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ABSTRACT 

APPLICATIONS OF GENETIC ALGORITHMS IN BIOINFORMATICS 

by Amie Judith Radenbaugh 

This thesis examines three challenging problems in bioinformatics: 

Multiple Sequence Alignment, Gene Prediction, and Population Genetics 

Modeling. It evaluates existing algorithms for the problems and provides 

implementations of genetic algorithms for each problem. The results from the 

genetic algorithms are compared to the existing algorithms. 

Being able to align multiple sequences of DNA, RNA, or amino acids is 

essential for biologists to determine similarity in sequences which often leads to 

similarity in function and provides valuable evolutionary information. 

The goal of Gene Prediction is to identify regions of genomic DNA that will 

encode into proteins. Computational methods are necessary to keep up with the 

annotation of the rapidly increasing sequencing of genomes. 

Modeling population genetics for unpredictable environments provides a 

tool for improving population forecasts. These forecasts are made by observing 

past environmental fluctuations on natural selection and how these fluctuations 

affect population genetics. 
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Mendelian Genetics 

Gregor Mendel, a Central European monk, spent his early adult life doing 

basic genetic research. He experimented with selective cross-breading of 

common pea plants over many generations and noticed that certain traits 

showed up in offspring without any blending of characteristics. This was 

extremely important at that time, because the leading biological theory was that 

inherited traits blend from generation to generation. Mendel determined that 

genes were passed on to descendents unaltered and that for any particular trait, 

the parent genes separate and one part of each parent gene is used to form a 

new gene in the descendent. The part of the parent gene that is passed on to 

the descendent is a matter of chance (Mendel, 1865). 

Mendel (1865) also observed the concept between dominant and 

recessive genes and that dominant genes do not alter recessive genes in any 

way so that they can be passed on to successive generations. Assume that 

traits in parents are represented as two bit strings where 1 represents a dominant 

part of the gene and 0 represents a recessive part, then the likelihood that a 

certain trait will be passed on to a child can be easily determined. Obviously, if 

the mother trait is "11" and the father trait is "11", the child will inherit the "11" 

trait. If the mother trait is "11" and the father trait is "00", then the child will have 

a mixed trait with one part "0" and one part " 1 " . The order that they are combined 

is irrelevant, so that "01" has the same meaning as "10". One could compute the 
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so called "Punnett Squares" for all possibilities. One of the more interesting 

possibilities using this simplified schema is: 

Table 1. Punnett Square for Offspring Possibilities 

0 
1 

0 
00 
01 

1 
10 
11 

Source: Author's Research 

There is a 25% chance that the child gets either "00" or "11" and a 50% chance 

that the child gets "01" or "10". The next chapter will introduce genetic algorithms 

and explain how the ideas behind the discoveries that Mendel made are used to 

solve computational problems. 

Genetic Algorithm Basics 

Genetic algorithms use evolutionary techniques to find good approximate 

solutions. They use survival of the fittest techniques and have self-repair, self-

guidance, and reproduction methods. They are highly randomized and are ideal 

for search and optimization problems. 

There are four major steps in a genetic algorithm. The first challenge is to 

determine how the initial population will be created. Each individual in the 

population is a possible solution to the problem and should be generated 

randomly. The biggest challenge in a genetic algorithm is to determine a good 

fitness function. The fitness function measures the "goodness" of a solution 

versus other solutions. There is a reproduction phase which is based on both the 

fitness value and chance. There is a crossover phase where two parent 
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individuals are chosen and two new children individuals are created by mixing 

the traits of the two parent individuals. There is a mutation phase where one 

parent individual is selected and a mutation is done. A mutation on an individual 

occurs at a very low rate. 

The last step in the genetic algorithm is to determine when to terminate. 

This is typically done in one of two ways. The user can either specify the 

maximum number of rounds that the genetic algorithm should run, or they can 

specify a maximum number of rounds to run where the highest fitness value 

hasn't changed. These are the basics of genetic algorithms. A flow-chart for 

genetic algorithms is shown in Figure 1: 

Create Initial Population 

l i | 
Calculate Fitness 

ZZ I 
Reproduction 

Crossover 

~ ~ X _ 
Mutation 

No ^-^^^^^^V^^^^~--_ 
<c^Z~ Terminate? J ^ > 

^" " " " " " - " j - " ' Yes 

Figure 1. Flow-Chart of a Genetic Algorithm 

In every generation, a new set of artificial individuals is created using bits 

and pieces from the fittest individuals of the population and an occasional new 

part that is tried for good measure. Although genetic algorithms are randomized, 
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they efficiently exploit historical information to speculate on new search points 

with expected improved performance. Features for self-repair, self-guidance, 

and reproduction are the rule in biological systems, whereas they barely exist in 

the most sophisticated artificial systems (Goldberg, 1989). 

Initial Population 

Genetic algorithms require that there is a mapping between the real world 

representation of a problem and a data structure which can be as simple as a 

string. The string can be just a sequence of 1s and Os where parts of the string 

represent pieces of the real world. In the genetic algorithms that will be 

introduced in this thesis, the individuals will be alignments of DNA sequences, 

sets of gene predictions for a DNA sequence, and pairs of alleles making up a 

trait. 

To get started, here is a simple example from Goldberg (1989). For an 

initial population: assume there is a black-box with five switches on it where the 

output of the box is a dollar value based upon the configuration of the switches. 

The goal is to find the combination of the switches being on or off that will lead to 

the most money coming out of the box. The five switches can be represented as 

a string of 1s and Os where 1 means the switch is on and 0 means the switch is 

off. The population size is four, and the strings are randomly generated by 

flipping a coin for each 0 or 1 in each string. One of the powerful aspects of 

genetic algorithms is that they start with a population of strings instead of just one 
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starting point, which results in the ability to search many solutions in parallel 

(Goldberg, 1989). A possible initial population is shown in Figure 2: 

01101 

11000 

01000 

10011 

Figure 2. Initial Population of Strings 

Reproduction 

Reproduction is the first process in a genetic algorithm where the 

individual strings in the population are evaluated according to their optimality 

which is determined by an objective function. Biologists call this the fitness 

function. The fitness function is just a way to measure the profit, utility, or 

goodness that is trying to be maximized. Selecting strings according to their 

fitness values means that strings with a higher fitness value have a higher 

probability of contributing one or more offspring to the next generation. This 

correlates to natural selection - survival of the fittest. In natural populations 

fitness is determined by a creature's ability to survive and reproduce (Goldberg, 

1989). 

