
B.3.2 Tasklet E2 . 188
B.3.3 Tasklet E3 . 189
B.3.4 Tasklet E4 . 190
B.3.5 Tasklet E5 . 191
B.3.6 Tasklet E6 . 191

B.4 Nested loops . 192
B.4.1 Tasklet NL1 . 192
B.4.2 Tasklet NL2 . 192
B.4.3 Tasklet NL3 . 193
B.4.4 Tasklet NL4 . 193
B.4.5 Tasklet NL5 . 194
B.4.6 Tasklet NL6 . 195
B.4.7 Tasklet NL7 . 195

viii CONTENTS

B.5 Reversibility . 196
B.5.1 Tasklet R1 . 196

B.6 Functional purpose . 197
B.6.1 Tasklet F1 . 197
B.6.2 Tasklet F2 . 197
B.6.3 Tasklet F3 . 198
B.6.4 Tasklet F4 . 199
B.6.5 Tasklet F5 . 199
B.6.6 Tasklet F6 . 200

B.7 Loop control variable . 200
B.7.1 Tasklet CV1 . 200

C Computer Science in Italian school 203

C.1 Scienti�c Lyceum of Applied Sciences 203
C.2 Technical high school . 204
C.3 Economics high school . 204

D Teacher Pilot Interview Protocol 207

E Student Pilot Survey Protocol 209

List of Figures

2.1 Structure of the teacher interview protocol. 44
2.2 Educational quali�cations of the teachers interviewed. 46
2.3 Teaching experience, years of service. 46
2.4 Key programming concepts for teachers (more options were possible). 47
2.5 Languages used in introductory courses. 47
2.6 Most relevant extra-computing prerequisites (more options were pos-

sible). 48
2.7 Major obstacles in student learning, before introducing OOP (more

options were possible). 48
2.8 Major di�culty with iteration in teachers' opinion. 49
2.9 Teachers' suggestions to improve students' performance (more options

were possible). 51
2.10 Structure of the student survey. 56
2.11 Flow-chart of tasklet 1 and code of tasklet 2. 57
2.12 The �ve programs to be compared in tasklet 3. 58
2.13 Gender of students in the sample. 59
2.14 Students by type of school. 59
2.15 Students' year attendance. 60
2.16 Students' favorite programming languages (more choices were possible). 60
2.17 Major di�culty with iteration in students' perception. 64
2.18 Distribution of students' perception of di�culty vs. performance; the

interpretation of the colors is the same as in Figure 2.17. 65
2.19 Topics to spend more time on (more choices were possible). 66
2.20 Topics that the students would prefer to understand more (more

choices were possible). 67
2.21 Key programming concepts for teachers and their di�culty in stu-

dents' and teachers' perception. The absence of a visible bar means
0%. 70

2.22 Favorite programming languages for teachers and students. 70
2.23 Major di�culty with iteration in teachers' and students' perception.

Missing bars mean no available related option for students, 0% for
teachers. 71

x LIST OF FIGURES

3.1 Structure of the teacher survey protocol. 79
3.2 Teachers' gender and level of education. 80
3.3 Teachers' service school and subject taught. 80
3.4 Teachers by years of service. 81
3.5 Main programming key concepts. 82
3.6 Extra-computing prerequisites. 83
3.7 Examples to explain iteration, multiple options could be chosen. . . . 84
3.8 Teaching strategies for learning iteration. 88
3.9 Two dimensions teaching strategies for learning iteration. 89
3.10 Students' mastery of iteration constructs. 90
3.11 Activities aimed at improving and consolidating the learning of pro-

gramming in students. 91
3.12 Activities, distinguishing dimensions, aimed at improving and consol-

idating the learning of programming in students. 93
3.13 Stimuli to encourage students' motivation. 94
3.14 Stimuli, distinguishing dimensions, to encourage students' motivation. 95
3.15 Important ways of evaluating the learning of programming, distin-

guished between process-based assessment and product-based assess-
ment. 96

3.16 Evaluation of the solutions proposed by the students, complex solu-
tions (internal chart) vs ine�cient solutions (external chart). 97

3.17 Assessment of the learning of iteration. More options were possible. . 98
3.18 Importance assigned to a series of aptitudes for learning Computer

Science. 99

4.1 Equivalence tasklet: Which option is equivalent to the reference pro-
gram? . 119

4.2 Functional purpose tasklet: What could be the purpose of the program?119
4.3 Equivalence by code and by �ow-chart. 124
4.4 Tasklet T1. 124
4.5 Tasklet T2. 125
4.6 Tasklet T3a. 126
4.7 Tasklet T4. 127
4.8 Tasklet T4: the four programs to be compared. 127
4.9 Tasklet T7b. 128
4.10 Tasklet T10. 129
4.11 Tasklet T10: the four programs to be compared. 129
4.12 Tasklet T3b. 130
4.13 Tasklet T5. 130
4.14 Tasklet T5: the four programs to be compared. 131
4.15 Tasklet T6. 131
4.16 Tasklet T7a. 132
4.17 Tasklet T8. 133

LIST OF FIGURES xi

4.18 Tasklet T9. 134
4.19 Tasklet T9: the four programs to be compared. 134
4.20 Students' general information. 135
4.21 Students' year of attendance. 135
4.22 Languages known by students (more options were possible). 136
4.23 Students' degree of accuracy, in decreasing order. 146
4.24 Students' performance comparing average, code and �ow-chart ver-

sions, in decreasing order by average. 150
4.25 Students' self-con�dence, in decreasing order 151
4.26 Students' accuracy and self-con�dence level, in decreasing order. . . . 153
4.27 Students' self-con�dence comparing code and �ow-chart version, or-

derly decreasing by average. 154

B.1 Which option has the correct loop condition? 182
B.2 Which option has the correct loop condition? 182
B.3 Flow-chart version. 183
B.4 Flow-chart version. 186
B.5 Code version. 186
B.6 Flow-chart version. 187
B.7 Code version. 187
B.8 Which programs are equivalent? . 188
B.9 Which programs are equivalent? . 189
B.10 Which programs are equivalent? . 190
B.11 Which programs are equivalent? . 190
B.12 Which programs are equivalent? . 191
B.13 Which programs restore the initial values of the array? 196
B.14 Flow-chart version. 197

xii LIST OF FIGURES

List of Tables

1.1 Programming fundamental topics. 15
1.2 Concept Inventory for Introductory Programming. 15
1.3 Questions to elicit the PCK for a speci�c subject. 23
1.4 Questions about the assessment of the learning of a Big Idea. 23
1.5 CoRe questions. 24
1.6 Big Ideas for introductory programming. 25

2.1 Selected questions. 45
2.2 Rates of chosen options for tasklet 1. 61
2.3 Chosen options for tasklet 1 compared with students' di�culties

about loops . 61
2.4 Rates of chosen options for tasklet 2. 62
2.5 Chosen options for tasklet 2 compared with students' di�culties

about loops . 62
2.6 Rates of recurrent answers for tasklet 3. 63
2.7 Answers for tasklet 3 compared with students' di�culties about loops 63
2.8 Contingency table: correct/incorrect answers to tasklet 1 vs. per-

ceived prominence or lack of prominence in di�culties with loop con-
ditions. 64

2.9 Major sources of mistakes in students' perception. 65

4.1 Areas and topics addressed by the tasklets. 117
4.2 Classi�cation of tasklets across areas/topics and test versions. 125
4.3 Rates of chosen options for tasklet T1 (correct loop condition). 136
4.4 Students' self-con�dence for tasklet T1 (correct loop condition). . . . 137
4.5 Rates of chosen options for tasklet T2/i (number of iterations). 137
4.6 Rates of chosen options for tasklet T2/ii (reversibility). 137
4.7 Students' self-con�dence for tasklet T2/ii (reversibility). 137
4.8 Rates of chosen options for tasklet T3a/i (number of iterations). . . . 138
4.9 Rates of chosen options for tasklet T3a/ii (functional purpose). 138
4.10 Students' self-con�dence for tasklet T3a/ii (functional purpose). . . . 138
4.11 Rates of chosen options for tasklet T4/i (output state). 139
4.12 Rates of chosen options for tasklet T4/ii (equivalence). 139

xiv LIST OF TABLES

4.13 Students' self-con�dence for tasklet T4/ii (equivalence). 139
4.14 Rates of chosen options for tasklet T7b/i (reversibility). 139
4.15 Students' self-con�dence for tasklet T7b/i (reversibility). 140
4.16 Rates of chosen options for tasklet T7b/ii (functional purpose). . . . 140
4.17 Students' self-con�dence for tasklet T7b/ii (functional purpose). . . . 140
4.18 Rates of chosen options for tasklet T10/i (output state). 140
4.19 Rates of chosen options for tasklet T10/ii (equivalence). 141
4.20 Students' self-con�dence for tasklet T10/ii (equivalence). 141
4.21 Rates of chosen options for tasklet T3b (correct loop condition). . . . 141
4.22 Students' self-con�dence for tasklet T3b (correct loop condition). . . 141
4.23 Rates of chosen options for tasklet T5/i (output state). 142
4.24 Rates of chosen options for tasklet T5/ii (equivalence). 142
4.25 Students' self-con�dence for tasklet T5/ii (equivalence). 142
4.26 Rates of chosen options for tasklet T6 (correct loop condition). 142
4.27 Students' self-con�dence for tasklet T6 (correct loop condition). . . . 143
4.28 Rates of chosen options for tasklet T7a/i (reversibility). 143
4.29 Students' self-con�dence for tasklet T7a/i (reversibility). 143
4.30 Rates of chosen options for tasklet T7a/ii (functional purpose). 143
4.31 Students' self-con�dence for tasklet T7a/ii (functional purpose). . . . 144
4.32 Rates of chosen options for tasklet T8/i (number of iterations). 144
4.33 Rates of chosen options for tasklet T8/ii (reversibility). 144
4.34 Students' self-con�dence for tasklet T8/ii (reversibility). 144
4.35 Rates of chosen options for tasklet T9/i (number of iterations). 145
4.36 Rates of chosen options for tasklet T9/ii (equivalence). 145
4.37 Students' self-con�dence for tasklet T9/ii (equivalence). 145
4.38 Correlation between performance and self-con�dence. 155
4.39 Correlation between performance and self-con�dence in connection

with �ow-chart version in survey 1. 155
4.40 Correlation between performance and self-con�dence in connection

with �ow-chart version in survey 2. 155

5.1 Schedule of Informatics and Mathematics topics in technical high
schools. 170

C.1 Study hours per week in technical subjects. 204
C.2 Study hours per week in technical subjects. 204
C.3 Study hours per week in technical subjects. 205

Acknowledgements

This thesis is the result of three years of research and development that have given
me the opportunity to enrich myself as well as to participate in several collaborative
projects, conferences and to interact with colleagues.

Primarily, I would like to thank my supervisors, Dr. Claudio Mirolo and Prof.
Alberto Policriti, for this experience, for everything they taught me.

A heartfelt thanks to my school, I.T.T. G.Chilesotti (Thiene, VI, Italy) for having
endured my absence for three years to my colleagues for their collaboration. A
thought goes to my students who saw me leave for this adventure and yet were
deprived of their teacher and his experience. I also thank all those high school
colleagues whom I have had the opportunity to meet in recent years and who have
participated in the activities related to this research project.

Special thanks to colleagues Lucia Carli and Eugenio Macor for their collabora-
tion in the submission phase of the surveys and in the subsequent analysis of the
results obtained.

Thanks also to my friend Luca Bognolo and to my colleague Nicola Dalla Pozza
for their assistance in correcting the text of this thesis.

Finally, a big thank to my family, my partner Alessandra and my parents who
have never stopped encouraging and supporting me during this experience.

Last but not least, I would like to thank Prof. Furio Honsell for the insights and
suggestions that led me to embark on this experience.

xvi Acknowledgement

Prologue

My teaching experience began suddenly, one day I was a software engineer in a large
company in my area, the next day I became a Computer Science teacher in a small
mountain high school.

The �rst day was weird for me � then I found out it was normal � they just
told me which classes I should be teaching, gave me the register, and then I started
the teaching adventure. During this �rst period of my teaching I never had the
opportunity to attend courses, aimed at teachers, with a focus on the teaching of
Computer Science, dealing in an in-depth and exhaustive way with students' di�-
culties, and exploring more e�ective strategies for teaching the various topics of the
discipline. I realized that, for a teacher, to rely only on his own knowledge, expe-
rience, common sense and comparison with colleagues would not have been enough
on every occasion, to create stimuli, curiosity, autonomy, self-con�dence and the
most appropriate path for each student. The only real and concrete exception was
the attendance of the SSIS1 Veneto courses (University of Venice), which, however,
failed to satisfy all my curiosities and respond to all my questions.

A few years ago, by chance, I came across the text by O.Hazzan, N.Ragonis and
T. Lapidot �Guide to teaching Computer Science� [HLR11]: an enlightening book
that gave answers to some of the questions that I had set myself, a real and concrete
vision, accompanied by laboratory phases and practical experiences. This reading
also made me re�ect on the scarcity of studies, texts, experiences, teaching methods,
related to Computer Science in my country.

From here, as well as from the confrontation with Prof. Furio Honsell, and then
with Dr. Claudio Mirolo, the idea of this research project arose, which I carried out
despite the obstacles that the Covid-19 pandemic created.

1Scuola di Specializzazione all'Insegnamento Secondario (SSIS) was an Italian university spe-
cialization school, of bi-annual duration, aimed at training teachers of lower and upper secondary
schools.

xviii Prologue

Introduction

Teaching students to program is a complex, �slow and gradual process�, as argued by
Dijkstra [Dij89]. Robins et al. [RRR03, p. 137], who provided a �rst comprehensive
overview of research on novice programmers, setting the general tone already in the
�rst paragraph of their review:

Learning to program is hard [. . .] Novice programmers su�er from a
wide range of di�culties and de�cits. Programming courses are generally
regarded as di�cult, and often have the highest dropout rates.

Moreover, in programming languages �the �nal product must be, at least to a certain
functional level, complete, unambiguous, and error free� [Rob19].

A characteristic of programming is that it is problem-solving intensive [PSS88],
demanding a signi�cant amount of e�ort in several skill areas. According to some
educators, indeed, programming requires �not a single, but a set of skills� [Jen02;
GM07]. De Raadt [DR08] observes that �novices must learn the programming knowl-
edge (syntax and language features) and programming strategies (ways to apply this
knowledge in order to solve programming problems)�. In particular, a major chal-
lenge students face is being able to translate the solution strategy of a problem into
an algorithm. The teacher is then required to grant adequate learning time as well
as to present a variety of meaningful examples in order to motivate the students,
who would otherwise perceive programming as di�cult and boring [Rep16; Bec21].

Students' di�culties in introductory courses are well known in Computer Science
education, e.g. [LAMJ05; Lew+05a; QL17], as shown by the high dropout rates in
tertiary education [Jen02; Lew+05a]. In particular, they appear to struggle with
programming tasks. This may be ascribed to di�erent reasons, such as lack of
problem solving skills, failure to acquire adequate meta-cognitive knowledge [Cot06],
or the peculiar study method required to learn programming � that, unlike other
subjects, should mainly be based on intensive practice [Gom+20].

A number of studies report students' di�culties with basic �ow-control con-
structs, and speci�cally with iterations. Although such issues are less explored in
the context of pre-tertiary education, this seems to be especially the case for high-
school programming learning, where the di�culties concern both the �mechanical�

2 Introduction

features of the notional machine as well as the logical aspects connected with the
constructs, ranging from the implications of loop conditions to a more abstract grasp
of the underlying algorithms.

According to T. Wood [Woo06], who refers to the studies of L.S. Shulman [Shu86;
Shu05a], another critical aspect of Computer Science instruction is that teachers'
education is inadequate. While disciplines such as law or medicine have �signature
pedagogies�, in other cases the development of teachers' competencies is left to their
good sense, �eld experience, empathy toward the students and understanding of
their needs and di�culties. However, J. Hattie's studies [Hat12] show that the main
factor contributing to student learning is the teacher, hence the need to identify
good practices and useful suggestions. And, in this respect, a remarkable source to
draw inspiration can be found in Israeli approaches [HLR11], where the Methods
of Teaching Computer Science (MTCS) course has been consolidated, and where
high school Computer Science teachers speci�cally engage, in their studies, with CS
teaching.

In light of this, we devised a project aimed at identifying methodological tools
to enhance a comprehensive understanding of the iteration constructs. At �rst, we
designed the following main steps:

1. Interviewing a pilot sample of instructors about their approach to the teaching of
iteration and their perception of students' di�culties;

2. Collecting information about students' perception on the topic via a short survey;

3. Based on the outcome of steps 1 and 2, designing a survey to collect more focused
information and good practices from teachers;

4. Identifying some methodological approaches to the teaching of iteration and building
a catalog of signi�cant program examples to support students' learning;

5. Testing the instructional strategies in class to assess their e�ectiveness.

The last step was intended to be carried out in the �eld, but unfortunately we
were unable to plan appropriate interventions due to the di�culties of interacting
with schools in the course of the Covid-19 pandemic. So, we opted for an alternative
route; namely, we designed a set of small program comprehension tasks, or tasklets,
addressing a broad range of issues concerning students' understanding of iteration
constructs. Such tasklets, in fact inspired by the catalog developed in step 4, were
then administered to high school classes by means of an online survey.

Motivations, scope and aims of this work

In my teaching experience I have often faced students' learning di�culties with basic
programming concepts. Fundamental topics in introductory programming courses
are the �ow-control constructs and, in particular, the iteration (loop) constructs.
Although a number of works have explored students' di�culties with iteration in

3

tertiary education [FAO10; Kac+10; Mir12; CZP14; Cet15], these issues have not
yet been extensively investigated in the upper secondary school context.

So, we felt the need to engage in a more systematic and in-depth investigation
about the teaching and learning of iteration in high school. Therefore, it was im-
portant for us to investigate teachers' beliefs concerning their students' di�culties,
both with general programming and, more speci�cally, with iterations. Teachers
have speci�c opinions about the di�culties of their students, which they check daily,
regarding some speci�c topics that are particularly challenging. By focusing on it-
erations we have tried to understand in which areas students struggle the most. To
carry out this investigation, however, it was important to understand which teaching
methodologies and which problems and examples teachers propose to students so
that they can learn loops.

Furthermore, we wanted to investigate whether iterations are di�cult for stu-
dents to understand, especially in pre-tertiary education, but also to determine if
students are aware of them. It was important for us to understand in which ar-
eas of the use of iterations students encounter the most di�culties. The outcomes
may allow to identify learning support strategies for students or alternative teaching
models for teachers.

Moreover, comparing teachers' opinions and students' perceptions of their learn-
ing di�culties could be useful to settle any di�erences of opinion, in order to suggest
interventions to update teaching methodologies.

As an outcome of this endeavor, we expected to get detailed insights on the nature
of students' di�culties, as well as to identify possible interventions and reinforcement
strategies to be adopted by teachers. In this respect, we have also attempted to
start the construction of a catalog of small tasks that teachers could use both as
examples to illustrate di�erent aspects connected to iteration and as instruments to
assess students' understanding of this topic.

In addition, both the catalog and the survey, derived from it, can become the
basis for designing useful teaching and evaluation tools, promoting the analysis of
loops in relation to multiple topics, exploiting examples and non-trivial tasks.

Research Goals

This research was guided by several research questions.

RQ1 What are students' major di�culties with iteration in teachers' view?

RQ2 What is teachers' approach to teach and assess the learning of iteration?

RQ3 What are students' major di�culties with iteration in their subjective percep-
tion?

RQ4 Are there di�erences between students' and teachers' perceptions of di�cul-
ties?

4 Introduction

RQ5 To what extent are students self-con�dent about their comprehension of iter-
ation?

Methodology

From a methodological viewpoint, our work can be outlined by subdividing it into
four major parts:

1. Literature review, and more speci�cally:

(a) Analysis of the studies referenced in two broad reviews about the teaching and
learning of programming, namely [RRR03] and [LR+18];

(b) Review of papers discussing teachers' Pedagogical Content Knowledge (PCK)
in Computer Science and programming � this was meant to inform both the
structure of the interviews and the survey addressed to teachers;

(c) Extension of the review of papers on novices' understanding of �ow-control,
conditions and iteration constructs (including Concept Inventories) � this was
meant to develop the surveys addressed to high school students.

2. Pilot investigations to get some preliminary feedback from samples of teachers and
students:

(a) Interviews of high school teachers to get insights about their PCK and to know
their perception of students' understanding of and di�culties with iteration;

(b) Administration of a survey to get insights about students' subjective perception
of di�culties with iteration and actual achievements in a small set of tasklets;

(c) Comparison of students' vs. teachers' perception and of students' perception
vs. performance in the preliminary tasks � the resulting feedback was meant
to inform the design of two more focused surveys for teachers and students.

3. Design and administration of a survey to acquire a clearer characterization of teach-
ers' PCK in connection with the teaching of iteration, in particular regarding:

(a) Instructional practice and guidelines;

(b) Code examples and programming tasks discussed in class;

(c) Assessment criteria.

4. Design and administration of an online survey to assess students' program compre-
hension in a set of tasklets addressing a variety of aspects related to iteration:

(a) Speci�c �ow-control features;

(b) Interaction with di�erent data types;

(c) Mastery of the underlying computation model (notional machine);

5

(d) Higher-order thinking skills (abstraction and grasp of the relationships with a
problem domain);

(e) Self-con�dence when engaging in tasks calling for abstract thinking;

(f) Impact of dealing with �ow-charts vs. textual code.

Main contributions

The main implications of this work are twofold, pertaining to the knowledge area �
about the teaching and learning of iteration � as well as to the future perspectives
� concerning both the instructional practice and the educational research.

Firstly, the data collected from teachers and students provide a clearer and more
detailed overview concerning how the teaching of iteration is approached in the high
school and of students' degree of understanding of iterative programs � at least as
far as Computer Science education in the North-East of Italy is concerned (but we
believe that there are no di�erences with high schools in other areas of the country,
which in any case must comply with the same ministerial guidelines). Probably the
samples could have been larger if the Covid-19 pandemic had not occurred, but we
think that the indications emerging from the study are su�ciently representative of
a general situation.

Secondly, the nature of the proposed tasks and the structure of the survey can
lay the basis for further interesting developments. And indeed, in our opinion, the
major contribution of this study is to be found in its potential to lay the groundwork
for further research. More speci�cally, from a pedagogical perspective, we have
started the construction of a �catalog� of programming tasks suitable to address
di�erent facets of the understanding of iteration. It can certainly be enriched by
including additional examples and by covering other possible aspects, with the aim of
providing a useful instrument for the teaching (and assessment) practice. Similarly,
the student survey, and in particular its structure, can be the starting point to
extend the investigation to other cohorts � conceivably after introducing a few
re�nements.

Organization of this document

In what follows we brie�y describe the content of each chapter. Part of it is based
on the publications listed in Appendix A.

Chapter 1 � This chapter presents a summary of the literature review. A
number of studies discuss novices' di�culties with basic �ow-control constructs,
which concern both the �mechanical� features of the notional machine and the related
logical aspects, ranging from the implications of loop conditions to a more abstract
grasp of the underlying algorithms. Although these issues have not been extensively

6 Introduction

explored for pre-tertiary education, it is conceivable that they are even stronger
in secondary school contexts. Moreover, a few contributions regarding teachers'
PCK, related Content Representation frameworks, and Concept Inventories provided
helpful suggestions and methodologies to be exploited in order to design the pilot
investigations (teachers' interviews and students' preliminary survey).

Chapter 2 � This chapter discusses what has emerged from the two pilot in-
vestigations, that involved 20 experienced high school teachers of introductory pro-
gramming (interviews) and 164 students (survey) from high schools spread across a
vast area in the North-East of Italy. The survey included both questions on their
subjective perception of di�culty and small tasks probing their understanding of
iteration. The data collected from teachers and students con�rm that iteration is a
central programming concept and seem to indicate that the treatment of conditions
and nested constructs are major sources of students' di�culties with iteration. It
can also be observed that the examples that teachers usually choose to explain the
iteration constructs tend to be quite stereotypical and elusive of some complexi-
ties intrinsic to the topic. This suggests that a richer and more varied �catalog�
of examples may be useful to challenge students to deepen their understanding of
iteration.

Chapter 3 � The subject of this chapter concerns the design and the results
of the survey addressed to the teachers, aimed at a better understanding of their
instructional practices to teach iteration. It explores the overall view of introductory
programming, including its basic prerequisites, and, above all, the strategies to teach
and assess the learning of iteration. The survey protocol is partly inspired by the
approaches proposed in the literature to elicit the PCK. Besides a few suggestions
drawn from the concrete practice of the teachers, an interesting outcome of the
analysis of the answers of 21 respondents is that their approach to programming
tends to be more practical than conceptual, but also process-oriented rather than
product-oriented.

Chapter 4 � This chapter discusses the design and the results of the online
survey where the students were required to engage in a set of small tasks of program
comprehension, involving reading, tracing, explaining, evaluating skills. To begin
with, the rationale behind the structure of the investigation instrument is presented:
at its basis are outcomes arisen from the pilot study, concerning the understanding
of iteration and the perception of self-con�dence (to be evaluated for each task
on a Likert scale). Then, the data collected from 225 high school students are
analyzed in terms of the areas of learning addressed by the tasklets. In essence,
the �ndings con�rm that loops and conditionals can be potential sources of novices'
misconceptions, but also provide a broader picture of the issues connected with
iteration from di�erent learning perspectives.

REFERENCES 7

Conclusions � This �nal chapter summarizes the achievement of the project,
discusses some implications for instructors and presents potential future directions
of work, both to broaden the research scope and to develop useful instruments for
the teacher.

Appendices � The document ends with �ve appendices: the �rst appendix
reports the abstracts of the published papers on which part of this document is
based; the second one lists the programming tasks included in the catalog; the third
one outlines the role of Computer Science in the Italian upper secondary schools; the
fourth one presents the teachers' pilot interview protocol; the �fth one the students'
pilot survey protocol.

References

[Bec21] Brett A. Becker. �What Does Saying That 'programming is Hard' Re-
ally Say, and about Whom?� In: Commun. ACM 64.8 (2021), pp. 27�
29. doi: 10.1145/3469115.

[Cet15] Ibrahim Cetin. �Student's Understanding of Loops and Nested Loops
in Computer Programming: An APOS Theory Perspective�. In: Cana-
dian Journal of Science, Mathematics and Technology Education 15.2
(Feb. 2015), pp. 155�170. doi: 10.1080/14926156.2015.1014075.

[Cot06] Lucio Cottini. La didattica metacognitiva. 2006.

[CZP14] Yuliya Cherenkova, Daniel Zingaro, and Andrew Petersen. �Identi-
fying Challenging CS1 Concepts in a Large Problem Dataset�. In:
Proc. of the 45th ACM Tech. Symp. on Computer Science Education.
SIGCSE '14. New York, NY, USA: ACM, 2014, pp. 695�700.

[Dij89] Edsger W. Dijkstra. �On the cruelty of really teaching computing
science�. English. In: Communications Of The Acm 32.12 (1989),
pp. 1398�1404.

[DR08] Michael De Raadt. �Teaching programming strategies explicitly to
novice programmers�. PhD thesis. University of Southern Queensland,
2008.

[FAO10] José Luis Fernández Alemán and Youssef Oufaska. �SAMtool, a Tool
for Deducing and Implementing Loop Patterns�. In: Proceedings of the
Fifteenth Annual Conference on Innovation and Technology in Com-
puter Science Education. ITiCSE '10. New York, NY, USA: ACM,
2010, pp. 68�72. doi: 10.1145/1822090.1822111.

[GM07] Anabela Gomes and Antonio Mendes. �Learning to program - di�-
culties and solutions�. In: International Conference on Engineering
Education � ICEE. Jan. 2007, pp. 283�287.

8 Introduction

[Gom+20] Anabela Gomes et al. �Study methods in introductory programming
courses�. In: 2020 IEEE Global Engineering Education Conference
(EDUCON). 2020, pp. 898�904. doi: 10.1109/EDUCON45650.2020.
9125228.

[Hat12] John Hattie. Visible learning for teachers: Maximizing impact on
learning. Routledge, 2012.

[HLR11] Orit Hazzan, Tami Lapidot, and Noa Ragonis. Guide to Teaching
Computer Science: An Activity-Based Approach. 1st. Springer Pub-
lishing Company, Incorporated, 2011.

[Jen02] Tony Jenkins. �On the Di�culty of Learning to Program�. In: Pro-
ceedings of the 3rd annual LTSN ICS Conference. Loughborough, UK,
2002.

[Kac+10] Lisa C. Kaczmarczyk et al. �Identifying Student Misconceptions of
Programming�. In: Proceedings of the 41st ACM Technical Symposium
on Computer Science Education. SIGCSE '10. New York, NY, USA:
ACM, 2010, pp. 107�111.

[LAMJ05] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. �A
Study of the Di�culties of Novice Programmers�. In: Proceedings of
the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education. ITiCSE '05. New York, NY, USA: As-
sociation for Computing Machinery, 2005, pp. 14�18. doi: 10.1145/
1067445.1067453.

[Lew+05a] Gary Lewandowski et al. �What novice programmers don't know�.
eng. In: Proceedings of the �rst international workshop on computing
education research. ICER '05. ACM, 2005, pp. 1�12.

[LR+18] Andrew Luxton-Reilly et al. �Introductory Programming: A System-
atic Literature Review�. In: Proceedings Companion of the 23rd An-
nual ACM Conference on Innovation and Technology in Computer
Science Education. ITiCSE 2018 Companion. New York, NY, USA:
ACM, 2018, pp. 55�106.

[Mir12] Claudio Mirolo. �Is Iteration Really Easier to Learn Than Recursion
for CS1 Students?� In: Proc. of the 9th Annual International Confer-
ence on International Computing Education Research. ICER '12. New
York, NY, USA: ACM, 2012, pp. 99�104.

[PSS88] D.N. Perkins, Steve Schwartz, and Rebecca Simmons. �Instructional
Strategies for the Problems of Novice Programmers�. In: Teaching
and Learning Computer Programming. Ed. by Richard E. Mayer.
New York, USA: Routledge, 1988, pp. 153�178. doi: 10 . 4324 /

9781315044347.

REFERENCES 9

[QL17] Yizhou Qian and James Lehman. �Students' Misconceptions and
Other Di�culties in Introductory Programming: A Literature Re-
view�. In: ACM Trans. Comput. Educ. 18.1 (Oct. 2017). doi: 10.
1145/3077618.

[Rep16] Alexander Repenning. �Transforming "Hard and Boring" into "Ac-
cessible and Exciting"�. In: CoPDA@NordiCHI. 2016.

[Rob19] Anthony V. Robins. �Novice Programmers and Introductory Pro-
gramming�. In: The Cambridge Handbook of Computing Education
Research. Ed. by Sally A. Fincher and Anthony V.Editors Robins.
Cambridge Handbooks in Psychology. Cambridge University Press,
2019, pp. 327�376. doi: 10.1017/9781108654555.013.

[RRR03] Anthony Robins, Janet Rountree, and Nathan Rountree. �Learning
and Teaching Programming: A Review and Discussion�. In: Computer
Science Education 13.2 (2003), pp. 137�172.

[Shu05a] Lee S. Shulman. Signature pedagogies. 2005.

[Shu86] Lee S. Shulman. �Those Who Understand: Knowledge Growth in
Teaching�. eng. In: Educational Researcher 15.2 (Feb. 1986), pp. 4�14.

[Woo06] Terry Wood. �Teacher Education Does Not Exist�. eng. In: Journal
of Mathematics Teacher Education 9.1 (2006), pp. 1�3.

10 Introduction

Chapter 1

Literature review

This chapter sets the background of our work by summarizing what emerged from
the literature review. After introducing the main objectives of the review and how
they have been pursued in Section 1.1, Section 1.2 addresses students' di�culties
to learn basic programming concepts. Then, in Section 1.4 we consider students'
speci�c di�culties with iteration, which are the focus of the present work. Sec-
tion 1.5 provides an overview of topics regarding abstraction skills, which are clearly
implied in program comprehension tasks. In particular, Section 1.5.1 explores a
useful distinction between abstraction as a product and abstraction as a process,
whereas Section 1.5.2 discusses the role of abstraction speci�cally in the context of
iteration. Finally, Section 1.6 reviews work aimed at eliciting teachers' Pedagogical
Content Knowledge (PCK), in particular in introductory programming, which has
been the basis to set up the structure of the interviews and of the survey addressed
to teachers.

1.1 Aims and scope of the review

With the aim of drawing a picture that is as comprehensive as possible of teach-
ing and learning iteration, we approached the literature review with the following
questions in mind:

� What learners' di�culties and misconceptions about the basic �ow-control
constructs, and in particular iteration, have been investigated?

� Which studies focus speci�cally on (upper) secondary instruction?

� What types of programming knowledge, speci�cally pertaining to the basic
�ow-control constructs, are addressed by existing Concept Inventories?

12 CHAPTER 1. LITERATURE REVIEW

� Are there models of abstract thinking that could be used to explain students'
understanding of iteration?

� How can interviews or surveys be structured in order to collect meaningful
information on teachers' actual practice and pedagogical content knowledge
(PCK)?

In this light, we will start by analyzing studies discussing novice programmers'
basic di�culties and misconceptions, in particular among the contributions refer-
enced in two broad reviews about the educational research in the �eld of program-
ming, namely [RRR03] and [LR+18]. Moreover, we will look for the issues addressed
by Concept Inventories of programming topics. As a next step, we will consider po-
tential models to characterize the abstraction abilities which may play a role in
program comprehension. Finally, we will conclude the review with a brief discussion
of methodologies to elicit teachers' PCK relative to programming instruction.

1.2 Research on novice programmers

Students' di�culties to learn programming are well known to Computer Science
educators, e.g. [DB86; RRR03; QL17; LR+18], and are also witnessed by the high
drop out rates [Jen02; Lew+05b]. The reasons may be manifold, ranging from lack of
problem solving skills to the need for accuracy and intensive practice. As mentioned
in the introduction, programming is indeed problem-solving intensive [PSS88] and
demands a signi�cant amount of e�ort in several skill areas. According to Gomes
and Mendes [GM07] it requires �not a single, but a set of skills�, and students may
fail to develop a viable model of the underlying notional machine [Sor13] or to be
able to connect code execution with its functional purpose [Lis+06].

In particular Sorva [Sor13] ascribes several issues to students' misconceptions,
ranging from syntax errors to misunderstandings about code execution � some
of which may also be related to the habits and expectations of both teachers and
learners [Jen02; RHG06]. In their analysis of recurrent problems faced by students
in laboratory tasks, Robins et al. [RHG06] report as highly frequent those issues
concerning the understanding of the �trivial mechanics� of code execution, the un-
derstanding of the task at hand, as well as �general matters of program design�. As
pointed out by Dijkstra [Dij89], learning to program is a slow and gradual process
to accomplish, to which the teacher is required to grant adequate learning time.

Signi�cant misconceptions are reported even for basic �ow-control constructs
such as conditionals and loops. Kaczmarczyk et al. [Kac+10], for instance, observed
that �students misunderstand the process of While-loop iteration�. Cherenkova et
al. [CZP14] found that students' most common errors refer to Booleans, condi-
tionals, loops and loops with conditionals. Furthermore, iteration and conditional
expressions have indeed to be regarded as strictly connected [Kon19].

1.3. CONCEPT INVENTORIES 13

In addition, independent �ndings indicate that students can often be misled when
the �else� branch of a conditional construct is not coded explicitly, e.g. [Van+10;
IMW18]. Another problematic endeavor for novices concerns the indexed access to
arrays, in particular in connection with iteration, as has also been con�rmed by
some recent studies [RDLR20; MS21].

Problems that can be solved at low levels of abstraction by tracing the code exe-
cution, for speci�c input data, are certainly among the most common programming
tasks in which novices are required to engage. Ordinarily, tracing is deemed to be a
basic ability �to build [...] higher-level comprehension skills upon� it [Lis+04], even
though it is not a su�cient prerequisite in this respect [TL14a]. Nevertheless, this
ability should not be taken for granted, since many students struggle, for instance,
with tracing loops, especially While-loops [Lop+08]. At a higher level of abstraction,
students are often asked to identify the purpose of a given program, i.e. to answer
�Explain in Plain English� questions in the work of Lister and colleagues [Lis+06].

Jenkins [Jen02] has tried to explain part of students' di�culties by distinguishing
between �deep� and �surface� learning styles. According to him, deep learners focus
on gaining an understanding of the concept at hand, while surface learners tend
to base their study on merely memorizing information. A particular approach to
teaching can therefore in�uence the adoption of a deep versus surface learning style.

Lewandowski at al. [Lew+05b] have attempted to characterize novice program-
mers' knowledge in terms of �a mixture of well-formed, in-transition and muddled
conceptual structures�. In particular, they asked a sample of students to use rag-
bag categories such as �don't know�, �not sure�, or �not applicable� to classify their
(perceived) level of knowledge for a number of programming concepts.

Although most studies on the above areas focus on university-level courses, it
is reasonable to expect that similar issues are even more signi�cant at the upper
secondary level of education.

1.3 Concept Inventories

Scienti�c Concept Inventories �are criterion-referenced tests that are usually de-
signed to evaluate students' understanding of current accepted scienti�c concepts.
These criterion-referenced assessments are developed around a set of recognized per-
formance standards [...]� [Sch12].

According to Almstrum et al. [Alm+06, p. 133],

a concept inventory (CI) is a validated assessment tool with a focus on mis-
conceptions that students may have about fundamental concepts in a domain.
Concept inventories are commonly created using a student-driven process that
elicits students' perceptions and understandings about a given concept.

A concept inventory has the following characteristics:

� It is a reliable, validated assessment instrument.

14 CHAPTER 1. LITERATURE REVIEW

� It focuses on common student misconceptions.

� It covers a speci�c domain, but is not a comprehensive instrument (i.e.,
it is not a �nal exam).

� It is composed of multiple-choice items.

� It is designed to require at most 30 minutes to complete.

� Its scope may or may not match the scope of the corresponding course.
Thus, it could be necessary to develop more than one CI to cover the
topics of a course such as CS1.

� It can be administered as a post-test (for example, at the end of the
course). Some concept inventories can also be given as pretests, allowing
�before and after� comparisons.

� It can be used by instructors to identify aspects of instruction that would
bene�t from change, to assess the impact of modi�cations, and to com-
pare pedagogical approaches.

� It should not be used by college administrators to assess teaching perfor-
mance or by individual instructors for determining grades for individual
students.

[...] The primary purpose for existing CIs has been to investigate the dispar-

ity between the concepts a student should be learning and what the student

actually is learning. [...] These assessment instruments have provided bench-

marks for comparing the e�ect of innovative teaching techniques on students'

understanding of fundamental concepts [...].

Libarkin [Lib08] presents a comprehensive list of published concept inventories
for science, which does not cover, however, repositories for Computer Science and
information technology.

1.3.1 Concept Inventories in Computer Science

Almstrum et al. [Alm+06] outline a framework for creating a CIs for speci�c math-
ematical concepts. Our aim, here, is to �nd similar proposals relative to Computer
Science and programming.

Goldman et al. [Gol+08; Gol+10], following Sha�er [Sch12], present a method-
ology for creating and validating a CI in Computer Science; the identi�ed concepts
are divided into the broader areas reported in Table 1.1.

Cace�o et al. [Cac+16], on the other hand, essentially expand the �rst area of
Table 1.1, amounting to the main topics covered in an introductory programming
course. More speci�cally, the concepts listed in Table 1.2 were identi�ed via the
analysis of exam assignments and interviews of instructors. The list thus elaborated
presents most of the basic concepts included in a course syllabus both at university
level and at high-school level. (The items are ordered in accordance with the related
discussion in [Cac+16].)

1.4. STUDENTS' DIFFICULTIES WITH ITERATION 15

Table 1.1: Programming fundamental topics.

1 Procedural Programming Concepts
2 Object Oriented Concepts
3 Algorithmic Design Concepts
4 Program Design Concepts

Table 1.2: Concept Inventory for Introductory Programming.

Function Parameter Use and Scope
Variables, Identi�ers, and Scope
Recursion
Iteration
Structures
Pointers
Boolean expressions
Syntax vs. Conceptual Understanding

1.4 Students' di�culties with Iteration

Starting from the pioneering work on the cognitive implications of programming
tasks in the early 1980s, e.g. [SBE83; DB86], empirical research has consistently
shown that �ow-control constructs such as conditionals and loops tend to be ap-
proached in stereotypical ways and are common sources of errors and misconcep-
tions for novice learners [KD03; Kac+10; CZP14], especially when combined through
nested constructs [Cet+20]. To put it in Winslow's words [Win96], in light of the
evidence gained in more than a decade of investigations, if �almost any undergradu-
ate can add a set of numbers or compute an average of a set of numbers; why can't
over half of them write a loop to do the same operations?�

Soloway et al. [SBE83] analyzed student strategies for solving loop problems,
and subsequent studies by Bonar and Soloway [BS83; BS85] seemed to indicate
that misconceptions regarding the while-loop could be ascribed to natural language
interpretations of the word �while�. In particular, these authors suggested that
novice programmers have fewer problems with post-test �repeat-until� loops, since
the common-sense use of �until� better matches the actual behavior of such loops.
Sleeman et al. [Sle+86] observed that the iteration constructs can confuse novice
students, since they may misunderstand the scope of the loop, may be unable to
recognize which lines will actually be repeated and/or how many times they will
be executed. Du Boulay [DB86], on the other hand, reported that the treatment
of loop-control variables may be problematic. Moreover, regarding the nesting of

16 CHAPTER 1. LITERATURE REVIEW

�ow-control constructs, Pea [Pea86] remarked that students may mistakenly believe
that a nested statement inside a loop is in connection with the loop condition.

More recently, several speci�c language-related problems observed by Robins et
al. [RHG06] were related to loops. While analyzing the programming strategies to
achieve simple tasks, in his PhD thesis, De Raadt [DR08] found that �less than half
of students produced correct primed sentinel-controlled loops for the summing or
counting or both�. In this respect, De Raadt argued that students may deliberately
be �led to practice application of particular strategies for these problems in the
same way that an instructor might encourage students to use a particular language
construct, such as a for loop�, therefore indicating the possibility that teachers'
insistence on some patterns can generate stereotypes.

Dehnadi [Deh09] investigated the mental mechanisms manifested when thinking
about a simple iteration and suggested that novices can stumble �at an early stage,
particularly when all the alternative kinds of iteration (while, do-while, for) are
introduced at the same time. In fact iteration is conceptually di�cult, and the
proper treatment of iteration is mathematically complicated.� In accordance with
similar results by Simon et al. [Sim+06], Craig et al. [CPP12] con�rmed students'
preference for post-test loops, especially in the form of a terminating condition (�stop
when�) rather than a continuing condition (�continue while�). Moreover, Grover &
Basu [GB17b] argue that students' di�culties are often related to �understanding
how and when to terminate loops� and note that �Boolean AND/OR operators are
often mistakenly interpreted�, as previously pointed out by Herman et al. [Her+12].

A widespread source of students' di�culties is lack of strategic knowledge, in
particular when they are required to choose a correct iteration construct to solve
some speci�c problem. Related issues have been addressed, among others, by De
Raadt [DR08], Simon [Sim13], and Fisler [Fis14]. The di�erent level of mastery
observed for downward (or down-counting) loops with respect to more stereotypical
upward (up-counting) loops, pointed out e.g. in [KD03], can probably be ascribed
to weaknesses related to plans. Additionally, widespread troubles can be engen-
dered by the nesting of �ow-control constructs [Gin04; MB�18; Cet+20], what led
Cetin [Cet15] to propose a theoretical �action-process-object-schema� framework to
analyze student's cognitive obstacles in this respect. Moreover, Koppelman and
van Dijk [KD10] discuss potential causes of students' di�culties with nested loops
and report about experiments where �novices did not usually recognize the need for
a nested loop�, or �if they did, they had problems separating the conditions that
control both loops�.

Other authors have pointed out the role of terminology or the potential mismatch
between technical versus common-sense use of the implied words. According to
Lewandowski et al. [Lew+05b, p. 11], for instance:

When teaching programming, If-then-else is a frequently-used term while

Choice is less likely to be mentioned with high frequency. Similarly, while one

may teach iteration without frequently saying `iteration', it is rare to teach

1.5. THE ROLE OF ABSTRACTION 17

recursion without using the term. Hearing the terms less frequently, students

have fewer opportunities to consciously consider and integrate (consciously or

subconsciously) them into their conceptual structures. This suggests instruc-

tors may be able to help students build their conceptual organization by using

key abstract terms frequently.

Ste�k et al. [SG11; SS13] focused their investigation on word choice and noted that
�for� and �while�, the most common keywords for loops, appear to be rather counter-
intuitive to novices, as opposed to �repeat�, which is deemed as more intuitive. In
the context of primary education, on the other hand, Mannila et al. [Man+20] posit
that children's �familiarity with loops can be explained by the word `loop' being
used in other non-programming contexts as well�.

A number of educators have also addressed the potential impact of non-textual
program representations on either preventing or diagnosing students' misconcep-
tions. To mention some, Ma et al. [Ma+09] elaborated on the results of their in-
vestigation, revealing students' inappropriate models of conditionals and loops, and
suggested that such constructs could be explained more e�ectively by means of visu-
alization tools. Weintrop and Wilensky [WW15] deem that graphical programming
can help students gain a deeper understanding of iteration. At the secondary school
level, Rahimi et al. [RBH17] discuss the use of �ow-chart analysis as an insightful in-
strument to identify students' misconceptions about algorithmic concepts, including
conditionals, loops and plan composition. According to Mladenovi£ et al. [MB�18],
on the other hand, K�12 �students misconceptions about loops are minimized when
using a block-based programming language�, namely Scratch (instead of Logo or
Python), and �the di�erences become� even �more apparent� for complex tasks in-
volving nested loops.

To conclude this section, we can observe that most research on the understand-
ing of iteration has been carried out in relation to university introductory courses,
whereas far less work addresses pre-tertiary education [TG10; Gol+08].

1.5 The Role of Abstraction

Notions of abstraction apply to a broad variety of thought processes. In some way,
virtually every useful piece of learning implies some sort of abstraction from con-
tingent experiences. Besides the cognitive implications of dealing with abstract vs.
concrete entities [Ade85], several philosophical, mathematical, and scienti�c views
of abstraction give prominence to the elimination of non-essential features in con-
nection with some speci�c objectives. However, this may scratch only the surface of
the matter.

Computer Science educators largely agree that abstraction skills play a major role
in their �eld [Dij72; SW80; BLW01; Kra07; Haz08; Arm13; SA16; GP18a]. Jean-
nette Wing, for instance, claims that �[t]he most important and high-level thought
process in computational thinking is the abstraction process�, especially in that it

18 CHAPTER 1. LITERATURE REVIEW

�gives us the power to scale and deal with complexity� [Win11]. However, this
concept is usually referred to in overly generalized terms, leading Bennedsen and
Caspersen to assert that �no one has de�ned what is meant by abstraction� [BC06].
Indeed, a �rst problem we face in the attempt to provide a de�nition of �abstraction�
is that, by this concept, di�erent educators mean di�erent things.

Although we can actually �nd a few attempts to provide accurate characteriza-
tions of abstraction both from a general cognitive standpoint and according to the
objectives of speci�c disciplinary �elds, it is still far from clear how the development
of abstraction skills could be fostered and assessed. To put it in Verhoe�'s words,
�[s]aying that abstraction is important is one thing. Explaining what abstraction is
and how to teach it are quite other matters� [Ver11]. In light of the lack of consensus
about the precise meaning of abstraction, we can recognize with [Haz99] that there
is at least some �agreement that the notion of abstraction can be examined from
various perspectives, that certain types of concepts are more abstract than others,
and that the ability `to abstract' is an important skill.�

The role of abstraction in computing is however very pervasive, sometimes re-
ferred to implicitly, but more often explicitly, as observed by [Eck+06]. From an
educational viewpoint, the meanings assigned to the term �abstraction� in Computer
Science � either explicitly or implicitly � are manifold, also depending on the sub-
�eld of interest. Some focus on the learning of theoretical aspects [AGE06; GA12]
or draw from experiences in Mathematics [SH08; GB17a]; others point out the abil-
ity, peculiar to programming, of managing di�erent levels of abstraction [Hab04;
GB17a]. Still others re�ect the goals of software engineering [HT05; Wan08; Ste18].
Hazzan and colleagues [Haz03; SH08], on the other hand, apply their �reducing ab-
straction� framework in order to analyze students' approach to computing tasks in
terms of the polarity abstract vs. concrete.

Based on ISTE/CSTA operational de�nition of Computational Thinking [IST11],
abstraction is one of the key abilities and it is de�ned in terms of �reducing com-
plexity to de�ne main ideas�. Similarly, Csizmadia et al. [Csi+15] and Curzon et
al. [Cur+19] refer to reducing unnecessary detail to �get at the essence�. According
to Rijke et al. [Rij+18], abstraction in the primary school context means �having
the ability to determine which aspects are important and which are not�. While ap-
plying computational thinking to approach biological problems, Peel and Friedrich-
sen [PF18] characterize abstraction as �simplifying information; displaying only the
information that is needed�. Moreover, Chaabi et al. [CAD19] have investigated the
relationships between mathematical abstraction and computational thinking.

In the remainder of this text work we refer to abstraction as reducing complexity
to de�ne main ideas � in order to de�ne general solution models �, following
the ISTE/CSTA de�nition, eliminating non-essential details [Che18]. However, the
characterization of `abstraction' is not unique.

1.5. THE ROLE OF ABSTRACTION 19

1.5.1 Abstraction as a process vs. abstraction as a product

A major concern, from an educational viewpoint, is the orientation between the
polarities of �abstraction as a process� versus �abstraction as a product� i.e. the
active or passive cognitive role while learning abstract concepts. The need to bring
about suitable conditions in order for the students to be able to experience the
process of abstraction has been put forward by several researcher with regard to
learning mathematical concepts. In this respect, for instance, Mason [Mas89, p. 1]
wrote that:

[S]tudent's sense of abstract as removed from or divorced from reality (or per-

haps, more accurately, from meaning, since our reality consists in that which

we �nd meaningful) [...] arises because there has been little or no participation

in the process of abstraction [...]. Despite current emphasis on exploration and

investigation, many students may still not experience the shift of abstraction

unless they receive explicit assistance.

Similarly, Dreyfus [Dre91] claimed that students �have been taught the products of
the activity of scores of mathematicians in their �nal form, but they have not gained
insight into the processes that have led mathematicians to create these products.�

Later, White and Mitchelmore [WM99] dug a little more deeply into the impli-
cations of process vs. product approaches to introduce new mathematical concepts.
They remarked that most teaching practices introduce abstractions as ready-to-use
products, in a (context-free) abstract-apart way, rather than focusing on the context-
situated processes which could give rise to them and so promoting the learning of
what they called abstract-general concepts. As a result, in their opinion, �concepts
and procedures learnt in an abstract-apart manner are limited because they can
only be applied in situations which look suitably similar to the context-free way in
which they were learnt�.

The dichotomy abstraction as a process versus abstraction as a product applies
also to the basic forms of procedural, data, and control abstraction, so pervasive
in the programming activity, with the additional burden that the learner is often
required to conceive from scratch suitable abstractions of these sorts as part of the
tasks assigned to them. Although the opportunity of being exposed to abstraction
as a process is clearly valuable for a solid learning, these kinds of abstraction tend
to be dealt with as just a repertory of technical notions, and risk being perceived
by students as mere labels of programming language constructs.

As opposed to most other �elds (and namely Mathematics), where abstractions
are chosen by the teacher within a pre-established repertory and viewed as learning
objectives, in programming the learners themselves are expected to envisage suitable
abstractions based on the known solutions of similar tasks they were exposed to.
However, although abstractions �are what give software elegance�, we �can teach the
use of pre-packaged abstractions�, but it �is more di�cult to teach the self-awareness
necessary for inventing new abstractions� [AS08].

20 CHAPTER 1. LITERATURE REVIEW

In this respect, Hazzan [Haz08, p. 41] suggests that teachers should be explicit
when they use abstraction:

[F]or example, with respect to abstraction applied in front of the class, in-

structors can speci�cally make statements such as: �I am ignoring this aspect

here because. . . �, �Now, let's move one level of abstraction down and elabo-

rate on. . . �, �Similarly to what we did last week, abstraction is expressed here

because. . . �, �If we hadn't used abstraction, the solution would have been. . . �,

and so on. This can be done, for example, while developing a solution in

stages in front of the class, specifying how abstraction is expressed and how it

guides the solution process, instead of presenting the students with complete

solutions.

1.5.2 Relationships between abstraction and iteration

A variety of abstraction processes are intrinsically involved in any meaningful pro-
gramming task, due to the very nature of this kind of activity, which builds upon
subsequent steps of abstraction from the details of the underlying processes or phe-
nomena. Nevertheless, it often appears to be taken for granted that almost every
programming activity should imply and/or develop abstract thinking abilities, with-
out being aware of this tacit assumption.

According to the model developed by a group of �Thought Leaders� to incorpo-
rate computational thinking in K�12 education [BS11], the use of conditionals and
loops is part of the characterization of the core abstraction concept, and a number of
works explore the relationships between abstraction and iterations from a variety of
perspectives. Abbott and Sun [AS08], for instance, see iteration in terms of abstrac-
tion by parameterization, in that �the while-loop construct [...] abstracts the notion
of iteration and by providing slots into which a Boolean expression and a code seg-
ment may be inserted makes iteration available generically�. Furthermore, they note
that any implied activity has both top-down as well as bottom-up features: it is top-
down since the programmer starts from the idea of some speci�c purpose to achieve;
it is bottom-up since the code unit results from assembling existing components.

The abstraction ability in connection with iteration is addressed by Lister et
al. [Lis+06]. Based on think-aloud responses collected from students (novices) and
educators (experts) while engaging in a small code reading task, Lister and colleagues
found that �educators tended to articulate an abstraction of the loop structure� (e.g.,
�going backward through these arrays�, �we're starting from the high end�, �It looks
like the code is assuming the arrays are in sorted order from smallest to largest�)
or of portions of it (e.g., �I'm always decrementing the index of the bigger one�),
whereas �students generally articulated nothing more than the presence of a loop,
and sometimes also a literal statement about the terminating condition.� In SOLO
terms [BFC82], educators usually thought at relational and sometimes even extended
abstract levels; by contrast, students' explanations tended to be restricted to the

1.5. THE ROLE OF ABSTRACTION 21

multistructural level. In summary, the authors concluded that [Lis+06, p. 120]:

It is apparent that, even when initially hand executing the code, most edu-

cators are actively seeking to abstract beyond the concrete code. In contrast,

most novices did not seek to abstract.

