915 research outputs found

    04081 Abstracts Collection -- Theory of Evolutionary Algorithms

    Get PDF
    From 15.02.04 to 20.02.04, the Dagstuhl Seminar 04081 ``Theory of Evolutionary Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Meta-Stability of Interacting Adaptive Agents

    Get PDF
    The adaptive process can be considered as being driven by two fundamental forces: exploitation and exploration. While the explorative process may be deterministic, the resultant effect may be stochastic. Stochastic effects may also exist in the expoitative process. This thesis considers the effects of stochastic fluctuations inherent in the adaptive process on the behavioural dynamics of a population of interacting agents. It is hypothesied that in such systems, one or more attractors in the population space exist; and that transitions between these attractors can occur; either as a result of internal shocks (sampling fluctuations) or external shocks (environmental changes). It is further postulated that such transitions in the (microscopic) population space may be observable as phase transitions in the behaviour of macroscopic observables. A simple model of a stock market, driven by asexual reproduction (selection plus mutation) is put forward as a testbed. A statistical dynamics analysis of the behaviour of this market is then developed. Fixed points in the space of agent behaviours are located, and market dynamics are compared to the analytic predictions. Additionally, an analysis of the relative importance of internal shocks(sampling fluctuations) and external shocks( the stock dividend sequence) across varying population size is presented

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Applications of genetic algorithms in bioinformatics

    Get PDF

    On the Applicability of Genetic Algorithms to Fast Solar Spectropolarimetric Inversions for Vector Magnetography

    Get PDF
    The measurement of vector magnetic fields on the sun is one of the most important diagnostic tools for characterizing solar activity. The ubiquitous solar wind is guided into interplanetary space by open magnetic field lines in the upper solar atmosphere. Highly-energetic solar flares and Coronal Mass Ejections (CMEs) are triggered in lower layers of the solar atmosphere by the driving forces at the visible ``surface\u27\u27 of the sun, the photosphere. The driving forces there tangle and interweave the vector magnetic fields, ultimately leading to an unstable field topology with large excess magnetic energy, and this excess energy is suddenly and violently released by magnetic reconnection, emitting intense broadband radiation that spans the electromagnetic spectrum, accelerating billions of metric tons of plasma away from the sun, and finally relaxing the magnetic field to lower-energy states. These eruptive flaring events can have severe impacts on the near-Earth environment and the human technology that inhabits it. This dissertation presents a novel inversion method for inferring the properties of the vector magnetic field from telescopic measurements of the polarization states (Stokes vector) of the light received from the sun, in an effort to develop a method that is fast, accurate, and reliable. One of the long-term goals of this work is to develop such a method that is capable of rapidly-producing characterizations of the magnetic field from time-sequential data, such that near real-time projections of the complexity and flare-productivity of solar active regions can be made. This will be a boon to the field of solar flare forecasting, and should help mitigate the harmful effects of space weather on mankind\u27s space-based endeavors. To this end, I have developed an inversion method based on genetic algorithms (GA) that have the potential for achieving such high-speed analysis

    Evolutionary dynamics, topological disease structures, and genetic machine learning

    Full text link
    Topological evolution is a new dynamical systems model of biological evolution occurring within a genomic state space. It can be modeled equivalently as a stochastic dynamical system, a stochastic differential equation, or a partial differential equation drift-diffusion model. An application of this approach is a model of disease evolution tracing diseases in ways similar to standard functional traits (e.g., organ evolution). Genetically embedded diseases become evolving functional components of species-level genomes. The competition between species-level evolution (which tends to maintain diseases) and individual evolution (which acts to eliminate them), yields a novel structural topology for the stochastic dynamics involved. In particular, an unlimited set of dynamical time scales emerges as a means of timing different levels of evolution: from individual to group to species and larger units. These scales exhibit a dynamical tension between individual and group evolutions, which are modeled on very different (fast and slow, respectively) time scales. This is analyzed in the context of a potentially major constraint on evolution: the species-level enforcement of lifespan via (topological) barriers to genomic longevity. This species-enforced behavior is analogous to certain types of evolutionary altruism, but it is denoted here as extreme altruism based on its potential shaping through mass extinctions. We give examples of biological mechanisms implementing some of the topological barriers discussed and provide mathematical models for them. This picture also introduces an explicit basis for lifespan-limiting evolutionary pressures. This involves a species-level need to maintain flux in its genome via a paced turnover of its biomass. This is necessitated by the need for phenomic characteristics to keep pace with genomic changes through evolution. Put briefly, the phenome must keep up with the genome, which occurs with an optimized limited lifespan. An important consequence of this model is a new role for diseases in evolution. Rather than their commonly recognized role as accidental side-effects, they play a central functional role in the shaping of an optimal lifespan for a species implemented through the topology of their embedding into the genome state space. This includes cancers, which are known to be embedded into the genome in complex and sometimes hair-triggered ways arising from DNA damage. Such cancers are known also to act in engineered and teleological ways that have been difficult to explain using currently very popular theories of intra-organismic cancer evolution. This alternative inter-organismic picture presents cancer evolution as occurring over much longer (evolutionary) time scales rather than very shortened organic evolutions that occur in individual cancers. This in turn may explain some evolved, intricate, and seemingly engineered properties of cancer. This dynamical evolutionary model is framed in a multiscaled picture in which different time scales are almost independently active in the evolutionary process acting on semi-independent parts of the genome. We additionally move from natural evolution to artificial implementations of evolutionary algorithms. We study genetic programming for the structured construction of machine learning features in a new structural risk minimization environment. While genetic programming in feature engineering is not new, we propose a Lagrangian optimization criterion for defining new feature sets inspired by structural risk minimization in statistical learning. We bifurcate the optimization of this Lagrangian into two exhaustive categories involving local and global search. The former is accomplished through local descent with given basins of attraction while the latter is done through a combinatorial search for new basins via an evolution algorithm

    Field Guide to Genetic Programming

    Get PDF
    • …
    corecore