Assume that the fitness function is a simple f(x) = x2. Table 2 shows the 

initial population from Figure 2, the integer value of the binary string, the fitness 

values, and the percentage that each of the strings has compared to the total 
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fitness sum. The simplest way to reproduce is to use the classic "roulette wheel" 

approach. A roulette wheel is spun and 14.4 % of the time, the ball will land in 

the slot for the first string, 49.2% of the time, the ball will land in the slot for the 

second string, etc. This assures that strings with a higher fitness value are most 

likely to produce offspring for the next generation. The wheel is spun four times, 

and the new generation is created with the four individuals that were randomly 

selected from the spins (Goldberg, 1989). 

Table 2. Sample Fitness Values 

Individual 

01101 
11000 
01000 
10011 
Total 

Integer 

13 
24 
8 
19 

Fitness f(x) 
= x2 

169 
576 
64 
361 
1170 

%of 
Total 
14.4 
49.2 
5.5 

30.9 
100 

Source: Goldberg, 1989 

Crossover 

From the new population, pairs of strings are randomly chosen for 

crossover. Crossover is just a swapping of parts of the strings. A random 

crossover point is generated, and two new strings are generated by combining 

the first part of Individual 1 up to the crossover point with the last part of 

Individual 2 after the crossover point. The other new string will have the first part 

of Individual 2 up to the crossover point and the last part of Individual 1 after the 

crossover point. For example, consider the following individuals: 
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Individual 1 =0110 | 1 

Individual 2 = 1100 | 0 

Where the pipe symbol "|" indicates the crossover point. The new individuals 

after crossover takes place will be: 

New Individual 1 =01100 

New Individual 2 = 11001 

Mutation 

Mutation is the last step in the process. The chance that mutation occurs 

is very low. For this example, the strings are evaluated on a bit-by-bit basis and 

the bits are switched from a 0 to a 1 or a 1 to a 0. The probability that this 

happens at each bit is usually much less than 5%. This also coincides with the 

feeling for how often mutation occurs in the real world. 

Conclusion 

The mechanics of genetic algorithms are highly randomized, yet this is 

one of the main sources of their power. At first it seems surprising that chance 

should play such a fundamental role, but if some "idea" could be represented as 

a string, where substrings represent certain "notions" about the idea, then it can 

be clearly seen that the populations are not just stringent solutions to a problem, 

but rather "ideas" containing some helpful "notions" and some less helpful 

"notions" with the goal being to find the optimal "idea". Genetic algorithms keep 

combining the helpful "notions" from one "idea" with other helpful "notions" from 

other "ideas" until an optimal "idea" is found (Goldberg, 1989). 
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The next chapter will expand on some of the basic ideas presented here 

and show how they apply to the first application of genetic algorithms in 

bioinformatics that was studied in this thesis. 

Multiple Sequence Alignment 

Multiple Sequence Alignment (MSA) is a challenging and important 

problem to be solved in bioinformatics. Being able to align multiple sequences of 

DNA, RNA, or amino acids is essential for biologists to determine similarity in 

sequences which often leads to similarity in function and provides valuable 

evolutionary information. There are a variety of algorithms that exist for finding 

the most optimal alignment of a given set of sequences, including the 

Needleman-Wunsch Algorithm, the Smith-Waterman Algorithm, and the use of 

Hidden Markov Models to name a few. 

A literature review on how Genetic Algorithms (GAs) have been used for 

MSA will be given. The similarities and differences during each phase of the GA 

will be analyzed. For each phase, either the approach with clearly the best 

results or the approach that is used by all authors, making it a practical standard, 

will be considered in the implementation of a GA, called GAMSA (Genetic 

Algorithm for Multiple Sequence Alignment) (Radenbaugh & Austin, 2006). Most 

researchers have a common approach on the population representation and on 

the reproduction phase, but they vary slightly on the crossover and mutation 

phases and vary highly on the fitness function that should be used. 
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The intention is to implement a GA for the MSA problem and to find the 

best approach to take for each phase. The goal is to create a GA that can 

perform as good as or better than the industry standard ClustalW. ClustalW is 

designed for global alignments where all of the sequences are aligned over their 

entire length. The sequences are typically similar and all have roughly the same 

size. ClustalW can also be used for local alignments where only certain parts of 

the sequences are aligned, but it is not optimized for local alignments. The 

sequences for local alignments might be dissimilar and have varying lengths. 

The goal of this thesis is to investigate how genetic algorithms perform not only 

on global alignments but also on local alignments. 

Review of the Literature 

In this section, a review of the literature on how genetic algorithms have 

been used to solve the MSA problem will be given. Each phase of the genetic 

algorithm will be reviewed and the similarities and differences will be noted. 

Initial Populations 

The first challenge of a genetic algorithm is to determine what the 

individuals of the population will represent and to generate an initial population 

with some degree of randomness. All of the literature that was reviewed for this 

thesis (Hernandez, Grass, & Appel, 2004; Horng, Wu, Lin, & Yang, 2005; Shyu, 

Sheneman, & Foster, 2004; Wang & Lefkowitz, 2005) suggests that each 

individual in the population should be one multiple alignment of all the given 

sequences, but the way that they came up with the initial population varies. 
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Horng et al. (2005), Shyu et al. (2004) and Wang & Lefkowitz (2005) increased 

the sequence length by a certain percentage and randomly inserted gaps or 

buffers of gaps into the sequences. Hernandez et al. (2004) took a new 

approach and used previously developed tools to align the sequences to a 

certain degree and then used the GA to optimize the alignment. 

Another important initial setting is to determine the best population size. 

There was no consensus for this and all authors mentioned that it is dependent 

upon the sequence lengths and is best calculated through testing and fine-tuning 

and should be left as configurable. 