Gries [Gri02] and Koppelman & van Dijk [KD10] advocate the explicit use of
abstraction in order to deal with nested loops in a cleaner way. Koppelman and van
Dijk, in particular, suggest that the levels of abstraction relative to the outer and
inner loops could be separated by introducing a function that �hides� the nested
construct at the higher level. Quite peculiarly, Ade-Ibijola et al. [AIES14] consider
the potential of �narrative abstractions� of loops to support novices' program com-
prehension.

A few authors have also proposed small tasks intended to compel students to
think of iteration constructs at a higher abstraction level (than that implied by
simply tracing the code), but avoiding the additional cognitive load of some speci�c
problem to solve. Examples of similar challenges include reversibility tasks [TL14b;
MIS20] and equivalence tasks [IM20].

Reversibility is a property of a program or function that indicates it could be
brought back to its original state. It is a topic that few scholars explored, and only
rarely in high school. Recently, papers have been presented on the subject, e.g.
Ginat & Armoni [GA06] consider the central role of �reverse thinking� in Computer
Science, whilst Teague & Lister [TL14b] investigate to what degree novice pro-
grammers manifest the ability to work with this concept of reversibility. Teague &
Lister started from the assumption that Piaget [Pia+69] had identi�ed reversibility
as an indicator of the ability to reason at a concrete operational level. Their re-
sults suggested �that many students remain at the sensorimotor and pre-operational
levels because all the instruction they receive is at the concrete operational level�.
They conclude the analysis arguing that when students worked with concepts like
reversibility then could reason abstractly.

Izu, Weerasinghe and Pope [IWP16] have shown that only a small percentage of
students are able to correctly manage the problem of reversibility.

Furthermore, Izu et al. [IPW17] argued that �reasoning about reversibility re-
quires students to have a mental model of the state, thus they should reason about
program behavior as a whole, compared with reasoning about concrete cases using
testing and tracing�, con�rming that students often fail to correctly reason about
reversibility.

Several works have proposed tasks that require verifying reversibility or writing
the reversal code [Lis11; TL14b; IMW18; MI19]. Moreover, Izu et al. [IMW18]
suggested that the concept of reversibility could be a useful resource for educators
to assess and develop students' understanding of program behavior.

22 CHAPTER 1. LITERATURE REVIEW

1.6 Teachers' Pedagogical Content Knowledge

Teaching is a highly complex activity. In fact, whatever the subject, the learning
process is cognitively demanding and the teacher must apply knowledge from mul-
tiple domains (Resnick [RM87], Leinhardt and Greeno [LGG86], Wilson, Shulman
and Richert [WSR87]). Teachers with more di�erentiated and integrated knowledge
are therefore better equipped to teach than those whose knowledge is specialized or
fragmented (Magnusson, Borko and Krajcik [MKB99]).

In the attempt to characterize the instructional strategies that experienced teach-
ers resort to in their practice within a speci�c subject, Shulman [Shu86] introduced
the notion of Pedagogical Content Knowledge (PCK), namely the �blending of con-
tent and pedagogy into an understanding of how particular aspects of subject matter
are organized, adapted, and represented for instruction�.

Abell [Abe08] argued that �PCK is not merely the amount of knowledge in a
number of component categories, it is also about the quality of that knowledge
and how it is put into action�. Therefore, it is possible to di�erentiate between
�declarative PCK or knowing that� and dynamic forms of PCK �that cover teachers'
activities during a lesson, for example, if a teacher is able to react appropriately to
students' questions and mistakes� (Schmelzing et al. [Sch+13]). Both approaches
have been investigated in the �eld, for example, by Alonzo & Kim [AK16], Gunckel
et al. [GCS18] and Nijenhuis-Voogt at al. [NV+21].

The usual instruments to elicit teachers' PCK are interviews, which can be con-
ducted in various ways, but often follow a semi-structured plan, such as that built
around the eight standard questions of the Content Representation (CoRe) for-
mat [MKB99; LMB08], meant to capture teachers' knowledge about key ideas in
connection with the topic at hand.

Similar interviews are an established research tool in Mathematics and in Physics,
see e.g. Erlwanger [Erl73] and Ginsburg [Gin97]. Although less common in Com-
puter Science education, we can however �nd a few attempts to investigate teach-
ers' PCK in the areas of computing [Bar+14] and, more speci�cally, program-
ming [BSS13; Sae+11; Bar+15]. We will next consider in further detail Shulman's
guidelines to explore teachers' PCK and the use of the CoRe format, which have
been insightful to prepare the face-to-face interviews discussed in chapter 2.

1.6.1 Questions to elicit PCK

Pedagogical content knowledge is an �amalgam� of content and pedagogy [Shu05a;
Shu05b]. In Shulman's words [Shu86, p. 9]:

Within the category of pedagogical content knowledge I include, for the most

regularly taught topics in one's subject area, the most useful forms of repre-

sentation of those ideas, the most powerful analogies, illustrations, examples,

explanations, and demonstrations � in a word, the ways of representing and

1.6. TEACHERS' PEDAGOGICAL CONTENT KNOWLEDGE 23

formulating the subject that make it comprehensible to others. [...]

Pedagogical content knowledge includes an understanding of what makes the

learning of speci�c topics easy or di�cult: the conceptions and preconcep-

tions that students of di�erent ages and backgrounds bring with them to the

learning of those most frequently taught topics and lessons.

In general, according to Magnusson's et al. model for science teaching [MKB99],
the following components of PCK can be identi�ed:

(a) Orientation to teaching science,

(b) Knowledge of science curriculum,

(c) Knowledge of students' understanding of science,

(d) Knowledge of instructional strategy,

(e) Knowledge of assessment of scienti�c literacy.

It is common to refer to core teaching topics, such as concepts, principles,
methodologies, etc., as Big Ideas � see e.g. [LMB04]. Identifying suitable questions
to investigate the pedagogical treatment of each big idea can help to characterize
di�erent teaching styles. The questions listed in Table 1.3, in particular, result from
Grossman's approach [Gro89], revised by Saeli et al. [Sae+11, p. 76], and allow to
de�ne the PCK of a speci�c subject:

Table 1.3: Questions to elicit the PCK for a speci�c subject.

Why teach ... ?
What should be taught?
What are the learning di�culties?
How should the topic be taught?

None of the above questions, however, focuses on assessment, whereas the assessment
of students' learning is becoming more and more signi�cant for its implications to
direct the instructional practice. In our perspective, it is then important to cover
the following points as well (Table 1.4):

Table 1.4: Questions about the assessment of the learning of a Big Idea.

How should this topic be assessed?
What could be a fair method to assess this topic?
What aspects of the topic should be assessed?

In addition, we can mention the questions raised by Schulte and Benned-
sen [SB06] in order to explore how di�erent topics covered in introductory pro-
gramming courses are taught:

24 CHAPTER 1. LITERATURE REVIEW

1. What is the importance, di�culty and current teaching level of some often discussed
learning topics in introductory programming courses? (Important teaching issues)

2. What is the relevance of areas emerged from the discussion in the pre-Object-
Oriented era � explicated by the �ve domains described by du Boulay1 [DB86]
(Role of areas)

3. How important is teaching and learning object interaction evaluated in introductory
programming courses? (Role of object interaction)

1.6.2 Content Representation (CoRe) questions

The Content Representation (CoRe) format is an instrument to investigate teachers'
PCK of a speci�c topic (Loughran et al. [LMB04]). It captures the key ideas
connected to the topic, and characterizes the teachers' knowledge about each idea
through the 8 standard questions outlined in Table 1.5. The questions cover the
above components addressed by Magnusson et al. [MKB99]: question 0 is somehow
linked to point (a), questions 1, 2 and 3 refer to point (b), 4 and 5 to point (c), 6
and 7 to point (d), and 8 to point (e).

Table 1.5: CoRe questions.

0. What are important ideas/concepts (`Big Ideas') concerning this topic?

For each Big Idea:

1. What do you intend the students to learn about this Big Idea?
2. Why is it important for the students to know this Big Idea?
3. What else do you know about this Big Idea (and you don't intend stu-

dents to know yet)?
4. What are the di�culties/limitations connected with the teaching of this

Big Idea?
5. What knowledge about students' thinking in�uences your teaching of this

Big Idea?
6. Which factors in�uence your teaching of this Big Idea?
7. What are your teaching methods (any particular reasons for using these

to engage with this Big Idea)?
8. What are your speci�c ways of assessing students' understanding or con-

fusion around this Big Idea?

Loughran et al. [LMB08] originally introduced the CoRe format as an interview
tool. Its use is essentially related to the identi�cation of a topic, then questions 1�8
of Table 1.5 are asked.

1The �ve areas identi�ed by du Boulay as potential sources of students' di�culties are: orien-

tation, notional machine, notation, structures and pragmatics.

1.7. SUMMARY OF THE REVIEW 25

Drawing inspiration from the work of Buchholz, Saeli and colleagues [BSS13;
Sae+11; Sae12], for instance, Big Ideas for introductory programming can be chosen
among those listed in Table 1.6, as proposed by [BSS13; Sae+11; Sae12]:

Table 1.6: Big Ideas for introductory programming.

Control Structures: loops, conditions and sequence
Functions, procedures and methods
Algorithms
Variables and constants
Parameters
Data structures
Decomposition
Re-usability
Arrays
Logical thinking
Formal languages: grammar and syntax

Additional relevant topics within the sphere of introductory programming can be
extrapolated from a number of collective studies, such as: Lister et al. [Lis+12],
Barendsen et al. [Bar+15], Luxton-Reilly et al. [LR+17a], Izu et al. [Izu+19].

This instrument has, however, some limitations. Saeli [Sad10] argued that �teach-
ers sometimes have no answers to the questions, for example for `problem-solving
skills� '. Furthermore, Saeli [Sae12] pointed out that �teachers from di�erent coun-
tries could also report di�erent teaching methods or teaching beliefs�.

1.7 Summary of the review

The central theme of this work is the teaching and learning of iteration in the con-
text of the Italian upper-secondary school, which we are trying to explore from the
perspectives of both educators and students. To this aim, we have reviewed the liter-
ature about a range of topics, covering the di�culties faced by novices, the reported
insights on potential cognitive challenges and misconceptions, the instruments to
explore instructional pedagogies/approaches in teachers' practice. All this material
will contribute to set out the investigations presented in the next chapters.

In the attempt to summarize the major insights gained from the review, we recall
the following points:

� To begin with, iteration is generally regarded as a central topic for introductory
programming.

26 CHAPTER 1. LITERATURE REVIEW

� Conditionals and loops are frequent sources of di�culties for novices. More specif-
ically, the known issues include: Boolean operators in conditions, loop termination
conditions, loop control variables, down-counting loops, nested constructs within
loops. Besides, when considering higher-level thinking, often the lack of adequate
strategic knowledge (plans) is pointed out. It is also observed that novices tend to
be more at ease with some loop structures than with others (e.g., exit condition
vs. continue condition).

� Most of the studies documented in the literature were conducted in the context of
(undergraduate) CS0/CS1 courses, whereas the state of a�airs in the high school
does not yet appear to have been extensively investigated.

� The centrality of the theme is also witnessed by the fact that iteration and Boolean
expressions are addressed in one of the (few) available Concept Inventories for
introductory programming.

� Apparently, mastery of conditionals and loops � i.e. to go beyond the mere ability
to trace code execution � implies the exertions of abstraction skills. According to
some educators, for instance, iteration can be viewed as a form of abstraction by
parameterization; moreover, in order to get a deep understanding of nested loops
it is necessary to separate and move between di�erent levels of abstraction. Tasks
asking to determine equivalence or reversibility of (small) programs may help to
foster the development of abstract thinking skills and, more in general, students
should be guided to experience abstraction as a process, rather than as a product.

� The Content Representation format is an inspiring model to prepare the interviews
aimed at eliciting teachers' pedagogical content knowledge.

References

[Abe08] Sandra K. Abell. �Twenty Years Later: Does pedagogical content
knowledge remain a useful idea?� eng. In: International journal of
science education 30.10 (2008), pp. 1405�1416.

[Ade85] Beth Adelson. �Comparing Natural and Abstract Categories: A Case
Study from Computer Science�. In: Cognitive Science 9.4 (1985),
pp. 417�430. doi: https://doi.org/10.1207/s15516709cog0904\
_3. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1207/
s15516709cog0904_3.

[AGE06] Michal Armoni and Judith Gal-Ezer. �Reduction � an abstract think-
ing pattern: the case of the computational models course�. In: SIGCSE
'06: Proceedings of the 37th SIGCSE technical symposium on Com-
puter science education. New York, NY, USA: ACM, 2006, pp. 389�
393. doi: http://doi.acm.org/10.1145/1121341.1121461.

REFERENCES 27

[AIES14] Abejide Ade-Ibijola, Sigrid Ewert, and Ian Sanders. �Abstracting and
Narrating Novice Programs Using Regular Expressions�. In: Proceed-
ings of the Southern African Institute for Computer Scientist and In-
formation Technologists Annual Conference 2014 on SAICSIT 2014
Empowered by Technology. SAICSIT '14. New York, NY, USA: As-
sociation for Computing Machinery, 2014, pp. 19�28. doi: 10.1145/
2664591.2664601.

[AK16] Alicia C. Alonzo and Jiwon Kim. �Declarative and dynamic pedagog-
ical content knowledge as elicited through two video-based interview
methods�. eng. In: Journal of research in science teaching 53.8 (2016),
pp. 1259�1286.

[Alm+06] Vicki Almstrum et al. �Concept Inventories in Computer Science for
the Topic Discrete Mathematics�. In: ACM SIGCSE Bulletin Inroads
38 (Dec. 2006), pp. 132�145. doi: 10.1145/1189136.1189182.

[Arm13] Michal Armoni. �On teaching abstraction in computer science to
novices�. In: Journal of Computers in Mathematics and Science
Teaching 32.3 (July 2013), pp. 265�284.

[AS08] Russ Abbott and Chengyu Sun. �Abstraction abstracted�. en. In: Pro-
ceedings of the 2nd international workshop on The role of abstraction
in software engineering - ROA '08. Leipzig, Germany: ACM Press,
2008, p. 23. doi: 10.1145/1370164.1370171.

[Bar+14] Erik Barendsen et al. �Eliciting computer science teachers' PCK us-
ing the Content Representation format: Experiences and future direc-
tions�. In: Proceedings of the 6th International Conference on Infor-
matics in Schools: Situation, Evolution, and Perspectives (ISSEP'14)
� Teaching and Learning Perspectives. Ed. by Yasemin Gülbahar, Er-
inç Karata³, and Müge Adnan. Vol. 8730. Istanbul, Turkey: Ankara
University Press, Sept. 2014, pp. 71�82.

[Bar+15] Erik Barendsen et al. �Concepts in K-9 Computer Science Educa-
tion�. In: Proceedings of the 2015 ITiCSE on Working Group Reports.
ITICSE-WGR '15. New York, NY, USA: ACM, 2015, pp. 85�116. doi:
10.1145/2858796.2858800.

[BC06] Jens Bennedsen and Michael E. Caspersen. �Abstraction Power in
Computer Science Education�. In: Proceedings of the 18th Annual
Workshop of the Psychology of Programming Interest Group - PPIG
2006. University of Sussex, Brighton, UK, Sept. 2006.

[BFC82] John Biggs and Kevin F Collis. �Evaluating the Quality of Learning:
the SOLO Taxonomy�. In: SERBIULA (sistema Librum 2.0) (Jan.
1982).

28 CHAPTER 1. LITERATURE REVIEW

[BLW01] Paolo Bucci, Timothy J. Long, and Bruce W. Weide. �Do we really
teach abstraction?� In: SIGCSE '01: Proceedings of the thirty-second
SIGCSE technical symposium on Computer Science Education. New
York, NY, USA: ACM, 2001, pp. 26�30. doi: 10 . 1145 / 364447 .
364531.

[BS11] Valerie Barr and Chris Stephenson. �Bringing computational thinking
to K-12: what is Involved and what is the role of the computer science
education community?� In: ACM Inroads 2 (Mar. 2011). doi: 10.
1145/1929887.1929905.

[BS83] Je�rey Bonar and Elliot M. Soloway. �Uncovering principles of novice
programming�. In: Proceedings of the 10th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. 1983, pp. 10�13.

[BS85] Je�rey Bonar and Elliot M. Soloway. �Preprogramming Knowledge: A
Major Source of Misconceptions in Novice Programmers�. In: Human-
Computer Interaction 1 (June 1985), pp. 133�161. doi: 10.1207/
s15327051hci0102_3.

[BSS13] Malte Buchholz, Mara Saeli, and Carsten Schulte. �PCK and re�ec-
tion in computer science teacher education�. In: ACM International
Conference Proceeding Series (Nov. 2013). doi: 10.1145/2532748.
2532752.

[Cac+16] Ricardo Cace�o et al. �Developing a Computer Science Concept
Inventory for Introductory Programming�. In: Proceedings of the
47th ACM Technical Symposium on Computing Science Education.
SIGCSE '16. New York, NY, USA: ACM, 2016, pp. 364�369. doi:
10.1145/2839509.2844559.

[CAD19] Hasnaa Chaabi, Amina Azmani, and Juan Manuel Dodero. �Analysis
of the relationship between computational thinking and mathemati-
cal abstraction in primary education�. In: Proceedings of the Seventh
International Conference on Technological Ecosystems for Enhancing
Multiculturality. 2019, pp. 981�986.

[Cet15] Ibrahim Cetin. �Student's Understanding of Loops and Nested Loops
in Computer Programming: An APOS Theory Perspective�. In: Cana-
dian Journal of Science, Mathematics and Technology Education 15.2
(Feb. 2015), pp. 155�170. doi: 10.1080/14926156.2015.1014075.

[Cet+20] Ibrahim Cetin et al. �Teaching Loops Concept through Visualization
Construction�. In: Informatics in Education-An International Journal
19.4 (2020), pp. 589�609.

[Che18] Eugenia Cheng. The Art of Logic: How to Make Sense in a World that
Doesn't. Pro�le, 2018.

REFERENCES 29

[CPP12] Michelle Craig, Sarah Petersen, and Andrew Petersen. �Following a
Thread: Knitting Patterns and Program Tracing�. In: Proceedings of
the 43rd ACM Technical Symposium on Computer Science Education.
SIGCSE '12. New York, NY, USA: Association for Computing Ma-
chinery, 2012, pp. 233�238. doi: 10.1145/2157136.2157204.

[Csi+15] Andrew Csizmadia et al. �Computational thinking - a guide for teach-
ers�. In: Computing At School (Jan. 2015).

[Cur+19] Paul Curzon et al. �Computational thinking�. In: The Cambridge
Handbook of Computing Education Research (2019), pp. 513�546.

[CZP14] Yuliya Cherenkova, Daniel Zingaro, and Andrew Petersen. �Identi-
fying Challenging CS1 Concepts in a Large Problem Dataset�. In:
Proc. of the 45th ACM Tech. Symp. on Computer Science Education.
SIGCSE '14. New York, NY, USA: ACM, 2014, pp. 695�700.

[DB86] Benedict Du Boulay. �Some Di�culties of Learning to Program�. In:
Journal of Educational Computing Research 2 (Jan. 1986), pp. 57�73.

[Deh09] Saeed Dehnadi. �A cognitive study of learning to program in introduc-
tory programming courses.� PhD thesis. Middlesex University, 2009.

[Dij72] Edsger W. Dijkstra. �The Humble Programmer�. In: Commun. ACM
15.10 (1972), pp. 859�866. doi: 10.1145/355604.361591.

[Dij89] Edsger W. Dijkstra. �On the cruelty of really teaching computing
science�. English. In: Communications Of The Acm 32.12 (1989),
pp. 1398�1404.

[DR08] Michael De Raadt. �Teaching programming strategies explicitly to
novice programmers�. PhD thesis. University of Southern Queensland,
2008.

[Dre91] Tommy Dreyfus. �Advanced Mathematical Thinking Processes�. In:
Advanced Mathematical Thinking. Ed. by David Tall. Dordrecht:
Springer Netherlands, 1991, pp. 25�41. doi: 10.1007/0-306-47203-
1_2.

[Eck+06] Anna Eckerdal et al. �Putting threshold concepts into context in com-
puter science education�. In: Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer science educa-
tion. ITICSE '06. New York, NY, USA: ACM, 2006, pp. 103�107.

[Erl73] Stanley H. Erlwanger. �Benny's conception of rules and answers in
IPI mathematics�. In: Journal of Children's Mathematical Behaviour
1, 2, Autumn (1973), pp. 7�26.

30 CHAPTER 1. LITERATURE REVIEW

[Fis14] Kathi Fisler. �The Recurring Rainfall Problem�. In: Proceedings of
the Tenth Annual Conference on International Computing Education
Research. ICER '14. New York, NY, USA: Association for Computing
Machinery, 2014, pp. 35�42. doi: 10.1145/2632320.2632346.

[GA06] David Ginat and Michal Armoni. �Reversing: An Essential Heuristic
in Program and Proof Design�. In: Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education. SIGCSE '06.
New York, NY, USA: ACM, 2006, pp. 469�473. doi: 10 . 1145 /

1121341.1121488.

[GA12] David Ginat and Ronnie Alankry. �Pseudo Abstract Composition:
The Case of Language Concatenation�. In: Proceedings of the 17th
ACM Annual Conference on Innovation and Technology in Computer
Science Education. ITiCSE '12. New York, NY, USA: Association for
Computing Machinery, 2012, pp. 28�33. doi: 10.1145/2325296.
2325307.

[GB17a] David Ginat and Yoav Blau. �Multiple Levels of Abstraction in Algo-
rithmic Problem Solving�. In: Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. SIGCSE '17.
New York, NY, USA: Association for Computing Machinery, 2017,
pp. 237�242. doi: 10.1145/3017680.3017801.

[GB17b] Shuchi Grover and Satabdi Basu. �Measuring Student Learning in
Introductory Block-Based Programming: Examining Misconceptions
of Loops, Variables, and Boolean Logic�. In: Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Educa-
tion. SIGCSE '17. New York, NY, USA: Association for Computing
Machinery, 2017, pp. 267�272. doi: 10.1145/3017680.3017723.

[GCS18] Kristin L. Gunckel, Beth A. Covitt, and Ivan Salinas. �Learning pro-
gressions as tools for supporting teacher content knowledge and ped-
agogical content knowledge about water in environmental systems�.
In: Journal of Research in Science Teaching 55.9 (2018), pp. 1339�
1362. doi: https://doi.org/10.1002/tea.21454. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/tea.21454.

[Gin04] David Ginat. �On Novice Loop Boundaries and Range Conceptions�.
In: Computer Science Education 14 (Sept. 2004), pp. 165�181. doi:
10.1080/0899340042000302709.

[Gin97] Herbert Ginsburg. Entering the Child's Mind: The Clinical Inter-
view In Psychological Research and Practice. Cambridge books online.
Cambridge University Press, 1997.

REFERENCES 31

[GM07] Anabela Gomes and Antonio Mendes. �Learning to program - di�-
culties and solutions�. In: International Conference on Engineering
Education � ICEE. Jan. 2007, pp. 283�287.

[Gol+08] Ken Goldman et al. �Identifying important and di�cult concepts in
introductory computing courses using a delphi process�. eng. In: Pro-
ceedings of the 39th SIGCSE technical symposium on computer science
education. SIGCSE '08. ACM, 2008, pp. 256�260.

[Gol+10] Ken Goldman et al. �Setting the Scope of Concept Inventories for
Introductory Computing Subjects�. eng. In: ACM Transactions on
Computing Education 10.2 (2010).

[GP18a] Shuchi Grover and Roy Pea. �Computational Thinking: A Compe-
tency Whose Time Has Come�. In: Computer Science Education:
Perspectives on teaching and learning in school. Ed. by S. Sentance,
E. Barendsen, and S. Carsten. London, UK: Bloomsbury Academic,
2018, pp. 19�38.

[Gri02] David Gries. �Where is Programming Methodology These Days?� In:
SIGCSE Bull. 34.4 (Dec. 2002), pp. 5�7. doi: 10.1145/820127.
820129.

[Gro89] Pamela L. Grossman. �A study in contrast: sources of pedagogical
content knowledge for secondary English�. In: Journal of Teacher Ed-
ucation 40.5 (1989), pp. 24�31.

[Hab04] Bruria Haberman. �High-School Students' Attitudes Regarding Pro-
cedural Abstraction�. In: Education and Information Technologies 9.2
(May 2004), pp. 131�145. doi: 10.1023/B:EAIT.0000027926.99053.
6f.

[Haz03] Orit Hazzan. �How Students Attempt to Reduce Abstraction in the
Learning of Mathematics and in the Learning of Computer Science�.
In: Computer Science Education 13.2 (2003), pp. 95�122. doi: 10.
1076/csed.13.2.95.14202.

[Haz08] Orit Hazzan. �Re�ections on Teaching Abstraction and Other Soft
Ideas�. In: SIGCSE Bull. 40.2 (June 2008), pp. 40�43. doi: 10.1145/
1383602.1383631.

[Haz99] Orit Hazzan. �Reducing Abstraction Level When Learning Abstract
Algebra Concepts�. In: Educational Studies in Mathematics 40.1
(1999), pp. 71�90.

[Her+12] Geo�rey L. Herman et al. �Describing the What and Why of Students'
Di�culties in Boolean Logic�. In: ACM Trans. Comput. Educ. 12.1
(2012). doi: 10.1145/2133797.2133800.

32 CHAPTER 1. LITERATURE REVIEW

[HT05] Orit Hazzan and James Tomayko. �Re�ection and abstraction in
learning software engineering's human aspects�. In: Computer 38
(June 2005), pp. 39�45. doi: 10.1109/MC.2005.200.

[IM20] Cruz Izu and Claudio Mirolo. �Comparing Small Programs for Equiv-
alence: A Code Comprehension Task for Novice Programmers�. In:
Proc. of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education. ITiCSE '20. New York, NY, USA:
ACM, 2020, pp. 466�472.

[IMW18] Cruz Izu, Claudio Mirolo, and Amali Weerasinghe. �Novice Program-
mers' Reasoning About Reversing Conditional Statements�. In: Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science
Education. SIGCSE '18. New York, NY, USA: ACM, 2018, pp. 646�
651. doi: 10.1145/3159450.3159499.

[IPW17] Cruz Izu, Cheryl Pope, and Amali Weerasinghe. �On the Ability to
Reason About Program Behaviour: A Think-Aloud Study�. In: Pro-
ceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education. ITiCSE '17. New York, USA: ACM,
2017, pp. 305�310. doi: 10.1145/3059009.3059036.

[IST11] ISTE/CSTA Steering Committee. Computational Thinking Teacher
Resources, 2nd ed. ISTE/CSTA. retrieved: april 2022. 2011.

[IWP16] Cruz Izu, Amali Weerasinghe, and Cheryl Pope. �A Study of Code
Design Skills in Novice Programmers Using the SOLO Taxonomy�. In:
Proceedings of the 2016 ACM Conference on International Computing
Education Research. ICER '16. New York, NY, USA: Association for
Computing Machinery, 2016, pp. 251�259. doi: 10.1145/2960310.
2960324.

[Izu+19] Cruz Izu et al. �Fostering Program Comprehension in Novice Pro-
grammers - Learning Activities and Learning Trajectories�. In: Proc.
of the Working Group Reports on Innovation and Technology in Com-
puter Science Education. ITiCSE-WGR '19. New York, NY, USA:
ACM, 2019, pp. 27�52.

[Jen02] Tony Jenkins. �On the Di�culty of Learning to Program�. In: Pro-
ceedings of the 3rd annual LTSN ICS Conference. Loughborough, UK,
2002.

[Kac+10] Lisa C. Kaczmarczyk et al. �Identifying Student Misconceptions of
Programming�. In: Proceedings of the 41st ACM Technical Symposium
on Computer Science Education. SIGCSE '10. New York, NY, USA:
ACM, 2010, pp. 107�111.

REFERENCES 33

[KD03] Amruth Kumar and Garrett Dancik. �A tutor for counter-controlled
loop concepts and its evaluation�. In: 33rd Annual Frontiers in Ed-
ucation, 2003. FIE 2003. Vol. 1. Nov. 2003, T3C�7. doi: 10.1109/
FIE.2003.1263331.

[KD10] Herman Koppelman and Betsy van Dijk. �Teaching Abstraction in
Introductory Courses�. In: Proceedings of the Fifteenth Annual Con-
ference on Innovation and Technology in Computer Science Educa-
tion. ITiCSE '10. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 174�178. doi: 10.1145/1822090.1822140.

[Kon19] Siu-cheung Kong. �Components and Methods of Evaluating Compu-
tational Thinking for Fostering Creative Problem-Solvers in Senior
Primary School Education�. In: Computational thinking education.
Springer, Singapore, May 2019, pp. 119�141. doi: 10.1007/978-
981-13-6528-7_8.

[Kra07] Je� Kramer. �Is abstraction the key to computing?� In: Commun.
ACM 50 (Apr. 2007), pp. 36�42. doi: 10.1145/1232743.1232745.

[Lew+05b] Gary Lewandowski et al. �What Novice Programmers Don'T Know�.
In: Proceedings of the First International Workshop on Computing
Education Research. ICER '05. New York, NY, USA: ACM, 2005,
pp. 1�12. doi: 10.1145/1089786.1089787.

[LGG86] Gaea Leinhardt and James G. Greeno. �The Cognitive Skill of Teach-
ing�. In: Journal of Educational Psychology 78 (Apr. 1986), pp. 75�95.
doi: 10.1037/0022-0663.78.2.75.

[Lib08] Julie Libarkin. Concept Inventories in Higher Education Science. Jan.
2008.

[Lis+04] Raymond Lister et al. �A Multi-national Study of Reading and Trac-
ing Skills in Novice Programmers�. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Educa-
tion. ITiCSE-WGR '04. New York, NY, USA: ACM, 2004, pp. 119�
150. doi: 10.1145/1044550.1041673.

[Lis+06] Raymond Lister et al. �Not Seeing the Forest for the Trees: Novice
Programmers and the SOLO Taxonomy�. In: Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Com-
puter Science Education. ITICSE '06. New York, NY, USA: ACM,
2006, pp. 118�122.

[Lis11] Raymond Lister. �Concrete and other neo-piagetian forms of reason-
ing in the novice programmer�. In: Conf. Res. Pract. Inf. Technol.
Ser. 114 (2011), pp. 9�18.

34 CHAPTER 1. LITERATURE REVIEW

[Lis+12] Raymond Lister et al. �Toward a Shared Understanding of Compe-
tency in Programming: An Invitation to the BABELnot Project�.
In: Proceedings of the 14th Australasian Computing Education Con-
ference (ACE 2012). Ed. by Michael de Raadt and Angela Car-
bone. RMIT University, Melbourne: Australian Computer Society,
Jan. 2012.

[LMB04] John Loughran, Pamela Mulhall, and Amanda Berry. �In Search of
Pedagogical Content Knowledge in Science: Developing Ways of Ar-
ticulating and Documenting Professional Practice�. In: Journal of Re-
search in Science Teaching 41 (Apr. 2004), pp. 370 �391. doi: 10.
1002/tea.20007.

[LMB08] John Loughran, Pamela Mulhall, and Amanda Berry. �Exploring Ped-
agogical Content Knowledge in Science Teacher Education�. In: Inter-
national Journal of Science Education - INT J SCI EDUC 30 (Aug.
2008), pp. 1301�1320. doi: 10.1080/09500690802187009.

[Lop+08] Mike Lopez et al. �Relationships Between Reading, Tracing and Writ-
ing Skills in Introductory Programming�. In: Proc. 4th Int. Workshop
on Comput. Educ. Research. ICER '08. New York, USA: ACM, 2008,
pp. 101�112.

[LR+17a] Andrew Luxton-Reilly et al. �Developing Assessments to Determine
Mastery of Programming Fundamentals�. In: Proceedings of the 2017
ITiCSE Conference on Working Group Reports. ITiCSE-WGR '17.
New York, USA: ACM, 2017, pp. 47�69. doi: 10.1145/3174781.
3174784.

[LR+18] Andrew Luxton-Reilly et al. �Introductory Programming: A System-
atic Literature Review�. In: Proceedings Companion of the 23rd An-
nual ACM Conference on Innovation and Technology in Computer
Science Education. ITiCSE 2018 Companion. New York, NY, USA:
ACM, 2018, pp. 55�106.

[Ma+09] Linxiao Ma et al. �Improving the Mental Models Held by Novice
Programmers Using Cognitive Con�ict and Jeliot Visualisations�. In:
Proceedings of the 14th Annual ACM SIGCSE Conference on Inno-
vation and Technology in Computer Science Education. ITiCSE '09.
New York, NY, USA: Association for Computing Machinery, 2009,
pp. 166�170. doi: 10.1145/1562877.1562931.

[Man+20] Linda Mannila et al. �Programming in Primary Education: Towards a
Research Based Assessment Framework�. In: Proceedings of the 15th
Workshop on Primary and Secondary Computing Education. WiP-
SCE '20. New York, NY, USA: Association for Computing Machinery,
2020. doi: 10.1145/3421590.3421598.

REFERENCES 35

[Mas89] John Mason. �Mathematical abstraction as the result of a delicate
shift of attention�. In: Learn. Math. 9.2 (1989), pp. 2�8.

[MB�18] Monika Mladenovic, Ivica Boljat, and �ana �anko. �Comparing loops
misconceptions in block-based and text-based programming languages
at the K-12 level�. In: Education and Information Technologies 23
(July 2018), pp. 1483�1500. doi: 10.1007/s10639-017-9673-3.

[MI19] Claudio Mirolo and Cruz Izu. �An Exploration of Novice Program-
mers' Comprehension of Conditionals in Imperative and Functional
Programming�. In: Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education. ITiCSE '19.
New York, NY, USA: Association for Computing Machinery, 2019,
pp. 436�442. doi: 10.1145/3304221.3319746.

[MIS20] Claudio Mirolo, Cruz Izu, and Emanuele Scapin. �High-School Stu-
dents' Mastery of Basic Flow-Control Constructs through the Lens of
Reversibility�. In: Proceedings of the 15th Workshop on Primary and
Secondary Computing Education. WiPSCE '20. New York, NY, USA:
Association for Computing Machinery, 2020. doi: 10.1145/3421590.
3421603.

[MKB99] Shirley Magnusson, Joseph Krajcik, and Hilda Borko. �Nature,
Sources, and Development of Pedagogical Content Knowledge for Sci-
ence Teaching�. In: Examining Pedagogical Content Knowledge. Ed.
by Julie Gess-Newsome and NormanG. Lederman. Vol. 6. Science &
Technology Education Library. Springer Netherlands, 1999, pp. 95�
132. doi: 10.1007/0-306-47217-1_4.

[MS21] Craig S. Miller and Amber Settle. �Mixing and Matching Loop Strate-
gies: By Value or By Index?� In: Proc. of the 52nd SIGCSE. SIGCSE
'21. Virtual Event, USA, 2021, pp. 1048�1054.

[NV+21] Jacqueline Nijenhuis-Voogt et al. �Teaching algorithms in upper sec-
ondary education: a study of teachers' pedagogical content knowl-
edge�. In: Computer Science Education 0.0 (2021), pp. 1�33. doi:
10.1080/08993408.2021.1935554. eprint: https://doi.org/10.
1080/08993408.2021.1935554.

[Pea86] Roy D. Pea. �Language-Independent Conceptual �Bugs� in Novice
Programming�. In: Journal of Educational Computing Research 2
(1986), pp. 25�36.

[PF18] Amanda Peel and Patricia Friedrichsen. �Algorithms, Abstractions,
and Iterations: Teaching Computational Thinking Using Protein Syn-
thesis Translation�. In: The American Biology Teacher 80 (Jan. 2018),
pp. 21�28. doi: 10.1525/abt.2018.80.1.21.

36 CHAPTER 1. LITERATURE REVIEW

[Pia+69] Jean Piaget et al. Psychology Of The Child. The Psychology of the
Child. Basic Books, 1969.

[PSS88] D.N. Perkins, Steve Schwartz, and Rebecca Simmons. �Instructional
Strategies for the Problems of Novice Programmers�. In: Teaching
and Learning Computer Programming. Ed. by Richard E. Mayer.
New York, USA: Routledge, 1988, pp. 153�178. doi: 10 . 4324 /

9781315044347.

[QL17] Yizhou Qian and James Lehman. �Students' Misconceptions and
Other Di�culties in Introductory Programming: A Literature Re-
view�. In: ACM Trans. Comput. Educ. 18.1 (Oct. 2017). doi: 10.
1145/3077618.

[RBH17] Ebrahim Rahimi, Erik Barendsen, and Ineke Henze. �Identifying
Students' Misconceptions on Basic Algorithmic Concepts Through
Flowchart Analysis�. In: Informatics in Schools: Focus on Learning
Programming. Ed. by Valentina Dagien
e and Arto Hellas. Cham:
Springer International Publishing, 2017, pp. 155�168.

[RDLR20] Liam Rigby, Paul Denny, and Andrew Luxton-Reilly. �A Miss is as
Good as a Mile: O�-By-One Errors and Arrays in an Introductory
Programming Course�. In: Proc. of the 22nd Australasian Computing
Education Conference. 2020, pp. 31�38.

[RHG06] Anthony Robins, Patricia Haden, and Sandy Garner. �Problem Dis-
tributions in a CS1 Course�. In: Proc. of the 8th Australasian Confer-
ence on Computing Education - Volume 52. ACE '06. Darlinghurst,
Australia: Australian Computer Society, Inc., 2006, pp. 165�173.

[Rij+18] Wouter J. Rijke et al. �Computational thinking in primary school:
An examination of abstraction and decomposition in di�erent age
groups�. In: Informatics in education 17.1 (2018), pp. 77�92.

[RM87] Lauren B. Resnick and S.T.E. Committee on Research in Mathe-
matics. Education and Learning to Think. Online access: National
Academy of Sciences National Academies Press. National Academies
Press, 1987.

[RRR03] Anthony Robins, Janet Rountree, and Nathan Rountree. �Learning
and Teaching Programming: A Review and Discussion�. In: Computer
Science Education 13.2 (2003), pp. 137�172.

[SA16] David Statter and Michal Armoni. �Teaching Abstract Thinking in
Introduction to Computer Science for 7th Graders�. In: Proceedings
of the 11th Workshop in Primary and Secondary Computing Educa-
tion. WiPSCE '16. New York, NY, USA: Association for Computing
Machinery, 2016, pp. 80�83. doi: 10.1145/2978249.2978261.

REFERENCES 37

[Sad10] D. Royce Sadler. �Beyond feedback: Developing student capability in
complex appraisal�. In: Assessment & evaluation in higher education
35.5 (2010), pp. 535�550.

[Sae+11] Mara Saeli et al. �Teaching Programming in Secondary School: A
Pedagogical Content Knowledge Perspective�. In: Informatics in Ed-
ucation 10 (Apr. 2011), pp. 73�88.

[Sae12] Mara Saeli. �Teaching programming for secondary school : a ped-
agogical content knowledge based approach�. English. Proefschrift.
PhD thesis. Eindhoven School of Education, 2012. doi: 10.6100/
IR724491.

[SB06] Carsten Schulte and Jens Bennedsen. �What do teachers teach in
introductory programming?� eng. In: Proceedings of the second inter-
national workshop on computing education research. Vol. 2006. ICER
'06. ACM, 2006, pp. 17�28.

[SBE83] Elliot M. Soloway, Je�rey Bonar, and Kate Ehrlich. �Cognitive Strate-
gies and Looping Constructs: An Empirical Study�. In: Commun.
ACM 26.11 (Nov. 1983), pp. 853�860. doi: 10.1145/182.358436.

[Sch12] Dane Scha�er. �An Analysis of Science Concept Inventories and Di-
agnostic Tests: Commonalities and Di�erences�. In: Annual Interna-
tional Conference of the National Association for Research in Science
Teaching. Apr. 2012.

[Sch+13] Stephan Schmelzing et al. �Development, evaluation, and validation
of a paper-and-pencil test for measuring two components of biology
teachers' pedagogical content knowledge concerning the �cardiovascu-
lar system��. In: International Journal of Science and Mathematics
Education 11 (Dec. 2013). doi: 10.1007/s10763-012-9384-6.

[SG11] Andreas Ste�k and Ed Gellenbeck. �Empirical studies on program-
ming language stimuli�. In: Software Quality Journal 19 (Mar. 2011),
pp. 65�99. doi: 10.1007/s11219-010-9106-7.

[SH08] Victoria Sakhnini and Orit Hazzan. �Reducing Abstraction in High
School Computer Science Education: The Case of De�nition, Imple-
mentation, and Use of Abstract Data Types�. In: J. Educ. Resour.
Comput. 8.2 (May 2008). doi: 10.1145/1362787.1362789.

[Shu05a] Lee S. Shulman. Signature pedagogies. 2005.

[Shu05b] Lee S. Shulman. �Teacher education does not exist�. In: Stanford Ed-
ucator 7 (2005).

[Shu86] Lee S. Shulman. �Those Who Understand: Knowledge Growth in
Teaching�. eng. In: Educational Researcher 15.2 (Feb. 1986), pp. 4�14.

38 CHAPTER 1. LITERATURE REVIEW

[Sim+06] Beth Simon et al. �Commonsense Computing: What Students Know
before We Teach (Episode 1: Sorting)�. In: Proceedings of the Second
International Workshop on Computing Education Research. ICER '06.
New York, NY, USA: Association for Computing Machinery, 2006,
pp. 29�40. doi: 10.1145/1151588.1151594.

[Sim13] Simon. �Soloway's Rainfall Problem Has Become Harder�. In: 2013
Learning and Teaching in Computing and Engineering. 2013, pp. 130�
135. doi: 10.1109/LaTiCE.2013.44.

[Sle+86] D. Sleeman et al. �Pascal and High School Students: A Study of
Errors�. In: Journal of Educational Computing Research 2.1 (1986),
pp. 5�23. doi: 10.2190/2XPP- LTYH- 98NQ- BU77. eprint: https:
//doi.org/10.2190/2XPP-LTYH-98NQ-BU77.

[Sor13] Juha Sorva. �Notional Machines and Introductory Programming Ed-
ucation�. In: Trans. Comput. Educ. 13.2 (2013), 8:1�8:31.

[SS13] Andreas Ste�k and Susanna Siebert. �An empirical investigation into
programming language syntax�. In: ACM Transactions on Computing
Education (TOCE) 13.4 (2013), pp. 1�40.

[Ste18] Friedrich Steimann. �Fatal Abstraction�. In: Proceedings of the
2018 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Re�ections on Programming and Software. Onward!
2018. New York, NY, USA: Association for Computing Machinery,
2018, pp. 125�130. doi: 10.1145/3276954.3276966.

[SW80] Elliot M. Soloway and Beverly Woolf. �Problems, Plans, and Pro-
grams�. In: Proceedings of the Eleventh SIGCSE Technical Symposium
on Computer Science Education. SIGCSE '80. New York, NY, USA:
ACM, 1980, pp. 16�24. doi: 10.1145/800140.804605.

[TG10] Allison Tew and Mark Guzdial. �Developing a validated assessment
of fundamental CS1 concepts�. In: Jan. 2010, pp. 97�101. doi: 10.
1145/1734263.1734297.

[TL14a] Donna Teague and Raymond Lister. �Blinded by their Plight: Tracing
and the Preoperational Programmer�. In: PPIG. June 2014.

[TL14b] Donna Teague and Raymond Lister. �Programming: Reading, Writ-
ing and Reversing�. In: Proceedings of the 2014 Conference on Inno-
vation and Technology in Computer Science Education. ITiCSE '14.
New York, USA: ACM, 2014, pp. 285�290. doi: 10.1145/2591708.
2591712.

[Van+10] Tammy Vandegrift et al. �Commonsense computing (episode 6): Logic
is harder than pie�. In: Proceedings of the 10th Koli Calling Interna-
tional Conference on Computing Education Research, Koli Calling'10
(Jan. 2010). doi: 10.1145/1930464.1930479.

REFERENCES 39

[Ver11] Tom Verhoe�. �On Abstraction and Informatics�. In: Informatics in
Schools. Contributing to 21st Century Education: 5th International
Conference on Informatics in Schools: Situation, Evolution and Per-
spectives, ISSEP 2011, Bratislava, Slovakia, October 26-29, 2011.
Proceedings. Ed. by Ivan Kala² and Roland T. Mittermeir. 2011, pp. 1�
12. doi: www.issep2011.org.

[Wan08] Yingxu Wang. �A Hierarchical Abstraction Model for Software Engi-
neering�. In: Proceedings of the 2nd International Workshop on The
Role of Abstraction in Software Engineering. ROA '08. New York,
NY, USA: Association for Computing Machinery, 2008, pp. 43�48.
doi: 10.1145/1370164.1370174.

[Win11] Jeannette M. Wing. �Computational Thinking: What and Why?� In:
The Link Magazine (2011).

[Win96] Leon E. Winslow. �Programming pedagogy�a psychological
overview�. In: ACM Sigcse Bulletin 28.3 (1996), pp. 17�22.

[WM99] Paul White and Michael Mitchelmore. �Learning mathematics: A New
Look at Generalisation and Abstraction�. In: AARE Annual Confer-
ence. AARE '99. deakin, ACT, Australia: Australian Association for
Research in Education, 1999, pp. 1�12.

[WSR87] Suzanne Wilson, Lee S. Shulman, and AE Richert. �" 150 di�erent
ways" of knowing: Representations of knowledge in teaching�. In: Ex-
ploring Teachers' Thinking (Jan. 1987), pp. 104�124.

[WW15] David Weintrop and Uri Wilensky. �Using Commutative Assessments
to Compare Conceptual Understanding in Blocks-Based and Text-
Based Programs�. In: Proceedings of the Eleventh Annual Interna-
tional Conference on International Computing Education Research.
ICER '15. New York, NY, USA: Association for Computing Machin-
ery, 2015, pp. 101�110. doi: 10.1145/2787622.2787721.

40 CHAPTER 1. LITERATURE REVIEW

Chapter 2

Pilot studies

The literature review summarized in the previous chapter con�rms that iteration is a
central topic in introductory courses. In particular, it pinpoints students' di�culties
with loop conditions and nested �ow-control constructs. This chapter presents the
two preparatory �pilot� studies aimed at eliciting some aspects of teachers' PCK,
as well as the teachers' and students' subjective perceptions of di�culties with pro-
gramming tasks, and speci�cally with iteration, in the high school context.

Based on the framework introduced in Section 1.6, we outline in Section 2.1 an
interview protocol drawing inspiration from the Content Representation (CoRe) for-
mat [LMB08]. Some of the insights emerging from the teachers' interviews have been
used to develop the pilot survey addressed to students, which includes subjective
perception questions and three small programming tasks on iteration constructs.
The structure of the survey and its main outcomes are presented in Section 2.2.
Finally, in Section 2.3 the subjective perception of students is compared with that
of teachers.

2.1 Teacher interviews

In this chapter the goal is to catalog a series of questions to be asked to high
school Computer Science teachers, to both technical and lyceum schools (for more
about computing in the Italian high schools see Appendix C). The various questions
formulated are not inspired by a single starting point, but we tried to identify
questions from di�erent points of view: Concept Inventory, Taxonomy, and students
point of view. The choice of asking questions according to the students' point of
view arises from our personal experience in the �eld, where students often complain
about teaching methods and the time allocated to them for learning, as well as the
objections that are increasingly present in the evaluation phase.

42 CHAPTER 2. PILOT STUDIES

2.1.1 Aims and scope of the interviews

Interviewing teachers has become a popular way of data-collection in STEM �elds,
in particular in Mathematics and Physics education.

In our study, the interviews are designed for high school teachers, teachers of
technical institutes, lyceums, and possibly of professional institutes. We have re-
quested some additional information on the training of each single teacher in order
to make a more accurate analysis. The additional information could be the type
of school and the address at which the teacher works, whether they have a �xed
term contract, age or age group, the curriculum of studies, or in what discipline
they graduated (Computer Science, Mathematics, Statistics, Electronic engineering,
Computer engineering, Management engineering, etc.). The curriculum of studies
could highlight di�erent ideas and methodologies, based on the degree obtained; and
even age could be related to di�erent approaches amongst teacher.

In this work, as an initial part of a larger research project, we tried to understand
the issues related to iteration through direct interviews with teachers. The results
of the interviews allowed us to identify strategies and new teaching methods useful
to improve existing teaching approaches. Moreover, the results obtained from the
interviews allowed us to plan and design the subsequent student survey with greater
care, identifying more e�ectively the questions and tasks proposed.

In summary, besides getting some insights on the teachers' general pedagogical
approach to programming instruction, the interviews aim at answering the following
research questions:

� How relevant do teachers deem iteration as compared to other introductory pro-
gramming topics?

� What are students' major di�culties with iteration in their view?

� What is their approach to teach and assess the learning of iteration?

2.1.2 Methodology

As far as teachers' instructional experience and practice are concerned, the usual
reference framework is that of Pedagogical Content Knowledge (PCK), originally
proposed by Shulman [Shu86], to characterize the �blending of content and peda-
gogy into an understanding of how particular aspects of subject matter are organized,
adapted, and represented for instruction�. In this respect, the Content Representa-
tion (CoRe) format is an instrument to investigate teachers' PCK of a speci�c topic
[MKB99; LMB08] through 8 standard questions, which are meant to capture teach-
ers' knowledge about key ideas in connection with the topic. Although this approach
has been mainly applied in science education research, there have also been a few
attempts to exploit it to investigate the teaching of programming [BSS13; Sae+11;
Bar+15].

2.1. TEACHER INTERVIEWS 43

Several authors have used interviews as a survey tool. Generic knowledge about
pedagogy, how students learn, teaching approaches, methods of assessment and
knowledge of di�erent theories about learning.

The interview model that we propose here di�ers from those presented in other
works, in fact we incorporate concepts not only related to Computer Science (Zazkis
and Hazzan [ZH98], Hazzan et al. [HLR11]), but also to Mathematics and other
subjects.

Having set the general objectives and background of this main section, the rest
of the section is organized as follows. Section 2.1.3 presents the survey organization.
Section 2.1.4 describes general data collection, while Section 2.1.5 summarizes the
results of the analysis. In Section 2.1.6 we discuss the �ndings and outline some
future perspectives.

2.1.3 Characterization of the instrument

To begin with, the structure of the interview protocol, partly inspired by the ap-
proaches to elicit the PCK presented in the literature, is outlined in Figure 2.1, where
the most signi�cant questions are reported verbatim. A set of questions (point 1) is
aimed at framing iteration within the general context of introductory programming
and the related prerequisites. Other questions (2) attempt to ascertain how central
the learning of iteration is in the teacher's perspective, but without mentioning this
topic explicitly (the wording of question 2.2 being meant to prevent discussion of is-
sues arising with object-orientation, when covered in an introductory course). Then,
the focus moves speci�cally to the teaching, learning and assessment of iteration (3).
Some questions about more general educational issues (4) and a �nal open question
(5) to collect further ideas not covered in the previous points conclude the interview
session.

44 CHAPTER 2. PILOT STUDIES

1. Course organization (5 questions)
programming languages, key programming concepts, related lesson plan, how much time for
each concept, extra-computing prerequisites
2. Introductory programming in general (6 questions)
2.1. teaching Are the tasks assigned to students simple variations of those dealt with

in class? Or do they cover unfamiliar situations as well?
What are your more frequent suggestions to students for improving
their programming performance?

2.2. learning What is the major learning obstacle that students face before being
introduced to object-oriented programming?

2.3. assessment How do you assess a working solution if it is ine�cient, or convoluted,
or somehow at odds with what you expected?
While trying to achieve the assigned tasks, do you expect your students
to apply the models introduced in class? Or do you also appreciate
�creative� solutions?
Are the di�erent solutions by students compared in class? How?

3. Focus on iteration (5 questions)
3.1. teaching Can you show some of your favorite examples to make students learn

how to apply the iteration constructs?
In your teaching, do you cover the mappings between di�erent iteration
constructs (for, while, do-while/repeat-until)?

3.2. learning In your experience, to what extent can students master the termination
condition of a loop?
Which features of the iteration constructs are usually understood by
(most) students, and which are more di�cult for them?

3.3. assessment How do you usually assess an incorrect termination condition? And
oversights about the �rst or last iteration?

4. General educational issues (3 questions)
strategies to motivate students, manage di�erent learning styles, deal with students' criticisms
5. Other thoughts (1 question)
Any other issues you deem important to consider about the teaching/learning of program-
ming?

Figure 2.1: Structure of the teacher interview protocol.

As noted in Section 1.3 several types of questions about PCK, CoRe have been
proposed to Computer Science teachers, focusing on fundamental concepts rather
than a particular concept or Big Idea. The questions elaborated, and seen previously,
have undergone a re-elaboration and selection phase which eventually led to the
elaboration of 19 questions, listed in Table 2.1 below 1.

1In the list (Table 2.1), the questions, already enumerated previously, have been grouped by
topic, thus altering the numerical order.

2.1. TEACHER INTERVIEWS 45

Table 2.1: Selected questions.

1. What programming language do you use to introduce the basic aspects of programming?
2. What are the conceptual issues that you consider important as a teacher?
4. In what order do you introduce the concepts related to the basic aspects of programming?
5. How do you organize the time to introduce individual concepts?
8. What are the prerequisites, not strictly related to Computer Science, that you consider necessary or useful
for understanding the basic aspects of programming and the examples you propose?
3. Before introducing object-oriented programming, what is the obstacle you �nd most di�cult to
overcome for the students?
6. Can you describe any of the examples that you propose to the students to have them apply
the iteration?
7. Do the proposed problems deal with situations similar to a series already dealt with or do they
also propose unexpected situations?
9. What do you think students do about �nding the termination condition for the loop?
10. Are transformation schemes being addressed to move from one iterative instruction to another?
11. What weight do you give in the evaluation to an incorrect termination condition, or to errors
related to the �rst or last iteration?
12. How do you evaluate solutions that are functional but ine�cient, or involved, or di�erent from
those you would have expected?
13. Do you expect your students to apply models of examples already seen, or do you also appreciate
creative solutions that move away from the examples presented?
14. What are the aspects of the iteration that the majority of students learn, and which are
more di�cult?
15. What kind of suggestions do you often give to a student so that they can improve their performance?
16. Are the di�erent solutions proposed by the students compared and discussed. How?
17. What are your strategies to motivate students?
18. What strategies can you implement to manage the various learning styles of students?
19. How do you take into account the criticisms that students can make to address their needs?

Finally, at the end of the interview, with the question Are there any aspects, not
touched by the questions, that you would like to point out? The interviewee could
identify some issues not previously identi�ed by the questions.

The complete set of questions submitted to the teachers is presented in Ap-
pendix D.

2.1.4 Data collection

We conducted accurate face-to-face interviews with 20 experienced high school teach-
ers of Informatics, working in 10 technical institutes and lyceums from a large area
in the North-East of Italy. Each such session lasted one to two hours and was
audio-recorded and (partly) transcribed with the interviewee's agreement.

The works of Wiedenbeek [Wie89] and Luxton-Reilly [LR+17b] have been used
as a reference to identify speci�c questions (see Table 2.1) about the interactions.

Most of the teachers interviewed are Computer Science graduates, see Figure 2.2.
Furthermore, their teaching experience, for years of service, is adequately distributed
(see Figure 2.3), so the views and practices of both experienced and early career
teachers are then collected. However, no teacher interviewed was a novice, with less
than four years of teaching experience.

46 CHAPTER 2. PILOT STUDIES

Figure 2.2: Educational quali�cations of
the teachers interviewed.

Figure 2.3: Teaching experience, years of
service.

2.1.5 Results

To present the main results of our investigation we follow the general structure
outlined in Figure 2.1 and, about speci�c questions, Table 2.1.

Course organization

The most signi�cant insight from this general section of the interviews is the
(weighted) list of key concepts identi�ed by the teachers.

Figure 2.4 lists the key programming concepts indicated by the teachers via
a selection amongst multiple options items, later aggregated into tightly related
concepts.

What emerges clearly from the data in Figure 2.4 is that almost all the teachers
mention precisely �ow control constructs and iteration among the most important
concepts in introductory programming � the second most popular choice being
variables and assignment.

Concerning teachers' adopted programming languages there is a fairly high con-
sensus, with C, C++ and C# at the top of the ranking , see Figure 2.5.

It may also be worth remarking that several teachers introduce di�erent pro-
gramming languages and other design languages, such as �ow-charts, to analyze the
control constructs.

Another general issue of relevance here concerns the extra-computing prerequi-
sites, see Figure 2.6. Large percentages of teachers consider the mathematical/logic
background, as well as to text comprehension2, as critical � although often insu�-
ciently developed � to the practice of programming. Moreover, and quite surpris-
ingly, about one quarter of them revealed to have faced problems with geometry,
probably because of its connections with particular problem domains 3.

2Text comprehension is an issue for 8 teachers.
3Concerning problem domain we mean the area of expertise or application that needs to be

investigated to resolve a problem.

2.1. TEACHER INTERVIEWS 47

Figure 2.4: Key programming concepts for teachers (more options were possible).

Figure 2.5: Languages used in introductory courses.

Other prerequisites that have been de�ned as important are: understanding for-
malism, knowledge of the English language, Physics, precision, creativity, knowledge
of data types, concept of function, knowledge of fundamental operations, even and
odd numbers, passion in solving problems.

Concerning the mathematical prerequisites a teacher argued that �students think
in watertight compartments, those who learn in one subject fail to use it and put it
into practice in another one, do not have an interdisciplinary vision�.

Introductory programming in general

Teachers think serious learning obstacles are present in students' learning before
introducing OOP paradigm 4, as shown in Figure 2.7

On the other hand, beside indicating a few of the key concepts taught, several

4We single out the OOP paradigm as the topic that delimits the basic contents, present in the
introductory courses, from the more advanced ones.

48 CHAPTER 2. PILOT STUDIES

Figure 2.6: Most relevant extra-computing prerequisites (more options were possi-
ble).

interviewees emphasize the high-level thinking skills of abstraction and generaliza-
tion.

Figure 2.7: Major obstacles in student learning, before introducing OOP (more
options were possible).

Hence, serious learning hurdles are recursion, arrays and data structures, sub-
routines, i.e. precisely the last topics introduced by teachers shortly before the end
of a introductory course. Among the suggestions to the students, about half of the
teachers give prominence to the use of �paper and pencil�, to clarify ideas before
starting to work with a computer. In the words of a teacher: �read the text carefully,
then analyze the problem and check a preliminary solution with paper and pencil�.
In addition, students are often encouraged to compare their programs with those of
their peers.

Most of the teachers also assign unfamiliar tasks, and this occurs when their
students have reached a su�cient degree of mastery of programming basics. The

2.1. TEACHER INTERVIEWS 49

fact that teachers insist on the use of �paper and pencil� because they believe that
the students neglect this phase by privileging directly the implementation one, which
however can lead them to run into errors.

The emerged data show how teachers tend to favor the request for constancy in
the study and the desire that students would do more exercises at home.

Regarding assessment, it emerged that the penalty for ine�cient solutions can
amount up to 20�25% of the marks, whereas the instructors tend to be less strict
about programming style, so giving prominence to the fact that a program can work
properly. In many cases the teachers say they do not penalize excessively in the
initial moments of the course, but the more time passes, the more they also consider
ine�ciency errors. Many teachers tend to explain their preferred solutions so that
students realize the di�erence with their own proposals.

All the interviewees, in di�erent ways, stated that they stimulate discussion, often
have their proposals analyzed by the students, trying to highlight the advantages and
disadvantages, and trying to get them to improve the solution. Often the discussion
is motivated by the correction of previously assigned exercises, perhaps highlighting
the most original solutions and motivating the student to convince teachers and
classmates of the bene�ts of the proposed solution. Furthermore, several teachers
are convinced of the importance of getting students to work in pairs, then pushing
them to present their proposals to the class. Sharing and peer discussion of solutions
is therefore positively evaluated.

Focus on iteration

Figure 2.8 reports the collected data on the major sources of di�culties with itera-
tion. Teachers indicate the complexity of loop conditions (in terms of use of logical
(Boolean) operators) and the treatment of the exit condition as problematic. How-
ever, they seem to have contrasting views as to the other aspects addressed. On the
one hand, a number of teachers point out students' misuse of iteration constructs,
in particular while vs. do-while and the overuse of for loops in situations where it is
not an appropriate choice.

Figure 2.8: Major di�culty with iteration in teachers' opinion.

50 CHAPTER 2. PILOT STUDIES

A teacher pointed out �students are not always doing well, they have di�culty
with the exit condition of the loop, but above all with the complex conditions�. More-
over, the nested iterations management, or iterations with nested �ow control con-
structs, result in a certain di�culty, and this case is the most di�cult to handle
for students, perhaps because they cannot understand the functioning mechanism
of nested loops one inside the other. One teacher said that �some students were
able to understand the mechanism of operation of the iteration once they learned the
concept of an assembly jump�.

Moreover, teachers think that students tend to avoid using Boolean operators
to build e�cient conditions. An interviewee argued that �for loops are easier to
students than while loops, since it is not necessary to �gure out a suitable condition�.
To overcome these di�culties, several teachers insist on carrying out preliminary
analysis steps based on �ow-chart representations, so that students can clarify their
ideas and understand the implied concepts in more depth. Also �tracing the program
execution with paper and pencil may be helpful to student, but similar tasks are only
rarely done�; indeed, the program code is �less e�ective than a �ow-chart� to visualize
what is going on when a program is run. Incidentally, although loop conditions and
the related border computations (�rst and last repetition) play a crucial role in the
understanding of iteration, in general the teachers take into consideration a varied
range of factors to assess students' programs (unless the focus of the assignment
is precisely on the loop condition), depending also on the connections with the
examples worked out in class.

When asked about the examples they commonly presented in class to explain
iteration, the teachers mentioned the tasks listed below, the most popular ones
being those related to elementary Mathematics:

sum/average of a number sequence power function
counting odd/even num. in a sequence factorial function
min/max values of a sequence Euclid's GCD algorithm
input data control (do-while) math number sequence
�rst n multiples of a number number base conversion
iteration over an array pictures drawing with chars
nth element of a sequence drawing polygons

Unexpectedly, although all the interviewees said that they present the main forms
of loop constructs � for, while, do-while� and treat their similarities and di�erences
by showing appropriate examples, few teachers are also explicit about the mappings
between such control structures, e.g. how to transform a for or a do-while loop into
a while and conversely. However teachers often propose as exercises the review of
the proposed problem using a di�erent iteration instruction. One teacher, however,
attempts to emphasize the role and power of iteration by discussing the universality
of three basic control structures, as captured by Böhm-Jacopini's theorem.

To facilitate understanding for the students, teachers present various cases, with

2.1. TEACHER INTERVIEWS 51

di�erent iterative instructions, by �ow-chart to make easy students' comprehension.
However, some teachers (explicitly two) argued that in this case students tend to
learn by heart.

General educational issues

From the interviews, it emerges that the teachers try to motivate their students by
proposing interesting real world problems or the implementation of computer games
and other graphics applications that are meaningful to them. Often, a driving
factor to increase students' engagement with learning is their teachers' enthusiasm,
e.g. bringing to school the challenges faced in her/his professional experience. The
educational objective is that students can make sense of the importance of mastering
particular concepts and acquire particular skills.

It has emerged from the experience of some teachers that recovery activities can
be useful to follow the student in di�culty step by step, see Figure 2.9, it can be
e�ective to have the topics explained by others, for example the laboratory teacher
or another student. For some interviewees it is important to make them understand
that �Informatics/CS is not just the use of the tool, the computer�.

Figure 2.9: Teachers' suggestions to improve students' performance (more options
were possible).

Other thoughts

As seen from the outline in Figure 2.1, every interviewee was asked for further
possible ideas or suggestions they deemed important with regard to the teaching
and learning of programming. Here are the main points raised by the teachers, that
go far beyond the scope of our present work:

52 CHAPTER 2. PILOT STUDIES

� Lack of alignment between topics in Informatics and Mathematics. A possible
explanation of students' di�culties with the application of mathematical and
logical concepts is that Informatics and Mathematics are not well integrated
in the standard high-school curricula, recently subjected to reform. In other
words, some of the mathematical topics may be covered either too early or too
late to be e�ective when they are required to learn programming, in particular
with regard to the logical aspects of Mathematics.

� Robotics environments. In order to enhance students' engagement, some
schools have developed robotics laboratories. These usually successful expe-
riences may also be proposed at earlier education levels, so that high-school
students will be more familiar with Informatics and programming concepts.

� Object-�rst approach. Some teachers are considering whether the learning
of programming could be improved by starting from the beginning with the
object-oriented paradigm.

� Late teaching. Since this is a subject that requires reasoning, one should try to
teach it earlier, more and better in the biennium of upper secondary schools,
but also in the previous levels of teaching.

2.1.6 Discussion

In general, iteration is among the few most central concepts for Computer Science
teachers, a claim on which all the interviewed teachers appear to agree, even though
there are concepts that are considered more challenging, see Figure 2.4.

In the teachers' opinion students' major obstacles relate to abstraction and gen-
eralization, as shown in Figure 2.7. Furthermore, students' di�culties with iteration
are identi�ed in relation to complex condition and exit condition, see Figure 2.8. Dif-
�culties about complex condition are evidently related to mathematical prerequisites
and knowledge of Boolean algebra, as well as logical skills, as shown in Figure 2.6,
which possibly were not well acquired. However, Logic has a particular importance
in learning the fundamental concepts of Computer Science and coding, as reiterated
by Wagner-Doebler [WD97], De Mol et al. [DMP15]. Blass [Bla16] also argued that
�mathematical logic provides tools for understanding and unifying topics in computer
science�.

The lack of alignment between the Mathematics and Computer Science curricula
is therefore a sore point, highlighted also previously when it came to the prerequi-
sites, already Rich & Waters [RW88] and Quindeless [Qui14] noted the importance
of the aspects of mathematical logic. The link between computer technology and
high school Mathematics was investigated by Turskien
e [Tur02], who argued that
the integration of various computer technologies in teaching Mathematics would be
appropriate.

2.1. TEACHER INTERVIEWS 53

The teachers have given greater emphasis to the problem of de�ning the condition
of a loop, indicating that the condition itself is sometimes di�cult to identify by a
student, even more so when it is complex and must be used by operators logic.

However already both Knuth [Knu76] and Myers [Mye90] identi�ed the central
role of mathematical logic in Computer Science education. This critical issue is
probably due, as some teachers say, to a misalignment of Computer Science and
Mathematics courses. In Mathematics courses in fact the aspects of Logic, like
those of set theory, are tackled in previous years, perhaps with inadequate in-depth
analysis, which leads students to acquire those competencies that are then required
for subsequent computer science studies. The aspects of Logic could also be scarcely
assimilated due to teachers spending a short time over the topic, or due to the
inadequate examples employed. It would be interesting to verify if in other countries
these critical issues about misalignment of the programs between Mathematics and
Computer Science is also present.

An aspect not to be underestimated, however, is that students, as stated by some
teachers, tend to forget some previously seen concepts, often from other subjects,
tending to work with airtight compartments and not grasping the interdisciplinary
aspects of some topics. A hypothesis for the logical di�culties and also for the
abstraction of students could be identi�ed in the examples that are proposed to
them, �trivial� from the logical point of view and too oriented to the use of the
For-loop.

Moreover, most of the program examples teachers usually see in connection with
iteration are quite straightforward (see the list in Section 2.1.5) and tend to induce
the use of stereotypical patterns. Thus, to help students work with non-trivial loop
conditions and neat combinations of �ow-control constructs, it can be desirable to
develop a catalog of signi�cant examples presenting more varied and interesting
structures. In a similar spirit, it may be helpful to investigate the role of iteration
in the larger programming tasks in which the students engage (e.g. to solve �real
world� problems, to implement computer games, etc.).

As recognized by several interviewees (see again Figure 2.4), it is likely that the
major issues depend on students' di�culties to take a more abstract, comprehensive
perspective when dealing with programs. A possible way, identi�ed by the teachers,
to induce students to develop their abstraction skills is to contrast their tendency
to approach a task by trial-and-error and require them to analyze the problem with
paper and pencil. Another possibility is to demand that students organize their
programs into several functions and procedures to introduce meaningful levels of
abstraction. In addition, it could be interesting to envisage and to explore the
e�ectiveness of methodological tools inspired by the notion of loop invariant, see
e.g. the pedagogical work in [Tam92; Gin03], suitably adapted to �t less formal
learning styles [Ast91].

54 CHAPTER 2. PILOT STUDIES

2.2 Student pilot survey

While information from teachers can be collected via carefully conducted face-to-
face interviews, interviewing a large number of students can be onerous. Thus, we
have designed an online survey, organized into multiple choice questions, open-ended
questions and three small programming tasks. In particular, the three tasks aimed
to gain some preliminary insights into a few aspects of the understanding of basic
iteration constructs. The collected results indicate that most students seem to have
developed a viable mental model of the basic workings of the underlying machine,
but, on the other hand, dealing at a more abstract level with loop conditions and
nested �ow-control structures appears to be challenging.

2.2.1 Aims and scope of the pilot survey

Collecting students' opinion and verifying their performance via survey has become
a popular way of data-collection, in particular in this pandemic period.

In our study, the survey is designed for high school students. Both in technical
institutes and lyceums, we could collect their perceptions regarding programming in
general and speci�cally concerning iteration. Furthermore, students' performance
in three tasks aimed to gain some preliminary insights into a few aspects of the un-
derstanding of basic iteration constructs identi�ed by teachers during interviews, as
well as allowing to analyze how students' subjective perception of di�culty correlate
with their e�ective performance.

The results of the survey allow us to identify students' e�ective di�culties, cor-
relating perceptions with performance, allowing insight into di�erent approaches to
teach and learn iteration in high school.

Research questions underlying the design of the pilot survey were:

� What are students' major di�culties with iteration in their subjective perception?

� Are there di�erences between students' vs. teachers' perceptions of di�culties?

� To what extent do students' subjective perceptions of di�culty correlate with their
actual achievements in the small proposed tasks?

2.2.2 Methodology

To obtain meaningful insights from students, we devised a short survey with sharp
closed-ended questions, so that they did not get bored while answering them. Thus,
to get feedback on their subjective perception of �learning di�culties�, we decided to
provide a few lists of concepts among which to choose (plus an open �other� �eld).

To identify small sets of basic programming-related concepts we have drawn
from some �validating� work on Concept Inventories for Computer Science [Gol+10;
Sch12] and introductory programming [Cac+16], as well as from the overview anal-
ysis [LR+17b].

2.2. STUDENT PILOT SURVEY 55

The three tiny programming tasks address each of the learning dimensions intro-
duced in [Mir12], namely the understanding of the computation model underlying
iteration, the ability to establish relationships between the components of a loop
and the statement of a problem, and the ability to see the program structures based
on iteration at a more abstract level.

In addition, in light of the presumed role of meta-cognitive skills in e�ective learn-
ing [BRT05], we asked students two questions about their subjective perceptions of
di�culty.

Even though from an educational researcher's viewpoint it would have been more
insightful to cover a larger and more varied set of programming tasks, we decided
to assign only three small tasklets in order to limit the risk that teenage students
lose their concentration and provide scarcely meaningful answers.

Having set the general objectives and background of this main section, the rest of
the chapter is organized as follows. Section 2.2.3 presents the survey organization,
whilst Section 2.2.4 introduces the tasklets and the questions asked to students.
Section 2.2.5 describes general data collection while Section 2.2.6 summarizes the
results of the analysis. Finally, in Section 2.2.7 we discuss the �ndings and outline
some future perspectives.

2.2.3 Instrument

The questions cover multiples points of view rather than having a single starting
perspective, and include Concept Inventory, Taxonomy (Fuller et al. [Ful+07]), and
students point of view. The choice of asking questions according to the students'
point of view arises from our personal experience in the �eld, where students often
complain about teaching methods and the time allocated to them for learning, as
well as the objections that are increasingly present in the evaluation phase.

As a �rst step, we analyzed the style of interviews already conducted with teach-
ers and Computer Science students, to understand the type of questions to ask and
how to formulate them.

The outcomes obtained from the teachers' interviews allowed us to better de�ne
the objectives and the questions to ask the students.

The survey addressed to students includes 11 questions, three of which require
to solve tiny problems by analyzing either small �ow-charts or short code fragments
based on iteration. The main features of the questionnaire are shown in Figure 2.10.

56 CHAPTER 2. PILOT STUDIES

1. Course organization (3 questions)
favorite programming languages, poor understanding of mathematical/logical prerequisites,
accordance of the subject with personal expectations
2. Introductory programming in general (3 questions)
Do you think more time would be needed on some programming concepts? Which ones?
(range of options or open �other� �eld)
Which kind of errors has been most penalizing for your grading? (open question)
Are you usually successful in solving unfamiliar programming problems? (Likert scale of 4
levels)
3. Focus on iteration (1 question and 3 tiny problems)
What do you �nd most di�cult when trying to use a loop? (range of options)
Problem 3.1: Given the statement of a simple problem being solved, choose the correct
loop condition in a �ow-chart. (4 options available)
Problem 3.2: Given a while loop with a composed condition and a nested conditional,
determine the number of iterations for a given input. (6 options)
Problem 3.3: Given 5 code fragments involving nested construct with simple conditions,
identify the functionally equivalent ones.
4. Other thoughts (1 question)
Do you have any suggestions to make learning Computer Science more interesting?

Figure 2.10: Structure of the student survey.

The complete set of questions and tasks submitted to the students can be found
in Appendix E.

2.2.4 Tasklets and questions

Of course, the three small tasks were not meant to assess students' mastery of
iteration, but just to get some insight about the alignment between perceived and
actual di�culties.

Tasklet 1: identifying the correct loop condition

Tasklet 1 was aimed to explore the ability to draw connections between a simple
loop condition and the statement of a problem by reasoning on a �ow-chart.

Problem statement: The algorithm represented by the �ow-chart in Figure 2.11
(left) computes the number of bits of the binary representation of a positive integer
n, i.e. the smallest exponent k such that 2k is greater than n. Choose the appropriate
condition among the four listed below.

The four available options were: 2k = n, 2k ≤ n, 2k < n and 2k > n. To
achieve this � supposedly easy � task, students were expected to read carefully the
statement above and, for each of the listed conditions, �gure out the relationship
between k and n after exiting the loop. The speci�c focus of this tasklet is suggested
by the frequency of condition-related issues, see e.g. [CZP14].

2.2. STUDENT PILOT SURVEY 57

Figure 2.11: Flow-chart of tasklet 1 and code of tasklet 2.

Tasklet 2: ascertaining the number of iterations

Tasklet 2 addressed students' mastery of the �mechanics� of the execution of a loop
controlled by a non-trivial condition and including a nested if.

Problem statement: The program shown in Figure 2.11 (right) checks if two
positive integers m and n are co-prime. If the input values are m=15 and n=44,
how many times the while loop will repeat?

The above question could be answered by choosing among six options, namely:
0, 1, 2, 3, 4 or more, and the loop never ends. As we can see in
Figure 2.11, the loop is characterized by a composite condition (using two ands)
and a nested if-else. In order to identify the right option students were essentially
required to trace the code execution carefully. Thus, this tasklet addresses tracing
skills, which have been in the scope of several investigations, e.g. [Lop+08].

Tasklet 3: recognizing functionally equivalent programs

Tasklet 3, the most challenging one, asked to recognize equivalence between
di�erent programs in order to investigate the ability to grasp comprehensively
nested combinations of conditionals and iteration constructs.

Problem statement: Consider the �ve programs in Figure 2.12 and assume that
the input values of m and n are always positive integers. Two such programs are
equivalent if they compute and print the same output whenever they are run for the
same input data. Identify the equivalent programs in Figure 2.12.

To approach this problem on functional equivalence, students had to reason at a

58 CHAPTER 2. PILOT STUDIES

more abstract level. Each program involves nested constructs whose behavior must
be grasped and dealt with comprehensively. The last tasklet is similar in structure
as well as in spirit to that discussed in [IM20].

Figure 2.12: The �ve programs to be compared in tasklet 3.

Subjective perception questions

Besides engaging in the three tasklets above, the students were asked two short
questions about their subjective perception of di�culties. The �rst one was a mul-
tiple choice question: �What do you �nd most di�cult when you use loops?" The
�ve available options reported the di�culties that emerged as most signi�cant from
the teachers' interviews [SM19]:

i. To �nd the condition of a while or do-while loop;

ii. To de�ne a complex condition including logical operators (AND, OR, NOT);

iii. To deal with nested loops;

iv. To understand, in general, when the loop should end;

v. To deal with the loop control variable.

2.2. STUDENT PILOT SURVEY 59

It was important for us to verify whether or not the students' opinions matched
those of the teachers.

The second question: �What kind of mistakes a�ected your performance most
signi�cantly?" was instead open, so the students could choose to indicate any source
of error, either conceptual or of a di�erent nature.

2.2.5 Data collection

The (anonymous) survey was administered to 164 students, most of whom were at-
tending the second or third year (age 15�17) of scienti�c and technical high schools,
i.e. when the basic �ow-control constructs are introduced. In the lyceum of applied
sciences and in technical high schools with specialization in CS, courses in Informat-
ics are not electives. The survey was administered at school, under the supervision
of a teacher, the students had about an hour to respond. As we have seen in Sec-
tion 2.2.4, all three tasklets are numerical in nature, but this choice is due to the
fact that so are most of the examples students are exposed to in class. Anyway, they
are just based on simple arithmetic, familiar to students.

Figure 2.13 shows that the majority of the students interviewed (84.8%) are
male; as proof of the still predominantly male character of the study of Computer
Science.

Figure 2.13: Gender of students in the
sample. Figure 2.14: Students by type of school.

Students mainly attended the third year of upper secondary school (79.3%), see
Figure 2.15.

Students' preferred languages are those they learn in school (C/C++, C#,
Java5), although a good percentage (22.0%) say they prefer Python, demonstrating
personal interests (Figure 2.16).

2.2.6 Results

We now present the main results of our investigation relative to the three tasklets
and the two questions included in the survey. Overall, only about 8% of the students

5C/C++, C# and Java are currently the most used languages in Italian high schools.

60 CHAPTER 2. PILOT STUDIES

Figure 2.15: Students' year attendance.

Figure 2.16: Students' favorite programming languages (more choices were possible).

solved all the three problems correctly, 27% provided two correct answers, 39% one
correct answer, and 26% were wrong on all tasklets.

Tasklet 1: identifying the correct loop condition

Table 2.2 summarizes the results concerning tasklet 1. A little less than 40% of
the students provided the correct answer, namely 2k ≤ n, whereas about as many
selected one of the two seriously wrong options, either 2k = n or 2k > n. Although
the �ow-chart is rather simple, consisting of a very standard loop structure, and the
problem speci�cation is accurate, it turns out that students can easily be misled
about the role or the interpretation of the loop condition.

Below (see Table 2.3) we compare the answers the students gave in the task and
the answers they gave to the question regarding their di�culties when dealing with

2.2. STUDENT PILOT SURVEY 61

Table 2.2: Rates of chosen options for tasklet 1.

Condition Percentage

2k = n 3.7%
2k ≤ n 38.4% correct option
2k < n 20.1%
2k > n 37.8%

the iterations 6.

Table 2.3: Chosen options for tasklet 1 compared with students' di�culties about
loops

Condition 1 2 3 4 5

2k = n 0.00 0.00 1.83 1.22 0.61
2k ≤ n 4.27 9.15 17.68 5.49 1.83
2k < n 4.88 4.88 7.32 2.44 0.61
2k > n 6.10 9.15 14.63 3.66 4.27

15.24 23.17 41.46 12.80 7.32

The data presented in Table 2.3 show that there is not a great correlation
between incorrect answers to the problem, where the student had to indicate the
correct condition of the loop, with the perception of the same, regarding di�culties
in identifying the condition of the iteration.

Tasklet 2: ascertaining the number of iterations

As shown in Table 2.4, about 60% of the students chose the right option for tasklet 2,
i.e. three iterations. It hence appears that a large majority of them is at ease with
the functioning of iteration combined with a nested conditional, as well as with
the interpretation of a composite (loop) condition including logical operators. It is
conceivable that they identi�ed the right option by tracing the code execution �
which they probably did not try to do, on the other hand, to check their answer for
tasklet 1.

As in the previous task, we compared (see Table 2.5) the answers to the problem
with the answers the students gave in the task and the answers they gave to the
question regarding their di�culties when dealing with the iterations. 6.

6For simplicity, in the table we have reported the number of the answer as presented in Fig.2.17:
1) Find the condition of the while loop or the do-while loop; 2) De�ne a complex condition, which
uses logical operations (AND, OR, NOT, XOR); 3) Manage nested loops; 4) Understand, in general,
when the loop has to stop; 5) Manage the variable that counts the loops.

62 CHAPTER 2. PILOT STUDIES

Table 2.4: Rates of chosen options for tasklet 2.

Number of iterations Percentage

0 3.7%
1 9.1%
2 15.2%
3 60.4% correct option
4 or more 6.1%
the loop never ends 5.5%

Table 2.5: Chosen options for tasklet 2 compared with students' di�culties about
loops

Number of iterations 1 2 3 4 5

0 1.22 0.00 1.22 1.22 0.00
1 2.44 0.61 2.44 1.83 1.83
2 3.05 4.27 6.71 0.61 0.61
3 7.93 15.24 25.61 7.32 4.27
4 or more 0.61 2.44 1.83 1.22 0.00
never ends 0.00 0.61 3.66 0.61 0.61

15.24 23.17 41.46 12.80 7.32

In this case it is interesting to note the percentage (15.24%) of those who gave
the correct answer and said that managing complex conditions was their greatest
di�culty. It is worth noting that the di�culty was indicated by a low percentage
of those students who answered incorrectly the task, which evidently means many
students are unaware of their di�culties.

Tasklet 3: recognizing functionally equivalent programs

The rates of recurrent answers relative to tasklet 3 are listed in Table 2.6. It was
clearly the hardest challenge and, as we can see, less than one �fth of the students
were able to recognize that program 1 and program 4 are the equivalent ones. In
addition, most of the answers grouped in the last row of Table 2.6 are meaningless,
in that only one program was selected (about 30% of the whole sample), conceivably
indicating that they just decided to skip this tasklet.

While such pairings as 1�3 or 4�5 (see Fig. 2.12) are likely to signal serious mis-
conceptions, it is worth noting that regarding program 2 and program 4 as equivalent
may be more simply ascribable to carelessness, i.e. not paying attention to the fact
that the roles of x and y are swapped, but those of m and n are not. Here again,
however, the frequency of incorrect answers indicates that students are not used to

2.2. STUDENT PILOT SURVEY 63

Table 2.6: Rates of recurrent answers for tasklet 3.

Equivalent programs Percentage

Programs 1 and 4 18.9% correct answer
Programs 4 and 5 13.4%
Programs 2 and 4 11.0%
Programs 1 and 3 7.3%
Programs 1, 4, 5 3.7%
Meaningless or isolated answers 45.7%

test their conjectures by tracing code execution.
The comparison of the answers to the task and the answers students gave to the

question regarding their di�culties when dealing with the iterations is presented in
Table 2.7. 6.

Table 2.7: Answers for tasklet 3 compared with students' di�culties about loops

Equivalent programs 1 2 3 4 5

Programs 1 and 4 1.83 5.49 7.93 3.05 0.61
Programs 4 and 5 2.44 4.27 6.10 0.61 0.00
Programs 2 and 4 1.22 2.44 5.49 0.61 1.22
Programs 1 and 3 1.22 2.44 2.44 0.61 0.61
Programs 1,4,5 1.22 0.00 1.83 0.00 0.61
Programs 1,2,3,4,5 0.00 0.00 1.83 0.00 0.00
Others 12.20 8.54 12.80 6.71 3.66

20.12 23.17 38.41 11.59 6.71

Again, there is no obvious correlation between the answers given to the question
about the di�culties with the iterations and the answer to the task.

Subjective perception questions

The pie chart in Fig. 2.17 summarizes students' answers to the question: �What
do you �nd most di�cult when you use loops?� As we can see, nested loops are
the source of issues reported most frequently (41.5%), followed by the de�nition of
composite conditions (23.2%), the latter possibly due to insu�cient familiarity with
Boolean logic. Then the rates of the other options are, in decreasing order: �guring
out a suitable loop condition (15.20%), understanding when an iteration should end
(12.8%), and dealing with loop control variables (7.3%).

What emerges by comparing the subjective perception of di�culty (when dealing
with iteration) to the actual performance in the three tasklets is that students may

64 CHAPTER 2. PILOT STUDIES

■ To �nd the condition of a while or do-while loop
(1);

■ To de�ne a complex condition including logical
operators (2);

■ To deal with nested loops (3);

■ To understand, in general, when the loop should
end (4);

■ To deal with the loop control variable (5).

Figure 2.17: Major di�culty with iteration in students' perception.

underestimate their lack of mastery of loop conditions. If, on the one hand, more
than 60% of them failed to choose the right option for tasklet 1 (in fact a straight-
forward condition), on the other only about 15% indicated the implied feature, i.e.
identifying the loop condition, as a major source of di�culty.

Although the rate of choice of this feature is slightly higher (almost 18%) among
those students who provided an incorrect answer for tasklet 1, there appears to be no
statistically signi�cant correlation between correct/incorrect answers to this tasklet
and perceiving or not the related feature as a major source of di�culty, by cross-
tabulating the corresponding counts (see Table 2.8) and subjecting them to a χ2-test,
we get a p-value of about 0.35, meaning that the data are fairly consistent with the
assumption of independence of the two variables (null hypothesis). In addition,
the limited awareness of di�culties with loop conditions is also signaled by the
observation that just one out of the ten students who failed only on tasklet 1 seems
to give prominence to the problem. More generally, as can be elicited �pictorially�
from the partitioned bars in Figure 2.18, we cannot �nd any statistical evidence
of correlation between poor performance in subsets of the tasklets and subjective
perception of di�culty with speci�c concepts.

Table 2.8: Contingency table: correct/incorrect answers to tasklet 1 vs. perceived
prominence or lack of prominence in di�culties with loop conditions.

di�culties with

loop conditions other di�culties

incorrect answer to tasklet 1 18 83
correct answer to tasklet 1 7 56

To conclude the summary of the results of interest here, we consider the answers
to the second question about the mistakes that have had more severe implications
in the students' subjective perception. An inductive analysis [May14] of keywords

2.2. STUDENT PILOT SURVEY 65

al
l i
nc

or
re

ct

Q
1,

 Q
2

in
co

rr
ec

t

Q
1,

 Q
3

in
co

rr
ec

t

Q
2,

 Q
3

in
co

rr
ec

t

on
ly
 Q

1
in
co

rr
ec

t

on
ly
 Q

2
in
co

rr
ec

t

on
ly
 Q

3
in
co

rre
ct

al
l c

or
re

ct

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Figure 2.18: Distribution of students' perception of di�culty vs. performance; the
interpretation of the colors is the same as in Figure 2.17.

occurring in the open answers gave rise to the categories summarized in Table 2.9.
From the data in the right column it appears that out of 37.6% of students who
identify some speci�c concept as a major source of mistakes, more than one quarter
mention precisely iteration, con�rming they are aware of the relevance of this topic
to their learning of programming. Other reported concepts, with similar or lower fre-
quency, refer to procedural and object abstractions, language syntax, mathematical
and logical prerequisites.

Table 2.9: Major sources of mistakes in students' perception.

Sources of mistakes Percentage

iteration, loops 10.4%
functions, subroutines 10.4%
syntax, instructions 7.3%
Mathematics and Logic 4.9%
objects, classes, methods 3.7%
general causes such as poor understanding of text,
lack of time, insu�cient practice, distraction 41.4%
elusive answers 11.6%
no answer provided 10.4%

Among the topics addressed, the students stated that it would have been prefer-

66 CHAPTER 2. PILOT STUDIES

able to spend more time on recursion (45.1%), see Figure 2.19, once again demon-
strating the importance but also the di�culty in learning the speci�c topic.

Figure 2.19: Topics to spend more time on (more choices were possible).

Figure 2.20 shows the topics that the students did not know adequately and
therefore created di�culties in their programming activities. As we can see, the
topics are mainly related to aspects of mathematical logic. Interestingly, more than
one third of the students mentions speci�cally De Morgan's formulas as poorly
understood.

2.2.7 Discussion

Based on the data we collected, as shown in the bars of Figure 2.18, almost two
thirds of the students successfully completed no more than one of the three pro-
posed tasklets. Mastery of iteration, even in relatively simple programs, is then
to be considered a cognitively demanding learning objective for the considered age
range. The results outlined in the previous section appear to corroborate, in the
high school context, the �ndings of previous work addressing students' di�culties
with conditionals and loops, e.g. [CZP14; Kac+10].

In a �rst task the students had to read carefully the statement of a very simple
problem and identify the correct condition in a �ow-chart by simply choosing among
four options, the only di�erence being the relational operator in the loop condition:
�<�, �≤�, �=� and �>�. Less than 40% of the students provided the correct answer
(≤), whereas about as many chose one of the two seriously wrong options (= or >).

The second task asked to determine the number of iterations of a short code
fragment for a given input. The loop was characterized by a composite condition
(using two ands) and a nested if-else. In this case, about 60% of the students

2.2. STUDENT PILOT SURVEY 67

Figure 2.20: Topics that the students would prefer to understand more (more choices
were possible).

identi�ed the right answer (3 iterations). Finally, in the third task the students had
to recognize functionally equivalent programs from a set of 5 items involving nested
constructs (if and while) with simple conditions. Clearly, this task required a more
comprehensive understanding of the e�ect of combining �ow-control structures, and
only less than 20% of the students were able to achieve it successfully. In particular,
it appears that students' perception of di�culty with nested constructs is consistent
with the actual state of a�airs.

In particular, it turns out that dealing with nested �ow-control structures and,
perhaps to a minor extent, with loop conditions are especially challenging to novices,
the former aspect also re�ected in their subjective perception.

Here is a summary of our interpretation of the �ndings.

i. When required to trace the code execution, as in tasklet 2, a large majority of the
students are able to determine the correct outcome, see Table 2.4. It is also conceivable
that a number of the about 20% who opted for `2' or `4 or more' iterations made
only minor computing mistakes. We can then presume that most high school students
develop a viable and accurate enough mental model of the notional machine underlying
code execution, including the functioning of nested constructs and the evaluation of
relatively complex conditions.

ii. It is worth observing that 77% of the students who were correct in tasklet 2 provided
seriously wrong answers to tasklet 1 or tasklet 3. Apparently, then, the students tend
to not exploit their tracing abilities in order to test their conjectures about program
behavior. This observation could be explained either by some general lazy attitude or,
what is more relevant from a pedagogical perspective, by lack of method to approach
programming tasks.

iii. As shown in Table 2.2, more than 40% of the students chose seriously incorrect options

68 CHAPTER 2. PILOT STUDIES

in tasklet 1 (�rst and last option). A similar performance shows that, as a matter of
fact, a large part of them are unable to master the relationships between loop condi-
tion and accurate speci�cation in the application domain, even in a straightforward
situation. This may possibly be ascribed to confusion about the role of the loop con-
dition, meant as an `exit' condition instead of a `continue' condition, or to some more
basic lack of problem-solving skills.

iv. Overall, the students seem to underestimate their di�culties in dealing with loop
conditions � even simple conditions. On the one hand, they did not feel the need to
check their solution to tasklet 1 by tracing the program execution for sample inputs
(what could have been done very quickly). On the other hand, only a low percentage
of those who made serious errors in tasklet 1 and/or tasklet 2 perceive their weakness
in this respect as a major di�culty (see the chart in Figure 2.18).

v. By comparing students' performance in tasklets 2 and 3, it appears that their di�cul-
ties with nested constructs are not so much about the mechanics of code execution as
about the ability of grasping code behavior at a more abstract level. So, the crucial
point is how to develop students' abstraction skills, besides the understanding of the
mechanical features of code (to illustrate which there are several widespread tools �
see for example the paragraphs on program visualization in [LR+18]).

Implications for instructors

A few provisional implications for the instructional practice can be drawn from the
points raised above. In particular, we point out three potential insights, which are
worth further, more accurate investigation. By referring to a competency framework
for computing education [Fre+18], the �rst two pertain to the skills area and the
third one to the dispositions area:

� Firstly, more e�orts should be made to develop a method to approach programming
tasks, in particular to identify suitable test cases in order to con�rm or refute working
conjectures.

� Secondly, more careful attention should be paid to the role and treatment of loop
conditions, especially in connection with the statement of a problem.

� Finally, at the meta level, students' attitude to think critically about their learning
should be enhanced, for example by asking them to make explicit their degree of
self-con�dence in the achievement of a task or of a part of it.

Learning to program is however a slow and gradual process, as argued by Dijkstra
in [Dij89], and therefore the teacher must grant adequate learning time to be spent
on several e�ective examples.

Future work and perspectives

To begin with, in order to validate (or refute) our provisional interpretation of the
�ndings discussed above, our next step has been to design a more comprehensive

2.3. TEACHERS' VS. STUDENTS' PERCEPTION 69

survey � described later in Chapter 4 �, to be administered to a larger sample of
students.

We have also tried to envisage appropriate methodological approaches to the
teaching and learning of iteration. In this respect, we thought that it would be help-
ful to collect a rich and varied set of examples, not limited to the stereotypical code
patterns mentioned in the teachers' interviews [SM19], described in Appendix B.
In particular, such examples should address �interesting� problems involving more
complex loop conditions or (nested) combinations of �ow-control structures.

As to the development of students' abstraction skills to interpret program behav-
ior, a possible line of research could be based on De Raadt's and colleagues approach
to explicitly teaching (and assessing) programming strategies [DRWT09a], which are
relevant to a comprehensive understanding of nested constructs. Another potential
source of inspiration in this respect may be the instructional work that elaborates
on the concept of loop invariant [Tam92; Arn94; Gin03; FMV14], suitably adapted
to �t less formal learning styles [Ast91].

As a further middle/long term objective, from a more general pedagogical stand-
point, it may be interesting to explore the implications of the productive failure per-
spective [Kap16; LRR17] in a computing education context, especially in connection
with the learner's self-con�dence on the solution provided [Met17]. An investigation
concerning the learner's self-con�dence on the solution provided, in a set of tasks,
it is been analyzed in the Chapter 4.

2.3 Teachers' vs. students' perception

Finally, teachers' opinion regarding students' di�culties are compared with students'
perception concerning their own di�culties in programming.

As a further investigation, it is also interesting to compare students' perception
and teachers' opinion of students' di�culties regarding learning Computer Science,
and speci�cally concerning iteration (loop).

In the chart in Figure 2.21, where tightly related concepts have been aggregated,
the percentage of teachers indicating concepts in a certain area is represented by the
length of dark-red bars.

In the same chart, the �weights� of concepts are contrasted to their perceived
di�culty for students and teachers, which pertain to the second section of the in-
terviews and of the survey (see Figure 2.1).

Figure 2.22 shows a list of the languages used by the teachers, which are matched
with a list of the languages preferred by the students; teachers could select only one
language, students instead even more than one, hence the percentage di�erence.

By looking again at Figure 2.21, we can see the concepts that the students
perceive (light-blue bars) and the teachers think of (orange bars) as serious learning
obstacles. The chart should be self-explanatory. However, it can be observed that
teachers are likely to underestimate the di�culties faced by some students with

72 CHAPTER 2. PILOT STUDIES

forward (see the list in Section 2.1.5) and tend to induce the use of stereotypical
patterns. Thus, to help students work with non-trivial loop conditions and neat
combinations of �ow-control constructs, it can be desirable to develop a catalog of
signi�cant examples presenting more varied and interesting structures.

As recognized by several interviewees (see again Figure 2.21), it is likely that the
major issues depend on students' di�culties to take a more abstract, comprehensive
perspective when dealing with programs. A possible way, identi�ed by the teachers,
to induce students to develop their abstraction skills is to contrast their tendency
to approach a task by trial-and-error and require them to analyze the problem with
paper and pencil.

A �nal issue, which emerged from the teachers' interviews and students' survey,
concerns the learning of mathematical and logic prerequisites, which are part of the
Mathematics syllabus, and are important in the learning of programming.

References

[Arn94] David Arnow. �Teaching Programming to Liberal Arts Students: Us-
ing Loop Invariants�. In: Proceedings of the 25th SIGCSE Symposium
on Computer Science Education. SIGCSE '94. New York, NY, USA:
ACM, 1994, pp. 141�144.

[Ast91] Owen Astrachan. �Pictures As Invariants�. In: Proceedings of the
22nd SIGCSE Technical Symposium on Computer Science Education.
SIGCSE '91. New York, NY, USA: ACM, 1991, pp. 112�118.

[Bar+15] Erik Barendsen et al. �Concepts in K-9 Computer Science Educa-
tion�. In: Proceedings of the 2015 ITiCSE on Working Group Reports.
ITICSE-WGR '15. New York, NY, USA: ACM, 2015, pp. 85�116. doi:
10.1145/2858796.2858800.

[Bla16] Andreas Blass. �Symbioses between mathematical logic and computer
science�. In: Annals of Pure and Applied Logic 167.10 (2016). Logic
Colloquium 2012, pp. 868 �878. doi: https://doi.org/10.1016/j.
apal.2014.04.018.

[BRT05] Susan Bergin, Ronan Reilly, and Desmond Traynor. �Examining the
Role of Self-Regulated Learning on Introductory Programming Perfor-
mance�. In: Proceedings of the 1st International Workshop on Com-
puting Education Research. ICER '05. New York, NY, USA: ACM,
2005, pp. 81�86.

[BSS13] Malte Buchholz, Mara Saeli, and Carsten Schulte. �PCK and re�ec-
tion in computer science teacher education�. In: ACM International
Conference Proceeding Series (Nov. 2013). doi: 10.1145/2532748.
2532752.

REFERENCES 73

[Cac+16] Ricardo Cace�o et al. �Developing a Computer Science Concept
Inventory for Introductory Programming�. In: Proceedings of the
47th ACM Technical Symposium on Computing Science Education.
SIGCSE '16. New York, NY, USA: ACM, 2016, pp. 364�369. doi:
10.1145/2839509.2844559.

[CZP14] Yuliya Cherenkova, Daniel Zingaro, and Andrew Petersen. �Identi-
fying Challenging CS1 Concepts in a Large Problem Dataset�. In:
Proc. of the 45th ACM Tech. Symp. on Computer Science Education.
SIGCSE '14. New York, NY, USA: ACM, 2014, pp. 695�700.

[Dij89] Edsger W. Dijkstra. �On the cruelty of really teaching computing
science�. English. In: Communications Of The Acm 32.12 (1989),
pp. 1398�1404.

[DMP15] Liesbeth De Mol and Giuseppe Primiero. �When logic meets engi-
neering: introduction to logical issues in the history and philosophy
of computer science�. eng. In: History and Philosophy of Logic 36.3
(2015), pp. 195�204.

[DRWT09a] Michael De Raadt, Richard Watson, and Mark Toleman. �Teaching
and assessing programming strategies explicitly�. In: Proceedings of
the 11th Australasian Conference on Computing Education - Volume
95. ACE '09. Darlinghurst, Australia: Australian Computer Society,
Inc., 2009, pp. 45�54.

[FMV14] Carlo A. Furia, Bertrand Meyer, and Sergey Velder. �Loop invariants:
Analysis, classi�cation, and examples�. eng. In: ACM Computing Sur-
veys (CSUR) 46.3 (2014), pp. 1�51.

[Fre+18] Stephen Frezza et al. �Modelling Competencies for Computing Edu-
cation beyond 2020: A Research Based Approach to De�ning Compe-
tencies in the Computing Disciplines�. In: Proceedings Companion of
the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education. ITiCSE 2018 Companion. New York,
NY, USA: ACM, 2018, pp. 148�174.

[Ful+07] Ursula Fuller et al. �Developing a computer science-speci�c learning
taxonomy�. eng. In: ACM SIGCSE Bulletin 39.4 (2007), pp. 152�170.

[Gin03] David Ginat. �Seeking or Skipping Regularities? Novice Tendencies
and the Role of Invariants�. In: Informatics in Education 2 (2003),
pp. 211�222.

[Gol+10] Ken Goldman et al. �Setting the Scope of Concept Inventories for
Introductory Computing Subjects�. eng. In: ACM Transactions on
Computing Education 10.2 (2010).

74 CHAPTER 2. PILOT STUDIES

[HLR11] Orit Hazzan, Tami Lapidot, and Noa Ragonis. Guide to Teaching
Computer Science: An Activity-Based Approach. 1st. Springer Pub-
lishing Company, Incorporated, 2011.

[IM20] Cruz Izu and Claudio Mirolo. �Comparing Small Programs for Equiv-
alence: A Code Comprehension Task for Novice Programmers�. In:
Proc. of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education. ITiCSE '20. New York, NY, USA:
ACM, 2020, pp. 466�472.

[Kac+10] Lisa C. Kaczmarczyk et al. �Identifying Student Misconceptions of
Programming�. In: Proceedings of the 41st ACM Technical Symposium
on Computer Science Education. SIGCSE '10. New York, NY, USA:
ACM, 2010, pp. 107�111.

[Kap16] Manu Kapur. �Examining Productive Failure, Productive Success,
Unproductive Failure, and Unproductive Success in Learning�. In: Ed-
ucational Psychologist 51 (Apr. 2016), pp. 1�11.

[Knu76] Donald E. Knuth. �Mathematics and Computer Science: Coping with
Finiteness�. eng. In: Science 194.4271 (1976), pp. 1235�1242.

[LMB08] John Loughran, Pamela Mulhall, and Amanda Berry. �Exploring Ped-
agogical Content Knowledge in Science Teacher Education�. In: Inter-
national Journal of Science Education - INT J SCI EDUC 30 (Aug.
2008), pp. 1301�1320. doi: 10.1080/09500690802187009.

[Lop+08] Mike Lopez et al. �Relationships Between Reading, Tracing and Writ-
ing Skills in Introductory Programming�. In: Proc. 4th Int. Workshop
on Comput. Educ. Research. ICER '08. New York, USA: ACM, 2008,
pp. 101�112.

[LR+17b] Andrew Luxton-Reilly et al. �Developing Assessments to Determine
Mastery of Programming Fundamentals�. In: Proceedings of the 2017
ITiCSE Conference on Working Group Reports. ITiCSE-WGR '17.
New York, NY, USA: ACM, 2017, pp. 47�69. doi: 10.1145/3174781.
3174784.

[LR+18] Andrew Luxton-Reilly et al. �Introductory Programming: A System-
atic Literature Review�. In: Proceedings Companion of the 23rd An-
nual ACM Conference on Innovation and Technology in Computer
Science Education. ITiCSE 2018 Companion. New York, NY, USA:
ACM, 2018, pp. 55�106.

[LRR17] Katharina Loibl, Ido Roll, and Nikol Rummel. �Towards a Theory
of When and How Problem Solving Followed by Instruction Sup-
ports Learning�. In: Educational Psychology Review 29.4 (Dec. 2017),
pp. 693�715.

REFERENCES 75

[May14] Philipp Mayring. Qualitative Content Analysis: Theoretical Founda-
tion, Basic Procedures and Software Solution. Klagenfurt, 2014.

[Met17] Janet Metcalfe. �Learning from Errors�. In: Annual Review of Psy-
chology 68 (Jan. 2017), pp. 465�489.

[Mir12] Claudio Mirolo. �Is Iteration Really Easier to Learn Than Recursion
for CS1 Students?� In: Proc. of the 9th Annual International Confer-
ence on International Computing Education Research. ICER '12. New
York, NY, USA: ACM, 2012, pp. 99�104.

[MKB99] Shirley Magnusson, Joseph Krajcik, and Hilda Borko. �Nature,
Sources, and Development of Pedagogical Content Knowledge for Sci-
ence Teaching�. In: Examining Pedagogical Content Knowledge. Ed.
by Julie Gess-Newsome and NormanG. Lederman. Vol. 6. Science &
Technology Education Library. Springer Netherlands, 1999, pp. 95�
132. doi: 10.1007/0-306-47217-1_4.

[Mye90] J.Paul Myers. �The Central Role of Mathematical Logic in Computer
Science�. In: ACM SIGCSE Bulletin 22.1 (1990), pp. 22�26.

[Qui14] Margareth Quindeless. �Logic in the curricula of Computer Science�.
spa. In: Revista AntioqueÃ+a de las Ciencias Computacionales y la
IngenierÃ-a de Software (RACCIS) 4.2 (2014), pp. 47�51.

[RW88] Charles Rich and Richard Waters. �The Programmer's Apprentice
Project: A Research Overview�. In: Computer 21 (Dec. 1988), pp. 10
�25. doi: 10.1109/2.86782.

[Sae+11] Mara Saeli et al. �Teaching Programming in Secondary School: A
Pedagogical Content Knowledge Perspective�. In: Informatics in Ed-
ucation 10 (Apr. 2011), pp. 73�88.

[Sch12] Dane Scha�er. �An Analysis of Science Concept Inventories and Di-
agnostic Tests: Commonalities and Di�erences�. In: Annual Interna-
tional Conference of the National Association for Research in Science
Teaching. Apr. 2012.

[Shu86] Lee S. Shulman. �Those Who Understand: Knowledge Growth in
Teaching�. eng. In: Educational Researcher 15.2 (Feb. 1986), pp. 4�14.

[SM19] Emanuele Scapin and Claudio Mirolo. �An Exploration of Teachers'
Perspective About the Learning of Iteration-Control Constructs�. In:
Informatics in Schools. New Ideas in School Informatics. Ed. by Sergei
N. Pozdniakov and Valentina Dagien
e. Cham: Springer, 2019, pp. 15�
27.

76 CHAPTER 2. PILOT STUDIES

[Tam92] Wing C. Tam. �Teaching Loop Invariants to Beginners by Examples�.
In: Proceedings of the 23rd SIGCSE Technical Symposium on Com-
puter Science Education. SIGCSE '92. New York, NY, USA: ACM,
1992, pp. 92�96.

[Tur02] Sigita Turskien
e. �Computer Technology and Teaching Mathematics
in Secondary Schools�. eng. In: Informatics in Education - An Inter-
national Journal 1.1 (2002), pp. 149�156.

[WD97] Roland Wagner-Dobler. �Science-Technology Coupling: The Case of
Mathematical Logic and Computer Science.� eng. In: Journal of the
American Society for Information Science 48.2 (1997), pp. 171�83.

[Wie89] Susan Wiedenbeck. �Learning iteration and recursion from examples�.
In: International Journal of Man-Machine Studies 30.1 (1989), pp. 1
�22. doi: https://doi.org/10.1016/S0020-7373(89)80018-5.

[ZH98] Rina Zazkis and Orit Hazzan. �Interviewing in mathematics education
research: Choosing the questions�. eng. In: Journal of Mathematical
Behavior 17.4 (1998), pp. 429�439.

Chapter 3

Teacher Survey

In this chapter we present the teacher survey and discuss the related �ndings. The
survey, proposed by means of an online questionnaire to high school Computer Sci-
ence teachers, is meant to get insights on their practice and instructional strategies
to approach programming in general, and iteration in particular. After introduc-
ing the main aims, the scope of the investigation and the underlying methodology
in the �rst two sections, in Section 3.3 we outline the organization of the instru-
ment. The outcomes of the investigation are then summarized in Section 3.4 and
discussed in Section: 3.5. Finally, we end this chapter with a few concluding remarks
(Section 3.6).

3.1 Aims and scope of the teacher survey

The survey attempts to elicit some general features of teachers' PCK, in the con-
text of programming, and focuses on the following research questions concerning
speci�cally iteration:

� Which examples do high school teachers commonly use to introduce and ex-
plain the application of iteration constructs?

� What are their main instructional strategies to teach iteration?

3.2 Methodology

Interviewing teachers or asking them to complete a survey has become a popular
way of data-collection in STEM �elds [Her10; BS13; Fin+20].

The survey design has followed the principles elaborated in Chapter 2. The var-
ious questions formulated are not inspired by a single starting point, but we tried

78 CHAPTER 3. TEACHER SURVEY

to identify questions from di�erent points of view: PCK [Sae+11; BSS13], Con-
tent Representation [Bar+14], Concept Inventory, and Taxonomy [Ful+07]. Fur-
thermore, questions have been formulated both considering outcomes obtained in
previous teachers' interviews (see Chapter 2, Section 2.1) and � concerning stu-
dents' di�culties and performance � previous students' survey (see Chapter 2,
Section 2.2).

Regarding the survey design and analysis of the collected data, a useful inspi-
ration came from the approach proposed by Rahimi at al. [RBH16]. The authors
had focused on the elicitation and categorization of pedagogical content knowledge
(PCK) versus the design of digital artifacts of Computer Science teachers. Their re-
sults suggested that teachers' PCK regarding design could be characterized in terms
of two aspects: (i) teachers' knowledge about objectives and goals of designing digital
artifacts by students; (ii) teachers' knowledge about ways to assess students' under-
standing and performance. As regards the �rst aspect (i), the authors distinguished
an orientation towards more conceptual objectives and one towards more practical
objectives. Regarding the second aspect (ii), they also found two types of teachers'
knowledge, one focused on process-based evaluation and another on product-based
evaluation.

In the analysis of the collected data that follows, orientations towards conceptual
objectives, rather than practical objectives, have been distinguished. In addition,
process-based assessment has been distinguished from product-based assessment.

This distinction made it possible to analyze the teachers' orientation, di�erenti-
ating between conceptual objectives (abstraction, computational thinking, etc.) and
practical objectives, more related to coding and software production.