Since the approach with inserting random gaps or buffers of gaps to each 

sequence in the alignment is widely accepted as among the best, it will be used 

in the implementation of GAMSA. The initial population will be generated in the 

following way: For each column in the alignment, either the next element in the 

sequence will be taken or a gap will be inserted. The probability of a gap in a 

sequence is proportional to its length. This will hopefully achieve a more random 

dispersal of the elements. To make this clearer, here is an example: suppose 

that there is an attempt to align these sequences of nucleotides: 

Sequence 1: ATTGCCGACT 

Sequence 2: AC 

Sequence 3: GACCCTAG 

The longest of these sequences is ten nucleotides. The number of gaps 

to be inserted to every sequence for this example is also ten, so the total 
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alignment length would be twenty. For each column, there is a 50% chance of 

inserting a nucleotide for Sequence 1, a 10% chance for Sequence 2, and a 40% 

chance for Sequence 3. (Note that these are independent probabilities. An 

element from some, all, or none of these sequences might be inserted). The 

ending result might look something like this: 

Sequence 1: AT-TGC C-G-A-CT 

Sequence 2: AC 

Sequence 3: — G AC-C C-TAG 

The sequences are now randomly aligned and have enough gaps so that 

the nucleotides can be shifted later in the algorithm. 

Reproduction 

All of the authors (Hernandez et al., 2004; Horng et al., 2005; Shyu et al., 

2006; Wang & Lefkowitz, 2005) used the typical tournament style, also known as, 

"roulette wheel" style of reproduction. Two of them (Horng et al., 2006; Wang & 

Lefkowitz, 2005) also used some sort of elitism while further restrictions were 

made by Wang & Lefkowitz (2005) to only allow the top scores to reproduce. 

As shown with the roulette wheel approach in Section 2.2, for every 

generation, each alignment in the population is judged according to a fitness 

function. This will determine the chance of survival for each of these alignments. 

After all alignments have been scored, they will be randomly selected 

using weighted probabilities. The population size will stay the same, but there 
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may be copies of some of the alignments, and others will disappear. For 

instance, suppose there are 3 alignments with the following scores: 

Alignment 1 = 25 

Alignment 2 = 15 

Alignment3 = 10 

The total population fitness is the sum of all of the individual alignment 

fitness scores in the population which is for this example fifty. This means that 

Alignment 1 will have a 50% chance (Alignment 1 individual fitness divided by the 

population total fitness) of being selected, Alignment 2 will have a 30% chance, 

and Alignment 3 will have a 20% chance. A roulette wheel is created with one 

hundred slots on it. Alignment 1 will occupy slots 1-50, Alignment 2 will occupy 

slots 51-80, and Alignment 3 will occupy slots 81-100. 

A random number will be generated to determine which alignments will be 

added to the next generation. In the example, three random numbers are 

generated between 1 and 100. If the numbers are 23, 44, and 92, then the 

alignments that occupy these slots on the roulette wheel will be added to the next 

generation. The new population will consist of two copies of Alignment 1 and 

one copy of Alignment 3. Alignment 2, though not the lowest scoring alignment, 

dies off. 

Finally, since elitism is used by two of the authors and ensures that at 

least one copy of the highest scoring alignment survives this stage, it will also be 

used in the implementation of GAMSA. 

12 



Crossover 

After reproduction, pairs of alignments from the old population are 

randomly chosen for crossover. The most common type of crossover is called 

"One Point Crossover" (Hernandez et al., 2004; Shyu et al., 2005) and is the 

process of dividing the sequences in the alignments at a random point, and then 

swapping the first halves of the first alignment with the first halves of the second 

alignment. As an example, assume that the alignments each have three 

sequences: 

Alignment 1: Alignment 2: 

AATTCC AATTCC 

ATC A-T-C-

-ATTC- -AT-TC 

A random crossover point for these sequences is generated. For this 

example, assume the random crossover point is three. All of the sequences in 

the first alignment will be cut at the crossover point. In order to account for gaps 

in the sequences in the first alignment, the sequences in the second alignment 

will be cut according to the number of nucleotides or amino acids in the 

corresponding sequence in Alignment 1. It is essential to preserve the 

sequences by not changing the number of nucleotides or amino acids in them. 

For example, the second sequence in Alignment 1 doesn't have any gaps, but 

the second sequence in Alignment 2 does, so the second sequence in Alignment 

2 will be cut at the fifth position: 
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Alignment 1: Alignment 2: 

AAT | TCC AAT | TCC 

ATC | A-T-C | -

-AT | TC- -AT | -TC 

Now the first parts of all of the sequences from Alignment 1 are swapped 

with the first parts of all of the sequences from Alignment 2 to generate brand 

new sequences in each alignment. The result is: 

Alignment 1: Alignment 2: 

AATTCC AATTCC 

ATC A-T-C— 

-AT-TC -ATTC-

Another popular form of crossover is called the "Point-to-Point Crossover" 

(Hernandez et al., 2004). Two random points are generated, and the sequences 

between these two points are used for crossover. Each nucleotide or amino acid 

at each position in the crossover range is randomly swapped. A third form of 

crossover called "Slide-Crossover" is used by Hernandez et al. (2004). Parts of 

the sequences are shifted left and right to achieve a better alignment. Horng et 

al. (2005) introduce yet another form of crossover where multiple crossover 

points are defined and crossover occurs between many blocks. 

One Point Crossover is used the most, but the other suggestions by the 

authors also sound interesting. The GA implementation should definitely support 
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One Point Crossover, but it might also support other forms of crossover where 

the type of crossover that is used on each generation is randomly chosen. 

Mutation 

Mutation is the last step in the process. There are a few ways to do 

mutation for this problem and they all have to do with gaps and sliding 

subsequences left or right. Hernandez et al. (2004) have two forms of mutation. 

They either remove a gap or slide a sub-sequence next to a gap into the gap 

space which essentially moves the gap from the beginning of the sub-sequence 

to the end or vice versa. Homg et al. (2005) have four forms of mutation. 

"MergeSpace" merges two or three spaces together, "MoveSpaceCol" tries to 

move spaces in the current column to a neighboring column, "FullSpaceCol" 

adds a column of spaces if the current column has a space, and 

"MoveRowSpace" selects specific columns and moves spaces in the sequences 

at these columns to another column. Shyu et al. (2004) randomly select columns 

in the sequences and then swap nucleotides and spaces in these columns. 