3.3 Instrument

To begin with, the structure of the survey protocol, partly inspired by the approaches
to elicit the PCK presented in the literature [Sae+11; VDB12; BSS13; Bar+14;
RBH16], is outlined in Figure 3.1, where the most signi�cant questions are reported
verbatim. A set of questions (point 1) is aimed at collecting general information
regarding teachers. Other questions (point 2) attempt to ascertain general context
of introductory programming and the related prerequisites. Questions focused on
iterations (point 3) aimed to investigate how central the learning of iteration is in
the teacher's perspective, concerning teaching methodology, students' learning and
strategies to foster learning. Then, the focus moves to a pedagogical approach (point
4) to enhance and stimulate students' learning. Assessment of iteration (point 5)
is investigated regarding general aspects and speci�c solutions. Finally, the survey
section concludes with students' aptitudes (6) regarding learning Computer Science
in general and an open question (7) to collect further ideas, concerning teaching and
learning iterations, not covered in the previous points.

The survey addressed to teachers includes 22 questions, and the �rst 5 ques-

3.3. INSTRUMENT 79

tions deal with general information. Three questions concern learning programming
in general, while six focus on iteration (teaching, learning and strategies to foster
learning). Furthermore, two questions investigate learning pedagogical approaches,
whilst four more concern students' learning assessment. Students' aptitudes for
learning Computer Science are investigated with one question. Finally, there is
one additional question concerning observations, regarding teaching and learning
iterations, not highlighted in previously questions.

1. General information (5 questions)
master degree, discipline taught mainly, type of school where they mainly teach, gender
information, years of teaching Computer Science
2. Learning programming in general (3 questions)
2.1. teaching How important do you think the following prerequisites are in order to

understand the basic concepts of Computer Science?
Are there any additional mathematical or scienti�c concepts that you
consider important as prerequisites? Which ones?

2.2. learning How would you rate the level of di�culties usually faced by students
when learning each of the following programming concepts?

3. Focus on iteration (6 questions)
3.1. teaching Do you use any of the following examples to explain the iteration con-

structs? (More options were possible)
Can you describe one or two examples you show in class to explain the
WHILE loop?
Can you describe one or two examples you show in class to explain the
FOR loop?
Can you describe one or two examples you show in class to illustrate
the use of nested loops?

3.2. learning In general, how would you rate students' mastery of iteration con-
structs?

3.3. strategies to
foster learning

In your concrete teaching experience, how important do you consider
the following instructional strategies to foster the learning of iteration
constructs?

4. Pedagogical approach (2 questions)
4.1. learning In your concrete teaching experience, how important do you consider

the following activities to enhance and consolidate learning of program-
ming?
To what extent do you consider the following "stimuli" important to
enhance student motivation?

5. Assessment (4 questions)
5.1. learning In your concrete experience, how important do you consider the follow-

ing aspects in order to assess students' learning of programming?
How do you assess students' solutions that work but are structurally
involved, i.e., signi�cantly more complex than needed?
How do you assess students' solutions that work but are computation-
ally ine�cient, i.e., poorly performing?
In your practice, by what means do you usually assess the learning of
iteration constructs? (More options were possible)

6. Students' aptitudes (1 question)
Important students' dispositions for learning Computer Science
7. Other thoughts (1 question)
Any additional observations to consider in connection with the teaching and/or learning of
iteration constructs

Figure 3.1: Structure of the teacher survey protocol.

An English translation of the complete set of questions, submitted to the teach-
ers, is available via this link http://nid.dimi.uniud.it/additional_material/

teacher_survey.html.

80 CHAPTER 3. TEACHER SURVEY

3.4 Data collection and results

We conducted an anonymous online survey with 21 experienced high school Com-
puter Science teachers, working in technical institutes and lyceums in Italy, probably
several of the teachers previously interviewed responded to the survey. We had in-
vited, via email, many CS teachers, from various Italian regions, and we therefore
expected a greater number of contributions; probably the well-known di�culties en-
countered in managing the Covid-19 pandemic in schools discouraged participation.

3.4.1 General information

The teachers who responded to the survey are predominantly male (15 teachers),
see Figure 3.2a, and are mostly Computer Science graduates (12 teachers), see Fig-
ure 3.2b.

(a) Teachers by gender (b) Teachers' level of education

Figure 3.2: Teachers' gender and level of education.

The type of school and the subject taught are presented below. The teachers
consulted teach mainly in the Industrial Technical Institute (17 teachers), see Fig-
ure 3.3a, and mainly they teach Computer Science (13 teachers), see Figure 3.3b.

(a) Type of school (b) Subject taught

Figure 3.3: Teachers' service school and subject taught.

Computer Science teaching years are adequately distributed in the sample (Fig-
ure 3.4).

3.4. DATA COLLECTION AND RESULTS 81

Figure 3.4: Teachers by years of service.

3.4.2 Learning programming in general

We asked to evaluate the level of di�culty that normally a student of an introductory
course encounters when they learn and become familiar with some fundamental
concepts, and what emerged is shown in Figure 3.5. Interesting indications emerge:

� Variables and assignment as well as Elementary data types are considered easy
for students to learn;

� Pointers and dynamic memory management, Handling of exceptions, Recur-
sion, Event management, OOP: classes and objects, OOP: instance variables
and encapsulation and OOP: constructors and methods are indicated as con-
cepts that are di�cult to learn by students. In this case the prevailing indica-
tion is not to deal with them in the introductory courses;

� Conditional (if) is considered a relatively simple concept while Iteration (loop)
has a higher degree of di�culty for the students;

� Arrays and strings, Scoping and lifetime of variables, Functions and procedures,
Passing parameters and File management are considered relatively simple,
although they can create di�culties for some students.

Once again it emerges that iterations are a concept that proves rather di�cult
to learn for students, as discussed in the previous chapters, see Chapter 1 and
Chapter 2, and here investigated with both more structured and better targeted
questions. In fact, the pilot interviews was quite heterogeneous, and furthermore
literature focused on tertiary education.

Another general relevant issue concerns the extra-computing prerequisites, see
Figure 3.6. A large number of teachers (12 very important, 8 quite important) refer
to the mathematical/logic background (Boolean algebra and Mathematical logic) as
well as to text comprehension1, Precision/formal rigor, General problem solving skills
and Understanding of a formalism2, are all important extra-computing prerequisites.

Some teachers have also pointed to other mathematical or scienti�c concepts
that they consider important as prerequisites:

1Reading comprehension is the most important prerequisite for 16 out of 21 teachers.
2Even the understanding of a formalism is probably referable to mathematical pre-requisites.

82 CHAPTER 3. TEACHER SURVEY

Figure 3.5: Main programming key concepts.

� expertise in formal proofs, being able to prove a theorem, algebraic or geometric, in
an autonomous way;

� mastery of operations, symbols, equality, inequality;.

� good mathematical and logical bases in general;

� ability to look for the error and desire to solve it.

Concerning the ability to prove a theorem, it should be noted that as it is no
longer required in upper secondary school Mathematics programs, the students'
reduced ability to manage formal proofs independently is justi�ed.

Furthermore, a single teacher stated that �recently, students (of �rst year in
upper secondary school) �nd it di�cult to choose the correct relationships between
natural numbers�.

3.4.3 Focus on iteration

Teaching

Teachers use examples to explain the constructs for iteration, the most used are
listed in Figure 3.7 (multiple options could be chosen).

The examples proposed are in line with what has already emerged in the in-
terviews analyzed in Chapter 2, Section 2.1.5. It can be noted that most of the
examples proposed are problems that can be solved through For-loop. In fact there
are few that can be solved exclusively with While-loop or Do-While-loop, and just
as few can be solved with nested iterations.

3.4. DATA COLLECTION AND RESULTS 83

Figure 3.6: Extra-computing prerequisites.

The teachers have described one or two examples they propose in class to explain
the While-loop.

� Given a number in input, print the sum of the �rst n numbers.

� Enter the measurement of the side of some geometric �gure from the keyboard.
Repeat the entry if the measurement is negative. It is not known how many times
the user will make mistakes and therefore the data must be entered again as long as
the user continues to make mistakes.

� Example 1: request an input datum and permanence in the cycle, requesting it again,
as long as the entered datum is not adequate (for example a datum greater than or
equal to zero or included in an interval).
Example 2: request a series of input data and permanence in the cycle, requesting
one more, as long as the entered data is not equal to a symbol associated with the
termination (ask the user to provide a series of values as long as the user writes the
symbol `0').

� Example 1: given a sequence of playing cards (only the values, terminated by 0),
�nd the one with the highest value.
Example 2: given a maximum value K, print the nursery rhyme �an elephant swayed
...� up to K.

� Situations where the body of the cycle may not even be carried out (null sequences

84 CHAPTER 3. TEACHER SURVEY

Figure 3.7: Examples to explain iteration, multiple options could be chosen.

or conditions that may not occur).

� Division, calculation of the remainder, by subtraction.

� Recipe phase: �ll the pot with water, pour and repeat until you have exceeded the
desired level.

� Rolling dice until a predetermined value is reached.

� Search for the �rst occurrence in a set of elements; in this case the iteration condition
is not a simple condition.

� Ask for numbers and add them until a certain maximum value has been reached;
type numbers until you guess a randomly generated number.

� Checking the input of one or more variables, checking a termination of a sequence
of numbers.

� Sum of a sequence of numbers, primality test.

� Given a sequence of numbers ending with 0 calculate the number of elements inserted.

� The creation of a simple menu.

� �In the second classes I introduce the While construct by proposing the sum of num-
bers. In the three years when I talk about preconditional iterative constructs I use
the example of Fibonacci rabbits�.

� Reading a sequential �le.

� Example 1: sum of n numbers read in input, where n is in turn read in input.
Example 2: create a program that reads a positive real number in input, and requests
it in input as long as the user enters a negative real number.

� Acquire a series of values until a particular value is entered; search for an element
in a sequence.

3.4. DATA COLLECTION AND RESULTS 85

� Reading a sequence of values with termination character.

Several of the examples proposed are tasks that can be easily solved using the
For-loop. Moreover, many examples, if solved with While-loop, require simple ter-
mination conditions. In other words, the tasks can be solved with simple iterations,
which make use of an iterator variable, knowing a priori the number of loops to
execute.

Furthermore teachers have described one or two examples they propose in class
to explain the For-loop.

− Display a greeting phrase on the screen N times, �rst with constant N, then with variable
N, display N odd or even numbers on the screen.

− Example 1: request two numeric inputs and return of a message that compares the value
of the pair of numbers (both strictly greater than zero, only one strictly greater than
zero, none greater than zero, etc., etc. with further mixed cases and/or with equality).
Example 2: request a numeric input corresponding to a month of the year and return
of the number of days of the month entered.

− Average grades or students' heights in a class.

− Example 1: given a string, count the number of occurrences of a letter.
Example 2: given the daily temperatures of a city over a week, calculate the average.

− Problems that make use of a counter (sequences with prede�ned length).

− Multiplication tables.

− Drawing of geometric �gures with `*'.

− Example 1: management of N values introduced by the user.
Example 2: array scan.

− �Ask an operator for N numbers (with N de�ned) and calculate their sum, product,
minimum, maximum. Explaining the For-loop �rst (which I believe to be simpler than
the While-loop) typically o�ers good educational results�.

− Inserting and displaying elements of an array - Calculation of the power of a number.

− I resume the examples with the while loop by translating them with the for loop.

− I calculate the average of the grades of N students.

− Searching for data in an array.

− Average of N votes entered by the user, display of a Pythagorean table.

− Scan of the elements of a array.

− Calculate the perimeter of an irregular polygon; search for the maximum in a sequence
of numbers.

− Iterative factorial.

86 CHAPTER 3. TEACHER SURVEY

Again, these are fairly simple problems, which do not require nesting.

Regarding the examples proposed in class to illustrate the use of nested iterations,
the teachers described what is listed below.

� Matrix of multiplication tables.

� Scanning of a matrix with suitable termination conditions.

� Example 1: generate the �rst N lines of the multiplication table.
Example 2: K friends play football M times a week: given as input the number of
goals scored by each in each match, calculate who scored the most.

� The Console drawing of �at �gures, e.g. �ags, Christmas trees, houses, etc. with
some particular characters (e.g. `*') and with di�erent colors.

� Inserting and displaying the elements of a matrix - Sorting algorithms.

� Print all possible pairs or triples of a set of elements.

� For N numbers entered by an operator, calculate the factorial for each of them.

� Check if a string contains values from a sequence of characters. Validate a stack.

� Sorting an array.

� Creation of images composed of characters (e.g. full/empty square, pyramid, checker-
board, etc.).

� Search characters in strings.

� Multiplication tables, creation of geometric designs such as squares, rectangles, tri-
angles etc.

� Example 1: request two numeric inputs and return of a message that compares
the value of the pair of numbers (both strictly greater than zero, only one strictly
greater than zero, none greater than zero, etc., with further mixed cases and/or with
equality).
Example 2: request a numeric input corresponding to a month of the year and return
of the number of days of the month entered.

� Addition table.

� Given two arrays of integers, calculate how many numbers of the �rst array are also
present in the second array.

� Given a class, build the scoreboard (the N marks of the subjects must be entered
for each pupil of the class).

The proposed examples deal with nesting mainly with reference to the use of for-
loop. There are only few examples where the while-loop, as well as the identi�cation
of the appropriate termination condition, are necessary.

The teachers gave a degree of importance to the following teaching strategies:

3.4. DATA COLLECTION AND RESULTS 87

1. Computation analysis performed by an iterative program by tracing the values of
the variables in sample cases

2. Insertion in the iterative program of instructions to print or display information on
the processing status

3. Analysis of the computation performed by an iterative program in terms of a
�owchart

4. Analysis of the execution conditions and the role of the �rst and/or last iteration of
a loop

5. Analysis of the termination of an iterative program

6. Analysis of transformation schemes between functionally equivalent programs that
apply di�erent iterative constructs

7. Comparison of iteration and recursion

8. Documenting and applying style criteria to iteration-based code development

9. Analysis of the function performed by an iterative construct in terms of invariant
properties of the loop

10. Analysis of the behavior of an iterative construct in terms of computational e�ciency

11. Debugging of iteration-based programs for the identi�cation and correction of arti-
�cially introduced errors for educational purposes

12. Choosing and applying appropriate test data to verify the functionality of an
iteration-based program

13. Integration of user error management in the iterative program

14. Comparison (advantages / disadvantages) of alternative solutions, based on iteration,
in terms of style, documentation, readability, e�ciency ...

15. Learning the tools of a development environment (IDE) useful for the development
of iterative code

16. Discussion of the generality of the iteration in the context of problems that admit
algorithmic solutions

With practical teaching experience in mind, teachers consider the following teach-
ing strategies (see Figure 3.8) to be important for learning the constructs for itera-
tion.

� Computation analysis performed by an iterative program by tracing the values of the
variables in sample cases,

� Insertion in the iterative program of instructions to print or display information on
the processing status,

� Analysis of the computation performed by an iterative program in terms of a
�owchart,

� Analysis of the execution conditions and the role of the �rst and/or last iteration of
a loop,

88 CHAPTER 3. TEACHER SURVEY

Figure 3.8: Teaching strategies for learning iteration.

� Analysis of the termination of an iterative program.

Less importance is given instead to the following didactic strategies:

� Analysis of transformation schemes between functionally equivalent programs that
apply di�erent iterative constructs,

� Comparison of iteration and recursion,

� Documenting and applying style criteria to iteration-based code development,

� Analysis of the function performed by an iterative construct in terms of invariant
properties of the loop,

� Analysis of the behavior of an iterative construct in terms of computational e�ciency,

� Debugging of iteration-based programs for the identi�cation and correction of arti�-
cially introduced errors for educational purposes,

� Choosing and applying appropriate test data to verify the functionality of an iteration-
based program,

� Integration in the iterative program of instructions to handle user errors,

� Comparison (advantages / disadvantages) of alternative solutions, based on iteration,
in terms of style, documentation, readability, e�ciency etc.,

� Learning the tools of a development environment (IDE) useful for the development
of iterative code,

� Discussion of the generality of the iteration in the context of problems that admit
algorithmic solutions.

3.4. DATA COLLECTION AND RESULTS 89

Analyzing the data in the perspective of distinguishing two dimensions � taking
inspiration from the work of Rahimi et at. [RBH16] �, which outline an orientation
towards more conceptual objectives and one towards more practical objectives, some
additional results can be identi�ed.

Figure 3.9 highlights that teachers assign greater importance to practical objec-
tives than conceptual objectives. In particular, great importance is assigned to the
following strategies, which pursue practical objectives:

− Computation analysis performed by an iterative program by tracing the values of the
variables in sample cases

− Insertion in the iterative program of instructions to print or display information on the
processing status

− Debugging of iteration-based programs for the identi�cation and correction of arti�cially
introduced errors for educational purposes

− Choosing and applying appropriate test data to verify the functionality of an iteration-
based program

− Comparison (advantages/disadvantages) of alternative solutions, based on iteration, in
terms of style, documentation, readability, e�ciency ...

Figure 3.9: Two dimensions teaching strategies for learning iteration.

Among the strategies that pursue conceptual objectives, only the following is
indicated as very important:

� Analysis of the termination of an iterative program

This �nding could be justi�ed by the fact that the majority of teachers teach in
technical high school.

90 CHAPTER 3. TEACHER SURVEY

Learning

In general, teachers evaluate students' competence in iteration constructs in the
way presented in Figure 3.10. From the diagram, it clearly emerges that students
are more pro�cient with For-loop, while they have less mastery when they have to
�manage the �rst and/or last iteration of a While loop� and in the �management of
the �rst and/or last iteration of a Do-while/Repeat loop�. This is little surprising
when most of the teachers' examples are also based on For-loops. Moreover, students
are not adequately skillful in:

� the understanding and handling of choice constructs (If) nested in loops,

� the understanding and handling of iterative constructs (While, For) nested in loops,

� the distinction between While and Do-while/Repeat loops,

� the choice of the type of iteration to use (While, Do-while/Repeat, For).

Figure 3.10: Students' mastery of iteration constructs.

3.4.4 Pedagogical approach

In the concrete teaching experience, activities aimed at improving and consolidating
the learning of programming in students are considered important. A list of proposed
activities, to improve and consolidate students' learning, is presented below.

3.4. DATA COLLECTION AND RESULTS 91

1. Accurate preliminary analysis of the problem �with pen and paper�

2. Reading and understanding (possibly completion) of well written programs in terms
of style and clarity

3. Illustration of algorithmic techniques through animations

4. Collective discussion of solutions with original characteristics

5. Regular assignment of homework

6. Regular laboratory activities

7. Laboratory activities in pairs

8. Collaboration between peers through group projects

9. Discussion with the teacher on possible solutions

10. Explanation by the students of the degree of con�dence in the solutions they have
adopted

11. Comparison between peers on possible solutions

12. Peer evaluation (e.g. based on a prede�ned grid)

Consolidation and improvement activities were deemed important, as shown in
Figure 3.11.

Figure 3.11: Activities aimed at improving and consolidating the learning of pro-
gramming in students.

The following activities are, on average, important:

� Accurate preliminary analysis of the problem �with pen and paper�,

92 CHAPTER 3. TEACHER SURVEY

� Reading and understanding (possibly completion) of well written programs in terms
of style and clarity,

� Collective discussion of solutions with original characteristics,

� Regular assignment of homework,

� Systematic laboratory activities,

� Laboratory activities in pairs,

� Collaboration between peers through group projects,

� Discussion with the teacher on possible solutions,

� Explanation by the students of the degree of con�dence in the solutions they have
adopted,

� Comparison between peers on possible solutions.

On the contrary, the following activities are considered of secondary impor-
tance: Illustration of algorithmic techniques through animations, Peer evaluation
(e.g. based on a prede�ned grid).

Some additional results can be identi�ed by analyzing the data while distinguish-
ing two dimensions [RBH16], namely conceptual objectives and practical objectives.
In terms of conceptual objectives, the activity �Illustration of algorithmic techniques
through animations�, is identi�able, even though it is not considered very important
(Figure 3.12). Instead, with regards to practical objectives the activity �Collabora-
tion between peers through group projects� is identi�able, which is considered quite
important.

In Figure 3.12 items 5,6,7 and 11 were not considered as they refer to students'
learning styles in general, and they are not speci�c to Informatics.

In a further analysis that considers two other dimensions, one focused on process-
based assessment and another on product-based assessment, three activities have
been identi�ed for each dimension, see Figure 3.12. With respect to the process
objectives, the following activities were considered more important:

� Accurate preliminary analysis of the problem �with pen and paper�,

� Discussion with the teacher around possible solutions.

Instead, with respect to the product objectives, the following activities were
considered of primary importance:

� Reading and understanding (possibly completion) of well written programs in terms
of style and clarity,

� Collective discussion of solutions with original characteristics.

It is interesting to note that the teachers did not consider Peer evaluation to be
very important. This result is in contrast with what Hattie claims [Hat12], taking

3.4. DATA COLLECTION AND RESULTS 93

Figure 3.12: Activities, distinguishing dimensions, aimed at improving and consoli-
dating the learning of programming in students.

up the studies by Nuthall [Nut07] and Sluijsmans et al. [SBGM02], regarding the
importance of peer evaluation in learning processes.

Considering the stimuli to encourage students' motivation, the degree of impor-
tance attributed by teachers to the various options is shown in Figure 3.13.

A list of proposed stimuli, to encourage students' motivation, is presented below.

1. Feedback from the teacher during the intermediate steps of a program design

2. Game design and development

3. Design and development of graphic applications

4. Making applications that can be used by siblings, friends, etc.

5. Participation in competitions and games

6. Analysis and solution of concrete problems faced in the labor market

7. Collaboration in projects with companies

8. Study of solutions developed by professionals

9. Collaboration in peer projects in which the roles and responsibilities of each partic-
ipant are clearly identi�ed

10. Opportunity to illustrate the results of their work in the classroom through a mul-
timedia presentation

The stimuli listed were suggested by what emerged during the teachers' inter-
views (see Chapter 2, Section 2.1).

94 CHAPTER 3. TEACHER SURVEY

Figure 3.13: Stimuli to encourage students' motivation.

The most important stimulus to encourage and motivate students therefore seems
to be Feedback from the teacher during the intermediate steps of a program design,
as well as Participation in competitions and games and Analysis and solution of
concrete problems faced in the labor market.

These stimuli are considered partially important:

� Game design and development,

� Design and development of graphic applications,

� Making applications that can be used by siblings, friends, etc.,

� Collaboration in projects with companies,

� Study of solutions developed by professionals,

� Collaboration in peer projects in which the roles and responsibilities of each partici-
pant are clearly identi�ed,

� Opportunity to illustrate the results of their work in the classroom through a multi-
media presentation.

In addition, with an analysis of the two other dimensions, one focused on process-
based assessment and another on product-based assessment, three activities have
been identi�ed for each dimension, see Figure 3.14.

With respect to the process objectives, the following stimuli were considered
more important than the others:

3.4. DATA COLLECTION AND RESULTS 95

Figure 3.14: Stimuli, distinguishing dimensions, to encourage students' motivation.

� Feedback from the teacher during the intermediate steps of a program design;

� Analysis and solution of concrete problems faced in the labor market;

� Collaboration in projects with companies.

Instead, with respect to the product objectives, the following stimuli were con-
sidered more important than the others:

� Participation in competitions and games;

� Opportunity to illustrate the results of their work in the classroom through a multi-
media presentation.

Overall, the teachers seem to prefer to evaluate stimuli inherent to process rather
than product aspects.

3.4.5 Assessment

Concerning evaluation, on the basis of concrete experience, we asked the teachers
how important they considered some methods of evaluating the learning of program-
ming by students. The survey results are shown in Figure 3.15.

The list of methods to evaluate the learning in programming is as follows:

1. Ongoing observation of the design and technical choices by the students

96 CHAPTER 3. TEACHER SURVEY

2. Request to express orally (think-aloud) the reasoning made by students in setting
up their own solutions

3. Request to explain the level of con�dence in the various steps of the solutions adopted

4. Writing of a diary by students in which to note steps, decisions and choices in relation
to the development of a program

5. Realization by the students of a presentation (slide) of the developed program

6. Drafting by the students of a technical document explaining how the program can
be used

7. Veri�cation of the functionality of the program created using a test battery not
known to the students

8. Testing the program through peer use

Figure 3.15: Important ways of evaluating the learning of programming, distin-
guished between process-based assessment and product-based assessment.

The following methods are considered important:

� Ongoing observation of the design and technical choices by the students,

� Request to express orally (think-aloud) the reasoning made by students in setting up
their own solutions,

� Request to explain the level of con�dence in the various steps of the solutions adopted,

� Testing the program through peer use.

On the other hand, the following methods are considered only partially impor-
tant:

3.4. DATA COLLECTION AND RESULTS 97

� Drafting by the students of a technical document explaining how the program can be
used,

� Veri�cation of the functionality of the program created using a test battery not known
to the students.

Finally, teachers consider the following methods less important:

� Writing of a diary by students in which to note steps, decisions and choices in relation
to the development of a program,

� Realization by the students of a presentation (slide) of the developed program.

Again, teachers place more emphasis on process-based assessment than on
product-based assessment.

Teachers frequently encounter, especially in introductory courses, students who
propose working solutions that are convoluted, that is signi�cantly more complex
than necessary. The teachers were asked how these functioning, but rather com-
plex solutions, are evaluated (see Figure 3.16 internal chart). Figure 3.16 (external
chart) shows the results of the assessment on working but computationally ine�cient
solutions.

Figure 3.16: Evaluation of the solutions proposed by the students, complex solutions
(internal chart) vs ine�cient solutions (external chart).

In both cases it turns out that the teachers consider the solutions acceptable,
or they apply a small penality (25% or less penality). It is interesting to note that
most of the teachers tend to penalize more the computationally ine�cient solutions
rather than the solutions that are too complex or convoluted.

Focusing the inquiry into the teachers' practice, teachers were asked how they
usually evaluate the learning of iteration.

98 CHAPTER 3. TEACHER SURVEY

Figure 3.17: Assessment of the learning of iteration. More options were possible.

Figure 3.17 clearly shows that all teachers use �Exercises that ask you to write
short complete programs� to evaluate their students' learning concerning iterations.
Another widely used method is to propose to students �Small projects to be developed
in the laboratory�. Surprisingly, only one teacher declared they use �Tracing tables�
to evaluate students for iterations.

3.4.6 Students' aptitudes

Learning the basic principles of Computer Science is not easy for all students, and
learning is often conditioned by the speci�c cognitive and learning styles of each
individual student [Cor+18]. Teachers were asked to indicate which aptitudes they
consider most important for learning Computer Science. Figure 3.18 shows the
degree of importance assigned to a series of aptitudes.

The following are the most important students' aptitudes, as indicated by the
teachers: Spontaneous passion for programming, Interest in problem solving, Con-
sistency and organization in self-study.

On the other hand, less important aptitudes indicated are the following: Preci-
sion and formal rigor, Imagination and creativity.

The least important aptitude speci�ed turned out to be the Ability to relate to
peers.

3.4.7 Other suggestions

From the responses some additional observation emerged, which could be relevant
in relation to teaching iteration.

3.5. DISCUSSION 99

Figure 3.18: Importance assigned to a series of aptitudes for learning Computer
Science.

A teacher stated that it is better �to start from very simple programs that use
the For-loop, increase the complexity little by little, it is important not to make the
student lose touch with what the program is doing�.

Another teacher claimed that �to understand the reasoning, you don't have to
write lines of codes straight away, but pupils must learn to formalize with pen and
paper�.

3.5 Discussion

The concept of iteration is a topic that can be addressed in upper secondary school
introductory courses. Unlike other topics, where students encounter di�culties,
loops are, together with recursion, among the most critical topics in these courses.
The teachers indicated that conditionals (If statement) are a relatively simple topic
for the students, while in their study of iterations the students encounter more
di�culties (see Figure 3.5). In fact, teachers consider Control structures (loop) as
presenting a higher degree of di�culty for their students. In addition, teachers
indicate as di�cult topics for students the following: pointers and dynamic memory
allocation, recursion, any topic related to OOP (Object Oriented Programming),
which should not be ideally explored in the introductory courses, as they are in fact

100 CHAPTER 3. TEACHER SURVEY

topics suitable for advanced courses.
Some iteration constructs such as While-loop and Do-While-loop, having to man-

age the conditions, need some previous knowledge. In fact, from the study it emerges
that knowledge and skills linked to Boolean algebra and concepts of Mathematical
Logic are indicated by teachers as very important (see Figure 3.6). Other impor-
tant prerequisites also emerged: text comprehension, precision/formal rigor, and
general problem solving skills. These prerequisites, which do not strictly pertain to
the discipline of Computer Science, will be dealt with in greater detail later in the
discussion, as they are related to cognitive and learning aspects.

During the interviews carried out with a selected sample of teachers it emerged
that mathematical prerequisites � in many aspects of Mathematics � and Logic
are considered to be very important (see Chapter 2, Section 2.1); this result is
obvious, in the light of important studies on the link between Mathematical Logic
and Computer Science [Mye90; Dav95; WD97; BA01; Qui14; Bla16; Pie17].

An unexpected prerequisite was that of �text comprehension�. Evidently more
and more students are struggling to understand the texts of the problems that are
proposed to them, or they do not understand formalism and coding.

Concerning Reading and Comprehension, Stein and Glenn [SG79] elaborated
their �story grammar rules�, where characters, places and time constitute the sce-
nario or background in which the story unfolds. Knowing the typical structure of a
certain type of text provides a reference framework that facilitates both the produc-
tion and understanding of a text through top-down processing, creating expectations
and facilitating inferences. The schematism involved in the understanding of stories
can be related to other forms of use of schemes or rules. An example in this regard
is that of the ��ve Ws�, proposed by Anglo-Saxon journalists [Con94; Har96]:

� "Who?" = Who are the characters?

� "Where?" = where do the facts take place?

� "When?" = when?

� "What?" = what happened?

� "Why?" = why did it happen? (the cause and/or purpose).

When the passages faced by the pupils become more complex, it is not always
easy to bring them back to a common structure. The identi�cation of characters,
places, times, and facts, however, remains an important prerequisite for carrying
out further and more complex processes in understanding a text.

The thorough understanding of a text, in particular of a narrative, expository
and scienti�c type, requires the reader to be able to identify the sequence of facts
and their di�erent types.

The text of a task or algorithm described in Computer Science formalism there-
fore requires greater comprehension skills than a narrative text. Not only are the

3.5. DISCUSSION 101

standard characteristics of a narrative text di�cult to identify, but the student is
also faced with a new and unfamiliar formalism.

The comprehension that allows one to understand the content and meaning of a
given text, also allows them to answer questions that can be asked about the content
and meaning of what is read [CCDB07].

The process of comprehension is therefore not taken for granted, and it can be
compared to a problem solving task in which the reader actively and strategically
constructs the meaning of the text through the interaction between their previous
knowledge and the information provided by the text [KD78; VDK83].

Understanding is therefore seen as a complex and articulated process. The dif-
ferent models that account for the understanding process substantially agree in
describing it as a construction or representation mental activity of the reader who
knows how to interact appropriately even with complex texts, and the more experi-
enced the reader is, the easier the task becomes [Ger91]. Therefore, the process of
understanding develops at various levels, and the construction of mental structures
and their representation have an important value [DBP93].

Some studies [JL83] show that understanding depends not only on what is read
but also on the information already possessed by the reader. Furthermore, Bransford
and Johnson [BJ72] pointed out �that, in the absence of the interaction between
information present in the text and previous knowledge, the reader, despite being
able to understand the meaning of the text on a super�cial level, fails to grasp its
global and profound meaning since he cannot construct what is technically de�ned
as a coherent mental model or situational model�.

Understanding, also based on notions already acquired, and therefore memorized
by the reader, also bases its e�ectiveness on memory, in particular on long-term
memory regarding information previously learned. Moreover, it exploits thememory
of work [BH74] for the �ability to maintain and simultaneously process the content
of the text�. In [DC80] it has been con�rmed that the capacity of working memory
is fundamental in understanding the text.

Therefore, understanding is based on what has already been learned, on the
ability to develop inferences 3, the ability to make associations between what has
been read, between parts of the text and what is already known, using working
memory and long-term memory [Oak84; FM93; CO99].

In an introductory Computer Science course, students deal with topics of which
they have yet to acquire the appropriate knowledge (memory activation) and are un-
able to establish the necessary inferences, �nding themselves working with languages
and formalisms di�erent from those they were accustomed to. In CSE several models
have been proposed to analyze program comprehension in terms of types of infor-
mation implied [Pen87], mental representations [WR99], cognitive demand [DSL18],

3The ability to draw inferences is the ability to deduce information not explicit in the text, or
to make connections between information within the text with the knowledge previously acquired
by the reader.

102 CHAPTER 3. TEACHER SURVEY

or as a hypothesis-driven process [VVMS99]. The teacher can help the student by
referring to previously acquired knowledge by the pupil, creating conceptual links.

3.5.1 Focus on iteration

Figure 3.7, and subsequent example lists, shows the tasks that teachers usually pro-
pose to their students to explain the iterations. Most of these problems, which they
usually see in connection with the iteration, are quite simple and could induce stereo-
types, as emerged in Chapter 2, Section 2.3. Furthermore, the proposed examples
can be easily re-proposed using a For-loop. Most of the examples cited to explain
the While-loop could be solved using a For-loop, avoiding the student the hassle
of identifying the termination condition of the iteration. The tasks proposed to
explain the While-loop partly overlap with those proposed to present the For-loop.
This can in fact induce the student to prefer solution proposals based on For-loop,
which however could generate misunderstandings and the acquisition of stereotyped
forms in strategies to solve the problems posed.

The same thing is repeated when looking at the examples that are used in the
explanations in class. In fact, several examples can be produced with the nested For-
loop, such as: manipulating matrices or tables, sorting an array, drawing �at �gures,
manipulating strings. This is not surprising, and in fact the teachers clearly state
that, regarding students' mastery of control constructs, students are more pro�cient
with For-loop than While-loop (see Figure 3.10).

As far as the teaching strategies of the iterations are concerned, the pre-eminence
of those directed towards practical objectives over those directed towards concep-
tual objectives clearly emerges. Among the strategies with conceptual objectives,
the only one considered very important is correlated to the �analysis of the termina-
tion of an iterative program�. The other strategies considered important are instead
attributable to practical objectives, such as tracing, debugging, verifying function-
ality. This result could be due to the fact that the majority of teachers involved in
the survey taught in technical upper secondary schools (see Figure 3.3a), where the
practical and coding aspects may be prevalent.

3.5.2 Pedagogical approach

When analyzing the pedagogical aspects, such as strategies to improve and consol-
idate the learning of programming, it is clear that teachers favor strategies linked
to practical objectives rather than conceptual objectives. Collaboration between
peers in working groups is in fact considered important, and this con�rms a prac-
tice considered positive for learning both by multidisciplinary studies (e.g. [Hat12])
and by speci�c works in Computer Science (e.g. [HLR11]). On the other hand,
distinguishing between strategies aimed at process-based assessment compared to
product-based ones, the data collected show a clear pre-eminence of the �rst cate-
gory over the second. This data is interesting, as teachers, while favoring practical

3.5. DISCUSSION 103

objectives, still tend to propose strategies where they value more the process-based
assessment.

Regarding stimuli that teachers adopt to encourage and motivate students, it
emerges that a process-based approach is considered more important. In particular,
the stimulus �Feedback from the teacher during the intermediate steps of a program
design� is considered very important, and this result re�ects the importance of feed-
back in Hattie's work [Hat12]. In fact, the feedback aims to reduce the distance
between the point where the student is and the point where they should arrive in
the learning [Sad89; Sad10]. It can also provide the student with information on
concepts that have been misunderstood, and can motivate the student to invest
more e�ort in the assigned task [HT07].

Considering the work of Rahimi et al. [RBH16, p. 75], we can therefore conclude
that teachers favor a practical-process-based approach, in fact they argued that
�addressing more practical objectives and understanding students' development of
soft and design skills through mainly process-based assessment approaches�.

Denning & Tedre [DT21] point out that �[t]he preponderance of public discourse
on CT4 is not the abstract algorithm but the executable computer program�. Also
they argue that there are methods to teach Computer Science without a computer,
concerning a more abstract perspective. On the one hand, coding is important in an
introductory CS course, but agreeing with Denning and Tedre [DT19], who argued
that �we hope that all teachers of computing bring their students a good sense of
the richness and beauty of the many dimensions of computation�, reasoning and
process-based strategies could improve students' comprehension and performance.

3.5.3 Assessment

Concerning evaluation, it clearly emerges that teachers give priority to process-based
assessment rather than a product-based assessment. Teachers bestow importance
to observing students' solution techniques, as well as understanding the reasoning
behind the proposed solutions, but also requesting an evaluation directly from the
student on the solutions that they have adopted.

The only product-based assessment that has some importance turns out to be
�testing the program through peer use�, con�rming the usefulness of the comparison
between peers.

Furthermore, teachers tend to evaluate with more indulgence, and apply fewer
penalties to ine�ective solutions rather than unnecessarily complex and convoluted
solutions. This choice can be justi�ed by what emerged above, namely that teachers
prefer practical objectives and process-based strategies. Moreover, to evaluate the
students, teachers prefer to propose exercises in which they require writing short
complete programs, or small projects to be developed in the laboratory. It is inter-
esting to note that the practice of tracing is used by a certain number of teachers, and

4CT: Computational Thinking.

104 CHAPTER 3. TEACHER SURVEY

there are in fact works that con�rm its importance as a methodology ,e.g. [Lis+04;
VS07; Lop+08]. After all, in technical upper secondary schools the practice in
laboratory is relevant, and this probably induces to favor practical objectives.

The practice of having collective discussions in the classroom is also considered
quite important, Hazzan et al. [HLR11] consider the class discussion a valid assess-
ment method. On the other hand, no other practices that were considered important
emerged, such as peer assessment or individual feedback [MSABA10]. The practice
of individual feedback can encourage the student to re�ect on their work, stimulating
the student's self-con�dence [MS68; BFL99; Zim00; SPV20].

3.5.4 Implications for instructors

In Chapter 2, dealing with the �ndings of a series of interviews with Computer
Science teachers, some critical factors had been identi�ed, and the main points
raised are as follows:

� The application of mathematical and logical concepts is very important in Infor-
matics, with regard to iterations in particular, having to manage the conditions.
However Informatics and Mathematics are not well integrated in the standard high-
school curricula, recently subjected to reform.

� Some teachers had considering whether the learning of programming could be im-
proved by starting from the beginning with the object-oriented paradigm, but it
seems that this topic is too di�cult to be taught in the introductory courses, so it
is better dealt with later.

Here, in the light of the analysis made on the data linked by the teachers' survey,
further critical factors can be identi�ed, which are listed below.

� Text comprehension by the students of the last generation is common to all disci-
plines. This is probably above all a job that the literature teacher must carry out.
However, it would be interesting to activate interdisciplinary paths, which involve
students together with teachers of Computer Science and Literature, to analyze lit-
erary texts that present computational concepts. This type of work has already
been explored in Mathematics (e.g. [Odi00; SB07; ZR08; LP15; Bis15; CPC13]),
while few attempts have been made for Computer Science (e.g. [Mea91; CADM05;
Dou04]).

� The understanding of text related to Informatics, even if not proposed through
coding, could be more familiar to students if some concepts of computational thinking
were presented before high school [Nar20, Chapter I].

� In teaching the iterations it would be desirable to propose more examples and exer-
cises based on the While-loop or Do-While-loop, in order to force students to identify
the appropriate conditions, based on the knowledge and skills acquired in Mathe-
matics, and more speci�cally in Boolean algebra and mathematical logic. This would

3.6. CONCLUDING REMARKS 105

discourage students to create concepts and stereotypes based on the For-loop pat-
terns, as De Raadt[DR08, p. 107] suggested when argued that it is best to �[r]efer to
programming strategies rather than underlying syntax where possible. For instance,
one could say `use a for loop to achieve that' when a more strategic instruction would
be `use a counter-controlled loop to achieve that'.�

� As students reported having issues with nested iterations, teachers could enrich the
catalog of examples proposed by introducing more tasks, not only with nested For-
loop, but also more with nested While-loop and Do-While-loop, as well as with
nesting other control-�ow constructs.

� Reiterate to the students both the importance of analyzing the problems posed, even
with paper and pencil, as well as the importance of verifying the proposed solutions
through tracing.

� Give feedback as frequently as possible, so that the student understands their mis-
takes and keeps higher levels of motivation. Strategies to activate peer assessment
could be attempted.

� Conceptual objectives are more easily achievable in tertiary education. However,
high school teachers could still try paths pertaining to perspective too, even if only
limited to some topics, to evaluate CS concepts rather than developing code, shifting
their teaching strategies towards more process-based objectives.

3.6 Concluding remarks

In this chapter, we presented a teachers' online survey protocol aiming to investigate
teaching methodologies and strategies regarding iteration, but also their assessment
criteria. The results of the survey substantially con�rm what emerged from the
teachers' pilot interviews. Furthermore, the examples and tasks that teachers usually
propose regarding iteration have been cataloged, in particular tasks in connection
with While-loop, For-loop and nested iterations. The most popular examples pre-
sented in class are those related to elementary Mathematics, but they are also quite
straightforward and tend to induce the use of stereotypical patterns. Hence teachers
could enrich the catalog of examples proposed by introducing more tasks, and also
induce students to develop their abstraction skills o�ering them more challenging
assignments.

As far as tasks are concerned, it has been useful to design and develop a catalog
(Appendix B) of signi�cant examples presenting more varied and interesting struc-
tures. We suggest building a catalog by collecting program comprehension (code
reading) tasks which require to trace, explain, or evaluate small programs. Each
task could cover multiple topics (exit condition, complex condition, nested itera-
tions, nested �ow-control constructs, numeric and not numeric data, strings and
arrays). A catalog can inspire teachers to introduce more varied and signi�cant sets
of tasks in connection with iteration. In addition, a catalog could help students work
with non trivial loop conditions and neat combinations of �ow-control constructs.

106 CHAPTER 3. TEACHER SURVEY

The tasklets discussed in the next Chapter 4 could be a basis to be extended in
collaboration with teachers.

Moreover, outcomes highlight that teachers focus orientation towards more prac-
tical objectives rather then conceptual objectives. In addition, teachers prefer assess
students' understanding and performance through process-based assessment rather
then product-based assessment.

Finally, the teachers con�rm that the application of mathematical and logical
concepts is very important in Computer Science, especially with regard to iterations
in particular.

References

[BA01] Mordechai Ben-Ari.Mathematical logic for computer science. eng. 2nd
ed. London: Springer, 2001.

[Bar+14] Erik Barendsen et al. �Eliciting computer science teachers' PCK us-
ing the Content Representation format: Experiences and future direc-
tions�. In: Proceedings of the 6th International Conference on Infor-
matics in Schools: Situation, Evolution, and Perspectives (ISSEP'14)
� Teaching and Learning Perspectives. Ed. by Yasemin Gülbahar, Er-
inç Karata³, and Müge Adnan. Vol. 8730. Istanbul, Turkey: Ankara
University Press, Sept. 2014, pp. 71�82.

[BFL99] Albert Bandura, WH Freeman, and Richard Lightsey. Self-e�cacy:
The exercise of control. 1999.

[BH74] Alan D. Baddeley and Graham Hitch. �Working memory�. In: Psy-
chology of learning and motivation. Vol. 8. Elsevier, 1974, pp. 47�89.

[Bis15] Gian Italo Bischi. Matematica e Letteratura. Dalla Divina Commedia
al Noir. EGEA, Milano, 2015, p. 160.

[BJ72] John D. Bransford and Marcia K. Johnson. �Contextual prerequi-
sites for understanding: Some investigations of comprehension and re-
call�. In: Journal of Verbal Learning and Verbal Behavior 11.6 (1972),
pp. 717 �726. doi: https://doi.org/10.1016/S0022-5371(72)
80006-9.

[Bla16] Andreas Blass. �Symbioses between mathematical logic and computer
science�. In: Annals of Pure and Applied Logic 167.10 (2016). Logic
Colloquium 2012, pp. 868 �878. doi: https://doi.org/10.1016/j.
apal.2014.04.018.

REFERENCES 107

[BS13] Teresa Busjahn and Carsten Schulte. �The Use of Code Reading in
Teaching Programming�. In: Proceedings of the 13th Koli Calling In-
ternational Conference on Computing Education Research. Koli Call-
ing '13. New York, NY, USA: Association for Computing Machinery,
2013, pp. 3�11. doi: 10.1145/2526968.2526969.

[BSS13] Malte Buchholz, Mara Saeli, and Carsten Schulte. �PCK and re�ec-
tion in computer science teacher education�. In: ACM International
Conference Proceeding Series (Nov. 2013). doi: 10.1145/2532748.
2532752.

[CADM05] Romeo Crapiz, Franca Alborini, and Mirka De Marchi. �Letteratura
e Informatica Un'esperinza didattica al Liceo Copernico di Udine�.
it. In: Didamatica 2005: Didattica Informatica. Potenza, Italy: AICA,
Oct. 2005, pp. 994�1002.

[CCDB07] Barbara Carretti, Cesare Cornoldi, and Rossana De Beni. Il disturbo
di comprensione del testo. 2007.

[CO99] Kate Cain and Jane V. Oakhill. �Inference making ability and its
relation to comprehension failure in young children�. In: Reading and
Writing 11 (1999), pp. 489�503.

[Con94] Bradford R. Connatser. �Setting the Context for Understanding�. In:
Technical Communication 41.2 (1994), pp. 287�291.

[Cor+18] Cesare Cornoldi et al. Processi cognitivi, motivazione e apprendi-
mento. Bologna: il Mulino, 2018.

[CPC13] Donna Christy, Christine Payson, and Patricia Carnevale. �The
Bridge to Mathematics and Literature�. In: Mathematics Teaching
in the Middle School 18.9 (2013), pp. 572�577.

[Dav95] Martin Davis. �The Universal Turing Machine (2Nd Ed.)� In: ed. by
Rolf Herken. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
1995. Chap. In�uences of Mathematical Logic on Computer Science,
pp. 289�299.

[DBP93] Rossana De Beni and Francesca Pazzaglia. Lettura e metacog-
nizione. Attività didattiche per la comprensione del testo. Guide per
l'educazione speciale. Centro Studi Erickson, 1993.

[DC80] Meredyth Daneman and Patricia A Carpenter. �Individual di�erences
in working memory and reading�. In: Journal of verbal learning and
verbal behavior 19.4 (1980), pp. 450�466.

[Dou04] Mark Dougherty. �What Has Literature to O�er Computer Science?�
In: Humanit 7.1 (2004), pp. 74�91.

108 CHAPTER 3. TEACHER SURVEY

[DR08] Michael De Raadt. �Teaching programming strategies explicitly to
novice programmers�. PhD thesis. University of Southern Queensland,
2008.

[DSL18] Rodrigo Duran, Juha Sorva, and So�a Leite. �Towards an Analysis of
Program Complexity From a Cognitive Perspective�. In: Proceedings
of the 2018 ACM Conference on International Computing Education
Research. ICER '18. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 21�30. doi: 10.1145/3230977.3230986.

[DT19] Peter J. Denning and Matti Tedre. Computational thinking. Mit Press,
2019.

[DT21] Peter J. Denning and Matti Tedre. �Computational Thinking: A
disciplinary perspective�. In: Informatics in Education 20.3 (2021),
pp. 361�390.

[Fin+20] Sally Fincher et al. �Notional Machines in Computing Education: The
Education of Attention�. In: Proceedings of the Working Group Re-
ports on Innovation and Technology in Computer Science Education.
ITiCSE-WGR '20. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 21�50. doi: 10.1145/3437800.3439202.

[FM93] Luciana Ferraboschi and Nadia Meini. Strategie semplici di lettura.
Esercizi guida per la comprensione del testo. Materiali di recupero e
sostegno. Centro Studi Erickson, 1993.

[Ful+07] Ursula Fuller et al. �Developing a computer science-speci�c learning
taxonomy�. eng. In: ACM SIGCSE Bulletin 39.4 (2007), pp. 152�170.

[Ger91] Morton Ann Gernsbacher. �Cognitive processes and mechanisms in
language comprehension : the structure building framework�. In: Psy-
chology of Learning and Motivation 27 (1991), pp. 217�263.

[Har96] Geo� Hart. �The Five W's: An Old Tool for the New Task of Audience
Analysis.� In: Technical Communication: Journal of the Society for
Technical Communication 43 (1996).

[Hat12] John Hattie. Visible learning for teachers: Maximizing impact on
learning. Routledge, 2012.

[Her10] Matthew Hertz. �What Do "CS1" and "CS2" Mean? Investigating
Di�erences in the Early Courses�. In: Proceedings of the 41st ACM
Technical Symposium on Computer Science Education. SIGCSE '10.
New York, NY, USA: Association for Computing Machinery, 2010,
pp. 199�203. doi: 10.1145/1734263.1734335.

[HLR11] Orit Hazzan, Tami Lapidot, and Noa Ragonis. Guide to Teaching
Computer Science: An Activity-Based Approach. 1st. Springer Pub-
lishing Company, Incorporated, 2011.

REFERENCES 109

[HT07] John Hattie and Helen Timperley. �The power of feedback�. In:Review
of educational research 77.1 (2007), pp. 81�112.

[JL83] Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive
science of language, inference, and consciousness. 6. Harvard Univer-
sity Press, 1983.

[KD78] Walter Kintsch and Teun A. van Dijk. �Toward a model of text com-
prehension and production.� en. In: Psychological Review 85.5 (1978),
pp. 363�394. doi: 10.1037/0033-295X.85.5.363.

[Lis+04] Raymond Lister et al. �A Multi-national Study of Reading and Trac-
ing Skills in Novice Programmers�. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Educa-
tion. ITiCSE-WGR '04. New York, NY, USA: ACM, 2004, pp. 119�
150. doi: 10.1145/1044550.1041673.

[Lop+08] Mike Lopez et al. �Relationships Between Reading, Tracing and Writ-
ing Skills in Introductory Programming�. In: Proc. 4th Int. Workshop
on Comput. Educ. Research. ICER '08. New York, USA: ACM, 2008,
pp. 101�112.

[LP15] Sally I. Lipsey and Bernard S. Pasternack. �Mathematics in Litera-
ture�. In: (2015).

[Mea91] H. Willis Means. �Using Literature in a Computer Science Service
Course: Improving Abstract/Critical Thinking Skills�. In: J. Comput.
Sci. Coll. 6.5 (Apr. 1991), pp. 30�34.

[MS68] H. Edward Massengill and Emir H. Shuford. The e�ect of 'Degree of
Con�dence' in student testing. eng. Tech. rep. 1968.

[MSABA10] Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-
Ari. �Learning Computer Science Concepts with Scratch�. In: Pro-
ceedings of the Sixth International Workshop on Computing Education
Research. ICER '10. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 69�76. doi: 10.1145/1839594.1839607.

[Mye90] J.Paul Myers. �The Central Role of Mathematical Logic in Computer
Science�. In: ACM SIGCSE Bulletin 22.1 (1990), pp. 22�26.

[Nar20] Enrico Nardelli. Coding e oltre. L'informatica nella scuola. Liscian-
ilibri, 2020.

[Nut07] Graham Nuthall. The Hidden Lives of Learners. NZCER Press, 2007.

[Oak84] Jane V. Oakhill. �Inferential And Memory Skills In Children's Com-
prehension Of Stories�. In: British Journal of Educational Psychology
54 (1984), pp. 31�39.

[Odi00] Piergiorgio Odifreddi. �Metodi Matematici Della Letteratura�. In:
Nuova Civiltà Delle Macchine 18.3 (2000), pp. 116�133.

110 CHAPTER 3. TEACHER SURVEY

[Pen87] Nancy Pennington. �Comprehension Strategies in Programming�. In:
Empirical Studies of Programmers: Second Workshop. USA: Ablex
Publishing Corp., 1987, pp. 100�113.

[Pie17] Aleksander Piecuch. �Zaniedbana algebra a nauczanie informatyki�.
eng. In: Edukacja - Technika - Informatyka VIII.3 (2017), pp. 288�
295.

[Qui14] Margareth Quindeless. �Logic in the curricula of Computer Science�.
spa. In: Revista AntioqueÃ+a de las Ciencias Computacionales y la
IngenierÃ-a de Software (RACCIS) 4.2 (2014), pp. 47�51.

[RBH16] Ebrahim Rahimi, Erik Barendsen, and Ineke Henze. �Typifying in-
formatics teachers' PCK of designing digital artefacts in Dutch up-
per secondary education�. In: International Conference on Informat-
ics in Schools: Situation, Evolution, and Perspectives. Springer. 2016,
pp. 65�77.

[Sad10] D. Royce Sadler. �Beyond feedback: Developing student capability in
complex appraisal�. In: Assessment & evaluation in higher education
35.5 (2010), pp. 535�550.

[Sad89] D. Royce Sadler. �Formative assessment and the design of instruc-
tional systems�. In: Instructional science 18.2 (1989), pp. 119�144.

[Sae+11] Mara Saeli et al. �Teaching Programming in Secondary School: A
Pedagogical Content Knowledge Perspective�. In: Informatics in Ed-
ucation 10 (Apr. 2011), pp. 73�88.

[SB07] Bharath Sriraman and Astrid Beckmann. Mathematics and Litera-
ture: Perspectives for interdisciplinary classroom pedagogy. Jan. 2007.

[SBGM02] Dominique MA Sluijsmans, Saskia Brand-Gruwel, and Jeroen JG van
Merriënboer. �Peer assessment training in teacher education: E�ects
on performance and perceptions�. In: Assessment & Evaluation in
Higher Education 27.5 (2002), pp. 443�454.

[SG79] Nancy Stein and Christine Glenn. �An Analysis of Story Comprehen-
sion in Elementary School Children�. In: New Directions in Discourse
Processing 2 (Jan. 1979).

[SPV20] Phil Steinhorst, Andrew Petersen, and Jan Vahrenhold. �Revisiting
Self-E�cacy in Introductory Programming�. In: Proceedings of the
2020 ACM Conference on International Computing Education Re-
search. 2020, pp. 158�169.

[VDB12] Jan H. Van Driel and Amanda Berry. �Teacher Professional Develop-
ment Focusing on Pedagogical Content Knowledge�. eng. In: Educa-
tional Researcher 41.1 (2012), pp. 26�28.

REFERENCES 111

[VDK83] Teun Adrianus Van Dijk and Walter Kintsch. Strategies of discourse
comprehension. 1983.

[VS07] Vesa Vainio and Jorma Sajaniemi. �Factors in novice programmers'
poor tracing skills�. In: SIGCSE Bull. 39.3 (2007), pp. 236�240. doi:
10.1145/1269900.1268853.

[VVMS99] A. Marie Vans, Anneliese Von Mayrhauser, and Gabriel Somlo. �Pro-
gram understanding behavior during corrective maintenance of large-
scale software�. In: International Journal of Human-Computer Studies
51.1 (1999), pp. 31�70. doi: https://doi.org/10.1006/ijhc.1999.
0268.

[WD97] Roland Wagner-Dobler. �Science-Technology Coupling: The Case of
Mathematical Logic and Computer Science.� eng. In: Journal of the
American Society for Information Science 48.2 (1997), pp. 171�83.

[WR99] Susan Wiedenbeck and Vennila Ramalingam. �Novice Comprehension
of Small Programs Written in the Procedural and Object-Oriented
Styles�. In: Int. J. Hum.-Comput. Stud. 51.1 (July 1999), pp. 71�87.
doi: 10.1006/ijhc.1999.0269.

[Zim00] Barry J. Zimmerman. �Self-e�cacy: An essential motive to learn�. In:
Contemporary educational psychology 25.1 (2000), pp. 82�91.

[ZR08] Christopher Zaleta and Kim Ruebel. �Exploring Mathematical Con-
cepts in Literature�. In: Middle School Journal 40 (2008), pp. 36�42.

112 CHAPTER 3. TEACHER SURVEY

Chapter 4

Student Survey

In order to test the provisional hypotheses suggested by the pilot studies discussed in
Chapter 2, as well as to address other related issues, we designed and developed an
instrument to investigate in more depth high-school students' understanding of itera-
tion. After setting the research questions in Section 4.1, we outline the methodology
in Section 4.2. Then, Section 4.3 presents the second survey for students, covering
a set of tasklets. In particular, we will summarize the motivations underlying the
choice of the tasks and the overall structure of the instrument. Moreover, in Sec-
tion 4.5, we will analyze the data collected from a sample of 225 high school students.
Finally, based on the obtained results, in Section 4.6 we attempt to formulate some
suggestions for teachers and in Section 4.7 we end with a few concluding remarks.

4.1 Aims and scope of the student survey

Our current endeavor is based on two previous works: (i) a students' survey that
included three small tasks involving basic looping constructs, as well as two ques-
tions on their subjective perception of di�culty (Chapter 2), and (ii) a teachers'
survey that aimed to ascertain their beliefs about major sources of issues for basic
programming concepts and their approach to the teaching and learning of iteration
constructs (Chapter 3).

Based on students' performance in the three small programming tasks included
in the pilot survey, discussed in Section 2.2, it is evident that several of them do
not master loop conditions and nested constructs. Nested loops and complex loop
conditions are also challenging in students' subjective perception.

Students' pilot survey outcomes suggests that, on the one hand, most students
seem to have developed a viable mental model of the basic workings of the underlying
machine. On the other hand, dealing at a more abstract level with loop conditions
and nested �ow-control structures appears to be challenging.

114 CHAPTER 4. STUDENT SURVEY

The aim of this instrument is to verify, from various points of view, high school
students' mastery of iteration constructs. By mastery we here mean conceptual
mastery of code structures, focusing on program comprehension rather than con-
struction [Izu+19]. The perspective is therefore di�erent from that suggested in
[CLM20], not evaluating program-writing skills but instead reading, understanding,
tracing and abstraction skills.

To sum up, we expect that the outcomes of the survey should allow us to identify
major areas of students' di�culties and whether they match with students' percep-
tion of their own self-con�dence. More speci�cally, this part of the study attempts
to address the following research questions:

Q1 To what extent are students at ease with a range of �technical� features implied by
iteration? (E.g., structure and role of loop conditions, loop-control variables, nesting
of �ow-control constructs, looping over arrays.)

Q2 Does the e�ort to trace code facilitate thinking of the overall computation at a higher
abstraction level?

Q3 Are students' answers more accurate when using �ow-chart or textual code repre-
sentations of programs?

Q4 To what extent are students self-con�dent about their comprehension of a program's
overall computation and purpose?

4.2 Methodology

In this work, we tried to understand novices' di�culties related to iteration through
a survey submitted to Computer Science high school students. Interviewing students
or administering a survey to students is becoming a popular way of data-collection
in Computer Science education [Haz99].

Measuring students' learning in Computer Science needs designing programming
tasks [Gin18; Gro+17]. Di�erently from the pilot survey, this one is made up of tasks
only. This choice allows to verify the real performances of the students, through
tasks that consider understanding of iterative programs from multiple points of
view. Furthermore, this survey considers students' levels of self-con�dence.

Tasks have been designed taking a cue from those proposed in the catalog (see
Appendix B) and extend the investigation on students' performance, regarding it-
erations, considered in the previous survey, analyzed in Chapter 2, where only three
tasks were submitted. Concerning high-order thinking skills tasks, the investigation
of connections between iteration and abstraction, presented in Chapter 1, was useful
in identifying areas to explore.

Mannila et al. [Man+20] claim that �the self-e�cacy-questions provided informa-
tion on how students experience the programming process and what they may �nd
di�cult � or uninteresting�, as they recall Zimmerman's previous work [Zim00]. For

4.3. CHARACTERIZATION OF THE INSTRUMENT 115

instance, the authors explore primary school students' performance through simple
tasks and match it with novices' self-e�cacy.

Smetsers Weeda & Smetsers [SWS17] argue that �ow-charts supports novice
programmers in facilitating planning and understanding. Furthermore, Chetty et
al. [CW15] realized that �students perceived the design to be bene�cial to their
learning�, and further that �success rates in the course improved dramatically�.

In the design of our investigation instrument we have included both a code only
version and a version which also includes a �ow-chart, as this choice allows us to
compare students' performance and their accuracy.

4.3 Characterization of the instrument

Beyond the suggestions drawn from the literature [Lis+06; TL14c; RBH17; IM20;
Man+20; MIS20], our study is based on the insights gained from our two previous
studies:

(i) A �rst survey asking high-school teachers about the role of iteration in their practice
and their perception of students' di�culties (Chapter 2, Section 2.1);

(ii) A second survey addressed to students, again asking them about their subjective
perception of di�culties, but also including three small tasks involving basic iteration
constructs (Chapter 2, Section 2.2).

Our main contribution is to o�er some key �ndings related to the investigation
of students' mastery of iteration.

� We plan to deepen students' mastery of nested iterations, sometimes not covered
with adequate examples.

� Iterations with complex conditions are rarely presented, and only few tutorials deal
with the topic e�ectively.

� With regard to reading and tracing skills that are usually acquired, we want to
analyze these skills and compare them with thinking and abstraction skills.

� Relate reading and tracing skills with reversibility and the ability to master it.

� Studies carried out with students of Mathematics and of Computer Science have
con�rmed that these students have a spatial cognitive style [HK99; WLB09; Ati+20].
We want to understand if this cognitive style actually has a value in the reading of
a �ow-chart algorithm with respect to coding.

� How much self-con�dence do the students display regarding the iterations and how
consistent is it with their actual level of mastery of the subject?

Data from teachers and students had con�rmed that iteration is a central concept
in the introductory courses and the data allowed to identify the treatment of loop
conditions and of nested constructs as major sources of students' di�culties with
loop constructs.

116 CHAPTER 4. STUDENT SURVEY

In particular, we pointed out three potential insights, which are worth fur-
ther investigation. By referring to a competency framework for computing edu-
cation [Fre+18], the �rst two pertain to the skills area and the third one to the
dispositions area:

� Firstly, identify suitable test cases in order to con�rm or refute working conjectures
regarding students' di�culties on iterations.

� Secondly, investigate treatment of loop conditions, especially in connection with the
statement of a problem.

� Finally, at the meta level, examine students' attitude to thinking critically about
their learning, asking them to make explicit their degree of self-con�dence in the
achievement of a task or of a part of it.

In other words, the question arises as to whether a representation with a �ow-
chart allows the use of the spatial cognitive style of reference to facilitate under-
standing, or whether understanding is made easier by reading the code. In addition,
we ask whether spatial styles act at di�erent levels.

In the previous survey [SM20] � where the focus aimed to program comprehen-
sion (code reading), not construction (code writing) � only three small problems
were included, referred to as tasklets, to address each of the learning dimensions
introduced in [Mir12], namely the understanding of the computation model under-
lying iteration, the ability to establish relations between the components of a loop
and the statement of a problem, and the ability to interpret the program structures
based on iteration.

Here the objective is to design a survey based on problems and exercises
(tasklets), to verify, from various points of view, the high school students' mastery
of iteration constructs. By mastery we mean conceptual mastery of code structures,
focusing on program comprehension rather than construction [Izu+19], the same
approach used in the students' pilot survey.

We have devised two tasksets, both consisting of 6 tasklets with a balanced
distribution over the areas and topics of Table 4.1, arranged in such a way that
students can be expected to complete the test in about one hour. The chosen
tasklets have been conceived in order to attempt to answer questions Q1�4 listed
above. Each tasklet asks one or two multiple-choice questions. In addition, the
programs of tasklets may be presented by code or �ow-charts. The survey has then
been made accessible online, the four resulting versions (2 tasksets × code/�ow-
chart modes) being assigned randomly. An English translation is available via this
link: http://nid.dimi.uniud.it/additional_material/iteration_survey.html

In Table 4.1, each area is labeled with the investigation question (tag) it pertains to.
Any single tasklet usually involves topics in more than one area. While the technical

4.3. CHARACTERIZATION OF THE INSTRUMENT 117

Table 4.1: Areas and topics addressed by the tasklets.

A. Tasklets addressing higher-order thinking
skills (Q2, Q4)

1. Abstraction on the computational
model

a. Equivalence (nested constructs,
for/while, do-while/while . . .)

b. Reversibility

2. Relationships with the application do-
main

a. Completion (of condition, expres-
sion, statement . . .)

b. Functional purpose

B. Tasklets addressing code features (Q1, Q3)

1. Structural features

a. Plain loop

b. Nested conditional

c. Nested loop

2. Processing plan

a. Exit condition

b. Loop control variable

c. Downward for loop

B. (continued)

3. Conditions

a. Simple condition

b. Composite condition

c. Boolean expression/vari-
able

C. Tasklets addressing code execu-
tion, conceivably via tracing (Q1,
Q2)

1. Output/�nal state

2. Number of iterations

D. Tasklets addressing data types
(Q1)

1. Numerical data (only)

2. Non-numerical data

3. Array data

SC. Perception of self-con�dence (Q4)

FC. Flow-chart versus code (Q3)

code features (Q1) are intrinsically related to any given tasklet, the correlation
between tracing e�ort and abstraction (Q2) is addressed by asking two subsequent
questions in the same task. On the other hand, the role of �ow-charts (Q3) is
expected to result from comparing the outcomes for two randomly assigned versions
of the same task, where the program is presented as �ow-chart vs. code. Finally, the
indication of the subjective perception of self-con�dence (Q4), in a 4-grade Likert
scale, is required for each question concerning high-level thinking skills.

As to the last point (Q4), one of the insights emerging from the analysis in [SM20]
� where we argued that students seem to underestimate their di�culties when
dealing with loop conditions � suggests we should investigate also students' attitude
when thinking critically about their learning, i.e. at the meta level, in particular by
asking them to make explicit their degree of self-con�dence in the achievement of a
task or a part of it.

Most items in Table 4.1 should be self-explanatory, but in the following subsec-

118 CHAPTER 4. STUDENT SURVEY

tions we will elaborate a little on each of the four reported areas.1

A. Tasklets addressing higher-order thinking skills

This area covers two broad categories, concerning abstraction over the computation
structure and functional abstraction in connection with some problem domain.

Cetin [CD17] stated that �the connection between loops and re�ective abstrac-
tion lies in the genetic decomposition of loops�, identifying four cases: pre-action
conception of loops, action conception of loops, process conception of loops, object
conception of loops.

Functional abstraction has also been investigated here through reversible tasks.
Reversibility is a property of a program or function that indicates it could be brought
back to its original state, but it is a topic that only few scholars have explored, and
only recently have papers been presented on the subject. Ginat & Armoni [GA06]
consider the central role of �reverse thinking� in Computer Science. Teague & Lis-
ter [TL14b] investigated to what degree novice programmers manifest the ability
to work with this concept of reversibility. They started from the assumption that
Piaget had identi�ed reversibility as an indicator of the ability to reason at a con-
crete operational level. Their results suggested �that many students remain at the
sensorimotor and pre-operational levels because all the instruction they receive is
at the concrete operational level�. They conclude the analysis arguing that when
students work with concepts like reversibility they could reason abstractly.

Izu et al. [IPW17] argued that �reasoning about reversibility requires students to
have a mental model of the state, thus they should reason about program behavior as
a whole, compared with reasoning about concrete cases using testing and tracing�,
but students often fail to correctly reason about reversibility. Moreover, Izu et
al. [IMW18] suggested that the concept of reversibility could be a useful resource
for educators to assess and develop students' understanding of program behavior.
Mirolo et al. [MI19; MIS20] analyzed reversibility tasks and exercises under the
lens of the SOLO taxonomy [BFC82; Lis+06; Ful+07; MHD09].Their analysis has
provided insights into novices' mastery of conditional constructs:

� students do not seem to be careful enough while dealing with border computations;

� the lack of an explicit Else branch turns out to a�ect students' analysis of the code
behavior;

� a signi�cant number of students appear to face problems in order to master the
correlation between conditions and operations in the reversing code.

To test students' abilities in the former category we use equivalence [IM20] and
reversibility [TL14b; MIS20] tasks, as both kinds of assignments are inspired by
recent literature. For instance, a sample equivalence task is shown in Figure 4.1.

1A link to a public repository with an English versions of the whole set of tasklets is available
via the link http://nid.dimi.uniud.it/additional_material/iteration_survey.html.

4.3. CHARACTERIZATION OF THE INSTRUMENT 119

The role of reversibility in learning, on the other hand, dates back to Piaget's work
on cognitive development, where it is considered as an indicator of achievement of
the concrete operational stage. So, both equivalence and reversibility tasks require
students to reason about program behavior comprehensively, generalizing what could
be ascertained by tracing code execution for some speci�c input data.

reference option 1 option 2
program

option 3 option 4

Figure 4.1: Equivalence tasklet: Which option is equivalent to the reference program?

The tasklets in the second broad category, addressing functional abstraction,
include more common types of questions which ask to choose the appropriate con-
dition/expression/statement to complete a program intended to achieve a given
purpose. We can see in Figure 4.2 an example of functional purpose tasklet.

 // input: char[] v s.t. v.length > 0

 int n = v.length; // lunghezza array v

 char x = v[n–1];

 for (int i=n–2; i>=0; i=i–1) {

 v[i+1] = v[i];

 }

 v[0] = x;

 output("v = " + v);

Figure 4.2: Functional purpose tasklet: What could be the purpose of the program?

Equivalently, it is asked to identify the purpose of a given program as a further
variation on the �Explain in Plain English� theme [Lis+06]. The completion tasks are
also motivated by the unexpected (to a similar extent) di�culties found in [SM20]
to �t the loop condition with the speci�cation of a straightforward problem.

120 CHAPTER 4. STUDENT SURVEY

B. Tasklets addressing code features

Much of the structure of area B is based on the data collected in our two pilot sur-
veys, answered by teachers [SM19] and by students [SM20], which suggest that loop
conditions and nested constructs can be identi�ed as major sources of di�culties.
Nested loops, in particular, appear to be a signi�cant challenge also in the learn-
ers' subjective perception. Other researchers have identi�ed widespread issues and
misconceptions regarding precisely the nested constructs [Gin04; MB�18; Cet+20],
and in [Cet15], for instance, a theoretical �action-process-object-schema� framework
is suggested to analyze student's cognitive obstacles in this respect.

Nested loops are not explicitly mentioned in Luxton-Reilly et al. [LR+18] re-
view, but there are some works on this topic, while for-loop, while-loop and nested
loops are investigated by [TG10]. In his work, Ginat [Gin04] showed that students
have di�culties with nested loops. Students from di�erent grade levels show a cog-
nitive di�culty in understanding nested loops [IWP16; MB�18]. In this context,
Yarmish [YK07] suggested that �when teaching nested loops teachers should focus
on student recognition of problems where nested loops should be used�.

Cetin [Cet15] explored students' understanding of loops and nested loops con-
cepts. In particular, his results showed that the n-level nested loop requires an un-
derstanding of the iteration status; so student should develop mental constructions.
In a later work Cetin [Cet+20] identi�es two typical misconceptions: simultaneous
nested loops misconception and low level understanding of loops concept.

Koppelman and Van Dijk [KD10] stated that �nested while-loops generate a lot
of mistakes�, that �novices did not usually recognize the need for a nested loop�,
and proposed some test tasks. Furthermore, Cerny et al. [CHR13] conclude that
nested loops have a hierarchical structure and this opens the possibility of using
hierarchical segment-based abstractions to analyze them.

Moreover, Grover & Pea [GP18b] consider that Logic and logical thinking can
be considered as a case of computational thinking, with conditions and complex
conditions, as well as to construct Boolean expressions, are important topics in
introductory courses. They also imply knowledge of logical and mathematical pre-
requisites.

With regard to identifying various patterns related to iterations, several works
report patterns mainly with for-loops [Lis11; Kes19; IPW19; Izu+19; EHR20]. Even
when patterns related to nested iterations are considered, they usually take nested
for -loop considerations [Lop+08; Cet15; LDC20]. We believe that the while-loop
is signi�cant, as it is a more general iterative control construct, which forces the
student to identify a condition as well as to master relations and Boolean operators.

A couple of additional topics pertaining to this area concern the understanding
of the treatment of loop-control variables, see e.g. [DB86], and the di�erent level
of mastery of downward (or down-counting) loops vs. more stereotypical upward
(up-counting) loops, pointed out e.g. in [KD03].

4.3. CHARACTERIZATION OF THE INSTRUMENT 121

C. Tasklets addressing code execution

Small problems that can be solved at low levels of abstraction by tracing the code
execution for speci�c input data are certainly among the most common programming
tasks in which novices are required to engage. Ordinarily, tracing is deemed to be
a basic ability �to build [...] higher-level comprehension skills upon� [Lis+04], even
though it is not a su�cient prerequisite in this respect [TL14a].

Our main purpose, however, is to address the investigation question Q2, namely,
whether code tracing can, to some extent, support higher-order thinking in the task
at hand. In [SM20] we indeed found some cues suggesting that students' performance
on more abstract issues implied by the task may improve when they are actually led
to engage in some careful tracing, but that they tend to elude this e�ort to check
their conjectures about program behavior. The importance of tracing in novice
programmers' learning was already analyzed by Perkins et al. in 1986 [Per+86].

More recently, Lister et al. [Lis+04] argued �that many students have a fragile
grasp of both basic programming principles and the ability to systematically carry
out routine programming tasks, such as tracing through code�, an important require-
ment for evaluating and interpreting the code. The authors suggested that �it may
be appropriate to �rst teach systematic tracing as a base skill, then allow students
to build these higher-level comprehension skills upon that base�.

Furthermore, the authors take up what had already been analyzed by Philpott
et al. [PRW07], who had indicated that �high tracing scores clearly establishes a link
between well developed tracing skills and the ability to think relationally�. In fact
Lopez et al. [Lop+08] considered both non-iterative and iterative tasks, and found
that many students struggle with tracing loops, in particular while-loop. They tested
the hypothesis that there might be a positive correlation between program writing
skill and tracing skill, �particularly when the tracing involved loops�.

Venables et al. [VTL09] con�rmed Lopez et al.'s results, and furthermore pro-
posed new types of question requiring students to trace iterative code, while the
other type required students to explain what a piece of code did. However, they did
�nd that some aspects of their model are sensitive to the particular exam questions
used. In other terms they �found that student performance on explaining code was
hard to characterize, and the strength of the relationship between explaining and
code writing is particularly sensitive to the speci�c questions asked�.

Moreover, Teague & Lister [TL14a] presented evidence that some novice pro-
grammers have the ability to hand execute � make a trace � pieces of code and
yet are not able to explain what that code does. This result is consistent with
neo-Piagetian stage theory of programming.

Thus, the idea is to assign similar tasks pertaining to the �abstract� area A, either
including or not a �rst question that can be answered via tracing. More speci�cally,
such questions ask about the outcome or the overall number of iterations for the
given input data.

122 CHAPTER 4. STUDENT SURVEY

D. Tasklets addressing data types

The covered data types are essentially numbers, booleans, strings, and arrays. There
are manifold reasons to include a range of data types. On the one hand, it is desirable
that the set of tasklets is not perceived as entailing �just mathematical stu�.�

The importance for students to master arrays has been a well-known concept for
some time [SS88]. Thompson et al. [Tho+06] argue that in the SOLO Advanced
Multistructural (AM) category, that also has an element of a relational understand-
ing, the students recognized that the way the loop is constructed a�ects the direction
in which the array is processed, and the majority of the students could identify valid
criteria to classify the code segments. Other works, e.g. Yarmish and Kopec [YK07]
investigated students' errors that related to two-dimensions arrays, and Alzahrani
et al. [Alz+18] described errors related to vector (one-dimension arrays) index.

On the other, we want to test how students deal with Boolean data and arrays.
The indexed access to arrays, in particular, can be problematic for novices, especially
in connection with iteration � see e.g. some recent work [RDLR20; MS21].

SC. Perception of self-Con�dence

In the design of the survey we deliberately included the students' self-con�dence
analysis, a type of investigation still used very little in CSE at the moment [SPV20].
Students' self-con�dence [MS68; HH82; Ban00] constitutes an attitude about their
skills and abilities. It means they accept and trust themselves and have a sense of
control over their activities. A low level of self-con�dence might make a student
feel full of self-doubt. Having high or low self-con�dence is rarely related to actual
abilities, and mostly based on perceptions. Self-con�dence, when measured, o�ers
predictive advantages when a task is familiar [Zim00].

There are various ways in which self-con�dence beliefs contribute to the devel-
opment of cognitive skills, and we want to explore students' beliefs about their
self-e�cacy in mastering iterations, in various forms.

Each tasklet requires to reason about a given program by asking at least one
question in area A, and after answering this question students also have to indi-
cate their perceived level of self-con�dence in a Likert scale ranging from 1 (not
con�dent at all) to 4 (fully con�dent). Apart from the potential pedagogical im-
plications [SPV20], we decided to include this feature because our previous survey
showed that the subjective perception of di�culty is not always aligned with the
actual performance in a task [SM20].

FC. Flow-chart vs. code

Already in 1983 Ramsey et al. [RAVD83] performed an experiment to assess the
relative merits of program design languages (PDLs) and �ow-charts as techniques
for the development and documentation of detailed designs for computer programs.
They �gured out that �the use of a PDL by a software designer, for the develop-
ment and description of a detailed program design, produced better results than

4.3. CHARACTERIZATION OF THE INSTRUMENT 123

did the use of �owcharts�. Their results described that �the designs appeared to
be of signi�cantly better quality, involving more algorithmic or procedural detail,
than those produced using �owcharts�, and ��owchart designs exhibited considerably
more abbreviation and other space-saving practices than did PDL designs�.

However, Smetsers Weeda & Smetsers [SWS17] argued that ��owcharts support
novice programmers to keep track of where they are and give guidance to what they
need to do next, similar to a road-map�. Furthermore �they facilitate planning, un-
derstanding and decomposing the problem, communicating ideas in an early stage,
step-wise implementation and evaluating and re�ecting on the solution (and ap-
proach) as a whole�.

Moreover, Rahimi et al. [RBH17] described a �owchart-based approach to iden-
tifying secondary school students' misconceptions on basic algorithm. Their �results
suggest that, given their abstract and language-independent nature, �owcharts can
be considered as an e�ective tool for revealing students' di�culties in understand-
ing algorithmic concepts�, so they suggested �the usage of �owcharts as a formative
assessment tool� to Informatics teachers.

Cetin [Cet+20] shared the implicit importance of the spatial cognitive style and
he argued that �visualization is one of the ways to help students improve their
understanding�. He �gured out that �visualization based instruction helped pre-
service teachers improve their understanding of loops concept�, we can hypothesize
that the same bene�t can also be identi�ed for students.

Moreover, Fincher et al. [Fin+20] studied that graphical presentation provided
insight into misconceptions about the semantics of for-loops.

For instance, a task in code and �ow-chart versions is shown in Figure 4.3.

Putting the pieces together

Overall, we have de�ned 10 tasklets, labeled T1�T10 in Table 4.2, which show their
distribution in terms of areas/topics, as well as relative to the two versions of the
survey intended to be assigned to students, either version consisting of 6 tasklets.
The �rst version is connected to �tracing-based� questions, whilst the second one to
�more abstract� questions. For the sake of comparison, T3 and T7 are presented
in two related variants, distinguished by additional label su�xes a/b. Moreover,
the programs of three tasklets may be represented either as code or as �ow-charts
(line FC in the table). Of course, a single tasklet can address more topics, usually
pertaining to di�erent areas.

The criteria underlying the structure of the two versions of the test include:
use of one or two multiple-choice questions for each tasklet; balanced distribution,
relative to the two versions, among areas and topics (see Table 4.1); reasonable size
to complete the test in about one hour (based on our previous experience). This
instrument has then been made accessible online, the version and the code/�ow-
chart format of some tasklets being assigned randomly.

124 CHAPTER 4. STUDENT SURVEY

Figure 4.3: Equivalence by code and by �ow-chart.

4.4 Tasklets

Survey 1 tasklets

Tasklet T1

Tasklet T1 aimed to explore the ability to draw connections between a simple loop
condition and the statement of a problem by reasoning on a code fragment.
Problem statement: The following program calculates the remainder and the quotient
of the integer division m/n, where m ≥ 0 and n > 0. Of the conditions below, which
one is correct for the while loop?.

 // input: int m ≥ 0, int n > 0

 int x = m;

 int y = 0;

 while (??) {

 x = x – n;

 y = y + 1;

 }

 output("x = " + x + ", y = " + y);

Figure 4.4: Tasklet T1.

The six available options were: x > 0, x < n, x ≥ n, x > n, x < m, y ≤ n.

4.4. TASKLETS 125

Table 4.2: Classi�cation of tasklets across areas/topics and test versions.

Ref. to Table 4.1 Version 1 Version 2
A.1.a T4, T10 T5, T9
A.1.b T2, T7b T7a, T8
A.2.a T1 T3b, T6
A.2.b T3a, T7b T7a
B.1.a T1, T3a, T7b T7a, T8, T9
B.1.b T2 T3b, T6
B.1.c T4, T10 T5
B.2.a T1 T3b
B.2.b T7b, T10 T5, T6, T7a
B.2.c T7b T8
B.3.a T1, T4, T7b, T10 T5, T6, T7a, T9
B.3.b T2, T3a T3b, T8
B.3.c T3a T3b
C.1 T4, T10 T5
C.2 T2, T3a T8, T9
D.1 T1, T2, T4 T5
D.2 T3a, T7b, T10 T3b, T6, T7a, T8, T9
D.3 T7b, T10 T5, T7a
FC T2, T3a, T4 T3b, T8, T9
SC T1, T2, T3a, T4, T7b, T10 T3b, T5, T6, T7a, T8, T9

Tasklet T2

Tasklet T2/i addressed students' mastery of the �mechanics� of the execution of a
loop controlled by a non-trivial condition and included a nested if.
Problem statement: With reference to the following program, if the input values are
m = 15 and n = 44, how many iterations of the while loop will be performed?.

 // input: int m > 0, int n > 0

 int x = m;

 int y = n;

 while ((x > 1) && (y > 1) && (x != y)) {

 if (x < y) {

 y = y – x;

 } else {

 x = x – y;

 }
 }

 output("x = " + x + ", y = " + y);

(a) Code version

x := m

y := n

x := x – yy := y – x

input m, n

output x, y

x < y

(x > 1) and (y > 1)

and (x ≠ y)

true

true

false

false

(b) Flow-chart version

Figure 4.5: Tasklet T2.

The six available options were: no iteration, 1, 2, 3, 4 or more, the loop never
ends.

Tasklet T2/ii addressed students' mastery of reversibility regarding execution of
a loop controlled by a non-trivial condition and included a nested if.
Problem statement: If at the end of the program execution the values reported in

126 CHAPTER 4. STUDENT SURVEY

the output are x = 1 and y = 14, what were the input values of m and n?.

The six available options were: x = 1 and y =14 they can never be the output of
the program, m = 7 and n = 28, m = 15 and n = 44, m = 44 and n = 1, m = 162
and n = 10, we cannot know the input values of m and n because there are multiple
possibilities.

Tasklet T3a

Tasklet T3a/i addressed students' mastery of the �mechanics� regarding execution
of a loop controlled by a non-trivial condition.
Problem statement: With reference to the following program, if the input value is
n = 23, how many iterations of the while loop will be executed? (The % operation
denotes the remainder of the integer division.).

 // input: int n > 1

 boolean p = (n == 2) || (n % 2 > 0);

 int k = 3;

 while (p && (k*k <= n)) {

 p = n % k > 0;

 k = k + 2;

 }

 output("p = " + p);

(a) Code version

p := (n == 2) or (n % 2 > 0)

k := 3

p := n % k > 0

k := k + 2

input n

output p

p and (k*k ≤ n)

true

false

(b) Flow-chart version

Figure 4.6: Tasklet T3a.

The six available options were: no iteration, 1, 2, 3, 4 or more, the loop never
ends.

Tasklet T3a/ii addressed the students' ability to identify the functional purpose.
Problem statement: And could you identify the purpose of the program, for any
input value n > 1? (The program is the same as in the previous question.).

The six available options were: calculate the smallest divisor of n, calculate the
greatest divisor of n, check if n is a prime number, check if k is a divisor of n,
calculate the integer part of the square root of n, starting at 3 and until p is true
count how many times 2 can be added before reaching the square root of n.

Tasklet T4

Tasklet T4/i addressed the students' ability to grasp comprehensively nested com-
binations of conditionals and iteration constructs.

4.4. TASKLETS 127

Problem statement: With reference to the following program, if the input values are
m = 6 and n = 21, what will be the output value of x?.

 // input: int m > 0, int n > 0

 int x = m;

 int y = n;

 while (x != y) {

 while (x < y) {

 x = x + m;

 }

 while (x > y) {

 y = y + n;

 }
 }

 output("x = " + x);

(a) Code version

x := m

y := n

x := x + m

input m, n

output x

x < y

x ≠ y

true

false

false

true

y := y + nx > y
true

false

(b) Flow-chart version

Figure 4.7: Tasklet T4.

The six available options were: x = 24, x = 27, x = 42, x = 84, x = 126, the
loops never end.

Tasklet T4/ii addressed the students' ability to identify functional equivalence.
Problem statement: The program of the previous question, also reported here, is
applied for integer input values m > 0 and n > 0. Which of Programs 1�4 is
equivalent to it? (Two programs are equivalent if the �nal states, at the end of their
respective executions, are always the same when the initial states are the same, and
provided that the initial states satisfy the input requirements.).

 int x = m;

 int y = n;

 while (x != y) {

 while (x < y) {

 x = x + x;

 }

 while (x > y) {

 y = y + y;

 }
 }

 output("x = " + x);

(a) Program 1

 int x = m;

 int y = n;

 while (x != y) {

 do {

 x = x + m;

 } while (x < y);

 do {

 y = y + n;

 } while (x > y);
 }

 output("x = " + x);

(b) Program 2

 int x = m;

 int y = n;

 while (x != y) {

 if ((x < y) || (x > y)) {

 x = x + m;

 y = y + n;

 }
 }

 output("x = " + x);

(c) Program 3

 int x = m;

 int y = n;

 while (x != y) {

 if (x < y) {

 x = x + m;

 } else {

 y = y + n;

 }
 }

 output("x = " + x);

(d) Program 4

Figure 4.8: Tasklet T4: the four programs to be compared.

Tasklet T7b

Tasklet T7b/i addressed students' mastery of reversibility regarding execution of a
loop controlled concerning with array manipulation.
Problem statement: With reference to the following program, if the �nal state of the

128 CHAPTER 4. STUDENT SURVEY

character array is v = {`s', `t', `o', `p'}, what was the initial state of v before the
execution of the program? (The integer v.length represents the number of components
of the array v.).

 // input: char[] v s.t. v.length > 0

 int n = v.length; // lunghezza array v

 char x = v[n–1];

 for (int i=n–2; i>=0; i=i–1) {

 v[i+1] = v[i];

 }

 v[0] = x;

 output("v = " + v);

Figure 4.9: Tasklet T7b.

The six available options were: v = { `s', `t', `o', `p' }, v = { `t', `o', `p', `p' },
v = { `t', `o', `p', `s' }, v = { `p', `s', `t', `o' }, v = { `p', `o', `t', `s' },
v = { `t', `s', `p', `o' }.

Tasklet T7b/ii addressed the students' ability to identify the functional purpose.
Problem statement: What could be the purpose of the program?.

The six available options were:

1. running the program, the state of the array v does not change;

2. move the elements of v one place to the right, losing the rightmost element;

3. rotate the elements of v one place to the right, inserting the rightmost one at the
beginning;

4. rotate the elements of v one place to the left, inserting the leftmost one at the end;

5. reverse the order of the elements of v;

6. swap all subsequent pairs of components of v.

Tasklet T10

Tasklet T10/i addressed the students' ability to grasp comprehensively nested com-
binations of conditionals and iteration constructs.
Problem statement: With reference to the following program, if the initial state, in
input, of the string array is v = �one�, �two�, �ten�, �ten�, �ten�, �two�, �two�, �one�,
�two�, what will be the output values of v[k] and n? (The integer v.length represents
the number of components of the array v; the equals method compares two strings
and returns true if they are equal, false if they are di�erent.).

4.4. TASKLETS 129

 // input: String[] v s.t. v.length > 0

 int k = 0;

 int n = 0;

 for (int i=0; i<v.length; i=i+1) {

 int c = 1;

 for (int j=i+1; j<v.length; j=j+1) {

 if (v[j].equals(v[i])) {

 c = c + 1;

 }
 }

 if (c > n) {

 k = i;

 n = c;

 }
 }

 output("v[k] = " + v[k] + ", n = " + n);

Figure 4.10: Tasklet T10.

The six available options were: v[k] = �one�, n = 2; v[k] = �two�, n = 1;
v[k] = �two�, n = 2; v[k] = �two�, n = 4; v[k] = �two�, n = 9; v[k] = �ten�, n = 3.

Tasklet T10/ii addressed the students' ability to identify functional equivalence.
Problem statement: The program of the previous question, also reported here, is
applied when the string array v contains at least one element. Which of Programs
1�4 is equivalent to it? (Two programs are equivalent if the �nal states, at the end
of their respective executions, are always the same with the same initial states that
satisfy the input requirements.).

 int k = 0;

 int n = 0;

 int i = 0;

 do {

 i = i + 1;

 int c = 1;

 for (int j=i+1; j<v.length; j=j+1) {

 if (v[j].equals(v[i])) {

 c = c + 1;

 }
 }

 if (c > n) {

 k = i;

 n = c;

 }

 } while (i < v.length);

 output("v[k] = " + v[k] + ", n = " + n);

(a) Program 1

 int k = 0;

 int n = 0;

 int i = 0;

 do {

 int c = 1;

 for (int j=i+1; j<v.length; j=j+1) {

 if (v[j].equals(v[i])) {

 c = c + 1;

 }
 }

 if (c > n) {

 k = i;

 n = c;
 }

 i = i + 1;

 } while (i < v.length);

 output("v[k] = " + v[k] + ", n = " + n);

(b) Program 2

 int k = 0;

 int n = 0;

 int i = 0;

 do {

 int c = 1;

 for (int j=i+1; j<v.length; j=j+1) {

 if (v[j].equals(v[i])) {

 c = c + 1;

 }
 }

 if (c > n) {

 k = i;

 n = c;

 }

 i = i + 1;

 } while (i == v.length);

 output("v[k] = " + v[k] + ", n = " + n);

(c) Program 3

 int k = 0;

 int n = 0;

 int i = 0;

 do {

 int c = 1;

 for (int j=i+1; j<v.length; j=j+1) {

 if (v[j].equals(v[i])) {

 c = c + 1;

 }
 }

 if (c > n) {

 k = i;

 n = c;

 }

 i = i + 1;

 } while (i >= v.length);

 output("v[k] = " + v[k] + ", n = " + n);

(d) Program 4

Figure 4.11: Tasklet T10: the four programs to be compared.

Survey 2 tasklets

Tasklet T3b

Tasklet T3b addressed students' mastery of the �mechanics� of loop controlled exe-
cution by a non-trivial condition and included a nested if.

130 CHAPTER 4. STUDENT SURVEY

Problem statement: The following program checks if the input value n ≥ 2 is a prime
number. Of the conditions below, which one correctly completes the compound con-
dition of the while loop?.

 // input: int n > 1

 boolean p = true;

 int x = 2;

 int y = n / 2;

 while (p && (??)) {

 if (x*y < n) {

 x = x + 1;

 } else if (x*y > n) {

 y = y – 1;

 } else {

 p = false;

 }
 }

 output("p = " + p);

(a) Code version

p := true

x := 2

y := n / 2

x := x + 1

input n

output p

x*y < n

p and (??)

true

false

false

true

y := y – 1x*y > n
true

false

??

p := false

(b) Flow-chart version

Figure 4.12: Tasklet T3b.

The six available options were: y ≤ n, y > n, x < y, x ≤ y, n % x, n % y.

Tasklet T5

Tasklet T5/i addressed the students' ability to grasp comprehensively nested com-
binations of conditionals and iteration constructs.
Problem statement: With reference to the following program, if the input value is
n = 4, what will be the output value of b[n/2] = b[2]? (The �rst statement creates
an array of integers b with n+ 1 elements.).

 // input: int n >= 0

 int[] b = new int[n+1];

 b[0] = 1;

 for (int i=1; i<=n; i=i+1) {

 b[i] = 1;

 for (int j=i–1; j>0; j=j–1) {

 b[j] = b[j–1] + b[j];

 }
 }

 output("b[" + (n/2) + "] = " + b[n/2]);

Figure 4.13: Tasklet T5.

The six available options were: b[2] = 1, b[2] = 3, b[2] = 4, b[2] = 6, b[2] = 10,
none of the previous answers.

4.4. TASKLETS 131

Tasklet T5/ii addressed students' ability to evaluate functional equivalence of
nested loops concerning with array manipulation.
Problem statement: The program of the previous question, also reported here, is
applied for input values of n ≥ 0. Which of Programs 1�4 is equivalent to it? (Two
programs are equivalent if the �nal states, at the end of their respective executions,
are always the same when the input value is the same and satis�es the indicated
requirements.).

 int[] b = new int[n+1];

 b[0] = 1;

 for (int i=1; i<=n; i=i+1) {

 b[i] = 1;

 int j = i – 1;

 while (j > 0) {

 j = j – 1;

 b[j] = b[j–1] + b[j];

 }
 }

 output("b["+(n/2)+"] = "+b[n/2]);

(a) Program 1

 int[] b = new int[n+1];

 b[0] = 1;

 for (int i=1; i<=n; i=i+1) {

 b[i] = 1;

 int j = i – 1;

 while (j > 0) {

 b[j] = b[j–1] + b[j];

 j = j – 1;

 }
 }

 output("b["+(n/2)+"] = "+b[n/2]);

(b) Program 2

 int[] b = new int[n+1];

 b[0] = 1;

 for (int i=1; i<=n; i=i+1) {

 b[i] = 1;

 int j = i;

 while (j > 0) {

 j = j – 1;

 b[j] = b[j–1] + b[j];

 }
 }

 output("b["+(n/2)+"] = "+b[n/2]);

(c) Program 3

 int[] b = new int[n+1];

 b[0] = 1;

 for (int i=1; i<=n; i=i+1) {

 b[i] = 1;

 int j = i – 1;

 do {

 j = j – 1;

 b[j] = b[j–1] + b[j];

 } while (j > 0);
 }

 output("b["+(n/2)+"] = "+b[n/2]);

(d) Program 4

Figure 4.14: Tasklet T5: the four programs to be compared.

Tasklet T6

Tasklet T6 aimed to explore the ability to identify connections between a simple
loop condition and the statement of a problem by reasoning on a code fragment.
Problem statement: The following program determines how many times a non-empty
pattern p, for example a word, occurs in a text t, where both p and t are character
strings. Which of the conditions below on the for loop control variable is correct?
(The length method returns the length of a string; equals check if two strings are
equal; substring(i, i + k) extracts a substring of k characters starting from that of
index i.).

 // input: String t, String p s.t. p.length() > 0

 int n = t.length();

 int k = p.length();

 int c = 0;

 for (int i=0; ?? ; i=i+1) {

 if (t.substring(i,i+k).equals(p)) {

 c = c + 1;

 }
 }

 output("c = " + c);

Figure 4.15: Tasklet T6.

The six available options were: i ≤ n, i < n, i < n − 1, i ≤ n − k, i < n + k,
i < k.

132 CHAPTER 4. STUDENT SURVEY

Tasklet T7a

Tasklet T7a/i addressed students' mastery of reversibility regarding execution of a
loop controlled by a non-trivial condition and included a nested if.
Problem statement: With reference to the following program, if the �nal state of the
character array is v = {`s', `t', `o', `p'}, what was the initial state of v before the
execution of the program? (The integer v.length represents the number of components
of the array v.).

 // input: char[] v s.t. v.length > 0

 int n = v.length;

 char x = v[0];

 for (int i=1; i<n; i=i+1) {

 v[i–1] = v[i];

 }

 v[n–1] = x;

 output("v = " + v);

Figure 4.16: Tasklet T7a.

The six available options were: v = { `s', `t', `o', `p' }, v = { `s', `s', `t', `o' },
v = { `t', `o', `p', `s' }, v = { `p', `s', `t', `o' }, v = { `p', `o', `t', `s' },
v = { `t', `s', `p', `o' }.

Tasklet T7a/ii addressed the students' ability to identify the functional purpose.
Problem statement: What could be the purpose of the program?.

The six available options were:

1. running the program, the state of the array v does not change;

2. move the elements of v one place to the left, losing the leftmost element;

3. rotate the elements of v one place to the right, inserting the rightmost one at the
beginning;

4. rotate the elements of v one place to the left, inserting the leftmost one at the end;

5. reverse the order of the elements of v;

6. swap all subsequent pairs of components of v.

Tasklet T8

Tasklet T8/i addressed students' mastery of the �mechanics� of loop controlled ex-
ecution regarding string manipulation.
Problem statement: With reference to the following program, if the binary input
string is b = �10110111�, how many iterations of the while loop will be performed?
(The length method returns the length of a string; + concatenates two strings; charAt

4.4. TASKLETS 133

returns the character at a given position in the string; substring (0, i) extracts a sub-
string of characters starting from the initial one of index 0.).

 // input: String b of char '0'/'1'

 String s = "";

 int i = b.length() – 1;

 while (! ((i < 0) || (b.charAt(i) == '0'))) {

 s = "0" + s;

 i = i – 1;

 }

 s = "1" + s;

 if (i > 0) {

 s = b.substring(0,i) + s;

 }

 output("s = " + s);

(a) Code version

s := ""

i := b.length() – 1

input b

output s

not ((i < 0) or (b.charAt(i) = '0'))
true

false

s := b.substring(0,i) + si > 0
true

false

s := "0" + s

i := i – 1

s := "1" + s

(b) Flow-chart version

Figure 4.17: Tasklet T8.

The six available options were: no iteration, 1, 2, 3, 4 or more, the loop never
ends.

Tasklet T8/ii addressed students' mastery of reversibility regarding execution of
a loop controlled with string manipulation.

Problem statement: If at the end of the program execution the output string is s =
�11010000�, what was the value of the input string b?.

The six available options were: s = �11010000� can never be the program output,
b = �11011111�, b = �11000001�, b = �11001111�, b = �11010101�, we cannot know
the input string b because there are multiple possibilities.

Tasklet T9

Tasklet T9/i addressed students' mastery of the �mechanics� of loop controlled ex-
ecution concerning string manipulation.
Problem statement: With reference to the following program, if the input value is
n = 45, how many iterations of the do-while loop will be performed? (The / and %
operations calculate the quotient and the remainder of the integer division, respec-
tively; + represents the string-number concatenation.).

134 CHAPTER 4. STUDENT SURVEY

 // input: int n >= 0

 int x = n;

 String b = "";

 do {

 b = (x % 2) + b;

 x = x / 2;

 } while (x != 0);

 output("b = " + b);

(a) Code version

x := n

b := ""

input n

output b

true

false

x ≠ 0

b := (x % 2) + b

x := x / 2

(b) Flow-chart version

Figure 4.18: Tasklet T9.

The six available options were: 4 loops, 5 loops, 6 loops, 7 loops, 8 loops, none
of the previous answers.

Tasklet T9/ii addressed the students' ability to identify functional equivalence.
Problem statement: The program of the previous question, also reported here, is
applied for input values n ≥ 0. Which of Programs 1�4 is equivalent to it? (Two
programs are equivalent if the �nal states, at the end of their respective executions,
are always the same with the same input that satis�es the indicated requirements.).

 int x = n;

 String b = "";

 while (x == 0) {

 b = (x % 2) + b;

 x = x / 2;

 }

 output("b = " + b);

(a) Program 1

 int x = n;

 String b = "";

 while (x != 0) {

 b = (x % 2) + b;

 x = x / 2;

 }

 output("b = " + b);

(b) Program 2

 int x = n / 2;

 String b = (n % 2) + "";

 while (x != 0) {

 b = (x % 2) + b;

 x = x / 2;

 }

 output("b = " + b);

(c) Program 3

 int x = n;

 String b = "";

 while (x != 0) {

 b = (x % 2) + b;

 x = x / 2;

 }

 b = (x % 2) + b;

 x = x / 2;

 output("b = " + b);

(d) Program 4

Figure 4.19: Tasklet T9: the four programs to be compared.

4.5 Data collection and results

The (anonymous) survey was administered to 225 students attending the second,
third and fourth year (age 15�18) of scienti�c and technical high schools, i.e. when
the basic �ow-control constructs are introduced and/or used extensively in program-
ming activities.

4.5.1 General information

The students who responded to the survey are predominantly male (91.6%), see
Figure 4.20a, and mostly attend a technical high school (76.4%), see Figure 4.20b.
The percentage of female is small for one comparative analysis.

4.5. DATA COLLECTION AND RESULTS 135

(a) Students by gender (b) Distribution of students by type of high
school

Figure 4.20: Students' general information.

The distribution of students according to they year level is shown in Figure 4.21,
where we can see that most of the students attend the third year (53.8%), followed
by the fourth year (28.4%) and the second year (17.8%).

Figure 4.21: Students' year of attendance.

The languages that students know are mainly those used in school courses, see
Figure 4.22, with a clear prevalence of C/C++ (35.0%), Scratch (19.0%), Java
(10.8%).

136 CHAPTER 4. STUDENT SURVEY

Figure 4.22: Languages known by students (more options were possible).

4.5.2 Tasklets

In this section, survey 1 and survey 2 taskset are presented. For each tasklet, the
problem statement, main topic, areas and other topics to which it can refer are
indicated. For each tasklet a summary table of the answers given by the students
is presented. In the case of a tasklet with both code and �ow-chart version, the
answers are shown as total in the % column, while those speci�c to each version are
listed in the columns % code and % �ow-chart. For the more meaningful tasklets,
which require more commitment on the part of the students, data on the students'
self-con�dence with respect to the answers given are presented.

Survey 1 tasklets

Tasklet T1

Areas and topics: A.2.a, B.1.a, B.2.a, B.3.a, D.1, SC.
Main topic: correct loop condition.

Table 4.3: Rates of chosen options for tasklet T1 (correct loop condition).

Option %
x > 0 19.1%
x < n 4.6%
x ≥ n 42.0% correct option

x > n 19.1%
x < m 12.2%
y ≤ n 3.1%

4.5. DATA COLLECTION AND RESULTS 137

Table 4.4: Students' self-con�dence for tasklet T1 (correct loop condition).

Option %
1 7.6% not con�dent at all
2 26.7%
3 45.8%
4 19.8% fully con�dent

Tasklet T2

Areas and topics: A.1.b, B.1.b, B.3.b, C.2, D.1, FC, SC.
T2/i main topic: number of iterations.

Table 4.5: Rates of chosen options for tasklet T2/i (number of iterations).

Option % % code % �owchart
no iteration 3.8% 1.4% 6.8%
1 iteration 7.6% 8.3% 6.8%
2 iterations 11.5% 8.3% 15.3%
3 iterations 54.2% correct option 61.1% 45.8%
4 or more iterations 16.8% 13.9% 20.3%
the loop never ends 6.1% 6.9% 5.1%

T2/ii main topics: reversibility.

Table 4.6: Rates of chosen options for tasklet T2/ii (reversibility).

Option % % code % �owchart
x = 1 and y =14 can never be the
output of the program

13.7% 18.1% 8.5%

m = 7 and n = 28 4.6% 2.8% 6.8%
m = 15 and n = 44 49.6% 56.9% 40.7%
m = 44 and n = 15 6.1% 2.8% 10.2%
m = 162 and n = 103 3.8% 2.8% 5.1%
we cannot know the input values
of m, n because there are multiple
possibilities

22.1% correct option 16.7% 28.8%

Table 4.7: Students' self-con�dence for tasklet T2/ii (reversibility).

Option % % code % �owchart
1 6.9% not con�dent at all 9.7% 3.4%
2 22.9% 25.0% 20.3%
3 38.9% 34.7% 44.1%
4 31.3% fully con�dent 30.6% 32.2%

138 CHAPTER 4. STUDENT SURVEY

Tasklet T3a

Areas and topics: A.2.b, B.1.a, B.3.b, B.3.c, C.2, D.2, FC, SC.
T3a/i main topic: number of iterations.

Table 4.8: Rates of chosen options for tasklet T3a/i (number of iterations).

Option % % code % �owchart
no iteration 12.2% 11.1% 13.6%
1 iteration 44.3% correct option 45.8% 42.4%
2 iterations 14.5% 18.1% 10.2%
3 iterations 13.0% 9.7% 16.9%
4 or more iterations 10.7% 9.7% 11.9%
the loop never ends 5.3% 5.6% 5.1%

T3a/ii main topics: functional purpose.

Table 4.9: Rates of chosen options for tasklet T3a/ii (functional purpose).

Option % % code % �owchart
to compute the smallest divisor of n 4.6% 2.8% 6.8%
to compute the greatest divisor of n 10.7% 11.1% 10.2%
to check if n is a prime number 34.4% correct option 34.7% 33.9%
to check if k is a divisor of n 25.2% 26.4% 23.7%
to compute the integer part of the
square root of n

6.1% 6.9% 5.1%

starting at 3 and until p is true,
to count how many times 2 can be
added before reaching the square
root of n

19.1% 18.1% 20.3%

Table 4.10: Students' self-con�dence for tasklet T3a/ii (functional purpose).

Option % % code % �owchart
1 24.4% not con�dent at all 20.8% 28.8%
2 37.4% 37.5% 37.3%
3 26.7% 30.6% 22.0%
4 11.5% fully con�dent 11.1% 11.9%

Tasklet T4

Areas and topics: A.1.a, B.1.c, B.3.a, C.1, D.1, FC, SC.
T4/i main topic: output state.

4.5. DATA COLLECTION AND RESULTS 139

Table 4.11: Rates of chosen options for tasklet T4/i (output state).

Option % % code % �owchart
x = 24 14.5% 22.2% 5.1%
x = 27 9.9% 9.7% 10.2%
x = 42 45.0% correct option 34.7% 57.6%
x = 84 4.6% 2.8% 6.8%
x = 126 3.1% 5.6% 0.0%
the loops never end 22.9% 25.0% 20.3%

T4/ii main topics: equivalence.

Table 4.12: Rates of chosen options for tasklet T4/ii (equivalence).

Option % % code % �owchart
Program 1 18.3% 22.2% 13.6%
Program 2 26.0% 19.4% 33.9%
Program 3 11.5% 13.9% 8.5%
Program 4 44.3% correct option 44.4% 44.1%

Table 4.13: Students' self-con�dence for tasklet T4/ii (equivalence).

Option % % code % �owchart
1 9.2% not con�dent at all 9.7% 8.5%
2 19.8% 20.8% 18.6%
3 36.6% 40.3% 32.2%
4 34.4% fully con�dent 29.2% 40.7%

Tasklet T7b

Areas and topics: A.1.b, A.2.b, B.1.a, B.2.b, B.2.c, B.3.a, D.2, SC.
T7b/i main topic: reversibility.

Table 4.14: Rates of chosen options for tasklet T7b/i (reversibility).

Option %
v = `s', `t', `o', `p' 9.2%
v = `t', `o', `p', `p' 3.8%
v = `t', `o', `p', `s' 42.7% correct option

v = `p', `s', `t', `o' 21.4%
v = `p', `o', `t', `s' 19.1%
v = `t', `s', `p', `o' 3.8%

140 CHAPTER 4. STUDENT SURVEY

Table 4.15: Students' self-con�dence for tasklet T7b/i (reversibility).

Option %
1 17.6% not con�dent at all
2 35.9%
3 22.9%
4 23.7% fully con�dent

T7b/ii main topic: functional purpose.

Table 4.16: Rates of chosen options for tasklet T7b/ii (functional purpose).

Option %
by running the program, the state of the array v
does not change

8.4%

to move the elements of v one place to the right,
losing the rightmost element

7.6%

to rotate the elements of v one place to the right,
inserting the rightmost one at the beginning

37.4% correct option

to rotate the elements of v one place to the left,
inserting the leftmost one at the end

28.2%

to reverse the order of the elements of v 16.0%
to swap all subsequent pairs of elements of v 2.3%

Table 4.17: Students' self-con�dence for tasklet T7b/ii (functional purpose).

Option %
1 15.3% not con�dent at all
2 28.2%
3 30.5%
4 26.0% fully con�dent

Tasklet T10

Areas and topics: A.1.a, B.1.c, B.2.b, B.3.a, C.1, D.2, D.3, SC.
T10/i main topic: output state.

Table 4.18: Rates of chosen options for tasklet T10/i (output state).

Option %
v[k] = �one�, n = 2 9.2%
v[k] = �two�, n = 1 8.4%
v[k] = �two�, n = 2 16.0%
v[k] = �two�, n = 4 42.7% correct option

v[k] = �two�, n = 9 13.0%
v[k] = �ten�, n = 3 10.7%

T10/ii main topics: equivalence.

4.5. DATA COLLECTION AND RESULTS 141

Table 4.19: Rates of chosen options for tasklet T10/ii (equivalence).

Option %
Program 1 20.6%
Program 2 36.6% correct option

Program 3 24.4%
Program 4 18.3%

Table 4.20: Students' self-con�dence for tasklet T10/ii (equivalence).

Option %
1 23.7% not con�dent at all
2 34.4%
3 29.0%
4 13.0% fully con�dent

Survey 2 tasklets

Tasklet T3b

Areas and topics: A.2.a, B.1.b, B.2.a, B.3.b, B.3.c, D.2, FC, SC.
T3b main topic: correct loop condition.