Wang & Lefkowitz (2005) have three forms of mutation. "Random_gap" 

randomly inserts a gap into every sequence, or "Local_gap_shuffle" moves one 

gap in every sequence to a new position in the sequence, and 

"Block_gap_shuffle" moves multiple gaps in certain columns of the sequences to 

new positions in the sequence. 

Since all of the authors use such a variation at this phase, it is difficult to 

determine the best course of action. The GA implementation should at least 
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provide two forms of mutation: one for manipulating gaps and one for sliding 

subsequences left or right. 

Fitness Function 

The fitness function determines how "good" an alignment is. The most 

common strategy that is used by all of the authors, albeit with significant 

variations, is called the "Sum-Of-Pair" Objective Function. It is typically done in 

one of two ways: 

1) Compare each element in a column to every other element in a column. 

For nucleotide sequences, use the normal +1 for matches, -1 for 

mismatches, and -2 for gaps for scoring. For amino acid sequences use 

the BLOSUM or PAM matrix and the appropriate gap penalty for scoring. 

The BLOSUM or PAM matrix version should be variable in order to 

account for different types of sequences (ones that are fairly similar or 

fairly diverse). 

2) For each column, find out what the consensus element is. If there is one, 

use it as the value to compare all the other values in the columns against. 

Again, use the typical scoring systems as mentioned in 1. 

Hernandez et al. (2004) and Wang & Lefkowitz (2005) create their own 

scoring matrices based upon the sequences that they are trying to align. 

Hernandez et al. (2004) measured how unexpected the nucleotide or amino acid 

frequencies inside the columns are compared to their background frequencies 

that are estimated from the entire set. The matrix is calculated once at the 
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beginning and used for the whole GA. Wang & Lefkowitz (2005) creates a library 

of optimal pair-wise alignments from the sequences that they are trying to align 

and then evaluates the consistency of the calculated multiple alignment with the 

ones in the library. Homg et al. (2005) uses the straight-forward Sum-of-Pairs 

calculation. Shyu et al. (2004) uses the nucleic acid scoring matrix from the 

International Union of Biochemistry (IUB). This matrix groups nucleotides 

together according to certain properties, e.g., Purines (A or G) and Pyrimidines 

(C or T). 

Determining the fitness function of the GA is the most difficult part. The 

function needs to include a biological reference in order to align strands in a 

biologically relevant way, which is the ultimate goal. The combination of using 

the PAM and BLOSSUM matrices for amino acids and the IUB matrix for 

nucleotides could be interesting. Using the consensus sequence as the 

comparative sequence might also lead to interesting results. 

Doping Genetic Algorithms 

For most genetic algorithms, the evolution is fairly constant. There is 

typically a constant percentage probability assigned for each crossover and 

mutation. Doping genetic algorithms are different. For these, there is a 

"continuous evolution of the evolution" (Buscema, 2004). 

One approach is to use some of the principles of genetic algorithms on the 

crossovers and mutations themselves. While the actual functions of the 

crossovers and mutations are not altered in any way, a fitness value is assigned 

17 



to them. The fitness value is based upon how much the operation improved the 

current generation compared to the parent generation. In using this approach, 

the algorithm can optimize itself while running. This is the approach taken by the 

Sequence Alignment by Genetic Algorithm (SAGA) package (Notredame & 

Higgins, 1996). 

Unlike most other approaches, SAGA groups mutations and crossovers 

together and allows them to be selected by their fitness. The strength of 

combining these two groups is that the balance of crossovers and mutations can 

shift over the course of the program's execution. However, this also leads to a 

fundamental problem: crossovers and mutations are not very similar in their 

effect. Mutations tend to produce stronger results in the short term. Crossovers 

can break up local maximums and make huge improvements, but in the short 

term they are often more destructive. As a result, mutations may dominate 

crossovers without some special care. The solution that the designers of SAGA 

came up with was to give partial credit to operators for descendents of the 

children produced by an operator. This seems to resolve the issue. 

An alternate approach is used by the GenD algorithm (Buscema, 2004). 

In this design, the alignments are grouped into tribes. While members of the 

tribes may interact a little, they are mostly isolated groups. In addition, the 

algorithm is designed to increase the average health of the population rather than 

promoting the fitness of the very best. The effect of the tribe approach combined 

with the promotion of the general health leads to an "inner instability", as the 
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authors put it. This limited isolation of the population means that they will 

develop a greater diversity of solutions. 

Conclusion 

The implementation of GAMSA will use some approaches that are widely 

accepted as standard and will combine some other successful approaches in an 

attempt to produce even better multiple sequence alignments. It will have a 

standard initial representation where random gaps will be inserted and will use 

the standard tournament style of reproduction with an elitism component. It will 

provide at least the "One Point Crossover" method. It will have multiple ways of 

doing mutation which will consist of removing and inserting gaps as well as 

shifting subsequences left and right. Finally, the fitness function will use the 

standard "Sum-Of-Pair" scoring method using the PAM and BLOSSUM matrices. 

Ideally, the IUB matrix will also be included. A comparison between the elements 

in the sequences to the consensus sequence will be done, which is something 

that has never been tried before. 

GAMSA Implementation 

The implementation of the genetic doping algorithm presented in this 

thesis is called GAMSA. Compared to all of the previously discussed 

approaches, GAMSA resembles the SAGA design the most. In this section, a 

description of the approach and comparison to other genetic algorithms will be 

given, with special emphasis on SAGA. 
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Basic Process 

The main class in the implementation is MultiSeqAligner.java. By default, 

it is configured to align sequences of amino acids, scoring the alignments using 

the BLOSUM62 Matrix. A property object can be specified to override these 

settings. 

This class has a findSolution method that takes an array of strings and 

returns an Alignment object representing the best solution found. The 

TestCases.java file contains a main method that demonstrates how to use this 

package. Two amino acid and five DNA sample data sets are provided. The 

user can enter a number between 0-6 that will correspond to the test that they 

want to run. To change any default parameters, such as the population size or 

the number of unchanged rounds needed before GAMSA will terminate, refer to 

the getDefaultProperties() method in the MutliSeqAligner class. 

First, the process will be covered at a high level before going into more 

detail on key elements of GAMSA's design. 

Initial populations. The first step in a genetic algorithm is to generate the 

initial population. This is only done once each time the program is run. 

As with most genetic algorithms, the population is a collection of possible 

solutions. In the case of GAMSA, the individuals of the population are different 

alignments of the input sequences. The sequences themselves may be of either 

nucleotides or of amino acids. The design is flexible enough that alignments of 
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other sequences might be possible as well, though most likely this would take a 

certain amount of customization. 

By default, the population consists of one hundred alignments. For each 

sequence in these alignments, gaps are randomly inserted to pad all sequences 

to the same length. This length is set to 15% of the length of the longest 

sequence (before padding) in the alignment. These settings can be overridden 

by specifying "populationSize" and "percentagelncrease" in the configuration 

options. 

Reproduction. For every generation, the first step to be performed is 

reproduction. Each alignment in the population is given a percentage chance of 

survival equal to its relative fitness. Every alignment has at least some 

probability of being selected. 

A spot is reserved for the individual(s) with the highest fitness in the population. 

This individual will be added back to the population after all other steps have 

been performed, guaranteeing that the best score in the population will never 

drop in a new generation. 

Crossover and mutation. After the new generation has been created, 

members are selected for crossover or mutation. These may be merged into a 

single step, but it was found that the best results are achieved by performing 

these as two distinct steps. 

Evaluation of operators. The crossovers and mutations themselves form a 

population. While they do not change, each operator does have a fitness value. 
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This is based on the relative increase or decrease in the new alignments they 

create. If an operator has recently been more successful at creating healthy 

alignments, it is more likely to be used for future operations. 

At this step in the algorithm, each operator's success is determined and its 

fitness is recalculated. 

Fitness Functions 

With genetic algorithms, the most critical piece of information is how to 

score the fitness of a given individual in the population. In GAMSA, each 

alignment within the population determines its fitness by comparing each pair of 

its sequences and then summing the scores. However, the logic for scoring the 

sequences themselves is stored in a separate class called a scorer. 

Each scorer implements the gamsa.scorer.Scorer interface and may be 

specified in the configuration file with the "seqScorer" property. With this design, 

anyone using GAMSA can create his or her own scoring methods, depending on 

the nature of the sequences to be aligned. 

The two implementations included with GAMSA are DNAScorer and 

Blosum62Scorer. 

DNAScorer. This class is designed to score the alignment of two 

sequences of nucleotides. Each nucleotide that matches counts for +1. Each 

pair of nucleotides that is misaligned counts for - 1 . 

Gaps are treated differently. If a gap exists in the middle of one sequence 

it is scored as -2. Leading or trailing gaps are scored as - 1 . The main reason for 
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this is that gaps outside of a sequence should not be overly punished, but at the 

same time, some penalty is necessary to avoid rewarding sequences that are 

totally unaligned. Initially, leading and trailing gaps were ignored. This resulted 

in very bad alignments and lots of out of memory errors. 

Blossum62Scorer. This class is used to score sequences of amino acids 

using the BLOSUM62 matrix. However, gaps in the middle of a sequence are 

scored differently. At the point where a new gap is started the penalty is -12. 

Any extension to a new gap by subsequent gaps gets a penalty of -4. Like the 

DNAScorer, leading and trailing gaps are only punished half the normal amount. 

Operators 

One of the advantages of GAMSA is that new operators can be easily 

added. They only need to extend either the gamsa.operator.Mutation class or 

the gamsa.operator.Crossover class. This allows designers to create their own 

operators that may be more useful for different types of alignments. 

Mutations are excellent for making incremental improvements to 

individuals in the population. However, they have a noticeable tendency to get 

stuck in local maximums. Crossovers help to break these up and to mix the best 

parts of different alignments. While they are less profitable in the short term, they 

are essential to producing a good solution. 

Selection of operators. For doping algorithms, the selection of operators 

is not fixed. There are multiple ways of doing this, but GAMSA takes a similar 

approach to SAGA. Like SAGA, the operators are scored based on the success 
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of the new alignments that they create compared to the parent alignments. 

However, unlike SAGA, GAMSA does not give any credit for future generations. 

The principle reason for SAGA's design is that crossover operations are 

inherently destructive - splitting an alignment creates new gaps to maintain the 

alignment of the elements. By crediting crossovers with some of the success of 

future generations, the designers of SAGA hoped to take care of this situation. 

GAMSA takes a simpler approach. The main problem with the SAGA 

implementation was that the mutations and crossovers were combined into a 

single pool of operators. Since mutations tend to be more profitable in the short 

term, they tend to dominate if the operators are mixed together, unless some 

extra measures are taken. 

GAMSA may be configured this way as well (by setting the "mergeOps" 

parameter to true), but that is not the default. Instead, the operators are divided 

into separate groups. Since the crossovers are now compared only to other 

crossovers, they are fairly represented. 

No changes operator: No Ops. In most genetic algorithms, there is a 

(usually fixed) percentage chance of a mutation or crossover. For GAMSA, the 

entire population goes through both a crossover and a mutation. An operator 

that makes no changes called a "No op" is used instead. NoopCrossover.java 

and NoopMutation.java are (respectively) a crossover and a mutation that return 

the original alignments without modification. Like all operators, the chance of 
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their selection is determined by their recent success. However, in the case of 

these operators, their rating is always zero. 

This has a rather elegant effect. If crossovers and mutations are 

producing better and better results, more will happen. If, on the other hand, they 

are producing poor results, the no ops will dominate. Even though the operators 

are divided into two groups, the ratio of crossovers and mutations can change in 

this way. 

No ops might also be exploitable to create a new termination condition, 

though this was not pursued for the current design of GAMSA. 

Crossovers. After reproduction, pairs of alignments from the old 

population, a mother and a father, are randomly chosen for crossover. In order 

to try to avoid cases where the exact same alignment is chosen for both the 

mother and the father, the algorithm tries to select new fathers until the 

alignments are different or until 10 new alignments have been tried. In the rare 

case that the mother and father are still the exact same alignment, then 

crossover will have no affect on the alignments. 

There are two main forms of Crossover: a "No Operation Crossover" and 

a "One Point Crossover". As expected, the No Operation Crossover leaves the 

mother and father alignments untouched. The One Point Crossover divides the 

sequences in the alignments at a random point, and then swaps the first halves 

of the first alignment with the first halves of the second alignment. There are 
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three variations to the One Point Crossover: 1) Gaps at Beginning, 2) Gaps in 

Middle, 3) Gaps at End. 