Table 4.21: Rates of chosen options for tasklet T3b (correct loop condition).

Option % % code % �owchart
y ≤ n 14.9% 14.0% 15.7%
y > n 6.4% 9.3% 3.9%
x < y 17.0% 18.6% 15.7%
x ≤ y 24.5% correct option 25.6% 23.5%
n % x 22.3% 16.3% 27.5%
n % y 14.9% 16.3% 13.7%

Table 4.22: Students' self-con�dence for tasklet T3b (correct loop condition).

Option % % code % �owchart
1 13.8% not con�dent at all 18.6% 9.8%
2 44.7% 39.5% 49.0%
3 34.0% 32.6% 35.3%
4 7.4% fully con�dent 9.3% 5.9%

142 CHAPTER 4. STUDENT SURVEY

Tasklet T5

Areas and topics: A.1.a, B.1.c, B.2.b, B.3.a, C.1, D.1, D.3, SC.
T5/i main topic: output state.

Table 4.23: Rates of chosen options for tasklet T5/i (output state).

Option %
b[2] = 1 20.2%
b[2] = 3 20.2%
b[2] = 4 16.0%
b[2] = 6 17.0% correct option

b[2] = 10 4.3%
none of the previous answers 22.3%

T5/ii main topics: equivalence.

Table 4.24: Rates of chosen options for tasklet T5/ii (equivalence).

Option %
Program 1 12.8%
Program 2 51.1% correct option

Program 3 17.0%
Program 4 19.1%

Table 4.25: Students' self-con�dence for tasklet T5/ii (equivalence).

Option %
1 21.3% not con�dent at all
2 35.1%
3 28.7%
4 14.9% fully con�dent

Tasklet T6

Areas and topics: A.2.a, B.1.b, B.2.b, B.3.a, D.2, SC.
T6 main topic: correct loop condition.

Table 4.26: Rates of chosen options for tasklet T6 (correct loop condition).

Option %
i ≤ n 18.1%
i < n 28.7%
i < n− 1 9.6%
i ≤ n− k 23.4% correct option

i < n+ k 10.6%
i < k 9.6%

4.5. DATA COLLECTION AND RESULTS 143

Table 4.27: Students' self-con�dence for tasklet T6 (correct loop condition).

Option %
1 23.4% not con�dent at all
2 37.2%
3 30.9%
4 8.5% fully con�dent

Tasklet T7a

Areas and topics: A.1.b, A.2.b, B.1.a, B.2.b, B.3.a, D.2, D.3, SC.
T7a/i main topic: reversibility.

Table 4.28: Rates of chosen options for tasklet T7a/i (reversibility).

Option %
v = `s', `t', `o', `p' 7.4%
v = `s', `s', `t', `o' 2.1%
v = `t', `o', `p', `s' 29.8%
v = `p', `s', `t', `o' 40.4% correct option

v = `p', `o', `t', `s' 18.1%
v = `t', `s', `p', `o' 2.1%

Table 4.29: Students' self-con�dence for tasklet T7a/i (reversibility).

Option %
1 18.1% not con�dent at all
2 20.2%
3 34.0%
4 27.7% fully con�dent

T7a/ii main topic: functional purpose.

Table 4.30: Rates of chosen options for tasklet T7a/ii (functional purpose).

Option %
by running the program, the state of the array v
does not change

4.3%

to move the elements of v one place to the left,
losing the leftmost element

8.5%

to rotate the elements of v one place to the right,
inserting the rightmost one at the beginning

23.4%

to rotate the elements of v one place to the left,
inserting the leftmost one at the end

45.7% correct option

to reverse the order of the elements of v 17.0%
to swap all subsequent pairs of elements of v 1.1%

144 CHAPTER 4. STUDENT SURVEY

Table 4.31: Students' self-con�dence for tasklet T7a/ii (functional purpose).

Option %
1 14.9% not con�dent at all
2 26.6%
3 25.5%
4 33.0% fully con�dent

Tasklet T8

Areas and topics: A.1.b, B.1.a, B.2.c, B.3.b, C.2, D.2, FC, SC.
T8/i main topic: number of iterations.

Table 4.32: Rates of chosen options for tasklet T8/i (number of iterations).

Option % % code % �owchart
no iteration 11.7% 16.3% 7.8%
1 iteration 2.1% 0.0% 3.9%
2 iterations 19.1% 20.9% 17.6%
3 iterations 33.0% correct option 30.2% 35.3%
4 or more iterations 29.8% 27.9% 31.4%
the loop never ends 4.3% 4.7% 3.9%

T8/ii main topics: reversibility.

Table 4.33: Rates of chosen options for tasklet T8/ii (reversibility).

Option % % code % �owchart
s = "11010000" can never be the
program output

31.9% 30.2% 33.3%

b = "11011111" 3.2% 0.0% 5.9%
b = "11000001" 10.6% 9.3% 11.8%
b = "11001111" 23.4% correct option 18.6% 27.5%
b = "11010101" 2.1% 2.3% 2.0%
We cannot know the input string
b because there are multiple possi-
bilities

28.7% 39.5% 19.6%

Table 4.34: Students' self-con�dence for tasklet T8/ii (reversibility).

Option % % code % �owchart
1 45.7% not con�dent at all 48.8% 43.1%
2 28.7% 25.6% 31.4%
3 19.1% 23.3% 15.7%
4 6.4% fully con�dent 2.3% 9.8%

4.6. DISCUSSION 145

Tasklet T9

Areas and topics: A.1.a, B.1.a, B.3.a, C.2, D.2, FC, SC.
T9/i main topic: number of iterations.

Table 4.35: Rates of chosen options for tasklet T9/i (number of iterations).

Option % % code % �owchart
4 iterations 9.6% 11.6% 7.8%
5 iterations 16.0% 11.6% 19.6%
6 iterations 44.7% correct option 41.9% 47.1%
7 iterations 10.6% 11.6% 9.8%
8 iterations 4.3% 4.7% 3.9%
none of the previous answers 14.9% 18.6% 11.8%

T9/ii main topics: equivalence.

Table 4.36: Rates of chosen options for tasklet T9/ii (equivalence).

Option % % code % �owchart
Program 1 9.6% 14.0% 5.9%
Program 2 53.2% 48.8% 56.9%
Program 3 20.2% correct option 20.9% 19.6%
Program 4 17.0% 16.3% 17.6%

Table 4.37: Students' self-con�dence for tasklet T9/ii (equivalence).

Option % % code % �owchart
1 22.3% not con�dent at all 18.6% 25.5%
2 21.3% 18.6% 23.5%
3 35.1% 44.2% 27.5%
4 21.3% fully con�dent 18.6% 23.5%

4.6 Discussion

In this section we use the experimental results presented in Section 4.5 to answer
the research questions listed in Section 4.3. The analysis of the questions is based
on the schema presented in Table 4.1.

Some tasklets are proposed in two distinct versions, the �rst version easier and
can be achieved simply by tracing the program execution for a given input, while
the second one presents a higher degree of di�culty and is more abstract.

146 CHAPTER 4. STUDENT SURVEY

4.6.1 Students' grasp of technical features implied by itera-
tion

Q1. To what extent are students at ease with a range of �technical� features implied
by iteration? (E.g., structure and role of loop conditions, loop-control variables,
nesting of �ow-control constructs, looping over arrays.)

The tasklets related to this question can refer to the following areas.

� Structural features:

Plain loop (6) / Loop with nested conditional (3) / Nested loops (3)

� Features of the implied conditions:

Simple condition (8) / Composite condition (4)

� Basic data types:

Only numerical data (4) / Non-numerical data (8)

� Additional data-related features:

Boolean variable (2) / Data array (4)

� Focus of the processing plan:

Exit condition (2) / Loop control variable (5) / Downward for loop (2)

The results of the single tasklets presented in the previous section do not allow
an overview that answers the question posed. Therefore, we tried to categorize
the students' answers as correct, incorrect and seriously incorrect by comparing the
results of the tasklets. Figure 4.23 shows the degree of accuracy of the students'
answers, for all the tasklets.

Figure 4.23: Students' degree of accuracy, in decreasing order.

4.6. DISCUSSION 147

The results shown in Figure 4.23 highlight that only in tasklet T2/i more than
50% of the students answered correctly, hence it appears that the majority of them
is at ease with the functioning of iteration combined with a nested conditional, as
well as with the interpretation of a composite (loop) condition including logical
operators. The result is clearly di�erent in T2/ii, where a reversibility problem
was proposed for the same code fragment, which evidently has a greater degree
of di�culty, perhaps due to the fact that this type of reversible problem is rarely
proposed in high schools.

Interestingly, many answered incorrectly in tasklet T1 (more than 60%), appar-
ently an easy problem with a very simple condition � a similar result was obtained
in the previous students' survey in Chapter 2 Section 2.2.6 �. The di�erence be-
tween x ≥ n and x > n can be found in the analysis of the last iteration, verifying
with tracing, but evidently not all students thought to test, by tracing, their hy-
pothesis. The same result was obtained for T3b in survey 2, with the di�erence
between x ≤ y, the correct option, and x < y.

Particularly surprising is what emerged in T4/i, apparently a problem of identify-
ing the output state making use of tracing. The two nested While-loops have caused
some confusion, especially in the code version, and �ow-chart may help students in
nested construct analysis.

In survey 2 tasklet T5/ii is the one with a level of correct answers greater than
50%. This result is interesting as the students are not used to these types of exercises
related to the equivalence of code fragments, probably due to i) familiarity with
the various types of iterations, ii) the practice of teachers to show the equivalence
between While-loop and For-loop, iii) and to propose alternative versions of solutions
with various types of iteration (as seen in Chapter 2, Section 2.1.5). Otherwise, in
T5/i, for the same code fragment, the students could not �nd the correct solution.
This result may be due to various factors: i) di�culty in managing the double For-
loop � especially for second year students �, ii) lack of familiarity with tracing
nested iterations, iii) little practice in handling backward iterations.

Even in T9/ii the number of correct answers is low, although students are well
aware of the equivalence between While-loop and Do-While-loop. The reason might
be related to a lack of mastery in string management. Tasklet T6 highlights some
students' di�culties in identifying the correct condition. In this case many answered
i < n rather than i ≤ n − k, which was the correct option; this result can be
attributed to students' habit of manipulating strings from the �rst character to the
last.

In tasklet T8 a factor that compromised the accuracy of the proposed solution
could be the composite and negated condition of the While-loop. Not everyone may
have grasped the concepts related to Boolean operators, as well as De Morgan's
laws, but they might also have some di�culties with managing strings.

It emerged that survey 2 was more challenging, students' performance is slightly
worse, with tasklets that highlighted greater di�culties for the students, and in fact
more abstract questions were present.

148 CHAPTER 4. STUDENT SURVEY

In conclusion, we can brie�y describe the following.

Structural features We can then presume that the majority of students develop a viable
and accurate enough mental model of the notional machine underlying code execu-
tion, including the functioning of nested constructs. However, di�culties have arisen
when complex nested constructs are present, or when the nested loop is a downward
loop.

Features of the implied conditions Simple conditions are less problematic than com-
posite conditions. The composite conditions require the mastery of Boolean oper-
ators, and in particular the di�culty in managing the not operation has emerged.
However, some simple conditions also highlighted di�culties: i) lack of mastery in
the use of order operators (e.g. x < y vs. x ≤ y), ii) stereotypes in the conditions
related to the manipulation of strings (e.g. i < n prevalence).

Basic data types The data collected show better performance of students in tasklets
with numerical data only, while in those with non-numerical data the results are
worse. The students did not acquire su�cient mastery with arrays but especially
with strings.

Additional data-related features Students have some di�culty with both Arrays and
Boolean values. In particular, when composite loop conditions contain Boolean
values, it is di�cult for students to identify the exit condition. Fewer di�culties are
encountered with arrays, especially when the tasklets are similar to the problems
proposed in the teacher's lesson (as it emerged in Chapter 3, Section 3.4.3).

Focus of the processing plan Performances show that a large part of students are un-
able to master the relationships between loop condition and accurate speci�cation in
the application domain. This may possibly be ascribed to confusion about the role
of the loop condition, meant as an `exit' condition instead of a `continue' condition,
or to some more basic lack of problem-solving skills. Moreover, this may be due to
a lack of mathematical prerequisites (e.g. manage order operators), or to the lack of
familiarity when dealing with uncommon problems (e.g. downward loops).

4.6.2 Tracing and higher-level thinking

Q2. Does the e�ort to trace code facilitate thinking of the overall computation at a
higher abstraction level?

The tasklets related to this question can refer to the following areas.

� Correlation between answers to �tracing-based� and �more abstract� questions:

4.6. DISCUSSION 149

1st question (misc) 2nd question (high level)

Output/�nal state → Equivalence (3)

Number of iterations → Equivalence (1)

Number of iterations → Reversibility (2)

Number of iterations → Functional purpose (1)

Reversibility → Functional purpose (2)

no question → Completion (3)

The analysis of the previous question has highlighted that students have mastered
tracing quite well (see Figure 4.23), and they use it easily when it comes to indicating
the output status or the number of iterations (e.g. T2/i, T3a/i, T4a/i, T10/i, T9/i).
However, they fail to e�ectively exploit this mastery of tracing when they have to
indicate the functional purpose (e.g. T3a/ii).

In any case, the identi�cation of the functional purpose is simpler for problems
similar to those proposed to them by teacher, such as e.g. T7b/ii, T7a/ii.

For equivalence problems (e.g. T4/i, T5/ii), rather than resorting to tracing,
they work by analogies and similarities, identifying similarities between While-loop
and For-loop, or between While-loop and Do-While-loop; equivalence schemes be-
tween the various types of iterations are often proposed by teachers (see Chapter 3,
Section 3.4). However, in T9/ii it emerges that the equivalence between While-loop
and Do-While-loop is not well mastered, but above all that the development of a
solution hypothesis is not preceded by an adequate tracing phase, which would allow
a better evaluation of the hypothesis.

Furthermore, in survey 1 students' performance in tracing-based tasklets is better
than in survey 2, where tasklets are more abstract. In survey 2, this result is not
con�rmed for tasklets T5/ii and T7a/ii; in particular, regarding T7a, the students
probably recognized a problem similar to one that was presented to them in class
by the teacher. However, in T5/i the tracing phase was not e�ective, and this could
be due to i) di�culty in tracing the double For-loop, ii) lack of familiarity with the
downward For-loop, iii) little practice with a Java-like syntax.

Considering these results, it can be said that students perform better with sim-
pler and tracing-based problems, rather than when facing problems that present
greater di�culties and level of abstraction, such as questions regarding equivalence,
reversibility, or identifying functional purpose.

4.6.3 Flow-chart vs. code representation

Q3. Are students' answers more accurate when using �ow-chart or textual code
representations of programs?

The tasklets related to this question can refer to the following areas.

150 CHAPTER 4. STUDENT SURVEY

� Flow-chart vs. code in two randomly assigned versions of the same task:

Plain loop (3) / Loop with nested conditional (2) / Nested loops (1)

(including focus on exit condition and downward for loop)

The results of the individual tasklets presented in the previous section do not
allow to have a clear idea of the performance of the students in the two di�erent
versions. Figure 4.24 allows to compare the code version and �ow-chart version
performance.

Figure 4.24: Students' performance comparing average, code and �ow-chart versions,
in decreasing order by average.

Tasklets T2/i shows better performance in code version, perhaps due to easier
readability of the While-loop composite condition (e.g. AND vs. &&). In fact, the
same result was also obtained in tasklet T2/ii. In T4/i the �ow-chart version could
better clarify the �ow of actions to be performed, in the presence of two nested
While-loops. In survey 2, the only relevant di�erence is found in T8. In the �ow-
chart version the performances are better, perhaps due to a greater readability of
the composite condition, where the Boolean operations are written in English and
not in Java-like style.

It seems that students have better results in the �ow-chart version when the
problem is simple and numerical, while when the problem becomes more complex or
manipulates arrays the students perform better in the code version. However, the
di�erence in performance is not signi�cant.

From the collected data it is not clear whether using the �ow-chart facilitates
understanding, as Rahimi et al. [RBH17] argued instead.

In summary, the following results can be identi�ed.

Plain loop The students have mastered the subject, there are no signi�cant deviations
between the code version and the �ow-chart version, apart from the cases of re-
versibility analysis and composite condition. In the case of reversibility tasklets, it

4.6. DISCUSSION 151

would seem that the �ow-chart version allows for higher and more successful per-
formances, as well as in the presence of composite conditions, where the Boolean
operators are explicit and better identi�able.

Loop with nested conditional The performance in code version or in �ow-chart version
are similar.

Nested loops As in the previous point, the performances in code version or in �ow-chart
version are similar, but T4/i highlights that the use of �ow-charts can help students
understand nested constructs.

4.6.4 Students' self-con�dence

Q4. To what extent are students self-con�dent about their comprehension of a pro-
gram's overall computation and purpose?

The tasklets related to this question can refer to the following areas.

� Subjective perception of self-con�dence on a 4-grade Likert scale:

Program equivalence (4) / Reversibility (4) / Plan completion (3) / Functional pur-
pose (3)

The students' perception of their own self-con�dence varies according to the
tasklets, as Figure 4.25 shows. There are tasklets, e.g. T1, T2, T4, T7a, T7b/ii,
T9, where students declared signi�cant level of self-con�dence. Other tasklets, e.g.
T3a, T3b, T7b/i, T5, T6, T8, T10, were evidently more challenging, and students
declared a lower level of self-con�dence.

Figure 4.25: Students' self-con�dence, in decreasing order

152 CHAPTER 4. STUDENT SURVEY

In the previous survey (see Chapter 2, Section 2.2.7) we established that students
understand the functioning of an iteration, and we can therefore presume that most
high school students develop a viable and accurate enough mental model of the
notional machine underlying code execution, including the functioning of nested
constructs and the evaluation of relatively complex conditions. This awareness is
greatest where students faces simple problems or problems similar to those presented
to them by their teacher (see Chapter 3, Section 3.4). The students therefore tend
to be more con�dent when dealing with iterations where they can use the tracing
capability to search for the output state, the numbers of iterations or identify simple
loop condition. When they are required to identify the functional purpose, both in
code and �ow-chart version, they are less con�dent (e.g. T3a).

The con�dence level is very low when they have to manage reversibility problems,
e.g. T8, probably because they are not used to thinking in these terms, or working
on the input state instead of the output state.

The same hypothesis can be made for functional equivalence problems, e.g. T10,
where students are probably unfamiliar with working in terms of equivalence. How-
ever, in tasklet T4 students' self-con�dence is high, and maybe this result is due
to two factors: i) enough mental model of the notional machine underlying loop
execution, including the functioning of nested constructs; ii) ability to recognize the
functional equivalence between While-loop and Do-While-loop.

The result of T3b tasklet is surprising, where students had to identify the correct
condition of the loop, a composite condition. In this case it can be assumed that
the following factors play an important part:

� unfamiliarity with handling Boolean values, even in the condition;

� higher complexity in nested �ow-control construct than those students are used to;

� di�culty in understanding the syntax of the language, e.g. % operator;

� students tend to not exploit their tracing abilities in order to test their conjectures
about program behavior.

Figure 4.26 shows the students' levels of self-con�dence compared to the accuracy
of their responses. The chart compares the level of accuracy in the responses to the
tasklets with the level of self-con�dence declared by the student, highlighting, in
general, that students overestimate their knowledge and skills.

Generally, students have a higher level of self-con�dence with respect to their
own performance 2, thus the students seem to underestimate their di�culties when
dealing with loop conditions. This underestimation of their own di�culties seems
higher when tasklets are similar to the problems that the teacher tends to present in
class, or when tasklets seem apparently easy. In T5, where the tasklet presented a
double level of di�culty, with nested loops and array manipulation, students stated
their uncertainty, in terms of self-con�dence.

2We have compared each student's con�dence with his accuracy.

4.6. DISCUSSION 153

Figure 4.26: Students' accuracy and self-con�dence level, in decreasing order.

The result in T1 con�rms what has already been found previously (see Chapter 2,
Section 2.2.7), and this may be ascribed to confusion about the role of the loop
condition, meant as an `exit' condition instead of a `continue' condition, to some
more basic lack of problem-solving skills, or to fragile mathematical prerequisites
and confusion about order relations.

The outcomes in T2 and T9 are signi�cant. Apparently T2 could have been
considered easy by the students, but probably the composite condition was more
di�cult to analyze than expected, as perhaps novices does not grasp Boolean opera-
tors. In T9 the simplicity of the loop, as well as the knowledge of the transformation
schemes from Do-While-loop to While-loop, induced the students to trust their own
assumptions without verifying them with an adequate tracing phase.

Di�erence in students' self-con�dence, comparing code version and the �ow-chart
version, is shown in Figure 4.27.

A di�erence in students' self-con�dence between the two versions clearly emerges
in tasklet T4, where a �ow-chart probably allows to better identify the �ow of
actions, as well as the distinction of the two nested While-loops. In T9, higher levels
of self-con�dence are reported in the �ow-chart version, but in general students are
more con�dent in the code version. This result is interesting since it could be due
to the fact that the more prepared or more con�dent students master �ow-chart
representation, but in general students, when dealing with strings, prefer the code
version, perhaps because they have been used to dealing with strings directly by
coding. A similar result emerges in T3a, where higher levels of self-con�dence are
reported in the �ow-chart version, but in general they are more con�dent in the
code version. A �ow-chart probably illustrates the work�ow more clearly in a a
Do-While-loop, but pupils are unsure about handling Boolean values with this tool.
Tasklet T8 highlights a higher level of self-con�dence in the �ow-chart version, and

154 CHAPTER 4. STUDENT SURVEY

Figure 4.27: Students' self-con�dence comparing code and �ow-chart version, orderly
decreasing by average.

also in this case the �ow-chart better explains the work�ow. Besides, the Boolean
operations are written in English and not in Java-like style.

Di�erently, in T3b the code version highlights more self-con�dence level than
the �ow-chart version, which, in the representation of the two nested control-�ow
statements, probably caused some confusion.

This result could be due to the importance of the mental imaging [VS11;
Men+16] as a tool for understanding the notional machine, especially for students
of STEM disciplines, as recent studies state that they have a predominantly spatial
cognitive style [WLB09; Ati+20]. This outcome, however, contradicts what emerged
in tasklet T3a. As previously mentioned, this result could be due to a criticality of
the proposed problem, hence the unfamiliarity with handling Boolean values, even
in the condition.

In addition, Pearson correlation coe�cient test [CMM07] was computed to assess
the relationship between performance levels 3 and self-con�dence levels.

Table 4.38 shows Pearson correlation between students' performance and their
self-con�dence in survey 1 and survey 2 tasklets. While Table 4.39 refers to the
correlation between performance and self-con�dence in connection with the �ow-
chart version in survey 1, Table 4.40 refers to survey 2.

3To calculate the correlation, the three levels of performance were coded with the values 4
(correct), 2 (incorrect), 1 (seriously incorrect): the choice is aimed at aligning the performance
levels with those of self-con�dence, taking into account that there are no answers that can be
classi�ed as �quite correct� (3).

4.6. DISCUSSION 155

Table 4.38: Correlation between performance and self-con�dence.

Version T1 T2/ii T3a/ii T4/ii T7b/i T7b/ii T10/ii Overall

survey 1 0.185 0.173 0.318 0.213 0.201 0.239 0.313 0.235

T3b T5/ii T6 T7a/i T7a/ii T8/ii T9/ii

survey 2 0.054 0.139 0.144 0.303 0.598 -0.094 -0.012 0.208

Table 4.39: Correlation between performance and self-con�dence in connection with
�ow-chart version in survey 1.

Version T2/ii T3a/ii T4/ii Overall

0.173 0.318 0.213 0.239

code -0.016 0.497 0.187 0.230

�ow-chart 0.385 0.112 0.241 0.241

Table 4.40: Correlation between performance and self-con�dence in connection with
�ow-chart version in survey 2.

Version T3b T8/ii T9/ii Overall

0.054 -0.094 -0.012 -0.011

code 0.089 0.082 -0.130 0.043

�ow-chart 0.026 -0.196 0.078 -0.050

The data indicate a marginal correlation (overall just over 0.20), which in this
case means marginal awareness of one's abilities, and the tables add a further element
of analysis compared to Table 4.26. Hence students, on average, consider tasks more
within their reach than they actually are, and they distinguish poorly between tasks
at which they do better and tasks at which they do worse. Furthermore, awareness
does not increase if the task is presented in the �ow-chart version, as self-con�dence
is more related to the speci�c task than to the type of representation.

In summary, the following results can be identi�ed.

Plan completion In this context, students are more aware of their knowledge and skills,
they have in fact demonstrated that they have acquired the concept of notional ma-
chine for iteration and nesting. Besides, they know how to manage simple conditions
and they use tracing e�ectively. Tasklets of this type are similar to those that their
teachers present as examples or propose to them as exercises.

156 CHAPTER 4. STUDENT SURVEY

Functional purposes Despite the skills expressed in the previous point (notional ma-
chine, tracing, simple conditions and nesting management) students are not sure
when they have to identify the functional purpose of a tasklet, and this may be
due to a lack of mathematical prerequisites (especially in the cases of tasklets with
numerical data) but also to the lack of habit of analyzing problems in this light.

Program equivalence There is no habit of working on the level of equivalences between
algorithms or programs, and students seem to only think about the examples pro-
posed by the teachers, which we have seen in the previous Chapter 3. However,
when students encounter problems similar to topics already seen, or have to analyze
equivalences between di�erent types of loops (e.g. While-loop vs. Do-While-loop)
they demonstrate a higher degree of self-con�dence.

Reversibility Although not familiar with reversibility problems, the students demon-
strate a certain con�dence, especially when the problems are simpler and with nu-
merical data.

4.6.5 Implications for instructors

The previous data analysis shows that the majority of students develop a viable and
accurate enough mental model of the notional machine underlying code execution,
including the functioning of nested constructs. However, di�culties are evident with
complex nested constructs, or with downward loop. Furthermore, when composite
conditions require the mastery of Boolean operators, di�culties have emerged. This
result con�rms, once again, the importance of mathematical prerequisites. Even
with simple conditions, some confusion emerges when managing the last iteration.

Performances show that a large part of students are unable to master the relation-
ships between loop condition and accurate speci�cation in the application domain.
This may possibly be ascribed to confusion about the role of the loop condition,
meant as an `exit' condition instead of a `continue' condition, or to some more basic
lack of problem-solving skills.

Moreover, students' performance is better when relating to numerical data rather
than non-numerical data, as they did not acquire su�cient mastery with arrays, but
especially with strings.

Regarding Q2 question, the results show that students present tracing abilities,
but they do not adequately exploit these abilities when con�rming their hypotheses
in questions that relate to more abstract levels. Thus, students perform better in
simpler and tracing-based problems than when facing problems with greater dif-
�culty and abstraction levels, such as questions regarding functional equivalence,
reversibility, or identifying functional purpose. In e�ect, these types of problems,
more abstract, are not often proposed in pre-tertiary education. From a pedagogi-
cal perspective, designing reversibility tasks could be a useful instrument aimed at
assessing and fostering students' mastery of basic program constructs. Reversibility
tasks could help to focus on the need to test, and trace, program behavior carefully,

4.6. DISCUSSION 157

it may provide opportunities to examine coding at di�erent levels of abstraction and
practice with varied success higher-order thinking skills [MIS20].

Concerning Q3 question, students' performance in tasklets with a code version
and a �ow-chart version are quite similar. The outcomes obtained do not clarify
whether the use of the �ow-chart facilitates understanding [RBH17], as it could also
be that students, currently, have no mastery in reading the �ow-chart. Probably,
current teachers do not insist on �ow-chart representation but prefer to present al-
gorithms and problems directly with code, or they use the �ow-chart representation
for simple problems at the beginning of the course, and then prefer the code repre-
sentation when the problems become more complex. It could be hypothesized that
the spatial cognitive style and mental imaging [Pai13] work at a di�erent level from
that of the mere reading of a �ow-chart, and it would be interesting to analyze this
point with further investigations.

Furthermore, regarding Q4 question, generally, students have a higher level of
self-con�dence with respect to their own performance, thus students seem to under-
estimate their di�culties when dealing with loop conditions and nested loops.

While we have established that learning to program is a slow and gradual process,
as argued by Dijkstra in [Dij89], and that the teacher must therefore grant adequate
learning time to be spent on several e�ective examples, it would still be better if
the examples proposed by the teachers were more varied and took more aspects
into consideration. In addition, teachers could envision actions to a�ect students'
awareness of potentials and limitations, eliciting a meta-cognitive approach [Cor95].

The results obtained lead us to formulate some suggestions for teachers.

� Grant adequate learning time.

� Spend time proposing examples of various kinds, which require a greater e�ort of
abstraction (e.g. functional equivalence, reversibility, identify functional purpose).

� Propose problems with various types of patterns, to avoid student forming false
beliefs or misconceptions, as well as ine�ective stereotypes.

� Represent by �ow-chart the proposed problems, to allow students with a spatial
cognitive style to form their own mental imaging.

� Consider the importance of feedback, even frequent, so that the student understands
their mistakes, misconceptions and ine�ective stereotypes.

� Pay attention to alignment between the learning of mathematical and logical pre-
requisites.

� Evaluate interventions to increase students' meta-cognitive thinking.

Concerning more abstract tasks to propose to learners, we suggest considering
our tasksets � consisting of tasklets with a balanced distribution over the areas and
topics, both in their code and �ow-chart versions � as starting point for planning
lessons and exercises.

158 CHAPTER 4. STUDENT SURVEY

4.7 Concluding remarks

We have here presented an instrument to investigate in more depth high-school stu-
dents' understanding of iteration in terms of code reading abilities. Each tasklets has
been designed to verify, from various points of view, high school students' mastery
of iteration constructs, where by mastery we mean conceptual mastery of code struc-
tures, focusing on program comprehension rather than construction. The original
contributions of this chapter are:

1. de�ne a comprehensive instrument to verify students' performance concerning several
areas in connection with iteration;

2. verify students' performance and compare outcomes to pupils' subjective perception
of self-con�dence.

The designed tasklets can be used to investigate multiple features at the same
time:

� the connection between loops and re�ective abstraction;

� code features in connection with:

� plain loop,

� loop with nested conditional,

� nested loops,

� simple condition,

� composite condition,

� exit condition,

� loop control variable,

� downward for-loop;

� tracing skills, in particular output/�nal state and the number of iterations;

� whether mathematical skills in�uence the results;

� students' performance in code version and �ow-chart version;

� students' subjective perception of self-con�dence in more challenging tasklets.

The obtained results, in connection with those from the teacher survey discussed in
Chapter 3, led us to suggest possible instructional interventions.

References

[Alz+18] Nabeel Alzahrani et al. �An analysis of common errors leading to ex-
cessive student struggle on homework problems in an introductory
programming course�. In: 2018 ASEE Annual Conference & Exposi-
tion. 2018.

REFERENCES 159

[Ati+20] Kinnari Atit et al. �Examining the role of spatial skills and math-
ematics motivation on middle school mathematics achievement�. In:
International Journal of STEM Education 7.1 (2020), pp. 1�13.

[Ban00] Albert Bandura. Autoe�cacia: Teoria e applicazioni.(Presentazione
all'edizione italiana di Gian Vittorio Caprara). Edizioni Erickson,
2000.

[BFC82] John Biggs and Kevin F Collis. �Evaluating the Quality of Learning:
the SOLO Taxonomy�. In: SERBIULA (sistema Librum 2.0) (Jan.
1982).

[CD17] Ibrahim Cetin and Ed Dubinsky. �Re�ective abstraction in compu-
tational thinking�. eng. In: The Journal of mathematical behavior 47
(2017), pp. 70�80.

[Cet15] Ibrahim Cetin. �Student's Understanding of Loops and Nested Loops
in Computer Programming: An APOS Theory Perspective�. In: Cana-
dian Journal of Science, Mathematics and Technology Education 15.2
(Feb. 2015), pp. 155�170. doi: 10.1080/14926156.2015.1014075.

[Cet+20] Ibrahim Cetin et al. �Teaching Loops Concept through Visualization
Construction�. In: Informatics in Education-An International Journal
19.4 (2020), pp. 589�609.

[CHR13] Pavol Cerny, Thomas A Henzinger, and Arjun Radhakrishna. �Quan-
titative abstraction re�nement�. In: Proceedings of the 40th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 2013, pp. 115�128.

[CLM20] Umberto Costantini, Violetta Lonati, and Anna Morpurgo. �How
Plans Occur in Novices' Programs: A Method to Evaluate Program-
Writing Skills�. In: Proceedings of the 51st ACM Technical Sympo-
sium on Computer Science Education. SIGCSE '20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 852�858. doi:
10.1145/3328778.3366870.

[CMM07] Louis Cohen, Lawrence Manion, and Keith Morrison. Research meth-
ods in education. London, New York: Routledge, 2007.

[Cor95] Cesare Cornoldi. Metacognizione e apprendimento. Strumenti. Psi-
cologia. Il Mulino, 1995.

[CW15] Jacqui Chetty and Duan van der Westhuizen. �Towards a Pedagogi-
cal Design for Teaching Novice Programmers: Design-Based Research
as an Empirical Determinant for Success�. In: Proceedings of the 15th
Koli Calling Conference on Computing Education Research. Koli Call-
ing '15. New York, NY, USA: Association for Computing Machinery,
2015, pp. 5�12. doi: 10.1145/2828959.2828976.

160 CHAPTER 4. STUDENT SURVEY

[DB86] Benedict Du Boulay. �Some Di�culties of Learning to Program�. In:
Journal of Educational Computing Research 2 (Jan. 1986), pp. 57�73.

[Dij89] Edsger W. Dijkstra. �On the cruelty of really teaching computing
science�. English. In: Communications Of The Acm 32.12 (1989),
pp. 1398�1404.

[EHR20] Barbara Ericson, Beryl Ho�man, and Jennifer Rosato. �CSAwesome:
AP CSA Curriculum and Professional Development (Practical Re-
port)�. In: Proceedings of the 15th Workshop on Primary and Sec-
ondary Computing Education. WiPSCE '20. New York, NY, USA:
Association for Computing Machinery, 2020. doi: 10.1145/3421590.
3421593.

[Fin+20] Sally Fincher et al. �Notional Machines in Computing Education: The
Education of Attention�. In: Proceedings of the Working Group Re-
ports on Innovation and Technology in Computer Science Education.
ITiCSE-WGR '20. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 21�50. doi: 10.1145/3437800.3439202.

[Fre+18] Stephen Frezza et al. �Modelling Competencies for Computing Edu-
cation beyond 2020: A Research Based Approach to De�ning Compe-
tencies in the Computing Disciplines�. In: Proceedings Companion of
the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education. ITiCSE 2018 Companion. New York,
NY, USA: ACM, 2018, pp. 148�174.

[Ful+07] Ursula Fuller et al. �Developing a computer science-speci�c learning
taxonomy�. eng. In: ACM SIGCSE Bulletin 39.4 (2007), pp. 152�170.

[GA06] David Ginat and Michal Armoni. �Reversing: An Essential Heuristic
in Program and Proof Design�. In: Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education. SIGCSE '06.
New York, NY, USA: ACM, 2006, pp. 469�473. doi: 10 . 1145 /

1121341.1121488.

[Gin04] David Ginat. �On Novice Loop Boundaries and Range Conceptions�.
In: Computer Science Education 14 (Sept. 2004), pp. 165�181. doi:
10.1080/0899340042000302709.

[Gin18] David Ginat. �Algorithmic Cognition and Pencil-Paper Tasks�. In:
Olympiads in Informatics 12 (May 2018), pp. 43�52. doi: 10.15388/
ioi.2018.04.

[GP18b] Shuchi Grover and Roy Pea. �Computational Thinking: A Compe-
tency Whose Time Has Come�. In: Computer Science Education:
Perspectives on teaching and learning in school. Ed. by S. Sentance,
E. Barendsen, and S. Carsten. London, UK: Bloomsbury Academic,
2018, pp. 19�38.

REFERENCES 161

[Gro+17] Shuchi Grover et al. �A framework for using hypothesis-driven ap-
proaches to support data-driven learning analytics in measuring com-
putational thinking in block-based programming environments�. In:
ACM Transactions on Computing Education (TOCE) 17.3 (2017),
pp. 1�25.

[Haz99] Orit Hazzan. �Reducing Abstraction Level When Learning Abstract
Algebra Concepts�. In: Educational Studies in Mathematics 40.1
(1999), pp. 71�90.

[HH82] Brian C. Hansford and John A. Hattie. �The relationship between self
and achievement/performance measures�. In: Review of Educational
Research 52.1 (1982), pp. 123�142.

[HK99] Mary Hegarty and Maria Kozhevnikov. �Types of visual�spatial rep-
resentations and mathematical problem solving.� In: Journal of edu-
cational psychology 91.4 (1999), p. 684.

[IM20] Cruz Izu and Claudio Mirolo. �Comparing Small Programs for Equiv-
alence: A Code Comprehension Task for Novice Programmers�. In:
Proc. of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education. ITiCSE '20. New York, NY, USA:
ACM, 2020, pp. 466�472.

[IMW18] Cruz Izu, Claudio Mirolo, and Amali Weerasinghe. �Novice Program-
mers' Reasoning About Reversing Conditional Statements�. In: Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science
Education. SIGCSE '18. New York, NY, USA: ACM, 2018, pp. 646�
651. doi: 10.1145/3159450.3159499.

[IPW17] Cruz Izu, Cheryl Pope, and Amali Weerasinghe. �On the Ability to
Reason About Program Behaviour: A Think-Aloud Study�. In: Pro-
ceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education. ITiCSE '17. New York, USA: ACM,
2017, pp. 305�310. doi: 10.1145/3059009.3059036.

[IPW19] Cruz Izu, Cheryl Pope, and Amali Weerasinghe. �Up or Down? An
Insight into Programmer's Acquisition of Iteration Skills�. In: Proceed-
ings of the 50th ACM Technical Symposium on Computer Science Ed-
ucation. SIGCSE '19. New York, NY, USA: Association for Comput-
ing Machinery, 2019, pp. 941�947. doi: 10.1145/3287324.3287350.

[IWP16] Cruz Izu, Amali Weerasinghe, and Cheryl Pope. �A Study of Code
Design Skills in Novice Programmers Using the SOLO Taxonomy�. In:
Proceedings of the 2016 ACM Conference on International Computing
Education Research. ICER '16. New York, NY, USA: Association for
Computing Machinery, 2016, pp. 251�259. doi: 10.1145/2960310.
2960324.

162 CHAPTER 4. STUDENT SURVEY

[Izu+19] Cruz Izu et al. �Fostering Program Comprehension in Novice Pro-
grammers - Learning Activities and Learning Trajectories�. In: Proc.
of the Working Group Reports on Innovation and Technology in Com-
puter Science Education. ITiCSE-WGR '19. New York, NY, USA:
ACM, 2019, pp. 27�52.

[KD03] Amruth Kumar and Garrett Dancik. �A tutor for counter-controlled
loop concepts and its evaluation�. In: 33rd Annual Frontiers in Ed-
ucation, 2003. FIE 2003. Vol. 1. Nov. 2003, T3C�7. doi: 10.1109/
FIE.2003.1263331.

[KD10] Herman Koppelman and Betsy van Dijk. �Teaching Abstraction in
Introductory Courses�. In: Proceedings of the Fifteenth Annual Con-
ference on Innovation and Technology in Computer Science Educa-
tion. ITiCSE '10. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 174�178. doi: 10.1145/1822090.1822140.

[Kes19] Max Kesselbacher. �Supporting the Acquisition of Programming Skills
with Program Construction Patterns�. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion). 2019, pp. 188�189. doi: 10.1109/ICSE-
Companion.2019.00077.

[LDC20] Elise Lockwood and Adaline De Chenne. �Enriching Students' Combi-
natorial Reasoning through the Use of Loops and Conditional State-
ments in Python�. In: International Journal of Research in Undergrad-
uate Mathematics Education 6 (Oct. 2020). doi: 10.1007/s40753-
019-00108-2.

[Lis+04] Raymond Lister et al. �A Multi-national Study of Reading and Trac-
ing Skills in Novice Programmers�. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Educa-
tion. ITiCSE-WGR '04. New York, NY, USA: ACM, 2004, pp. 119�
150. doi: 10.1145/1044550.1041673.

[Lis+06] Raymond Lister et al. �Not Seeing the Forest for the Trees: Novice
Programmers and the SOLO Taxonomy�. In: Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Com-
puter Science Education. ITICSE '06. New York, NY, USA: ACM,
2006, pp. 118�122.

[Lis11] Raymond Lister. �Concrete and other neo-piagetian forms of reason-
ing in the novice programmer�. In: Conf. Res. Pract. Inf. Technol.
Ser. 114 (2011), pp. 9�18.

REFERENCES 163

[Lop+08] Mike Lopez et al. �Relationships Between Reading, Tracing and Writ-
ing Skills in Introductory Programming�. In: Proc. 4th Int. Workshop
on Comput. Educ. Research. ICER '08. New York, USA: ACM, 2008,
pp. 101�112.

[LR+18] Andrew Luxton-Reilly et al. �Introductory Programming: A System-
atic Literature Review�. In: Proceedings Companion of the 23rd An-
nual ACM Conference on Innovation and Technology in Computer
Science Education. ITiCSE 2018 Companion. New York, NY, USA:
ACM, 2018, pp. 55�106.

[Man+20] Linda Mannila et al. �Programming in Primary Education: Towards a
Research Based Assessment Framework�. In: Proceedings of the 15th
Workshop on Primary and Secondary Computing Education. WiP-
SCE '20. New York, NY, USA: Association for Computing Machinery,
2020. doi: 10.1145/3421590.3421598.

[MB�18] Monika Mladenovic, Ivica Boljat, and �ana �anko. �Comparing loops
misconceptions in block-based and text-based programming languages
at the K-12 level�. In: Education and Information Technologies 23
(July 2018), pp. 1483�1500. doi: 10.1007/s10639-017-9673-3.

[Men+16] Chiara Meneghetti et al. �The role of visual and spatial working mem-
ory in forming mental models derived from survey and route descrip-
tions�. In: British journal of psychology (London, England : 1953) 108
(Mar. 2016). doi: 10.1111/bjop.12193.

[MHD09] Shuhaida Mohamed Shuhidan, Margaret Hamilton, and Daryl
D'Souza. �A Taxonomic Study of Novice Programming Summative
Assessment�. In: Proc. 11th Australasian Conf. on Computing Ed-
ucation - Volume 95. ACE '09. Darlinghurst, Australia: Australian
Computer Society, Inc., 2009, pp. 147�156.

[MI19] Claudio Mirolo and Cruz Izu. �An Exploration of Novice Program-
mers' Comprehension of Conditionals in Imperative and Functional
Programming�. In: Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education. ITiCSE '19.
New York, NY, USA: Association for Computing Machinery, 2019,
pp. 436�442. doi: 10.1145/3304221.3319746.

[Mir12] Claudio Mirolo. �Is Iteration Really Easier to Learn Than Recursion
for CS1 Students?� In: Proc. of the 9th Annual International Confer-
ence on International Computing Education Research. ICER '12. New
York, NY, USA: ACM, 2012, pp. 99�104.

164 CHAPTER 4. STUDENT SURVEY

[MIS20] Claudio Mirolo, Cruz Izu, and Emanuele Scapin. �High-School Stu-
dents' Mastery of Basic Flow-Control Constructs through the Lens of
Reversibility�. In: Proceedings of the 15th Workshop on Primary and
Secondary Computing Education. WiPSCE '20. New York, NY, USA:
Association for Computing Machinery, 2020. doi: 10.1145/3421590.
3421603.

[MS21] Craig S. Miller and Amber Settle. �Mixing and Matching Loop Strate-
gies: By Value or By Index?� In: Proc. of the 52nd SIGCSE. SIGCSE
'21. Virtual Event, USA, 2021, pp. 1048�1054.

[MS68] H. Edward Massengill and Emir H. Shuford. The e�ect of 'Degree of
Con�dence' in student testing. eng. Tech. rep. 1968.

[Pai13] Allan Paivio. Imagery and Verbal Processes. English. OCLC:
869091762. Hoboken: Taylor and Francis, 2013.

[Per+86] David N. Perkins et al. �Conditions of learning in novice program-
mers�. In: Journal of Educational Computing Research 2.1 (1986),
pp. 37�55.

[PRW07] Anne Philpott, Phil Robbins, and J Whalley. �Assessing the steps
on the road to relational thinking�. In: Proceedings of the 20th an-
nual conference of the National Advisory Committee on Computing
Quali�cations. Vol. 286. 2007.

[RAVD83] H. Rudy Ramsey, Michael E. Atwood, and James R. Van Doren.
�Flowcharts versus Program Design Languages: An Experimental
Comparison�. In: Commun. ACM 26.6 (June 1983), pp. 445�449. doi:
10.1145/358141.358149.

[RBH17] Ebrahim Rahimi, Erik Barendsen, and Ineke Henze. �Identifying
Students' Misconceptions on Basic Algorithmic Concepts Through
Flowchart Analysis�. In: Informatics in Schools: Focus on Learning
Programming. Ed. by Valentina Dagien
e and Arto Hellas. Cham:
Springer International Publishing, 2017, pp. 155�168.

[RDLR20] Liam Rigby, Paul Denny, and Andrew Luxton-Reilly. �A Miss is as
Good as a Mile: O�-By-One Errors and Arrays in an Introductory
Programming Course�. In: Proc. of the 22nd Australasian Computing
Education Conference. 2020, pp. 31�38.

[SM19] Emanuele Scapin and Claudio Mirolo. �An Exploration of Teachers'
Perspective About the Learning of Iteration-Control Constructs�. In:
Informatics in Schools. New Ideas in School Informatics. Ed. by Sergei
N. Pozdniakov and Valentina Dagien
e. Cham: Springer, 2019, pp. 15�
27.

REFERENCES 165

[SM20] Emanuele Scapin and Claudio Mirolo. �An Exploratory Study of Stu-
dents' Mastery of Iteration in the High School�. In: Proceedings of the
International Conference on Informatics in School: Situation, Evalu-
ation and Perspectives, Tallinn, Estonia, November 16-18, 2020. Ed.
by Külli Kori and Mart Laanpere. Vol. 2755. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2020, pp. 43�54.

[SPV20] Phil Steinhorst, Andrew Petersen, and Jan Vahrenhold. �Revisiting
Self-E�cacy in Introductory Programming�. In: Proceedings of the
2020 ACM Conference on International Computing Education Re-
search. 2020, pp. 158�169.

[SS88] Elliot M. Soloway and James C. Spohrer. Studying the Novice Pro-
grammer. USA: L. Erlbaum Associates Inc., 1988.

[SWS17] Renske Smetsers-Weeda and Sjaak Smetsers. �Problem Solving and
Algorithmic Development with Flowcharts�. In: Proceedings of the
12th Workshop on Primary and Secondary Computing Education.
WiPSCE '17. New York, NY, USA: Association for Computing Ma-
chinery, 2017, pp. 25�34. doi: 10.1145/3137065.3137080.

[TG10] Allison Tew and Mark Guzdial. �Developing a validated assessment
of fundamental CS1 concepts�. In: Jan. 2010, pp. 97�101. doi: 10.
1145/1734263.1734297.

[Tho+06] Errol Thompson et al. �Code Classi�cation as a Learning and Assess-
ment Exercise for Novice Programmers�. English. In: The 19th An-
nual Conference of the National Advisory Committee on Computing
Quali�cations. Ed. by Samuel Mann and Noel Bridgeman. National
Advisory Committee on Computing Quali�cations, 2006, pp. 291�298.

[TL14a] Donna Teague and Raymond Lister. �Blinded by their Plight: Tracing
and the Preoperational Programmer�. In: PPIG. June 2014.

[TL14b] Donna Teague and Raymond Lister. �Programming: Reading, Writ-
ing and Reversing�. In: Proceedings of the 2014 Conference on Inno-
vation and Technology in Computer Science Education. ITiCSE '14.
New York, USA: ACM, 2014, pp. 285�290. doi: 10.1145/2591708.
2591712.

[TL14c] Donna Teague and Raymond Lister. �Programming: Reading, Writing
and Reversing�. In: Proceedings of the 2014 Conference on Innovation
& Technology in Computer Science Education. ITiCSE '14. New York,
NY, USA: ACM, 2014, pp. 285�290. doi: 10.1145/2591708.2591712.

[VS11] André Vandierendonck and Arnaud Szmalec. Spatial working memory.
Jan. 2011.

166 CHAPTER 4. STUDENT SURVEY

[VTL09] Anne Venables, Grace Tan, and Raymond Lister. �A Closer Look
at Tracing, Explaining and Code Writing Skills in the Novice Pro-
grammer�. In: Proceedings of the Fifth International Workshop on
Computing Education Research Workshop. ICER '09. New York, NY,
USA: Association for Computing Machinery, 2009, pp. 117�128. doi:
10.1145/1584322.1584336.

[WLB09] Jonathan Wai, David Lubinski, and Camilla P. Benbow. �Spatial abil-
ity for STEM domains: Aligning over 50 years of cumulative psycho-
logical knowledge solidi�es its importance.� en. In: Journal of Educa-
tional Psychology 101.4 (2009), pp. 817�835. doi: 10.1037/a0016127.

[YK07] Gavriel Yarmish and Danny Kopec. �Revisiting Novice Programmer
Errors�. In: SIGCSE Bull. 39.2 (June 2007), pp. 131�137. doi: 10.
1145/1272848.1272896.

[Zim00] Barry J. Zimmerman. �Self-e�cacy: An essential motive to learn�. In:
Contemporary educational psychology 25.1 (2000), pp. 82�91.

Chapter 5

Conclusions

This chapter concludes the thesis. Section 5.1 summarizes the overall work and the
major insights gained, while Section 5.2 mentions some implications for the Italian
high school curricula. Finally, in Section 5.3 we present possible directions for future
developments.

5.1 Work summary and major insights

First of all, we investigated the learning of iteration, starting from interviews of ex-
perienced upper secondary teachers of introductory programming in di�erent kinds
of schools, which aimed at ascertaining their beliefs about major sources of di�-
culties with basic programming concepts, as well as their approach to the teaching
of iteration constructs (Chapter 2, Section 2.1). The interviews have established
that iteration is among the few most central concepts for novice programmers, a
statement with which all the interviewed teachers appear to agree.

According to the teachers, a number of di�culties could be ascribed to lack
of prerequisites, in particular those implied in the mathematical and text compre-
hension skills. Problems with the former often manifest in the treatment of loop
conditions. A possible explanation of students' di�culties with the application of
mathematical and logical concepts is that the subject matter of Informatics (Com-
puter Science) and Mathematics are not well integrated in the standard high school
curriculum � see the next section for more details. In other words, some of the
mathematical topics may be covered either too early or too late to be e�ective when
they are required to learn programming.

Problems related to text comprehension, on the other hand, are also found in
the study of natural languages. As documented in the literature, the di�erences
between natural and arti�cial languages can generate di�culties and misconceptions.
Unlike natural languages, programming languages have a rigorous syntax and a well-

168 CHAPTER 5. CONCLUSIONS

de�ned formal syntax. A programming language must be compiled and executed
by a machine, so it cannot contain ambiguities. If, for example, we consider the
taxonomy proposed by Meneghetti [Men+20], several characteristics of a natural
language cannot be found in a programming language, but only in the text of the
problem, which, however, is usually expressed in a form other than a narrative text.

As a further insight emerging from the interviews, in the teachers' opinion a
possible way to induce students to develop their abstraction skills is to contrast
their tendency to approach a task by trial-and-error and require them to analyze
the problem at hand with paper and pencil �rst. Another possibility is to instruct
the students to organize their programs into several functions and procedures aimed
at introducing meaningful levels of abstraction.

Our next task was to administer a survey addressed to students, which included
both questions on their subjective perception of di�culty and a few small tasks
probing their understanding of iteration (Chapter 2, Section 2.2). In order to develop
this exploratory instrument we also took into account the insights gained from the
teachers' interviews.

The respondents identi�ed as major sources of di�culty, in their perception,
nested iterations and complex expressions including logical operators. Based on
performance in the small tasks, however, the students seem to underestimate their
di�culties to deal even with simple loop conditions. A large part of them were indeed
unable to master the relationships between loop condition and accurate speci�cation
in the application domain in a straightforward situation. This may partly be ascribed
to confusion about the role of the loop condition, meant as an `exit' condition instead
of a `continue' condition, but some more basic lack of problem-solving skills is also
conceivable in a number of cases. This result is perhaps not too surprising, in light
of the fact that the common examples presented by teachers to illustrate iteration
are often straightforward and tend to reproduce stereotypical patterns.

Apparently, students' di�culties with nested constructs are not so much about
the mechanics of code execution but they relate more to the ability of grasping
code behavior at a more abstract level. Most students seem to have developed a
viable mental model of the basic workings of the underlying machine, hence the
crucial point is how to develop their abstraction skills. Furthermore, students tend
to not exploit their tracing abilities in order to test their conjectures about program
behavior. This observation could be explained either by a general idle attitude or,
which is more relevant from a pedagogical perspective, by a lack of method when
approaching programming tasks.

To sum up, teachers and students agree that iteration is a key programming
concept and that the treatment of conditions and nested constructs are major sources
of students' di�culties with iteration, the former also con�rming the weakness of
mathematical prerequisites.

In order to support the development and assessment of students' skills, we have

5.1. WORK SUMMARY AND MAJOR INSIGHTS 169

built a preliminary catalog collecting program comprehension (code reading) tasks
which require to trace, explain, or evaluate small programs (Appendix B). The
programs are presented in code (C/C ++ or Java, currently the most widespread
options in the Italian schools) as well as �ow-chart versions.

Our attempt was to propose a selection of examples with a more varied and richer
structure than the usual ones we normally �nd in textbooks. In particular, the pro-
gram samples use non-trivial loop conditions and nested combinations of �ow-control
constructs. The catalog is meant to inspire teachers when designing problems and
exercises. To analyze the cognitive challenge presented by each program comprehen-
sion task, they may refer to Schulte's Block Model framework [Sch08], in particular
by following the suggestions of Izu et al. [Izu+19].

Based on the outcome of the previous steps, namely the literature review and the
interviews, we then designed an online survey to collect further information about
teachers' perspectives and good practices (Chapter 3). As major guiding factors
underlying our analysis we considered the instructor's orientation towards more
conceptual versus more practical objectives, on the one hand, and towards process-
based versus product-based assessment, on the other. As a result of this approach to
the analysis, teachers seem to give prominence to practical objectives, rather than
conceptual ones, but also tend to focus their assessment more on processes than
on products. Furthermore, once again, text comprehension and basic mathematical
skills are identi�ed as important prerequisites. In introductory courses, students
are probably required to deal with topics they do not yet master, so that they �nd
themselves working with languages and formalisms di�erent from those they have
been accustomed to.

As a last step, by elaborating on the insights gained from the pilot studies, we
designed, developed and administered a new online survey addressed to high school
students, speci�cally focused on their understanding of iteration (Chapter 4). This
instrument is built upon the catalog of programming tasks, or tasklets, listed in
Appendix B. Besides, covering aspects such as speci�c technical program features,
correlation between tracing e�ort and abstraction, role of �ow-chart vs. textual
code, the survey asked for students' perception of self-con�dence when achieving
tasks where they are supposed to engage high-level thinking skills.

The data collected appear to con�rm that the majority of students develop a
viable and accurate enough mental model of the notional machine underlying code
execution, including the operational treatment of composite Boolean conditions and
the functioning of nested constructs. Nevertheless, students face di�culties when
required to abstract on nested constructs or downcounting loops. We could also
observe that, although students are at ease with tracing code execution, they do not
adequately exploit this skill in order to test their conjectures about program behavior
at a higher level of abstraction, such as that required to evaluate functional equiva-
lence, to answer reversibility questions, or to experiment on a program's functional

170 CHAPTER 5. CONCLUSIONS

purpose. In addition, a large part of students are unable to master the relationships
between loop condition and accurate speci�cation in the problem domain.

As to the implications of textual code versus �ow-charts, students' performance
appears to be essentially una�ected. We can then speculate that a spatial cognitive
style (mental imaging, according to [Pai13]) is not restricted to basing the analysis
on a �ow-chart. Finally, from the subjective assessment of self-con�dence, students
seem to underestimate their di�culties to deal with loop conditions and nested loops.

5.2 Curricular implications

Teachers, both during the interviews and through the online survey, pointed out the
importance of mathematical prerequisites and the disalignment between Informatics
and mathematical topics. This issue emerges from the analysis of the curricula of a
number of upper secondary schools1, plans that are closely based on the ministerial
guidelines2. In other words, Informatics and Mathematics are not well integrated in
the standard high-school curriculum, with some of the mathematical topics being
covered either too early or too late to be e�ective when students are required to
learn programming. For instance, as we can see in Table 5.1, in the �Mathematics�
subject matter Boolean algebra and propositional calculus are introduced too early,
whereas vectors and matrices come too late.

Table 5.1: Schedule of Informatics and Mathematics topics in technical high schools.

Year Computer Science Mathematics
2 assignment,

conditional
set theory,
Boolean algebra,
propositional calculus

3 conditional,
iterations,
nested �ow control,
nested iterations,
arrays,
strings,
two-dimensional arrays

algebraic equations and inequalities,
goniometry,
trigonometry,
complex numbers,
exponential and logarithmic func-
tions,
analytic geometry

4 abstract data type,
OOP

limits,
functions,
derivatives,
linear algebra: vector and matrix

Hence, in this respect we would recommend to exploit the opportunities of
cross-disciplinary collaboration between Mathematics and Informatics teachers, as
a means to achieve a better alignment of the interconnected topics.

1Disciplinary plans concerning Mathematics and Computer Science are available online, we
have consulted ITT Chilesotti (https://www.chilesotti.edu.it/), ITIS Fermi (https://www.
fermibassano.edu.it/) and IIS Marzotto-Luzzati (https://www.iisvaldagno.it/) websites,
technical upper secondary schools.

2A concise and schematic view of the ministerial guidelines is available at the link: https:
//www.zanichelli.it/scuola/piani-di-studio-scuola-secondaria-di-ii-grado

5.3. FUTURE DIRECTIONS OF WORK 171

5.3 Future directions of work

As remarked in the introduction, this work can also lay the basis for further devel-
opments which we think are worth considering.

To begin with, some natural extensions of our endeavor include broadening the
sample of students engaged in the (second) survey and investigating the extent to
which the catalog tasks can be helpful to foster development of abstract thinking
skills. With regards to the former, it would be especially insightful to address a
larger number of girls in order to analyze possible gender issues [McK00; SGK20].

It could be also interesting to explore the e�ectiveness of methodological tools
inspired by the notion of loop invariant, see e.g. the pedagogical work in [Tam92;
Gin03], suitably adapted to �t less formal learning styles [Ast91]. It was actually
one of the objectives of our original project, but unfortunately, as mentioned above,
we were not able to plan interventions in the schools to investigate this approach
because of the Covid-19 pandemic.

Another interesting topic is related to the potentials of using �ow-charts when
reasoning about programs in connection with spatial abilities. Spatial activities are
meant as activities that involve reasoning about qualities of space (e.g., distance,
proportion), practicing mental visualization [Pet+20] (e.g., �guring out spatial lay-
outs or spatial trajectories). In this respect, several works examined the role of
spatial skills in Mathematics. In social cognitive theory (see Bandura [Ban05]) it is
suggested that they are relevant to good performance in Mathematics. Hegarty &
Kozhevnikov [HK99] pointed out that the �use of schematic representations is posi-
tively related to success in mathematical problem solving�, and according to Atit at
al. [Ati+20], �the ability to mentally visualize and manipulate images is a cognitive
skill critical for success in Mathematics�. Moreover, Wai et al. [WLB09] investigated
the importance of spatial ability for in STEM domains, i.e. in Science, Technology,
Engineering and Mathematics. Here are some possible lines of investigation:

� To which extent may spatial cognitive styles of learning be bene�cial to novice program-
mers?

� Do �ow-charts play a prominent role in this respect or does mental imaging arise inde-
pendently of the use of this form of program representation?

� More in general, what are the implications of di�erent cognitive styles when learning
programming and, more speci�cally, iteration?

In light of the weak correlation between performance and self-con�dence while
trying to achieve a task (see Chapter 4), a more ambitious project would be
to explore the impact of teaching meta-cognitive skills explicitly. According to
Schraw [Sch98], indeed, meta-cognitive awareness can be taught. Meta-cognitive
knowledge can be de�ned as �the subject's awareness of his own cognitive pro-
cesses� [Cot06], or the ideas that a person has developed about mental functioning,
which include: impressions, intuitions, notions, feelings, and self-perception [Cor95].

172 CHAPTER 5. CONCLUSIONS

By elaborating on Flavell's distinction [Fla92] between declarative and proce-
dural knowledge, Schraw [Sch98] identi�es three types of meta-cognitive awareness,
regarding:

− declarative knowledge, expressing knowledge as to the way of learning and how this
can be a�ected;

− procedural knowledge, expressing knowledge about strategies that can be used to
perform certain tasks;

− conditional knowledge, concerning the �when� and the �why� when using declarative
and procedural knowledge.

In general, meta-cognitive knowledge is achieved gradually, starting from primary
school, and becomes e�ective in the last years of high school. For the learning
of Computer Science, where students are currently involved only in later school
stages, the development of meta-cognitive awareness is not as settled as in other
�elds, such as mother language literacy or Mathematics. Therefore, students do
not master the implied meta-cognitive control processes, namely, integrating and
planning the use of previous knowledge, anticipating times and results of individual
study, choosing e�ective study methods, monitoring and verifying in itinere the
learning achievements [Bro87] � what is referred to as self-management of cognitive
activity [PCL84].

In this framework, a stimulating research direction stems from the idea that the
problem-solving activities implied by the tasks of our catalog can also be exploited
as means of eliciting students' own cognitive functioning. A possible instructional
strategy, rarely adopted in computing education, although widely considered in the
studies of learning [Ian04], is to have students verbalize the mental operations they
carry out while solving the problem at hand. Meanwhile, novice programmers should
be encouraged to keep asking themselves questions about the problem at hand and
the objectives of their work (see, in particular, the discussion of explicit strategies
presented by De Raadt [DR08; DRWT09b]). Other standard guidelines to develop
students' meta-cognitive skills include frequent feedback from teachers on their mis-
takes and on the quality of their work [Hat12], as well as employing teamwork and
prompting feedback from peers while engaging in laboratory tasks [HLR11].

Appendices

Appendix A

Publications

A.1 List of papers

Part of this work is based on the following peer-reviewed publications.

1. Scapin Emanuele, Mirolo Claudio. (2019). An Exploration of Teachers' Per-
spective About the Learning of Iteration-Control Constructs. In: Pozdniakov
S., Dagien
e V. (eds) Informatics in Schools. New Ideas in School Informatics.
ISSEP 2019. Lecture Notes in Computer Science, vol 11913. Springer, Cham.
https://doi.org/10.1007/978-3-030-33759-9_2

2. Mirolo Claudio, Izu Cruz, and Scapin Emanuele. (2020). High-school students'
mastery of basic �ow-control constructs through the lens of reversibility. In
Proceedings of the 15th Workshop on Primary and Secondary Computing
Education (WiPSCE '20). Association for Computing Machinery, New York,
NY, USA, Article 15, p. 1�10. DOI: https://doi.org/10.1145/3421590.3421603

3. Scapin Emanuele, Mirolo Claudio. (2020). An Exploratory Study of Students'
Mastery of Iteration in the High School. In K. Kori & M. Laanpere (Eds.),
Local Proceedings of ISSEP 2020 � 13th International Conference on Infor-
matics in Schools: Situation, Evolution, and Perspectives. Tallinn, Estonia:
University of Tallinn. (CEURWS Volume). p. 43�54.

4. Claudio Mirolo, Cruz Izu, Violetta Lonati, Emanuele Scapin. (2021). Abstrac-
tion in Computer Science Education: An Overview, Informatics in Education
20, no. 4, p. 615�639, DOI 10.15388/infedu.2021.27

5. Scapin Emanuele, Mirolo Claudio (2020). An Investigation of High School
Students' di�culties with Iteration-Control Constructs, Mondo Digitale 89, p.
1�11, http://mondodigitale.aicanet.net

6. Scapin Emanuele, Mirolo Claudio (2021). Design and development of an in-
strument to investigate high-school students' understanding of iteration. In

176 APPENDIX A. PUBLICATIONS

E. Barendsen & C. Chytas (Eds.), Local Proceedings of ISSEP 2021 � 14th
International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives. Nijmegen, The Netherlands: Radboud University.

A.2. ABSTRACTS 177

A.2 Abstracts

Abstracts of the documents listed above.

1. An Exploration of Teachers' Perspective About the Learning of

Iteration-Control Constructs

A number of studies report about students' di�culties with basic �ow-control
constructs, and speci�cally with iteration. Although such issues are less ex-
plored in the context of pre-tertiary education, this seems to be especially
the case for high-school programming learning, where the di�culties concern
both the �mechanical� features of the notional machine as well as the logical
aspects connected with the constructs, ranging from the implications of loop
conditions to a more abstract grasp of the underlying algorithms. As part
of a project whose long-term goal is to identify methodological tools to im-
prove the learning of iteration constructs, we interviewed 20 experienced upper
secondary teachers of introductory programming in di�erent kinds of schools
from a large area in the North-East of Italy. In addition, a sample of 164
students from the same schools answered a survey which included both ques-
tions on their subjective perception of di�culty and simple tasks probing their
understanding of iteration. The interviews were mainly aimed at ascertaining
teachers' beliefs about major sources of issues for basic programming concepts
and their approach to the teaching and learning of iteration constructs. Each
interview was conducted according to a grid of 20 questions, informed by re-
lated frameworks to characterize teachers' pedagogical content knowledge and
to design concept inventories. In essence, data from teachers and students
con�rm that iteration is a central programming concept and indicate that the
treatment of conditions and nested constructs are major sources of students'
di�culties with iteration.

2. High-school students' mastery of basic �ow-control constructs

through the lens of reversibility

High-school students specializing in computing �elds need to develop the ab-
straction skills required to understand and create programs. Novices' di�cul-
ties at high-school level, ranging from mastery of the �notional machine� to
recognition of a program's purpose, have not been investigated as extensively
as at tertiary level. This work explores high-school students' code comprehen-
sion by asking to reason about reversing conditional and iteration constructs.
205 K11�13 students from di�erent institutions were asked to engage in a set
of �reversibility tasklets�. For each code fragment, they needed to identify if
its computation was reversible and either provide the code to reverse or an
example of a value that cannot be reversed. For 4 such items, after extracting
the recurrent patterns in students' answers, we carried out an analysis within
the framework of the SOLO taxonomy. Overall, 74% of answers correctly
identi�ed whether the code was reversible but only 42 could provide the full

178 APPENDIX A. PUBLICATIONS

explanation/code. The rate of relational answers varied from 51% down to
21%, the poorest performance arising for a small array-processing loop (and
although 65% of the subjects had correctly identi�ed the loop as reversible).
The instruction level did not have a strong impact on performance, indicating
such tasks are suitable for K11, when the basic �ow-control constructs are
usually introduced. In particular, the reversibility concept could be a useful
pedagogical instrument both to assess and to help develop students' program
comprehension.

3. An Exploratory Study of Students' Mastery of Iteration in the High

School

Although a number of studies report about novices' di�culties with basic
�ow-control constructs, concerning both the understanding of the underlying
notional machine and the logical connections with the application domain,
these issues have not yet been extensively explored in the context of high-
school education. As part of a project whose long-term goal is identifying
methodological tools to improve the learning of iteration, we analyzed how
a sample of 164 high-school students approached three small programming
tasks involving basic looping constructs, as well as two questions on their
subjective perception of areas of di�culty. If, on the one hand, most students
seem to have developed a viable mental model of the basic workings of the
underlying machine, on the other hand, dealing at a more abstract level with
loop conditions and nested �ow-control structures appears to be challenging.
As to the implications for teachers, the results of the analysis suggest that
more e�orts should be put into developing a method for testing the conjectures
about program behavior, as well as into the treatment of loop conditions in
connection with the problem statement.

4. Abstraction in Computer Science Education: An Overview

When we �think like a computer scientist,� we are able to systematically solve
problems in di�erent �elds, create software applications that meet various
needs, and design artifacts that model complex systems. Abstraction is a soft
skill embedded in all those endeavors, being a main cornerstone of computa-
tional thinking. Our overview of abstraction is intended to be not so much
systematic as thought provoking, inviting the reader to (re)think abstraction
from di�erent � and perhaps unusual perspectives. After presenting a range
of its characterizations, we will explore abstraction from a cognitive point of
view. Then we will discuss the role of abstraction in a range of Computer Sci-
ence areas, including whether and how abstraction is taught. Although it is
impossible to capture the essence of abstraction in one sentence, one section or
a single paper, we hope our insights into abstraction may help Computer Sci-
ence educators to better understand, model and even dare to teach abstraction
skills.

A.2. ABSTRACTS 179

5. An Investigation of High School Students' di�culties with Iteration-

Control Constructs

A number of studies report about students' di�culties with basic �ow-control
constructs, and speci�cally with iteration. As part of a project whose long-
term goal is to identify methodological tools to improve the learning of iteration
constructs, we analyzed the answers of a sample of 164 high school students
to three small programming tasks and two questions on their perception of
di�culty. The results of the analysis suggest that more teaching e�orts should
go towards the development of a method to approach programming tasks and,
more speci�cally for iteration, to the treatment of loop conditions in connection
with the speci�cations in the application domain.

6. Design and development of an instrument to investigate high-school

students' understanding of iteration

Loops and conditionals turn out to be potential sources of novices' miscon-
ceptions. In this respect, our purpose is to outline here the design and de-
velopment of an instrument, composed of a set of small tasks, or tasklets, to
investigate in more depth high-school students' understanding of iteration in
terms of code reading abilities. In particular, we will try to summarize the
motivations underlying the choice of the tasks and the overall structure of the
instrument. A major aim of this contribution is indeed to invite the interested
educators and researchers to take part in the project in order to broaden the
scope of the empirical study.

180 APPENDIX A. PUBLICATIONS

Appendix B

Catalog

The activities presented below, organized by main topic of analysis, are a possible
catalog of problems and algorithms to be presented to students in the context of
teaching iterations in introductory programming courses.

The main topic indicated does not exclude the possibility of using the code or the
algorithm to analyze other areas related to iterations, and more.

Each tasklet can be used to analyze some students' skills, such as reading, tracing,
explaining and evaluating.

Examples and suggestions for the tasklets proposed in the students' survey are
taken from this catalog, see Chapter 4, Section 4.4, or via the link: http://nid.

dimi.uniud.it/additional_material/iteration_survey.html

The cataloged tasklets are proposed with code or �ow-chart version, sometimes
with both representations. For coding, the languages C/C ++ or Java were used,
currently the most taught languages in Italian upper secondary schools.

B.1 Loop condition

B.1.1 Tasklet L1

Problem statement: Determine the number of bits needed to represent a positive
integer n in base two, number of bits given by the smallest exponent k such that 2k

is greater than n. Which of the proposed algorithms seems correct to you?

Loop condition options: 2k = n, 2k ≤ n, 2k < n, 2k > n.

182 APPENDIX B. CATALOG

option 1 option 2 option 3 option 4

Figure B.1: Which option has the correct loop condition?

Other topics that can be explored: notional machine, tracing.

B.1.2 Tasklet L2

Problem statement: Determine the number of bits necessary to represent a positive
integer n in base two, number of bits given by the smallest exponent k such that 2k

is greater than n. What condition do you think is correct for the While Loop?
Loop condition options: 2k = n, 2k ≤ n, 2k < n, 2k > n.

�ow-chart version code version

Figure B.2: Which option has the correct loop condition?

Other topics that can be explored: notional machine, tracing.

B.2. LOOP COMPLEX CONDITION 183

B.1.3 Tasklet L3

Problem statement: Consider the following program for a 4-character string w =
�hello�, could you tell how many loops it does?
Number of iterations options: 0, 3, 4, 5, more the 5, the loop never ends.

Figure B.3: Flow-chart version.

1 int i;

2

3 while (i = strlen(w) > 0) {

4 printf("%s\n", w);

5 i--;

6 }

7

Listing B.1: Code version.

Other topics that can be explored: notional machine, tracing, loop control variable,
not numerical values.

B.2 Loop complex condition

B.2.1 Tasklet LC1

Problem statement: Consider the following program to check if two positive integers
m, n are prime to each other. If the input values are m = 15 and n = 44, how many
while loops will be performed?
Numbers of iterations options: 0, 1, 2, 3, 4 or more, the loop never ends.

1 int x = m, y = n;

2

3 while (x > 1 && y > 1 && x != y) {

4 if (x < y)

5 y = y - x;

6 else

7 x = x - y;

8 }

9

10 if (x == 1 || y == 1)

11 printf("m=%d e n=%d are coprime to each other", m,n);

12 else

13 printf("m=%d e n=%d are not coprime to each other", m,n);

Listing B.2: Loop complex condition C/C++ example.

184 APPENDIX B. CATALOG

Other topics that can be explored: notional machine, tracing, nested �ow control
constructs.

B.2.2 Tasklet LC2

Problem statement: Consider the following program for calculating the square root of
an integer n. If the input value is n = 16, how many while loops will be performed?
Numbers of iterations options: 0, 3, 4, 5, more than 5, the loop never ends.

1 float y = 0, z = 1;

2 float x = n; //n is the input value

3

4 while (z > 0.1 && n > 0) {

5 y = 0.5 * (x + n / x);

6 z = x - y;

7 x = y;

8 }

9

10 printf("%f square root is approximately: %f\n", n,y);

Listing B.3: Numbers of iterations with loop complex condition, C/C++ example.

Other topics that can be explored: notional machine, tracing.

B.2.3 Tasklet LC3

Problem statement: Consider the following program, can you tell what it can be used
for?
Functional purpose options:

(a) Calculate the nth element of the Fibonacci series;

(b) Calculate the average value of the numbers between 1 and n;

(c) Calculate the square root of n;

(d) It doesn't calculate anything in particular.

1 float y = 0, z = 1;

2 float x = n; //n is the input value

3

4 while (z > 0.1 && n > 0) {

5 y = 0.5 * (x + n / x);

6 z = x - y;

7 x = y;

8 }

9

10 printf("%f square root is approximately: %f\n", n,y);

Listing B.4: Functional purpose and loop complex condition, C/C++ example.

Other topics that can be explored: notional machine, tracing, functional purpose.

B.2. LOOP COMPLEX CONDITION 185

B.2.4 Tasklet LC4

Problem statement: Consider the following program, if the input value n = 25, how
many while loops will be done?
Numbers of iterations options: 0, 3, 4, 5, 6, the loop never ends.
Functional purpose options:

(a) Calculate a divisor of the number;

(b) Calculate the number of digits that make it up;

(c) Calculate the square root;

(d) It doesn't calculate anything in particular.

1 int z = 0;

2

3 while ((n > 0) && ((z+1)*(z+1) <= n)) {

4 z = z + 1;

5 }

6

7 printf("%d\n", z);

Listing B.5: Numbers of iterations with loop complex condition, C/C++ example.

Other topics that can be explored: notional machine, tracing, functional purpose.

B.2.5 Tasklet LC5

Problem statement: What are the values of var1 and var2 at the end of the code
execution?
Output state options:

(a) var1 = 1, var2 = 1;

(b) var1 = 2, var2 = 0;

(c) var1 = 3, var2 = −1;

(d) var1 = 0, var2 = 2;

(e) The loop will cause an error due to division by zero.

1 int var1 = 0;

2 int var2 = 2;

3

4 while (var2 != 0) && ((var1 / var2) >= 0) {

5 var1 = var1 + 1;

6 var2 = var2 - 1;

7 }

Listing B.6: Numbers of iterations with loop complex condition, C/C++ example.

Other topics that can be explored: notional machine, tracing.

186 APPENDIX B. CATALOG

B.2.6 Tasklet LC6

Problem statement: What condition should the While have in order to get V ar1 = 2
and V ar2 = 0?
Loop condition options:

(a) (var2 ! = 0) && ((var1/var2) > 0;

(b) (var2 == 0) && ((var1/var2) >= 0;

(c) (var2 ! = 0) && ((var1/var2) >= 0;

(d) (var2 ! = 0) || ((var1/var2) >= 0.

Figure B.4: Flow-chart version.

Figure B.5: Code version.

Other topics that can be explored: notional machine, tracing.

B.2.7 Tasklet LC7

Problem statement: What condition should the While have in order to get x = 4
and y = 3?
Loop condition options:

(a) y > 2 || x < y;

(b) y > 2 && x < y;

(c) y > 2 || x <= y;

(d) x > 2 && x < y.

B.3. EQUIVALENCE 187

Figure B.6: Flow-chart version.

Figure B.7: Code version.

Other topics that can be explored: notional machine, tracing.

B.2.8 Tasklet LC8

Problem statement: What are the values of x and y when the code ends executing?
Output state options:

(a) x = 5, y = 2;

(b) x = 2, y = 5;

(c) x = 3, y = 4;

(d) x = 4, y = 3.

1 int x = 2;

2 int y = 5;

3

4 while (y > 2 && x < y) {

5 x = x + 1;

6 y = y - 1;

7 }

Listing B.7: Output state with loop complex condition, C/C++ example.

Other topics that can be explored: notional machine, tracing.

B.3 Equivalence

B.3.1 Tasklet E1

Problem statement: The following programs are executed for positive values of m,
n in input. Furthermore, two (or more) programs are equivalent if in every possible

188 APPENDIX B. CATALOG

situation, with the same input data (positive values of m, n) they calculate the same
result x. In your opinion, which of the �ve programs listed below are equivalent?

Equivalence: select programs that are equivalent.

program 1 program 2 program 3

program 4 program 5

Figure B.8: Which programs are equivalent?

Other topics that can be explored: notional machine, tracing, nested �ow control
constructs, abstraction.

B.3.2 Tasklet E2

Problem statement: The following programs run on integer arrays. Furthermore,
two (or more) programs are equivalent if in every possible situation, with the same
input data (array values), they calculate the same result. In your opinion, which of
the four programs listed below are equivalent?

Equivalence: select programs that are equivalent.

B.3. EQUIVALENCE 189

program 1 program 2

program 3 program 4

Figure B.9: Which programs are equivalent?

Other topics that can be explored: notional machine, tracing, nested �ow control
constructs, abstraction, non numerical values

B.3.3 Tasklet E3

Problem statement: Given an array a of size n which of these code fragments are
equivalent?

Equivalence: select programs that are equivalent.

190 APPENDIX B. CATALOG

program 1 program 2

program 3 program 4

Figure B.10: Which programs are equivalent?

Other topics that can be explored: notional machine, tracing, nested �ow control
constructs, abstraction.

B.3.4 Tasklet E4

Problem statement: Given an integer value n which of these code fragments are
equivalent?

Equivalence: select programs that are equivalent.

program 1 program 2

program 3 program 4

Figure B.11: Which programs are equivalent?

B.3. EQUIVALENCE 191

Other topics that can be explored: notional machine, tracing, loop complex condi-
tions.

B.3.5 Tasklet E5

Problem statement: The following programs run on integer arrays. Furthermore,
two (or more) programs are equivalent if in every possible situation, with the same
input data (array values), they calculate the same result. In your opinion, which of
the four programs listed below are equivalent?

Equivalence: select programs that are equivalent.

program 1 program 2

program 3 program 4

Figure B.12: Which programs are equivalent?

Other topics that can be explored: notional machine, tracing.

B.3.6 Tasklet E6

Problem statement: Given that both count and n are integers, which of the following
statements is true for both blocks of code?
Functional purpose options:

(a) I and II are exactly equivalent for all input values n.;

(b) I and II are equivalent only when n is an even number.;

192 APPENDIX B. CATALOG

(c) I and II are equivalent only when n = 0;

(d) I and II are equivalent for all values except when n = 0;

(e) I and II will never have the exact same outputs.

1 // code 1

2

3 for(count =0; count <=n; count ++) {

4 printf("%d", count);

5 }

Listing B.8: I for-loop code.

1 // code 2

2

3 count = 0;

4 while(count <=n) {

5 count ++;

6 printf("%d", count);

7 }

8

Listing B.9: II while-loop code.

Other topics that can be explored: notional machine, tracing.

B.4 Nested loops

B.4.1 Tasklet NL1

Problem statement: What is the result printed by the following code?
Output state options: 4, 10, 16, 24, 30.

1 int total = 0;

2 int i;

3

4 for (int i = 1; i <= 4; i++) {

5 int j;

6 for (j = 1; j <= i; j++) {

7 total = total + i;

8 }

9 }

10

11 printf("%d", total);

Listing B.10: Output state with nested while-loops, C/C++ example.

Other topics that can be explored: tracing.

B.4.2 Tasklet NL2

Problem statement: How many loops does the following code perform?
Number of iterations options: 0, 7, 8, 10, more than 10, the loop never ends.

B.4. NESTED LOOPS 193

1 int total = 0;

2 int i;

3

4 for (int i = 1; i <= 4; i++) {

5 int j;

6 for (j = 1; j <= i; j++) {

7 total = total + i;

8 }

9 }

10

11 printf("%d", total);

Listing B.11: Number of iterations with nested while-loops, C/C++ example.

Other topics that can be explored: tracing.

B.4.3 Tasklet NL3

Problem statement: Given two input values n and m both integers, could you tell
what the following code fragments can be used for?
Functional purpose options:

(a) Calculate least common multiple (lcm);

(b) Calculate greatest common divisor (GCD);

(c) Calculate the root the greater of the two numbers;

(d) None of the above options.

1 int x = m, y = n;

2

3 while (x != y) {

4 while (x < y)

5 x = x + m;

6 while (x > y)

7 y = y + n;

8 }

9

10 printf("result: %d", x);

Listing B.12: Functional purpose options with nested while-loops, C/C++ example.

Other topics that can be explored: notional machine, tracing, function purpose.

B.4.4 Tasklet NL4

Problem statement: Given two input values n and m both integers, could you tell
what the following code fragments can be used for?
Functional purpose options:

(a) Calculate least common multiple (lcm);

194 APPENDIX B. CATALOG

(b) Calculate greatest common divisor (GCD);

(c) Calculate the root the greater of the two numbers;

(d) None of the above options.

1 int x = m, y = n;

2

3 while (x != y) {

4 if (x < y)

5 x = x + m;

6 else

7 y = y + n;

8 }

9

10 printf("result: %d", x);

Listing B.13: Functional purpose options with nested while-loops, C/C++ example.

Other topics that can be explored: notional machine, tracing, function purpose.

B.4.5 Tasklet NL5

Problem statement: Given two input values n and m both integers, could you tell
what the following code fragments can be used for?
Functional purpose options:

(a) Calculate least common multiple (lcm);

(b) Calculate greatest common divisor (GCD);

(c) Calculate the root the greater of the two numbers;

(d) None of the above options.

1 int x = m, y = n;

2

3 while (x != y) {

4 if (x > y)

5 y = y + m;

6 else

7 x = x + n;

8 }

9

10 printf("result: %d", x);

Listing B.14: Functional purpose options with nested while-loops, C/C++ example.

Other topics that can be explored: notional machine, tracing, function purpose.

B.4. NESTED LOOPS 195

B.4.6 Tasklet NL6

Problem statement: Given a string (array of characters) a of n elements, could you
indicate what the following program does?
Functional purpose options:

(a) Calculate the number of `1' present;

(b) Calculate the parity bit;

(c) Calculate the length of the maximum subsequence of `1';

(d) Nothing in particular.

Numbers of iterations options: 0, 5, 6, 7, the loop never ends.

1 int i = 0;

2 int x = 0;

3

4 while (i < n)) {

5 int y = 0;

6 int j = i + 1;

7

8 if (a[i] == '1') y++;

9

10 while (a[i] == a[j] && a[i] == '1') {

11 y++;

12 j++;

13 }

14 i++;

15 if (y > x) x = y;

16 }

17

18 printf("result: %d", x);

Listing B.15: Functional purpose options with nested while-loops, C/C++ example.

Other topics that can be explored: notional machine, tracing, function purpose, non
numerical values.

B.4.7 Tasklet NL7

Problem statement: Consider the following code segment. How many times is the
string "Hi!" printed as a result of executing the code segment?
Number of iterations options: 8, 10, 12, 15, the loop never ends.

1 int i = 0;

2

3 while (i <= 4) {

4 int j;

5 for (j = 0; j < 3; j++) {

6 printf("Hi!");

7 }

196 APPENDIX B. CATALOG

8 i++;

9 }

Listing B.16: Functional purpose options with nested while-loops, C/C++ example.

Other topics that can be explored: tracing, function purpose, non numerical values.

B.5 Reversibility

B.5.1 Tasklet R1

Problem statement: The code presented in the image manipulates an array V , select
the code fragments that restores the initial values of the array.
Code that reverses the array and restores the starting values: four options (see
Figure B.13).

1 int x = v[0];

2

3 for (int i = 1; i <= v.length; i++) {

4 v[i-1] = v[i];

5 }

6

7 v[v.length -1] = x;

Listing B.17: Code manipulates an array with nested while-loops, Java example.

program 1 program 2

program 3 program 4

Figure B.13: Which programs restore the initial values of the array?

Other topics that can be explored: notional machine, tracing, function purpose,
abstraction.

B.6. FUNCTIONAL PURPOSE 197

B.6 Functional purpose

B.6.1 Tasklet F1

Problem statement: Analyze the following code fragment, identi�ed any value x you
could tell what it can be used for?
Functional purpose options:

(a) Subtract a certain number of times 5 from the starting x number;

(b) Calculate the remainder of a division by 5;

(c) List multiples of 5 through x;

(d) It doesn't calculate anything in particular.

Figure B.14: Flow-chart version.

1 // int x; // x a integer value

2

3 while (x >= 5) {

4 x = x - 5;

5 }

6

Listing B.18: Code version.

Other topics that can be explored: notional machine, tracing.

B.6.2 Tasklet F2

Problem statement: Analyze the following code fragments, it contains an array a of
N integers. Could you tell what it can be used for?
Functional purpose options:

(a) Count the number of items present;

(b) Returns the item repeated multiple times;

(c) Returns the largest element;

(d) Sort the array;

(e) It doesn't calculate anything in particular.

198 APPENDIX B. CATALOG

1 int c = 0;

2 int b = 0;

3 int x = 0;

4 int y = 0;

5

6 int i, j;

7

8 for (i = 0; i < N; i++) {

9 x=0;

10 for (j = 0; j < N; j++) {

11 if (a[i] ==a [j]) {

12 c = i;

13 x++;

14 }

15 }

16 if (x > y) {

17 y = x;

18 b = c;

19 }

20 }

21

22 printf("%d, %d\n", a[b], y);

Listing B.19: Functional purpose with nested for-loops, C/C++ example.

Other topics that can be explored: notional machine, tracing, nested �ow control
construct.

B.6.3 Tasklet F3

Problem statement: Given an array of N integers and b an array of M integers,
can you tell what the following code fragments can do?
Functional purpose options:

(a) Prints the elements belonging to the intersection of the two sets;

(b) Prints the elements belonging to the union of the two sets;

(c) Print elements that have the same position;

(d) Sort array a;

(e) It doesn't calculate anything in particular.

1 int i=0;

2

3 while (i < N) {

4 int j=0;

5 while (j < M) {

6 if (a[i] == b[j]) printf("%d\n", a[i]);

7 j++;

8 }

B.6. FUNCTIONAL PURPOSE 199

9 i++;

10 }

Listing B.20: Functional purpose with nested while-loops, C/C++ example.

Other topics that can be explored: notional machine, tracing, nested �ow control
construct.

B.6.4 Tasklet F4

Problem statement: Given a sequence/string of 0s and 1s, what does the following
program calculate?
Functional purpose options:

(a) Count the number of `1' present;

(b) Calculate parity bit 1 when the number of `1' is even;

(c) Calculate parity bit 1 when the number of `1' is odd;

(d) It doesn't calculate anything in particular.

1 int n = strlen(s); // length of the string s

2 int p = 0;

3 int i = 0;

4

5 while (i < n) {

6 if (s[i] == '1') {

7 p++;

8 }

9 i++;

10 }

11

12 printf("%d\n", p%2==0);

Listing B.21: Functional purpose with nested while-loops, C/C++ example.

Other topics that can be explored: notional machine, tracing, not numerical values.

B.6.5 Tasklet F5

Problem statement: Given a sequence/string of 0s and 1s, what does the following
program calculate?
Functional purpose options:

(a) Calculate the minimum value;

(b) Calculate the average value;

(c) Calculate the maximum value;

(d) It doesn't calculate anything in particular.

200 APPENDIX B. CATALOG

1 int m = a[n-1];

2 int i = n-1;

3

4 while (i >= 0) {

5 if (m <= a[i]) m = a[i];

6 i--;

7 }

Listing B.22: Functional purpose with nested �ow-control construnct, C/C++
example.

Other topics that can be explored: notional machine, tracing.

B.6.6 Tasklet F6

Problem statement: Given a sequence/string of 0s and 1s, what does the following
program calculate?
Functional purpose options:

(a) Calculate the minimum value;

(b) Calculate the average value;

(c) Calculate the maximum value;

(d) It doesn't calculate anything in particular.

1 int m = a[n-1];

2 int i;

3

4 for (i = n-1; i >= 0; i--) {

5 if (m <= a[i]) m = a[i];

6 }

Listing B.23: Functional purpose with nested �ow-control construnct, C/C++
example.

Other topics that can be explored: notional machine, tracing.

B.7 Loop control variable

B.7.1 Tasklet CV1

Problem statement: If we input an array v of 5 elements 2,3,5,7,8, after the execu-
tion of the code how will the array be changed?
Output state options:

(a) 2, 3, 5, 7, 8;

(b) 3, 4, 6, 8, 9;

B.7. LOOP CONTROL VARIABLE 201

(c) 2, 5, 10, 15, 25;

(d) 2, 5, 10, 17, 25.

Problem statement: Given an array v, what does the following program calculate?
Functional purpose options:

(a) Calculate the sum of the elements of the array;

(b) Move each element one position (shift);

(c) Calculate the cumulative sum;

(d) It doesn't calculate anything in particular.

1 int x = 0;

2 int i;

3

4 for (i = 0; i < n; i = i + 1) {

5 x = x + v[i];

6 v[i] = x;

7 }

Listing B.24: For-loop code that manipulates an array, C/C++ example.

Other topics that can be explored: notional machine, tracing, functional purpose.

202 APPENDIX B. CATALOG

Appendix C

Computer Science in Italian school

In Italy the secondary school system is organized on two levels: (1) Lower secondary
education, grades 6th to 8th (pupils aged 11�13); (2) Upper secondary education,
grades 9th to 13th (pupils aged 14�18). Schooling is compulsory for ten years, thus
pupils normally have to attend school until the age of 16 (grade 10th) [Bel+14].

The lower secondary education level is planned over three years. Informatics is
not a subject taught by itself, but pupils attend �Mathematics and Science� and
�Technology� in which informatics should be introduced.

Upper secondary education in Italy is divided into three types of high school:
lyceum, technical school, vocational school. Courses last 5 years.

− Lyceum aims at a general education typically re�ned with further tertiary stud-
ies and available with di�erent main focuses: Classical, Scienti�c, Linguistic,
Artistic, Music, Human Sciences.

− Technical schools aim at vocational education with two main orientations: Tech-
nology and Economics. The education given in a technical school o�ers both
theoretical education and also quali�ed technical specialization in a speci�c �eld
of studies.

− Professional schools aim at vocational education with two main orientations:
Services and Manufacturing.

Computer Science education is o�ered in Scienti�c Lyceum of Applied Sciences,
and also in Economics high school and technological high school.

C.1 Scienti�c Lyceum of Applied Sciences

Scienti�c Lyceum of Applied Sciences o�ers Computer Science for all 5 years of
studies, 2 hours per week.

The lessons should include the main topics of the discipline: hardware architec-
tures, operating systems, algorithms and programming languages, coding, computer

204 APPENDIX C. COMPUTER SCIENCE IN ITALIAN SCHOOL

networks, databases, numerical simulations, mark-up languages, and some web ap-
plication.

C.2 Technical high school

High school with technical specialization in Computer Science o�ers a variety of
courses, as shown in Table C.1.

Table C.1: Study hours per week in technical subjects.

Course 1 2 3 4 5

Technology of Informatics 3
Science and Applied Technology 3
Mathematics 4 4 4 4 3
Informatics 6 6 6
Systems and Networks 4 4 4
Technology and System Design 3 3 4
Project management and business organization 3
Telecommunications 3 3

The Technology of Informatics course, in the �rst year, is common to all the
curricula present in the technical schools. Technology of Informatics should provide
basic knowledge concerning: information, data and codi�cation; computer archi-
tecture; human-computer communication; functionalities of an operating system;
software tools and applications; problem solving and representation; fundamentals
of programming; structure of a computer network; Internet networking; privacy and
copyright issues.

C.3 Economics high school

For the Economics sector, the main emphasis is on the potential of ICT as a means
of reorganizing businesses and optimizing processes and data management.

High school with an Economics specialization in Company Information Systems
o�ers a smaller variety of courses, as shown in Table C.2.

Table C.2: Study hours per week in technical subjects.

Course 1 2 3 4 5

Mathematics 4 4 3 3 3
Informatics 2 2 4 5 5

C.3. ECONOMICS HIGH SCHOOL 205

High school with an Economics specialization in Administration, Finance and
Marketing o�ers a smaller variety of courses and fewer hours per week, as shown in
Table C.3.

Table C.3: Study hours per week in technical subjects.

Course 1 2 3 4 5

Mathematics 4 4 3 3 3
Informatics 2 2 2 2

206 APPENDIX C. COMPUTER SCIENCE IN ITALIAN SCHOOL

Appendix D

Teacher Pilot Interview Protocol

English version of the questions asked to the teachers, reported in the order followed
during the pilot interviews.

0. General information

Male/Female

Where do you teach? (Your institution)

In which field are your students specializing?

What subject do you teach?

How long have you been teaching?

What is your academic background?

1. What programming language do you use to introduce the basics

of programming?

2. What are the most challenging key programming concepts in your

teaching perspective?

3. What is the major learning obstacle that students face before

being introduced to object-oriented

programming?

[Answers to question 2 may include OO concepts, but here the intended

focus is on imperative and procedural concepts.]

4. In which order do you teach the basic programming-related concepts?

5. How much time do you plan for each basic concept?

6. Can you show some of your favorite examples to make students learn

how to apply the iteration constructs?

7. Are the tasks assigned to students simple variations of those dealt

with in class? Or do they address unfamiliar

situations as well?

8. What are the extra-computing prerequisites necessary to understand

208 APPENDIX D. TEACHER PILOT INTERVIEW PROTOCOL

the basic programming concepts as well as the examples you show?

9. In your experience, to what extent can students master the termination

condition of a loop?

10. In your teaching, do you cover the mappings between different

iteration constructs (for, while, do-while, repeat-until)?

11. How do you usually assess an incorrect termination condition?

And oversights about the first or last iteration?

12. How do you assess a working solution if it is inefficient, or convoluted,

or somehow at odds with what you expected?

13. While trying to achieve the assigned tasks, do you expect your students

to apply the models introduced in class? Or do you also appreciate �creative�

solutions?

14. Which features of the iteration constructs are usually understood

by (most) students, and which are more difficult to them?

15. What are your more frequent suggestions to students for improving their

programming performance?

16. Are the different solutions proposed by students compared in class? How?

17. What are your strategies to motivate students?

18. How do you attempt to manage different learning styles?

19. How do you deal with students' criticisms in order to address their

possible needs?

20. Any other issues you deem important to consider about the

teaching/learning of programming?

Appendix E

Student Pilot Survey Protocol

English version of the student pilot survey, including questions about their subjective
perception as well as three tasklets on the iteration constructs.

214 APPENDIX E. STUDENT PILOT SURVEY PROTOCOL

Bibliography

[Abe08] Sandra K. Abell. �Twenty Years Later: Does pedagogical content
knowledge remain a useful idea?� eng. In: International journal of
science education 30.10 (2008), pp. 1405�1416.

[Ade85] Beth Adelson. �Comparing Natural and Abstract Categories: A Case
Study from Computer Science�. In: Cognitive Science 9.4 (1985),
pp. 417�430. doi: https://doi.org/10.1207/s15516709cog0904\
_3. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1207/
s15516709cog0904_3.

[AGE06] Michal Armoni and Judith Gal-Ezer. �Reduction � an abstract think-
ing pattern: the case of the computational models course�. In: SIGCSE
'06: Proceedings of the 37th SIGCSE technical symposium on Com-
puter science education. New York, NY, USA: ACM, 2006, pp. 389�
393. doi: http://doi.acm.org/10.1145/1121341.1121461.

[AIES14] Abejide Ade-Ibijola, Sigrid Ewert, and Ian Sanders. �Abstracting and
Narrating Novice Programs Using Regular Expressions�. In: Proceed-
ings of the Southern African Institute for Computer Scientist and In-
formation Technologists Annual Conference 2014 on SAICSIT 2014
Empowered by Technology. SAICSIT '14. New York, NY, USA: As-
sociation for Computing Machinery, 2014, pp. 19�28. doi: 10.1145/
2664591.2664601.

[AK16] Alicia C. Alonzo and Jiwon Kim. �Declarative and dynamic pedagog-
ical content knowledge as elicited through two video-based interview
methods�. eng. In: Journal of research in science teaching 53.8 (2016),
pp. 1259�1286.

[Alm+06] Vicki Almstrum et al. �Concept Inventories in Computer Science for
the Topic Discrete Mathematics�. In: ACM SIGCSE Bulletin Inroads
38 (Dec. 2006), pp. 132�145. doi: 10.1145/1189136.1189182.

[Alz+18] Nabeel Alzahrani et al. �An analysis of common errors leading to ex-
cessive student struggle on homework problems in an introductory
programming course�. In: 2018 ASEE Annual Conference & Exposi-
tion. 2018.

216 BIBLIOGRAPHY

[Arm13] Michal Armoni. �On teaching abstraction in computer science to
novices�. In: Journal of Computers in Mathematics and Science
Teaching 32.3 (July 2013), pp. 265�284.

[Arn94] David Arnow. �Teaching Programming to Liberal Arts Students: Us-
ing Loop Invariants�. In: Proceedings of the 25th SIGCSE Symposium
on Computer Science Education. SIGCSE '94. New York, NY, USA:
ACM, 1994, pp. 141�144.

[AS08] Russ Abbott and Chengyu Sun. �Abstraction abstracted�. en. In: Pro-
ceedings of the 2nd international workshop on The role of abstraction
in software engineering - ROA '08. Leipzig, Germany: ACM Press,
2008, p. 23. doi: 10.1145/1370164.1370171.

[Ast91] Owen Astrachan. �Pictures As Invariants�. In: Proceedings of the
22nd SIGCSE Technical Symposium on Computer Science Education.
SIGCSE '91. New York, NY, USA: ACM, 1991, pp. 112�118.

[Ati+20] Kinnari Atit et al. �Examining the role of spatial skills and math-
ematics motivation on middle school mathematics achievement�. In:
International Journal of STEM Education 7.1 (2020), pp. 1�13.

[BA01] Mordechai Ben-Ari.Mathematical logic for computer science. eng. 2nd
ed. London: Springer, 2001.

[Ban00] Albert Bandura. Autoe�cacia: Teoria e applicazioni.(Presentazione
all'edizione italiana di Gian Vittorio Caprara). Edizioni Erickson,
2000.

[Ban05] Albert Bandura. �The evolution of social cognitive theory�. In: Great
minds in management (2005), pp. 9�35.

[Bar+14] Erik Barendsen et al. �Eliciting computer science teachers' PCK us-
ing the Content Representation format: Experiences and future direc-
tions�. In: Proceedings of the 6th International Conference on Infor-
matics in Schools: Situation, Evolution, and Perspectives (ISSEP'14)
� Teaching and Learning Perspectives. Ed. by Yasemin Gülbahar, Er-
inç Karata³, and Müge Adnan. Vol. 8730. Istanbul, Turkey: Ankara
University Press, Sept. 2014, pp. 71�82.

[Bar+15] Erik Barendsen et al. �Concepts in K-9 Computer Science Educa-
tion�. In: Proceedings of the 2015 ITiCSE on Working Group Reports.
ITICSE-WGR '15. New York, NY, USA: ACM, 2015, pp. 85�116. doi:
10.1145/2858796.2858800.

[BC06] Jens Bennedsen and Michael E. Caspersen. �Abstraction Power in
Computer Science Education�. In: Proceedings of the 18th Annual
Workshop of the Psychology of Programming Interest Group - PPIG
2006. University of Sussex, Brighton, UK, Sept. 2006.

BIBLIOGRAPHY 217

[Bec21] Brett A. Becker. �What Does Saying That 'programming is Hard' Re-
ally Say, and about Whom?� In: Commun. ACM 64.8 (2021), pp. 27�
29. doi: 10.1145/3469115.

[Bel+14] Carlo Bellettini et al. �Informatics Education in Italian Secondary
Schools�. In: ACM Trans. Comput. Educ. 14.2 (2014). doi: 10.1145/
2602490.

[BFC82] John Biggs and Kevin F Collis. �Evaluating the Quality of Learning:
the SOLO Taxonomy�. In: SERBIULA (sistema Librum 2.0) (Jan.
1982).

[BFL99] Albert Bandura, WH Freeman, and Richard Lightsey. Self-e�cacy:
The exercise of control. 1999.

[BH74] Alan D. Baddeley and Graham Hitch. �Working memory�. In: Psy-
chology of learning and motivation. Vol. 8. Elsevier, 1974, pp. 47�89.

[Bis15] Gian Italo Bischi. Matematica e Letteratura. Dalla Divina Commedia
al Noir. EGEA, Milano, 2015, p. 160.

[BJ72] John D. Bransford and Marcia K. Johnson. �Contextual prerequi-
sites for understanding: Some investigations of comprehension and re-
call�. In: Journal of Verbal Learning and Verbal Behavior 11.6 (1972),
pp. 717 �726. doi: https://doi.org/10.1016/S0022-5371(72)
80006-9.

[Bla16] Andreas Blass. �Symbioses between mathematical logic and computer
science�. In: Annals of Pure and Applied Logic 167.10 (2016). Logic
Colloquium 2012, pp. 868 �878. doi: https://doi.org/10.1016/j.
apal.2014.04.018.

[BLW01] Paolo Bucci, Timothy J. Long, and Bruce W. Weide. �Do we really
teach abstraction?� In: SIGCSE '01: Proceedings of the thirty-second
SIGCSE technical symposium on Computer Science Education. New
York, NY, USA: ACM, 2001, pp. 26�30. doi: 10 . 1145 / 364447 .
364531.

[Bro87] A. Richard Brown. �Metacognition, executive control, self-regulation,
and other more mysterious mechanisms�. In: F.E. Weinert & R.H.
Kluwe, (Eds.) Metacognition, motivation, and understanding. 1987.

[BRT05] Susan Bergin, Ronan Reilly, and Desmond Traynor. �Examining the
Role of Self-Regulated Learning on Introductory Programming Perfor-
mance�. In: Proceedings of the 1st International Workshop on Com-
puting Education Research. ICER '05. New York, NY, USA: ACM,
2005, pp. 81�86.

218 BIBLIOGRAPHY

[BS11] Valerie Barr and Chris Stephenson. �Bringing computational thinking
to K-12: what is Involved and what is the role of the computer science
education community?� In: ACM Inroads 2 (Mar. 2011). doi: 10.
1145/1929887.1929905.

[BS13] Teresa Busjahn and Carsten Schulte. �The Use of Code Reading in
Teaching Programming�. In: Proceedings of the 13th Koli Calling In-
ternational Conference on Computing Education Research. Koli Call-
ing '13. New York, NY, USA: Association for Computing Machinery,
2013, pp. 3�11. doi: 10.1145/2526968.2526969.

[BS83] Je�rey Bonar and Elliot M. Soloway. �Uncovering principles of novice
programming�. In: Proceedings of the 10th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. 1983, pp. 10�13.

[BS85] Je�rey Bonar and Elliot M. Soloway. �Preprogramming Knowledge: A
Major Source of Misconceptions in Novice Programmers�. In: Human-
Computer Interaction 1 (June 1985), pp. 133�161. doi: 10.1207/
s15327051hci0102_3.

[BSS13] Malte Buchholz, Mara Saeli, and Carsten Schulte. �PCK and re�ec-
tion in computer science teacher education�. In: ACM International
Conference Proceeding Series (Nov. 2013). doi: 10.1145/2532748.
2532752.

[Cac+16] Ricardo Cace�o et al. �Developing a Computer Science Concept
Inventory for Introductory Programming�. In: Proceedings of the
47th ACM Technical Symposium on Computing Science Education.
SIGCSE '16. New York, NY, USA: ACM, 2016, pp. 364�369. doi:
10.1145/2839509.2844559.

[CAD19] Hasnaa Chaabi, Amina Azmani, and Juan Manuel Dodero. �Analysis
of the relationship between computational thinking and mathemati-
cal abstraction in primary education�. In: Proceedings of the Seventh
International Conference on Technological Ecosystems for Enhancing
Multiculturality. 2019, pp. 981�986.

[CADM05] Romeo Crapiz, Franca Alborini, and Mirka De Marchi. �Letteratura
e Informatica Un'esperinza didattica al Liceo Copernico di Udine�.
it. In: Didamatica 2005: Didattica Informatica. Potenza, Italy: AICA,
Oct. 2005, pp. 994�1002.

[CCDB07] Barbara Carretti, Cesare Cornoldi, and Rossana De Beni. Il disturbo
di comprensione del testo. 2007.

[CD17] Ibrahim Cetin and Ed Dubinsky. �Re�ective abstraction in compu-
tational thinking�. eng. In: The Journal of mathematical behavior 47
(2017), pp. 70�80.

BIBLIOGRAPHY 219

[Cet15] Ibrahim Cetin. �Student's Understanding of Loops and Nested Loops
in Computer Programming: An APOS Theory Perspective�. In: Cana-
dian Journal of Science, Mathematics and Technology Education 15.2
(Feb. 2015), pp. 155�170. doi: 10.1080/14926156.2015.1014075.

[Cet+20] Ibrahim Cetin et al. �Teaching Loops Concept through Visualization
Construction�. In: Informatics in Education-An International Journal
19.4 (2020), pp. 589�609.

[Che18] Eugenia Cheng. The Art of Logic: How to Make Sense in a World that
Doesn't. Pro�le, 2018.

[CHR13] Pavol Cerny, Thomas A Henzinger, and Arjun Radhakrishna. �Quan-
titative abstraction re�nement�. In: Proceedings of the 40th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 2013, pp. 115�128.

[CLM20] Umberto Costantini, Violetta Lonati, and Anna Morpurgo. �How
Plans Occur in Novices' Programs: A Method to Evaluate Program-
Writing Skills�. In: Proceedings of the 51st ACM Technical Sympo-
sium on Computer Science Education. SIGCSE '20. New York, NY,
USA: Association for Computing Machinery, 2020, pp. 852�858. doi:
10.1145/3328778.3366870.

[CMM07] Louis Cohen, Lawrence Manion, and Keith Morrison. Research meth-
ods in education. London, New York: Routledge, 2007.

[CO99] Kate Cain and Jane V. Oakhill. �Inference making ability and its
relation to comprehension failure in young children�. In: Reading and
Writing 11 (1999), pp. 489�503.

[Con94] Bradford R. Connatser. �Setting the Context for Understanding�. In:
Technical Communication 41.2 (1994), pp. 287�291.

[Cor+18] Cesare Cornoldi et al. Processi cognitivi, motivazione e apprendi-
mento. Bologna: il Mulino, 2018.

[Cor95] Cesare Cornoldi. Metacognizione e apprendimento. Strumenti. Psi-
cologia. Il Mulino, 1995.

[Cot06] Lucio Cottini. La didattica metacognitiva. 2006.

[CPC13] Donna Christy, Christine Payson, and Patricia Carnevale. �The
Bridge to Mathematics and Literature�. In: Mathematics Teaching
in the Middle School 18.9 (2013), pp. 572�577.

[CPP12] Michelle Craig, Sarah Petersen, and Andrew Petersen. �Following a
Thread: Knitting Patterns and Program Tracing�. In: Proceedings of
the 43rd ACM Technical Symposium on Computer Science Education.
SIGCSE '12. New York, NY, USA: Association for Computing Ma-
chinery, 2012, pp. 233�238. doi: 10.1145/2157136.2157204.

220 BIBLIOGRAPHY

[Csi+15] Andrew Csizmadia et al. �Computational thinking - a guide for teach-
ers�. In: Computing At School (Jan. 2015).

[Cur+19] Paul Curzon et al. �Computational thinking�. In: The Cambridge
Handbook of Computing Education Research (2019), pp. 513�546.

[CW15] Jacqui Chetty and Duan van der Westhuizen. �Towards a Pedagogi-
cal Design for Teaching Novice Programmers: Design-Based Research
as an Empirical Determinant for Success�. In: Proceedings of the 15th
Koli Calling Conference on Computing Education Research. Koli Call-
ing '15. New York, NY, USA: Association for Computing Machinery,
2015, pp. 5�12. doi: 10.1145/2828959.2828976.