The One Point Crossover begins by generating a crossover point which is 

a random number between zero and the length of the sequences in the mother 

alignment. If the crossover point is zero, then the original mother and father 

alignments are returned untouched. The process of swapping the first halves of 

the first alignment with the first halves of the second alignment is not as easy as 

it might seem. One problem is that the two alignments selected for crossover 

can have varying lengths. The number of actual nucleotides or amino acids in 

the alignments is the same, but the alignments can have varying amounts of 

gaps. For example, assume that the alignments each have the following three 

sequences where Alignment 1 has sequences of length six and Alignment 2 has 

sequences of length five: 

Alignment 1: Alignment 2: 

A-T-C- ATCC-

ATC --ATC 

-ATTC- AT-TC 

The random crossover point is generated and is, for example, at position three. 

All of the sequences in the first alignment will be cut at the crossover point. In 

order to account for gaps in the sequences in the first alignment, the sequences 

in the second alignment will be cut according to the number of nucleotides or 

amino acids in the corresponding sequence in Alignment 1. It is essential to 
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preserve the sequences by not changing the number of nucleotides or amino 

acids in them. For example, the first sequence in Alignment 1 will be cut after "A-

T" which contains one gap, but the first sequence in Alignment 2 doesn't have a 

gap between the A and the T. The first sequence in Alignment 2 will be cut after 

the second position. The same type of problem occurs in the third sequence of 

each alignment, but the second sequence shows a different problem. The 

second sequence of Alignment 1 will be cut after "ATC", but the second 

sequence of Alignment 2 is padded with some leading gaps and will be cut at the 

end at position five. The following alignments show where the sequences are cut 

using the pipe "|" symbol: 

Alignment 1: Alignment 2: 

A-T | -C- AT | CC-

ATC | —ATC | 

-AT | TC- AT | -TC 

Now the first parts of all of the sequences from Alignment 1 are swapped with the 

first parts of all of the sequences from Alignment 2 to generate brand new 

sequences in each alignment. The result is: 

Alignment 1: Alignment 2: 

A-TCC- AT-C-

ATC ATC 

-AT-TC ATTC-
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Notice now that the sequences within an alignment do not have the same length. 

The best example is sequence two in each alignment. In Alignment 1, the 

second sequence only has three elements, while both the first and third 

sequences have six elements. In Alignment 2, the second sequence has nine 

elements, while both the first and third have five elements. The sequences within 

an alignment must have the same length! In order to account for these 

differences, gaps are added to the sequences. 

The three variations of the "One Point Crossover" provide three different 

ways to add gaps to the sequences. The gaps can be added to the beginning of 

the sequences, to the middle of the sequences, or to the end of the sequences. 

The suspicion was that adding the gaps to the middle where the jagged edges 

from the crossover occurred would prove to be the most effective, but adding 

them to the beginning and end lead to some interesting results upon crossover in 

the future generations. 

Mutations. Each mutation is designed to make small changes to a single 

alignment that may improve the design. 

BlockShuffleMutation.java takes a single sequence in the input alignment. 

It selects a random point in the sequence. If it is an element, it looks either to its 

left or right (again chosen randomly) for the next series of gaps. It will slide that 

block of elements over until it touches the next block of elements. If a gap is at 

the chosen position instead, the procedure is the same, except that the block of 

gaps is moved instead of the block of elements. 
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GapDeletionMutation.java eliminates a single, randomly chosen gap from 

each sequence in the alignment. However, if no gap can be found in any one 

sequence, the operation is aborted, and the original unchanged alignment is 

returned instead. Interestingly, this tends to be the most profitable mutation in 

the early stages. 

GaplnsertionMutation.java is the opposite of GapDeletion. It adds a single 

gap to each sequence within the alignment. The positions for the gaps are 

chosen randomly. 

GapColumnDeletionMutation deletes all the columns of gaps in an 

alignment. It loops through each column of every sequence, and if there is a gap 

in this position in every sequence, then it removes the gap in this column from 

every sequence. 

Termination Conditions 

After a population has gone through reproduction, crossover and mutation 

and a new generation has been formed, it must be evaluated to determine if a 

solution to the MSA problem has been found or not. If so, the best solution in the 

population is returned. If not, the population goes through another loop to create 

yet another new generation. One of the major challenges in designing a genetic 

algorithm is how to determine when a solution has been found. In general, the 

goal is to look for some indications that the algorithm has reached a stable point. 

GAMSA allows for two different termination conditions to be set. The first 

is to simply specify the maximum number of rounds that the algorithm will run. 
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The advantage of this approach is that the running time can be given a maximum 

bound. The second termination condition is to count the number of rounds that 

the best fitness score in the population has not changed. Since the best member 

of the population is preserved each generation, this score will never drop. When 

it has held steady for a number of generations, it is assumed that the model has 

reached a stable point. By trial and error, fifty generations seems to be the best 

setting for this parameter. 

Either or both of these conditions can be used in parallel. The parameter 

"maxRounds" specifies the maximum number of rounds that will be run. If it is 

omitted, no limit will be used. The parameter "unchangedRoundsNeeded" 

specifies the number of rounds that the best scoring solution must not be 

changed for the second condition to be met. If this is a larger value than 

"maxRounds", it will not be used. 

Configuration 

GAMSA has a set of default values optimized for amino acid alignment. 

However, these can be overridden with a configuration file. The constructor for 

gamsa.MultiSeqAligner takes a property object. Here is a sample file: 

# Config for calculating proteins, using BLOSUM62 
mergeOps=false 
seqScorer=gamsa.scorer.Blosum62Scorer 
percentagelncrease=15.0 
populations!ze=l00 
unchangedRoundsNeeded=50 
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Analysis of Results 

The results from GAMSA were compared to the industry standard 

ClustalW. When run locally, ClustalW was noticeably faster. This was not 

entirely unexpected. While some care was taken to see that GAMSA was 

efficient, the emphasis was not on performance. Also, GAMSA is written in Java, 

and suffers some performance penalty from that. 