[CZP14] Yuliya Cherenkova, Daniel Zingaro, and Andrew Petersen. �Identi-
fying Challenging CS1 Concepts in a Large Problem Dataset�. In:
Proc. of the 45th ACM Tech. Symp. on Computer Science Education.
SIGCSE '14. New York, NY, USA: ACM, 2014, pp. 695�700.

[Dav95] Martin Davis. �The Universal Turing Machine (2Nd Ed.)� In: ed. by
Rolf Herken. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
1995. Chap. In�uences of Mathematical Logic on Computer Science,
pp. 289�299.

[DB86] Benedict Du Boulay. �Some Di�culties of Learning to Program�. In:
Journal of Educational Computing Research 2 (Jan. 1986), pp. 57�73.

[DBP93] Rossana De Beni and Francesca Pazzaglia. Lettura e metacog-
nizione. Attività didattiche per la comprensione del testo. Guide per
l'educazione speciale. Centro Studi Erickson, 1993.

[DC80] Meredyth Daneman and Patricia A Carpenter. �Individual di�erences
in working memory and reading�. In: Journal of verbal learning and
verbal behavior 19.4 (1980), pp. 450�466.

[Deh09] Saeed Dehnadi. �A cognitive study of learning to program in introduc-
tory programming courses.� PhD thesis. Middlesex University, 2009.

[Dij72] Edsger W. Dijkstra. �The Humble Programmer�. In: Commun. ACM
15.10 (1972), pp. 859�866. doi: 10.1145/355604.361591.

[Dij89] Edsger W. Dijkstra. �On the cruelty of really teaching computing
science�. English. In: Communications Of The Acm 32.12 (1989),
pp. 1398�1404.

[DMP15] Liesbeth De Mol and Giuseppe Primiero. �When logic meets engi-
neering: introduction to logical issues in the history and philosophy
of computer science�. eng. In: History and Philosophy of Logic 36.3
(2015), pp. 195�204.

[Dou04] Mark Dougherty. �What Has Literature to O�er Computer Science?�
In: Humanit 7.1 (2004), pp. 74�91.

BIBLIOGRAPHY 221

[DR08] Michael De Raadt. �Teaching programming strategies explicitly to
novice programmers�. PhD thesis. University of Southern Queensland,
2008.

[Dre91] Tommy Dreyfus. �Advanced Mathematical Thinking Processes�. In:
Advanced Mathematical Thinking. Ed. by David Tall. Dordrecht:
Springer Netherlands, 1991, pp. 25�41. doi: 10.1007/0-306-47203-
1_2.

[DRWT09a] Michael De Raadt, Richard Watson, and Mark Toleman. �Teaching
and assessing programming strategies explicitly�. In: Proceedings of
the 11th Australasian Conference on Computing Education - Volume
95. ACE '09. Darlinghurst, Australia: Australian Computer Society,
Inc., 2009, pp. 45�54.

[DRWT09b] Michael De Raadt, Richard Watson, and Mark Toleman. �Teaching
and assessing programming strategies explicitly�. In: Proceedings of
the 11th Australasian Computing Education Conference (ACE 2009).
Vol. 95. Australian Computer Society Inc. 2009, pp. 45�54.

[DSL18] Rodrigo Duran, Juha Sorva, and So�a Leite. �Towards an Analysis of
Program Complexity From a Cognitive Perspective�. In: Proceedings
of the 2018 ACM Conference on International Computing Education
Research. ICER '18. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 21�30. doi: 10.1145/3230977.3230986.

[DT19] Peter J. Denning and Matti Tedre. Computational thinking. Mit Press,
2019.

[DT21] Peter J. Denning and Matti Tedre. �Computational Thinking: A
disciplinary perspective�. In: Informatics in Education 20.3 (2021),
pp. 361�390.

[Eck+06] Anna Eckerdal et al. �Putting threshold concepts into context in com-
puter science education�. In: Proceedings of the 11th annual SIGCSE
conference on Innovation and technology in computer science educa-
tion. ITICSE '06. New York, NY, USA: ACM, 2006, pp. 103�107.

[EHR20] Barbara Ericson, Beryl Ho�man, and Jennifer Rosato. �CSAwesome:
AP CSA Curriculum and Professional Development (Practical Re-
port)�. In: Proceedings of the 15th Workshop on Primary and Sec-
ondary Computing Education. WiPSCE '20. New York, NY, USA:
Association for Computing Machinery, 2020. doi: 10.1145/3421590.
3421593.

[Erl73] Stanley H. Erlwanger. �Benny's conception of rules and answers in
IPI mathematics�. In: Journal of Children's Mathematical Behaviour
1, 2, Autumn (1973), pp. 7�26.

222 BIBLIOGRAPHY

[FAO10] José Luis Fernández Alemán and Youssef Oufaska. �SAMtool, a Tool
for Deducing and Implementing Loop Patterns�. In: Proceedings of the
Fifteenth Annual Conference on Innovation and Technology in Com-
puter Science Education. ITiCSE '10. New York, NY, USA: ACM,
2010, pp. 68�72. doi: 10.1145/1822090.1822111.

[Fin+20] Sally Fincher et al. �Notional Machines in Computing Education: The
Education of Attention�. In: Proceedings of the Working Group Re-
ports on Innovation and Technology in Computer Science Education.
ITiCSE-WGR '20. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 21�50. doi: 10.1145/3437800.3439202.

[Fis14] Kathi Fisler. �The Recurring Rainfall Problem�. In: Proceedings of
the Tenth Annual Conference on International Computing Education
Research. ICER '14. New York, NY, USA: Association for Computing
Machinery, 2014, pp. 35�42. doi: 10.1145/2632320.2632346.

[Fla92] John H. Flavell. �Cognitive development: Past, present, and future.�
en. In: Developmental Psychology 28.6 (1992), pp. 998�1005. doi: 10.
1037/0012-1649.28.6.998.

[FM93] Luciana Ferraboschi and Nadia Meini. Strategie semplici di lettura.
Esercizi guida per la comprensione del testo. Materiali di recupero e
sostegno. Centro Studi Erickson, 1993.

[FMV14] Carlo A. Furia, Bertrand Meyer, and Sergey Velder. �Loop invariants:
Analysis, classi�cation, and examples�. eng. In: ACM Computing Sur-
veys (CSUR) 46.3 (2014), pp. 1�51.

[Fre+18] Stephen Frezza et al. �Modelling Competencies for Computing Edu-
cation beyond 2020: A Research Based Approach to De�ning Compe-
tencies in the Computing Disciplines�. In: Proceedings Companion of
the 23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education. ITiCSE 2018 Companion. New York,
NY, USA: ACM, 2018, pp. 148�174.

[Ful+07] Ursula Fuller et al. �Developing a computer science-speci�c learning
taxonomy�. eng. In: ACM SIGCSE Bulletin 39.4 (2007), pp. 152�170.

[GA06] David Ginat and Michal Armoni. �Reversing: An Essential Heuristic
in Program and Proof Design�. In: Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education. SIGCSE '06.
New York, NY, USA: ACM, 2006, pp. 469�473. doi: 10 . 1145 /

1121341.1121488.

BIBLIOGRAPHY 223

[GA12] David Ginat and Ronnie Alankry. �Pseudo Abstract Composition:
The Case of Language Concatenation�. In: Proceedings of the 17th
ACM Annual Conference on Innovation and Technology in Computer
Science Education. ITiCSE '12. New York, NY, USA: Association for
Computing Machinery, 2012, pp. 28�33. doi: 10.1145/2325296.
2325307.

[GB17a] David Ginat and Yoav Blau. �Multiple Levels of Abstraction in Algo-
rithmic Problem Solving�. In: Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. SIGCSE '17.
New York, NY, USA: Association for Computing Machinery, 2017,
pp. 237�242. doi: 10.1145/3017680.3017801.

[GB17b] Shuchi Grover and Satabdi Basu. �Measuring Student Learning in
Introductory Block-Based Programming: Examining Misconceptions
of Loops, Variables, and Boolean Logic�. In: Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Educa-
tion. SIGCSE '17. New York, NY, USA: Association for Computing
Machinery, 2017, pp. 267�272. doi: 10.1145/3017680.3017723.

[GCS18] Kristin L. Gunckel, Beth A. Covitt, and Ivan Salinas. �Learning pro-
gressions as tools for supporting teacher content knowledge and ped-
agogical content knowledge about water in environmental systems�.
In: Journal of Research in Science Teaching 55.9 (2018), pp. 1339�
1362. doi: https://doi.org/10.1002/tea.21454. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/tea.21454.

[Ger91] Morton Ann Gernsbacher. �Cognitive processes and mechanisms in
language comprehension : the structure building framework�. In: Psy-
chology of Learning and Motivation 27 (1991), pp. 217�263.

[Gin03] David Ginat. �Seeking or Skipping Regularities? Novice Tendencies
and the Role of Invariants�. In: Informatics in Education 2 (2003),
pp. 211�222.

[Gin04] David Ginat. �On Novice Loop Boundaries and Range Conceptions�.
In: Computer Science Education 14 (Sept. 2004), pp. 165�181. doi:
10.1080/0899340042000302709.

[Gin18] David Ginat. �Algorithmic Cognition and Pencil-Paper Tasks�. In:
Olympiads in Informatics 12 (May 2018), pp. 43�52. doi: 10.15388/
ioi.2018.04.

[Gin97] Herbert Ginsburg. Entering the Child's Mind: The Clinical Inter-
view In Psychological Research and Practice. Cambridge books online.
Cambridge University Press, 1997.

224 BIBLIOGRAPHY

[GM07] Anabela Gomes and Antonio Mendes. �Learning to program - di�-
culties and solutions�. In: International Conference on Engineering
Education � ICEE. Jan. 2007, pp. 283�287.

[Gol+08] Ken Goldman et al. �Identifying important and di�cult concepts in
introductory computing courses using a delphi process�. eng. In: Pro-
ceedings of the 39th SIGCSE technical symposium on computer science
education. SIGCSE '08. ACM, 2008, pp. 256�260.

[Gol+10] Ken Goldman et al. �Setting the Scope of Concept Inventories for
Introductory Computing Subjects�. eng. In: ACM Transactions on
Computing Education 10.2 (2010).

[Gom+20] Anabela Gomes et al. �Study methods in introductory programming
courses�. In: 2020 IEEE Global Engineering Education Conference
(EDUCON). 2020, pp. 898�904. doi: 10.1109/EDUCON45650.2020.
9125228.

[GP18a] Shuchi Grover and Roy Pea. �Computational Thinking: A Compe-
tency Whose Time Has Come�. In: Computer Science Education:
Perspectives on teaching and learning in school. Ed. by S. Sentance,
E. Barendsen, and S. Carsten. London, UK: Bloomsbury Academic,
2018, pp. 19�38.

[GP18b] Shuchi Grover and Roy Pea. �Computational Thinking: A Compe-
tency Whose Time Has Come�. In: Computer Science Education:
Perspectives on teaching and learning in school. Ed. by S. Sentance,
E. Barendsen, and S. Carsten. London, UK: Bloomsbury Academic,
2018, pp. 19�38.

[Gri02] David Gries. �Where is Programming Methodology These Days?� In:
SIGCSE Bull. 34.4 (Dec. 2002), pp. 5�7. doi: 10.1145/820127.
820129.

[Gro+17] Shuchi Grover et al. �A framework for using hypothesis-driven ap-
proaches to support data-driven learning analytics in measuring com-
putational thinking in block-based programming environments�. In:
ACM Transactions on Computing Education (TOCE) 17.3 (2017),
pp. 1�25.

[Gro89] Pamela L. Grossman. �A study in contrast: sources of pedagogical
content knowledge for secondary English�. In: Journal of Teacher Ed-
ucation 40.5 (1989), pp. 24�31.

[Hab04] Bruria Haberman. �High-School Students' Attitudes Regarding Pro-
cedural Abstraction�. In: Education and Information Technologies 9.2
(May 2004), pp. 131�145. doi: 10.1023/B:EAIT.0000027926.99053.
6f.

BIBLIOGRAPHY 225

[Har96] Geo� Hart. �The Five W's: An Old Tool for the New Task of Audience
Analysis.� In: Technical Communication: Journal of the Society for
Technical Communication 43 (1996).

[Hat12] John Hattie. Visible learning for teachers: Maximizing impact on
learning. Routledge, 2012.

[Haz03] Orit Hazzan. �How Students Attempt to Reduce Abstraction in the
Learning of Mathematics and in the Learning of Computer Science�.
In: Computer Science Education 13.2 (2003), pp. 95�122. doi: 10.
1076/csed.13.2.95.14202.

[Haz08] Orit Hazzan. �Re�ections on Teaching Abstraction and Other Soft
Ideas�. In: SIGCSE Bull. 40.2 (June 2008), pp. 40�43. doi: 10.1145/
1383602.1383631.

[Haz99] Orit Hazzan. �Reducing Abstraction Level When Learning Abstract
Algebra Concepts�. In: Educational Studies in Mathematics 40.1
(1999), pp. 71�90.

[Her10] Matthew Hertz. �What Do "CS1" and "CS2" Mean? Investigating
Di�erences in the Early Courses�. In: Proceedings of the 41st ACM
Technical Symposium on Computer Science Education. SIGCSE '10.
New York, NY, USA: Association for Computing Machinery, 2010,
pp. 199�203. doi: 10.1145/1734263.1734335.

[Her+12] Geo�rey L. Herman et al. �Describing the What and Why of Students'
Di�culties in Boolean Logic�. In: ACM Trans. Comput. Educ. 12.1
(2012). doi: 10.1145/2133797.2133800.

[HH82] Brian C. Hansford and John A. Hattie. �The relationship between self
and achievement/performance measures�. In: Review of Educational
Research 52.1 (1982), pp. 123�142.

[HK99] Mary Hegarty and Maria Kozhevnikov. �Types of visual�spatial rep-
resentations and mathematical problem solving.� In: Journal of edu-
cational psychology 91.4 (1999), p. 684.

[HLR11] Orit Hazzan, Tami Lapidot, and Noa Ragonis. Guide to Teaching
Computer Science: An Activity-Based Approach. 1st. Springer Pub-
lishing Company, Incorporated, 2011.

[HT05] Orit Hazzan and James Tomayko. �Re�ection and abstraction in
learning software engineering's human aspects�. In: Computer 38
(June 2005), pp. 39�45. doi: 10.1109/MC.2005.200.

[HT07] John Hattie and Helen Timperley. �The power of feedback�. In:Review
of educational research 77.1 (2007), pp. 81�112.

[Ian04] Dario Ianes. Metacognizione e insegnamento: spunti teorici e applica-
tivi. Italian. OCLC: 1020164396. Trento: Centro studi Erickson, 2004.

226 BIBLIOGRAPHY

[IM20] Cruz Izu and Claudio Mirolo. �Comparing Small Programs for Equiv-
alence: A Code Comprehension Task for Novice Programmers�. In:
Proc. of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education. ITiCSE '20. New York, NY, USA:
ACM, 2020, pp. 466�472.

[IMW18] Cruz Izu, Claudio Mirolo, and Amali Weerasinghe. �Novice Program-
mers' Reasoning About Reversing Conditional Statements�. In: Pro-
ceedings of the 49th ACM Technical Symposium on Computer Science
Education. SIGCSE '18. New York, NY, USA: ACM, 2018, pp. 646�
651. doi: 10.1145/3159450.3159499.

[IPW17] Cruz Izu, Cheryl Pope, and Amali Weerasinghe. �On the Ability to
Reason About Program Behaviour: A Think-Aloud Study�. In: Pro-
ceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education. ITiCSE '17. New York, USA: ACM,
2017, pp. 305�310. doi: 10.1145/3059009.3059036.

[IPW19] Cruz Izu, Cheryl Pope, and Amali Weerasinghe. �Up or Down? An
Insight into Programmer's Acquisition of Iteration Skills�. In: Proceed-
ings of the 50th ACM Technical Symposium on Computer Science Ed-
ucation. SIGCSE '19. New York, NY, USA: Association for Comput-
ing Machinery, 2019, pp. 941�947. doi: 10.1145/3287324.3287350.

[IST11] ISTE/CSTA Steering Committee. Computational Thinking Teacher
Resources, 2nd ed. ISTE/CSTA. retrieved: april 2022. 2011.

[IWP16] Cruz Izu, Amali Weerasinghe, and Cheryl Pope. �A Study of Code
Design Skills in Novice Programmers Using the SOLO Taxonomy�. In:
Proceedings of the 2016 ACM Conference on International Computing
Education Research. ICER '16. New York, NY, USA: Association for
Computing Machinery, 2016, pp. 251�259. doi: 10.1145/2960310.
2960324.

[Izu+19] Cruz Izu et al. �Fostering Program Comprehension in Novice Pro-
grammers - Learning Activities and Learning Trajectories�. In: Proc.
of the Working Group Reports on Innovation and Technology in Com-
puter Science Education. ITiCSE-WGR '19. New York, NY, USA:
ACM, 2019, pp. 27�52.

[Jen02] Tony Jenkins. �On the Di�culty of Learning to Program�. In: Pro-
ceedings of the 3rd annual LTSN ICS Conference. Loughborough, UK,
2002.

[JL83] Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive
science of language, inference, and consciousness. 6. Harvard Univer-
sity Press, 1983.

BIBLIOGRAPHY 227

[Kac+10] Lisa C. Kaczmarczyk et al. �Identifying Student Misconceptions of
Programming�. In: Proceedings of the 41st ACM Technical Symposium
on Computer Science Education. SIGCSE '10. New York, NY, USA:
ACM, 2010, pp. 107�111.

[Kap16] Manu Kapur. �Examining Productive Failure, Productive Success,
Unproductive Failure, and Unproductive Success in Learning�. In: Ed-
ucational Psychologist 51 (Apr. 2016), pp. 1�11.

[KD03] Amruth Kumar and Garrett Dancik. �A tutor for counter-controlled
loop concepts and its evaluation�. In: 33rd Annual Frontiers in Ed-
ucation, 2003. FIE 2003. Vol. 1. Nov. 2003, T3C�7. doi: 10.1109/
FIE.2003.1263331.

[KD10] Herman Koppelman and Betsy van Dijk. �Teaching Abstraction in
Introductory Courses�. In: Proceedings of the Fifteenth Annual Con-
ference on Innovation and Technology in Computer Science Educa-
tion. ITiCSE '10. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 174�178. doi: 10.1145/1822090.1822140.

[KD78] Walter Kintsch and Teun A. van Dijk. �Toward a model of text com-
prehension and production.� en. In: Psychological Review 85.5 (1978),
pp. 363�394. doi: 10.1037/0033-295X.85.5.363.

[Kes19] Max Kesselbacher. �Supporting the Acquisition of Programming Skills
with Program Construction Patterns�. In: 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion). 2019, pp. 188�189. doi: 10.1109/ICSE-
Companion.2019.00077.

[Knu76] Donald E. Knuth. �Mathematics and Computer Science: Coping with
Finiteness�. eng. In: Science 194.4271 (1976), pp. 1235�1242.

[Kon19] Siu-cheung Kong. �Components and Methods of Evaluating Compu-
tational Thinking for Fostering Creative Problem-Solvers in Senior
Primary School Education�. In: Computational thinking education.
Springer, Singapore, May 2019, pp. 119�141. doi: 10.1007/978-
981-13-6528-7_8.

[Kra07] Je� Kramer. �Is abstraction the key to computing?� In: Commun.
ACM 50 (Apr. 2007), pp. 36�42. doi: 10.1145/1232743.1232745.

[LAMJ05] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. �A
Study of the Di�culties of Novice Programmers�. In: Proceedings of
the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education. ITiCSE '05. New York, NY, USA: As-
sociation for Computing Machinery, 2005, pp. 14�18. doi: 10.1145/
1067445.1067453.

228 BIBLIOGRAPHY

[LDC20] Elise Lockwood and Adaline De Chenne. �Enriching Students' Combi-
natorial Reasoning through the Use of Loops and Conditional State-
ments in Python�. In: International Journal of Research in Undergrad-
uate Mathematics Education 6 (Oct. 2020). doi: 10.1007/s40753-
019-00108-2.

[Lew+05a] Gary Lewandowski et al. �What novice programmers don't know�.
eng. In: Proceedings of the �rst international workshop on computing
education research. ICER '05. ACM, 2005, pp. 1�12.

[Lew+05b] Gary Lewandowski et al. �What Novice Programmers Don'T Know�.
In: Proceedings of the First International Workshop on Computing
Education Research. ICER '05. New York, NY, USA: ACM, 2005,
pp. 1�12. doi: 10.1145/1089786.1089787.

[LGG86] Gaea Leinhardt and James G. Greeno. �The Cognitive Skill of Teach-
ing�. In: Journal of Educational Psychology 78 (Apr. 1986), pp. 75�95.
doi: 10.1037/0022-0663.78.2.75.

[Lib08] Julie Libarkin. Concept Inventories in Higher Education Science. Jan.
2008.

[Lis+04] Raymond Lister et al. �A Multi-national Study of Reading and Trac-
ing Skills in Novice Programmers�. In: Working Group Reports from
ITiCSE on Innovation and Technology in Computer Science Educa-
tion. ITiCSE-WGR '04. New York, NY, USA: ACM, 2004, pp. 119�
150. doi: 10.1145/1044550.1041673.

[Lis+06] Raymond Lister et al. �Not Seeing the Forest for the Trees: Novice
Programmers and the SOLO Taxonomy�. In: Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Com-
puter Science Education. ITICSE '06. New York, NY, USA: ACM,
2006, pp. 118�122.

[Lis11] Raymond Lister. �Concrete and other neo-piagetian forms of reason-
ing in the novice programmer�. In: Conf. Res. Pract. Inf. Technol.
Ser. 114 (2011), pp. 9�18.

[Lis+12] Raymond Lister et al. �Toward a Shared Understanding of Compe-
tency in Programming: An Invitation to the BABELnot Project�.
In: Proceedings of the 14th Australasian Computing Education Con-
ference (ACE 2012). Ed. by Michael de Raadt and Angela Car-
bone. RMIT University, Melbourne: Australian Computer Society,
Jan. 2012.

BIBLIOGRAPHY 229

[LMB04] John Loughran, Pamela Mulhall, and Amanda Berry. �In Search of
Pedagogical Content Knowledge in Science: Developing Ways of Ar-
ticulating and Documenting Professional Practice�. In: Journal of Re-
search in Science Teaching 41 (Apr. 2004), pp. 370 �391. doi: 10.
1002/tea.20007.

[LMB08] John Loughran, Pamela Mulhall, and Amanda Berry. �Exploring Ped-
agogical Content Knowledge in Science Teacher Education�. In: Inter-
national Journal of Science Education - INT J SCI EDUC 30 (Aug.
2008), pp. 1301�1320. doi: 10.1080/09500690802187009.

[Lop+08] Mike Lopez et al. �Relationships Between Reading, Tracing and Writ-
ing Skills in Introductory Programming�. In: Proc. 4th Int. Workshop
on Comput. Educ. Research. ICER '08. New York, USA: ACM, 2008,
pp. 101�112.

[LP15] Sally I. Lipsey and Bernard S. Pasternack. �Mathematics in Litera-
ture�. In: (2015).

[LR+17a] Andrew Luxton-Reilly et al. �Developing Assessments to Determine
Mastery of Programming Fundamentals�. In: Proceedings of the 2017
ITiCSE Conference on Working Group Reports. ITiCSE-WGR '17.
New York, USA: ACM, 2017, pp. 47�69. doi: 10.1145/3174781.
3174784.

[LR+17b] Andrew Luxton-Reilly et al. �Developing Assessments to Determine
Mastery of Programming Fundamentals�. In: Proceedings of the 2017
ITiCSE Conference on Working Group Reports. ITiCSE-WGR '17.
New York, NY, USA: ACM, 2017, pp. 47�69. doi: 10.1145/3174781.
3174784.

[LR+18] Andrew Luxton-Reilly et al. �Introductory Programming: A System-
atic Literature Review�. In: Proceedings Companion of the 23rd An-
nual ACM Conference on Innovation and Technology in Computer
Science Education. ITiCSE 2018 Companion. New York, NY, USA:
ACM, 2018, pp. 55�106.

[LRR17] Katharina Loibl, Ido Roll, and Nikol Rummel. �Towards a Theory
of When and How Problem Solving Followed by Instruction Sup-
ports Learning�. In: Educational Psychology Review 29.4 (Dec. 2017),
pp. 693�715.

[Ma+09] Linxiao Ma et al. �Improving the Mental Models Held by Novice
Programmers Using Cognitive Con�ict and Jeliot Visualisations�. In:
Proceedings of the 14th Annual ACM SIGCSE Conference on Inno-
vation and Technology in Computer Science Education. ITiCSE '09.
New York, NY, USA: Association for Computing Machinery, 2009,
pp. 166�170. doi: 10.1145/1562877.1562931.

230 BIBLIOGRAPHY

[Man+20] Linda Mannila et al. �Programming in Primary Education: Towards a
Research Based Assessment Framework�. In: Proceedings of the 15th
Workshop on Primary and Secondary Computing Education. WiP-
SCE '20. New York, NY, USA: Association for Computing Machinery,
2020. doi: 10.1145/3421590.3421598.

[Mas89] John Mason. �Mathematical abstraction as the result of a delicate
shift of attention�. In: Learn. Math. 9.2 (1989), pp. 2�8.

[May14] Philipp Mayring. Qualitative Content Analysis: Theoretical Founda-
tion, Basic Procedures and Software Solution. Klagenfurt, 2014.

[MB�18] Monika Mladenovic, Ivica Boljat, and �ana �anko. �Comparing loops
misconceptions in block-based and text-based programming languages
at the K-12 level�. In: Education and Information Technologies 23
(July 2018), pp. 1483�1500. doi: 10.1007/s10639-017-9673-3.

[McK00] Peter McKenna. �Transparent and opaque boxes: do women and men
have di�erent computer programming psychologies and styles?� In:
Computers & Education 35.1 (2000), pp. 37�49. doi: 10.1016/S0360-
1315(00)00017-8.

[Mea91] H. Willis Means. �Using Literature in a Computer Science Service
Course: Improving Abstract/Critical Thinking Skills�. In: J. Comput.
Sci. Coll. 6.5 (Apr. 1991), pp. 30�34.

[Men+16] Chiara Meneghetti et al. �The role of visual and spatial working mem-
ory in forming mental models derived from survey and route descrip-
tions�. In: British journal of psychology (London, England : 1953) 108
(Mar. 2016). doi: 10.1111/bjop.12193.

[Men+20] Chiara Meneghetti et al. Nuova guida alla comprensione del testo 1:
Introduzione teorica generale al programma. Le prove criteriali livello
A e B. Edizioni Centro Studi Erickson, 2020.

[Met17] Janet Metcalfe. �Learning from Errors�. In: Annual Review of Psy-
chology 68 (Jan. 2017), pp. 465�489.

[MHD09] Shuhaida Mohamed Shuhidan, Margaret Hamilton, and Daryl
D'Souza. �A Taxonomic Study of Novice Programming Summative
Assessment�. In: Proc. 11th Australasian Conf. on Computing Ed-
ucation - Volume 95. ACE '09. Darlinghurst, Australia: Australian
Computer Society, Inc., 2009, pp. 147�156.

[MI19] Claudio Mirolo and Cruz Izu. �An Exploration of Novice Program-
mers' Comprehension of Conditionals in Imperative and Functional
Programming�. In: Proceedings of the 2019 ACM Conference on Inno-
vation and Technology in Computer Science Education. ITiCSE '19.
New York, NY, USA: Association for Computing Machinery, 2019,
pp. 436�442. doi: 10.1145/3304221.3319746.

BIBLIOGRAPHY 231

[Mir12] Claudio Mirolo. �Is Iteration Really Easier to Learn Than Recursion
for CS1 Students?� In: Proc. of the 9th Annual International Confer-
ence on International Computing Education Research. ICER '12. New
York, NY, USA: ACM, 2012, pp. 99�104.

[MIS20] Claudio Mirolo, Cruz Izu, and Emanuele Scapin. �High-School Stu-
dents' Mastery of Basic Flow-Control Constructs through the Lens of
Reversibility�. In: Proceedings of the 15th Workshop on Primary and
Secondary Computing Education. WiPSCE '20. New York, NY, USA:
Association for Computing Machinery, 2020. doi: 10.1145/3421590.
3421603.

[MKB99] Shirley Magnusson, Joseph Krajcik, and Hilda Borko. �Nature,
Sources, and Development of Pedagogical Content Knowledge for Sci-
ence Teaching�. In: Examining Pedagogical Content Knowledge. Ed.
by Julie Gess-Newsome and NormanG. Lederman. Vol. 6. Science &
Technology Education Library. Springer Netherlands, 1999, pp. 95�
132. doi: 10.1007/0-306-47217-1_4.

[MS21] Craig S. Miller and Amber Settle. �Mixing and Matching Loop Strate-
gies: By Value or By Index?� In: Proc. of the 52nd SIGCSE. SIGCSE
'21. Virtual Event, USA, 2021, pp. 1048�1054.

[MS68] H. Edward Massengill and Emir H. Shuford. The e�ect of 'Degree of
Con�dence' in student testing. eng. Tech. rep. 1968.

[MSABA10] Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-
Ari. �Learning Computer Science Concepts with Scratch�. In: Pro-
ceedings of the Sixth International Workshop on Computing Education
Research. ICER '10. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 69�76. doi: 10.1145/1839594.1839607.

[Mye90] J.Paul Myers. �The Central Role of Mathematical Logic in Computer
Science�. In: ACM SIGCSE Bulletin 22.1 (1990), pp. 22�26.

[Nar20] Enrico Nardelli. Coding e oltre. L'informatica nella scuola. Liscian-
ilibri, 2020.

[Nut07] Graham Nuthall. The Hidden Lives of Learners. NZCER Press, 2007.

[NV+21] Jacqueline Nijenhuis-Voogt et al. �Teaching algorithms in upper sec-
ondary education: a study of teachers' pedagogical content knowl-
edge�. In: Computer Science Education 0.0 (2021), pp. 1�33. doi:
10.1080/08993408.2021.1935554. eprint: https://doi.org/10.
1080/08993408.2021.1935554.

[Oak84] Jane V. Oakhill. �Inferential And Memory Skills In Children's Com-
prehension Of Stories�. In: British Journal of Educational Psychology
54 (1984), pp. 31�39.

232 BIBLIOGRAPHY

[Odi00] Piergiorgio Odifreddi. �Metodi Matematici Della Letteratura�. In:
Nuova Civiltà Delle Macchine 18.3 (2000), pp. 116�133.

[Pai13] Allan Paivio. Imagery and Verbal Processes. English. OCLC:
869091762. Hoboken: Taylor and Francis, 2013.

[PCL84] Scott G. Paris, David R. Cross, and Marjorie Y. Lipson. �Informed
strategies for learning: A program to improve children's reading aware-
ness and comprehension�. In: Journal of Educational psychology 76.6
(1984), pp. 1239�1252.

[Pea86] Roy D. Pea. �Language-Independent Conceptual �Bugs� in Novice
Programming�. In: Journal of Educational Computing Research 2
(1986), pp. 25�36.

[Pen87] Nancy Pennington. �Comprehension Strategies in Programming�. In:
Empirical Studies of Programmers: Second Workshop. USA: Ablex
Publishing Corp., 1987, pp. 100�113.

[Per+86] David N. Perkins et al. �Conditions of learning in novice program-
mers�. In: Journal of Educational Computing Research 2.1 (1986),
pp. 37�55.

[Pet+20] Emily Grossnickle Peterson et al. �Spatial activity participation in
childhood and adolescence: consistency and relations to spatial think-
ing in adolescence�. In: Cognitive Research: Principles and Implica-
tions 5.1 (2020), pp. 1�13.

[PF18] Amanda Peel and Patricia Friedrichsen. �Algorithms, Abstractions,
and Iterations: Teaching Computational Thinking Using Protein Syn-
thesis Translation�. In: The American Biology Teacher 80 (Jan. 2018),
pp. 21�28. doi: 10.1525/abt.2018.80.1.21.

[Pia+69] Jean Piaget et al. Psychology Of The Child. The Psychology of the
Child. Basic Books, 1969.

[Pie17] Aleksander Piecuch. �Zaniedbana algebra a nauczanie informatyki�.
eng. In: Edukacja - Technika - Informatyka VIII.3 (2017), pp. 288�
295.

[PRW07] Anne Philpott, Phil Robbins, and J Whalley. �Assessing the steps
on the road to relational thinking�. In: Proceedings of the 20th an-
nual conference of the National Advisory Committee on Computing
Quali�cations. Vol. 286. 2007.

[PSS88] D.N. Perkins, Steve Schwartz, and Rebecca Simmons. �Instructional
Strategies for the Problems of Novice Programmers�. In: Teaching
and Learning Computer Programming. Ed. by Richard E. Mayer.
New York, USA: Routledge, 1988, pp. 153�178. doi: 10 . 4324 /

9781315044347.

BIBLIOGRAPHY 233

[QL17] Yizhou Qian and James Lehman. �Students' Misconceptions and
Other Di�culties in Introductory Programming: A Literature Re-
view�. In: ACM Trans. Comput. Educ. 18.1 (Oct. 2017). doi: 10.
1145/3077618.

[Qui14] Margareth Quindeless. �Logic in the curricula of Computer Science�.
spa. In: Revista AntioqueÃ+a de las Ciencias Computacionales y la
IngenierÃ-a de Software (RACCIS) 4.2 (2014), pp. 47�51.

[RAVD83] H. Rudy Ramsey, Michael E. Atwood, and James R. Van Doren.
�Flowcharts versus Program Design Languages: An Experimental
Comparison�. In: Commun. ACM 26.6 (June 1983), pp. 445�449. doi:
10.1145/358141.358149.

[RBH16] Ebrahim Rahimi, Erik Barendsen, and Ineke Henze. �Typifying in-
formatics teachers' PCK of designing digital artefacts in Dutch up-
per secondary education�. In: International Conference on Informat-
ics in Schools: Situation, Evolution, and Perspectives. Springer. 2016,
pp. 65�77.

[RBH17] Ebrahim Rahimi, Erik Barendsen, and Ineke Henze. �Identifying
Students' Misconceptions on Basic Algorithmic Concepts Through
Flowchart Analysis�. In: Informatics in Schools: Focus on Learning
Programming. Ed. by Valentina Dagien
e and Arto Hellas. Cham:
Springer International Publishing, 2017, pp. 155�168.

[RDLR20] Liam Rigby, Paul Denny, and Andrew Luxton-Reilly. �A Miss is as
Good as a Mile: O�-By-One Errors and Arrays in an Introductory
Programming Course�. In: Proc. of the 22nd Australasian Computing
Education Conference. 2020, pp. 31�38.

[Rep16] Alexander Repenning. �Transforming "Hard and Boring" into "Ac-
cessible and Exciting"�. In: CoPDA@NordiCHI. 2016.

[RHG06] Anthony Robins, Patricia Haden, and Sandy Garner. �Problem Dis-
tributions in a CS1 Course�. In: Proc. of the 8th Australasian Confer-
ence on Computing Education - Volume 52. ACE '06. Darlinghurst,
Australia: Australian Computer Society, Inc., 2006, pp. 165�173.

[Rij+18] Wouter J. Rijke et al. �Computational thinking in primary school:
An examination of abstraction and decomposition in di�erent age
groups�. In: Informatics in education 17.1 (2018), pp. 77�92.

[RM87] Lauren B. Resnick and S.T.E. Committee on Research in Mathe-
matics. Education and Learning to Think. Online access: National
Academy of Sciences National Academies Press. National Academies
Press, 1987.

234 BIBLIOGRAPHY

[Rob19] Anthony V. Robins. �Novice Programmers and Introductory Pro-
gramming�. In: The Cambridge Handbook of Computing Education
Research. Ed. by Sally A. Fincher and Anthony V.Editors Robins.
Cambridge Handbooks in Psychology. Cambridge University Press,
2019, pp. 327�376. doi: 10.1017/9781108654555.013.

[RRR03] Anthony Robins, Janet Rountree, and Nathan Rountree. �Learning
and Teaching Programming: A Review and Discussion�. In: Computer
Science Education 13.2 (2003), pp. 137�172.

[RW88] Charles Rich and Richard Waters. �The Programmer's Apprentice
Project: A Research Overview�. In: Computer 21 (Dec. 1988), pp. 10
�25. doi: 10.1109/2.86782.

[SA16] David Statter and Michal Armoni. �Teaching Abstract Thinking in
Introduction to Computer Science for 7th Graders�. In: Proceedings
of the 11th Workshop in Primary and Secondary Computing Educa-
tion. WiPSCE '16. New York, NY, USA: Association for Computing
Machinery, 2016, pp. 80�83. doi: 10.1145/2978249.2978261.

[Sad10] D. Royce Sadler. �Beyond feedback: Developing student capability in
complex appraisal�. In: Assessment & evaluation in higher education
35.5 (2010), pp. 535�550.

[Sad89] D. Royce Sadler. �Formative assessment and the design of instruc-
tional systems�. In: Instructional science 18.2 (1989), pp. 119�144.

[Sae+11] Mara Saeli et al. �Teaching Programming in Secondary School: A
Pedagogical Content Knowledge Perspective�. In: Informatics in Ed-
ucation 10 (Apr. 2011), pp. 73�88.

[Sae12] Mara Saeli. �Teaching programming for secondary school : a ped-
agogical content knowledge based approach�. English. Proefschrift.
PhD thesis. Eindhoven School of Education, 2012. doi: 10.6100/
IR724491.

[SB06] Carsten Schulte and Jens Bennedsen. �What do teachers teach in
introductory programming?� eng. In: Proceedings of the second inter-
national workshop on computing education research. Vol. 2006. ICER
'06. ACM, 2006, pp. 17�28.

[SB07] Bharath Sriraman and Astrid Beckmann. Mathematics and Litera-
ture: Perspectives for interdisciplinary classroom pedagogy. Jan. 2007.

[SBE83] Elliot M. Soloway, Je�rey Bonar, and Kate Ehrlich. �Cognitive Strate-
gies and Looping Constructs: An Empirical Study�. In: Commun.
ACM 26.11 (Nov. 1983), pp. 853�860. doi: 10.1145/182.358436.

BIBLIOGRAPHY 235

[SBGM02] Dominique MA Sluijsmans, Saskia Brand-Gruwel, and Jeroen JG van
Merriënboer. �Peer assessment training in teacher education: E�ects
on performance and perceptions�. In: Assessment & Evaluation in
Higher Education 27.5 (2002), pp. 443�454.

[Sch08] Carsten Schulte. �Block Model: An Educational Model of Program
Comprehension As a Tool for a Scholarly Approach to Teaching�.
In: Proceedings of the Fourth International Workshop on Computing
Education Research. ICER '08. New York, NY, USA: ACM, 2008,
pp. 149�160. doi: 10.1145/1404520.1404535.

[Sch12] Dane Scha�er. �An Analysis of Science Concept Inventories and Di-
agnostic Tests: Commonalities and Di�erences�. In: Annual Interna-
tional Conference of the National Association for Research in Science
Teaching. Apr. 2012.

[Sch+13] Stephan Schmelzing et al. �Development, evaluation, and validation
of a paper-and-pencil test for measuring two components of biology
teachers' pedagogical content knowledge concerning the �cardiovascu-
lar system��. In: International Journal of Science and Mathematics
Education 11 (Dec. 2013). doi: 10.1007/s10763-012-9384-6.

[Sch98] Gregory Schraw. �Promoting general metacognitive awareness�. In:
Instructional science 26.1 (1998), pp. 113�125.

[SG11] Andreas Ste�k and Ed Gellenbeck. �Empirical studies on program-
ming language stimuli�. In: Software Quality Journal 19 (Mar. 2011),
pp. 65�99. doi: 10.1007/s11219-010-9106-7.

[SG79] Nancy Stein and Christine Glenn. �An Analysis of Story Comprehen-
sion in Elementary School Children�. In: New Directions in Discourse
Processing 2 (Jan. 1979).

[SGK20] Bernadette Spieler, Maria Grandl, and Vesna Krnjic. �The hAPPy-
Lab: A Gender-Conscious Way To Learn Coding Basics in an Open
Makerspace Setting�. In: Proceedings of the International Conference
on Informatics in School: Situation, Evaluation and Perspectives,
Tallinn, Estonia, November 16-18, 2020. Ed. by Külli Kori and Mart
Laanpere. Vol. 2755. CEUR Workshop Proceedings. CEUR-WS.org,
2020, pp. 64�75.

[SH08] Victoria Sakhnini and Orit Hazzan. �Reducing Abstraction in High
School Computer Science Education: The Case of De�nition, Imple-
mentation, and Use of Abstract Data Types�. In: J. Educ. Resour.
Comput. 8.2 (May 2008). doi: 10.1145/1362787.1362789.

[Shu05a] Lee S. Shulman. Signature pedagogies. 2005.

[Shu05b] Lee S. Shulman. �Teacher education does not exist�. In: Stanford Ed-
ucator 7 (2005).

236 BIBLIOGRAPHY

[Shu86] Lee S. Shulman. �Those Who Understand: Knowledge Growth in
Teaching�. eng. In: Educational Researcher 15.2 (Feb. 1986), pp. 4�14.

[Sim+06] Beth Simon et al. �Commonsense Computing: What Students Know
before We Teach (Episode 1: Sorting)�. In: Proceedings of the Second
International Workshop on Computing Education Research. ICER '06.
New York, NY, USA: Association for Computing Machinery, 2006,
pp. 29�40. doi: 10.1145/1151588.1151594.

[Sim13] Simon. �Soloway's Rainfall Problem Has Become Harder�. In: 2013
Learning and Teaching in Computing and Engineering. 2013, pp. 130�
135. doi: 10.1109/LaTiCE.2013.44.

[Sle+86] D. Sleeman et al. �Pascal and High School Students: A Study of
Errors�. In: Journal of Educational Computing Research 2.1 (1986),
pp. 5�23. doi: 10.2190/2XPP- LTYH- 98NQ- BU77. eprint: https:
//doi.org/10.2190/2XPP-LTYH-98NQ-BU77.

[SM19] Emanuele Scapin and Claudio Mirolo. �An Exploration of Teachers'
Perspective About the Learning of Iteration-Control Constructs�. In:
Informatics in Schools. New Ideas in School Informatics. Ed. by Sergei
N. Pozdniakov and Valentina Dagien
e. Cham: Springer, 2019, pp. 15�
27.

[SM20] Emanuele Scapin and Claudio Mirolo. �An Exploratory Study of Stu-
dents' Mastery of Iteration in the High School�. In: Proceedings of the
International Conference on Informatics in School: Situation, Evalu-
ation and Perspectives, Tallinn, Estonia, November 16-18, 2020. Ed.
by Külli Kori and Mart Laanpere. Vol. 2755. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2020, pp. 43�54.

[Sor13] Juha Sorva. �Notional Machines and Introductory Programming Ed-
ucation�. In: Trans. Comput. Educ. 13.2 (2013), 8:1�8:31.

[SPV20] Phil Steinhorst, Andrew Petersen, and Jan Vahrenhold. �Revisiting
Self-E�cacy in Introductory Programming�. In: Proceedings of the
2020 ACM Conference on International Computing Education Re-
search. 2020, pp. 158�169.

[SS13] Andreas Ste�k and Susanna Siebert. �An empirical investigation into
programming language syntax�. In: ACM Transactions on Computing
Education (TOCE) 13.4 (2013), pp. 1�40.

[SS88] Elliot M. Soloway and James C. Spohrer. Studying the Novice Pro-
grammer. USA: L. Erlbaum Associates Inc., 1988.

BIBLIOGRAPHY 237

[Ste18] Friedrich Steimann. �Fatal Abstraction�. In: Proceedings of the
2018 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Re�ections on Programming and Software. Onward!
2018. New York, NY, USA: Association for Computing Machinery,
2018, pp. 125�130. doi: 10.1145/3276954.3276966.

[SW80] Elliot M. Soloway and Beverly Woolf. �Problems, Plans, and Pro-
grams�. In: Proceedings of the Eleventh SIGCSE Technical Symposium
on Computer Science Education. SIGCSE '80. New York, NY, USA:
ACM, 1980, pp. 16�24. doi: 10.1145/800140.804605.

[SWS17] Renske Smetsers-Weeda and Sjaak Smetsers. �Problem Solving and
Algorithmic Development with Flowcharts�. In: Proceedings of the
12th Workshop on Primary and Secondary Computing Education.
WiPSCE '17. New York, NY, USA: Association for Computing Ma-
chinery, 2017, pp. 25�34. doi: 10.1145/3137065.3137080.

[Tam92] Wing C. Tam. �Teaching Loop Invariants to Beginners by Examples�.
In: Proceedings of the 23rd SIGCSE Technical Symposium on Com-
puter Science Education. SIGCSE '92. New York, NY, USA: ACM,
1992, pp. 92�96.

[TG10] Allison Tew and Mark Guzdial. �Developing a validated assessment
of fundamental CS1 concepts�. In: Jan. 2010, pp. 97�101. doi: 10.
1145/1734263.1734297.

[Tho+06] Errol Thompson et al. �Code Classi�cation as a Learning and Assess-
ment Exercise for Novice Programmers�. English. In: The 19th An-
nual Conference of the National Advisory Committee on Computing
Quali�cations. Ed. by Samuel Mann and Noel Bridgeman. National
Advisory Committee on Computing Quali�cations, 2006, pp. 291�298.

[TL14a] Donna Teague and Raymond Lister. �Blinded by their Plight: Tracing
and the Preoperational Programmer�. In: PPIG. June 2014.

[TL14b] Donna Teague and Raymond Lister. �Programming: Reading, Writ-
ing and Reversing�. In: Proceedings of the 2014 Conference on Inno-
vation and Technology in Computer Science Education. ITiCSE '14.
New York, USA: ACM, 2014, pp. 285�290. doi: 10.1145/2591708.
2591712.

[TL14c] Donna Teague and Raymond Lister. �Programming: Reading, Writing
and Reversing�. In: Proceedings of the 2014 Conference on Innovation
& Technology in Computer Science Education. ITiCSE '14. New York,
NY, USA: ACM, 2014, pp. 285�290. doi: 10.1145/2591708.2591712.

[Tur02] Sigita Turskien
e. �Computer Technology and Teaching Mathematics
in Secondary Schools�. eng. In: Informatics in Education - An Inter-
national Journal 1.1 (2002), pp. 149�156.

238 BIBLIOGRAPHY

[Van+10] Tammy Vandegrift et al. �Commonsense computing (episode 6): Logic
is harder than pie�. In: Proceedings of the 10th Koli Calling Interna-
tional Conference on Computing Education Research, Koli Calling'10
(Jan. 2010). doi: 10.1145/1930464.1930479.

[VDB12] Jan H. Van Driel and Amanda Berry. �Teacher Professional Develop-
ment Focusing on Pedagogical Content Knowledge�. eng. In: Educa-
tional Researcher 41.1 (2012), pp. 26�28.

[VDK83] Teun Adrianus Van Dijk and Walter Kintsch. Strategies of discourse
comprehension. 1983.

[Ver11] Tom Verhoe�. �On Abstraction and Informatics�. In: Informatics in
Schools. Contributing to 21st Century Education: 5th International
Conference on Informatics in Schools: Situation, Evolution and Per-
spectives, ISSEP 2011, Bratislava, Slovakia, October 26-29, 2011.
Proceedings. Ed. by Ivan Kala² and Roland T. Mittermeir. 2011, pp. 1�
12. doi: www.issep2011.org.

[VS07] Vesa Vainio and Jorma Sajaniemi. �Factors in novice programmers'
poor tracing skills�. In: SIGCSE Bull. 39.3 (2007), pp. 236�240. doi:
10.1145/1269900.1268853.

[VS11] André Vandierendonck and Arnaud Szmalec. Spatial working memory.
Jan. 2011.

[VTL09] Anne Venables, Grace Tan, and Raymond Lister. �A Closer Look
at Tracing, Explaining and Code Writing Skills in the Novice Pro-
grammer�. In: Proceedings of the Fifth International Workshop on
Computing Education Research Workshop. ICER '09. New York, NY,
USA: Association for Computing Machinery, 2009, pp. 117�128. doi:
10.1145/1584322.1584336.

[VVMS99] A. Marie Vans, Anneliese Von Mayrhauser, and Gabriel Somlo. �Pro-
gram understanding behavior during corrective maintenance of large-
scale software�. In: International Journal of Human-Computer Studies
51.1 (1999), pp. 31�70. doi: https://doi.org/10.1006/ijhc.1999.
0268.

[Wan08] Yingxu Wang. �A Hierarchical Abstraction Model for Software Engi-
neering�. In: Proceedings of the 2nd International Workshop on The
Role of Abstraction in Software Engineering. ROA '08. New York,
NY, USA: Association for Computing Machinery, 2008, pp. 43�48.
doi: 10.1145/1370164.1370174.

[WD97] Roland Wagner-Dobler. �Science-Technology Coupling: The Case of
Mathematical Logic and Computer Science.� eng. In: Journal of the
American Society for Information Science 48.2 (1997), pp. 171�83.

BIBLIOGRAPHY 239

[Wie89] Susan Wiedenbeck. �Learning iteration and recursion from examples�.
In: International Journal of Man-Machine Studies 30.1 (1989), pp. 1
�22. doi: https://doi.org/10.1016/S0020-7373(89)80018-5.

[Win11] Jeannette M. Wing. �Computational Thinking: What and Why?� In:
The Link Magazine (2011).

[Win96] Leon E. Winslow. �Programming pedagogy�a psychological
overview�. In: ACM Sigcse Bulletin 28.3 (1996), pp. 17�22.

[WLB09] Jonathan Wai, David Lubinski, and Camilla P. Benbow. �Spatial abil-
ity for STEM domains: Aligning over 50 years of cumulative psycho-
logical knowledge solidi�es its importance.� en. In: Journal of Educa-
tional Psychology 101.4 (2009), pp. 817�835. doi: 10.1037/a0016127.

[WM99] Paul White and Michael Mitchelmore. �Learning mathematics: A New
Look at Generalisation and Abstraction�. In: AARE Annual Confer-
ence. AARE '99. deakin, ACT, Australia: Australian Association for
Research in Education, 1999, pp. 1�12.

[Woo06] Terry Wood. �Teacher Education Does Not Exist�. eng. In: Journal
of Mathematics Teacher Education 9.1 (2006), pp. 1�3.

[WR99] Susan Wiedenbeck and Vennila Ramalingam. �Novice Comprehension
of Small Programs Written in the Procedural and Object-Oriented
Styles�. In: Int. J. Hum.-Comput. Stud. 51.1 (July 1999), pp. 71�87.
doi: 10.1006/ijhc.1999.0269.

[WSR87] Suzanne Wilson, Lee S. Shulman, and AE Richert. �" 150 di�erent
ways" of knowing: Representations of knowledge in teaching�. In: Ex-
ploring Teachers' Thinking (Jan. 1987), pp. 104�124.

[WW15] David Weintrop and Uri Wilensky. �Using Commutative Assessments
to Compare Conceptual Understanding in Blocks-Based and Text-
Based Programs�. In: Proceedings of the Eleventh Annual Interna-
tional Conference on International Computing Education Research.
ICER '15. New York, NY, USA: Association for Computing Machin-
ery, 2015, pp. 101�110. doi: 10.1145/2787622.2787721.

[YK07] Gavriel Yarmish and Danny Kopec. �Revisiting Novice Programmer
Errors�. In: SIGCSE Bull. 39.2 (June 2007), pp. 131�137. doi: 10.
1145/1272848.1272896.

[ZH98] Rina Zazkis and Orit Hazzan. �Interviewing in mathematics education
research: Choosing the questions�. eng. In: Journal of Mathematical
Behavior 17.4 (1998), pp. 429�439.

[Zim00] Barry J. Zimmerman. �Self-e�cacy: An essential motive to learn�. In:
Contemporary educational psychology 25.1 (2000), pp. 82�91.

240 BIBLIOGRAPHY

[ZR08] Christopher Zaleta and Kim Ruebel. �Exploring Mathematical Con-
cepts in Literature�. In: Middle School Journal 40 (2008), pp. 36�42.

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Prologue
	Introduction
	Literature review
	Aims and scope of the review
	Research on novice programmers
	Concept Inventories
	Concept Inventories in Computer Science

	Students' difficulties with Iteration
	The Role of Abstraction
	Abstraction as a process vs. abstraction as a product
	Relationships between abstraction and iteration

	Teachers' Pedagogical Content Knowledge
	Questions to elicit PCK
	Content Representation (CoRe) questions

	Summary of the review

	Pilot studies
	Teacher interviews
	Aims and scope of the interviews
	Methodology
	Characterization of the instrument
	Data collection
	Results
	Discussion

	Student pilot survey
	Aims and scope of the pilot survey
	Methodology
	Instrument
	Tasklets and questions
	Data collection
	Results
	Discussion

	Teachers' vs. students' perception
	Comparison of teachers' vs. students' perceptions

	Teacher Survey
	Aims and scope of the teacher survey
	Methodology
	Instrument
	Data collection and results
	General information
	Learning programming in general
	Focus on iteration
	Pedagogical approach
	Assessment
	Students' aptitudes
	Other suggestions

	Discussion
	Focus on iteration
	Pedagogical approach
	Assessment
	Implications for instructors

	Concluding remarks

	Student Survey
	Aims and scope of the student survey
	Methodology
	Characterization of the instrument
	Tasklets
	Data collection and results
	General information
	Tasklets

	Discussion
	Students' grasp of technical features implied by iteration
	Tracing and higher-level thinking
	Flow-chart vs. code representation
	Students' self-confidence
	Implications for instructors

	Concluding remarks

	Conclusions
	Work summary and major insights
	Curricular implications
	Future directions of work

	Appendices
	Publications
	List of papers
	Abstracts

	Catalog
	Loop condition
	Tasklet L1
	Tasklet L2
	Tasklet L3

	Loop complex condition
	Tasklet LC1
	Tasklet LC2
	Tasklet LC3
	Tasklet LC4
	Tasklet LC5
	Tasklet LC6
	Tasklet LC7
	Tasklet LC8

	Equivalence
	Tasklet E1
	Tasklet E2
	Tasklet E3
	Tasklet E4
	Tasklet E5
	Tasklet E6

	Nested loops
	Tasklet NL1
	Tasklet NL2
	Tasklet NL3
	Tasklet NL4
	Tasklet NL5
	Tasklet NL6
	Tasklet NL7

	Reversibility
	Tasklet R1

	Functional purpose
	Tasklet F1
	Tasklet F2
	Tasklet F3
	Tasklet F4
	Tasklet F5
	Tasklet F6

	Loop control variable
	Tasklet CV1

	Computer Science in Italian school
	Scientific Lyceum of Applied Sciences
	Technical high school
	Economics high school

	Teacher Pilot Interview Protocol
	Student Pilot Survey Protocol