The results of the tests varied. In one case, GAMSA's answer was 

different by only a single amino acid! In others, the results were quite different. 

In this section some of the results will be covered. 

Amino Acid Test Case 1 

This test involved seven sequences of amino acids. They varied in both 

length and similarity. Three different settings for the parameters for the 

population size (100 and 400) and the number of unchanged rounds needed (20 

and 50) were evaluated. The population sizes/unchanged rounds that were 

tested were 100/20, 100/50, and 400/50. The tests were run on a Pentium 4 

machine running Fedora Core 4. 

The number of unchanged rounds mostly made a difference in the 

reliability of the results. While the scores were just as high and the results were 

just as quick, there were times when the scores would be much worse simply 

because a local maximum was found. 

Population size had a noticeable impact on both the quality and time 

needed for the results. While the scores ranged roughly from 1000-1500 for a 

31 



population of 100, they were 1700-2200 for a population of 400. However, the 

run times rose from about two minutes to about fifteen minutes. 

Amino Acid Test Case 2 

For the second test case, ten fairly long sequences of amino acids were 

used. The sequences were much more similar than those in test case one. 

Again, population sizes/unchanged rounds of 100/20, 100/50, and 400/50 were 

used. These tests were performed on the same machine as the previous test. 

As with the last case, the unchanged rounds did not make much 

difference in the score, but seemed to make the results more consistent. 

However, somewhat surprisingly in this case, the unchanged rounds had a very 

noticeable effect on performance. On average, the 100/20 case finished in about 

one third of the time of the other two, and with only a slight decrease in the 

quality of the results. 

Population size seemed to mildly improve the results, but not substantially. 

Also, its performance increase was not dramatic. In fact, in the examples in the 

appendix, it took less time than the 100/50 case. One possible explanation for 

this difference is that these sequences are fairly closely related. As a result, 

GAMSA seems to make small steps towards the solution, and patience (reflected 

in the "unchangedRounds" setting) is better rewarded. 

DNA Simple Test Case 

The first simple sequences got very similar results to those from ClustalW: 
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GAMSA Best Individual: 
ATTGCCA-TT 
ATGGCCA-TT 
ATCCAATTTT 
ATCTTC—TT 
ATT 
—GGCCA-T-
ATTG 
Fitness: -74.0 

ClustalW Solution Individual: 
ATCTTCTT— 
ATCCAATTTT 
ATT 
—GGCCAT— 
ATGGCCATT-
ATTGCCATT-

ATTG 

Fitness: -84.0 

For these kinds of short sequences, the results were better when the 

population size was bigger than the default size of 100. It was interesting to see 

GAMSA keep the "ATTG" in the last sequence together and either place it at the 

beginning as shown in this test or at the end of the sequence as in the ClustalW 

solution. 

DNA MYH16 Test Case 

This was the best test result received, even outscoring ClustalW. The 

original sequences were very similar, so it was expected that ClustalW would do 

an optimal job on aligning them. The solution from GAMSA has only one 

nucleotide difference to the solution from ClustalW. In the sequence with the 

gaps, GAMSA created gaps over "CA" and aligned the next "C" to the column 
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after the gaps. ClustalW created gaps over "AC" and aligned the "C" to the 

column before the gaps: 

GAMSA Best Individual: 
GAGCAGCTGAACAAGCTGATGACCACCCTCCACAGCACTGCACCCCaTTTTGTCCGCTGTATTGTGCCCAATGAGTTTAAGCAGTCAG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTGTCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTGTCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAG—CCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 

Fitness: 2322.0 

ClustalW Solution Individual: 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGC—CGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTGTCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTGTCCCCAATGAGTTTAAGCAATCGG 
GAGCAGCTGAACAAGCTGATGACCACCCTCCACAGCACTGCACCCCATTTTGTCCGCTGTATTGTGCCCAATGAGTTTAAGCAGTCAG 

Fitness: 1728.0 

DNA Beta Globin Test Case 

These original sequences were less similar, and as is the case with 

ClustalW, GAMSA struggles more with sequences that are less similar. It is 

interesting to observe the positions where GAMSA starts to insert gaps 

compared to the positions where ClustalW starts to insert gaps. In this respect, 

the alignments are quite similar. The entire alignments can be viewed in 

Appendix B, but shown below are the beginnings of the columns where 4 of the 5 

sequences align in the same way as ClustalW: 

GAMSA Best Individual: 
GTTTACGTTTG 

ACATTTG 
TAGGGCCCCTGCTGC 

ACACTTG 
AGCTAGATTAGTTTC 
Fitness: 53.0 
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ClustalW Solution Individual: 
GTTTACGTTTGCTTC 

ACATTTGCTTC 
TAGGGCCCCTGCTGC 

ACACTTGCTTC 
AGCTAGATTAGTTTC 
Fitness: 352.0 

DNA HIV Test Case 

These sequences are also not very similar and a lot longer than any of the 

previous tests. The longest sequence length is approximately 650. It is again 

interesting to compare where gaps are inserted and extended in the GAMSA 

solution compared to the ClustalW solution. The entire sequences can be found 

in Appendix B. 

DNA BRCA1 Test Case 

This test was partially done to evaluate the performance of GAMSA. 

There were 9 sequences with an approximate length of 800. The population size 

was increased to 400 and the number of unchanged rounds stayed at 50. The 

scores converged fairly quickly, but there were small increases at the end leading 

to the entire run taking over an hour and running close to 2800 rounds. Of 

course, lowering the population size or the number of unchanged rounds would 

have taken significantly less time and also given results that are not significantly 

worse than the final result. 

It is again interesting to compare the gaps in the 2 alignments. GAMSA 

tends to have more gaps on these types of long sequences and does not cluster 

them together as well as ClustalW. This could be due to the fact that the fitness 
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function only scores -2 for all gaps and does not distinguish well between gap 

opening and gap extending as is done for the amino acid sequences. Altering 

the DNA Scorer to account for this could lead to better results. 

Future Research 

One of the interesting discoveries was that the "no op" mutations and 

crossovers gave some indication of the development of the solution. One 

possibility for a termination condition would be to monitor their comparative 

fitness to other operators and terminate the program when they become the 

dominant operation. This might be a better indicator than the current methods. 

Another interesting approach would be to add in the concept of tribes to GAMSA. 

By having multiple threads running, with individuals occasionally being copied 

over to other threads, some of the benefits of the GenD approach (Buscema, 

2004) might be achieved. Combining these with the fluctuating operators of 

SAGA (Notredame et al, 1996) might produce some strong results. 

The next chapter will present the second application of genetic algorithms 

in bioinformatics that was studied in this thesis. The application is very different 

from the MSA problem and displays the diversity of problems that genetic 

algorithms can be used to solve. 

Gene Prediction 

One of the most challenging problems in bioinformatics today is gene 

prediction. The goal is to identify regions of genomic DNA that will encode into 

proteins. As more and more genomes are being sequenced, the need to analyze 
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these data is becoming more and more important. Using traditional experimental 

methods is costly and time-consuming. The need for accurate computational 

methods would be very beneficial. 

The first step in gene prediction is to locate coding and non-coding regions 

in a genomic sequence. This can be done using extrinsic homology methods 

and/or intrinsic computational methods. There are a variety of algorithms and 

software packages that can be used for gene prediction. The most common and 

accurate gene prediction approaches will be evaluated. 

Genetic algorithms have never been used in the literature for gene 

prediction in eukaryotes. Genetic algorithms have recently been used for operon 

prediction in prokaryotes with considerable accuracy (Jacob, Sasikumar, & Nair, 

2005). The intention of this project is to implement a genetic algorithm for gene 

prediction in eukaryotes and to identify the advantages and disadvantages of this 

approach. 

Gene Prediction Software 

The general procedure for gene prediction is to obtain a new genomic 

DNA sequence and to first find the Open Reading Frames (ORFs). For any 

sequence, there are six ORFs. Typically, the longest ORFs will be the reading 

frames where the genes are located. There are three basic tests (Mount, 2004) 

that can be done to verify the ORF: 

1) It is known from biology that every third base tends to be the same much 

more often than by chance. This can be computationally verified. 
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2) Check the codon frequency. Organisms tend to prefer a specific codon for 

a specific amino acid. Check to see whether the codons in the ORF 

correspond to other genes in the organism. 

3) Translate the ORF into an amino acid sequence and compare it to a 

database of existing sequences. 

There are several ORF finding software packages: BioEdit is available on 

the Windows platform. DNA STRIDER is a nice visual tool available for 

Macintoshes. PLOTORF, GETORF, and SIXPACK are available for the Unix 

platform. ORF Finder and EMBOSS are available over the web. 

The next step in gene prediction is to apply extrinsic content sensors. 

Extrinsic content sensors are homology based. Approximately 50% of all genes 

can be found by extrinsic content sensors alone (Mathe, Sagot, Schiex, & 

Rouzze, 2002). Sequence similarity search methods are used to identify coding 

and non-coding regions. The genomic DNA is compared to existing DNA or 

protein sequence databases using tools such as BLAST and CLUSTALW. There 

are several problems with this approach. If no similar sequences exist, then 

nothing will be found. It is still hard to determine where the exon and intron 

boundaries are with these kinds of methods. Small exons are easily missed. 

The genomic DNA is also compared to existing cDNA or EST databases. cDNA 

is made up of exons which helps identify the exon and intron boundary. ESTs 

provide information about partial exons and give hints to alternative splicing, but 

they only give local and limited information on the gene structure since they are 
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only partial mRNA (Mathe et al., 2002). Extrinsic content sensors aid in 

identifying coding vs. non-coding regions, but they don't provide more detailed 

information about the structure of the gene. 

The next step in gene prediction is to apply intrinsic content sensors. 

Intrinsic content sensors are computational methods. They incorporate 

knowledge from biology to analyze the data. Determining the probable ORF and 

verifying the codon composition is done very well with computational methods 

today. Determining hexamer frequency which is the frequency of 6 nucleotides 

in a sequence is also done using computational methods. This is used very often 

with Hidden Markov Models. G+C rich areas tend to have high gene density 

while A+T areas tend to have low gene density. Therefore, identifying these 

regions is essential in gene prediction. Lastly, a probabilistic method is applied 

to the gene prediction problem. 

Gene prediction programs use computational approaches such as Hidden 

Markov Models, Neural Networks, and Bayesian Classifiers. They also focus on 

different kinds of predictions. They all focus on predicting the exons that will 

eventually produce a protein, but some software programs also predict 

promoters, poly-A sites, start and stop codons and others. Lastly, they are 

trained on data for certain model organisms. Some of the most common model 

organisms are Arabidopsis thaliana, Caenorhabditis elegans, Drosophila 

melanogaster, Mus musculus, and Oryza sativa. 
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With all of these choices, what is the best gene prediction method? The 

best method uses a known set of gene structures for training the model. The 

prediction itself is then done on data that are not in the training set but are similar 

to it. The gene prediction programs are much better at shorter sequences rather 

than longer ones. The best approach is to apply multiple methods (Mount, 

2004). 

After using any gene prediction software, it is essential to verify the 

predictions that are made. The most advanced gene prediction programs today 

are only accurate at best 70% of the time. 

Literature Review 

Since genetic algorithms have not been used for gene prediction in 

eukaryotes, the review of the literature will focus on general gene prediction 

algorithms and on how genetic algorithms were used for gene prediction in 

prokaryotes. 

Initial Populations 

The first phase of the genetic algorithm is to determine what the 

individuals in the population will consist of and to generate an initial population 

with some degree of randomness. The user will provide the genomic DNA 

sequence. Three methods for generating an initial population will be 

investigated. The first method needs no prior information about the coding and 

non-coding regions of the sequence. The second and third methods need prior 
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information about the coding and non-coding regions that can either be obtained 

by extrinsic homology methods or by intrinsic computational methods. 

The first method is to divide the given sequence into smaller 

subsequences by randomly selecting a starting point and randomly selecting a 

length. The length will be dependent on the length of the entire DNA sequence. 

There could be a parameter for controlling the maximum size of the random 

length that is generated. For example, the parameter could state that the length 

cannot be longer than 50% of the entire sequence. 

0 800 1600 2400 

Figure 3. A User Given Genomic DNA Sequence 

Consider the user given genomic DNA sequence given in Figure 3 where 

each box represents an exon and each set of three exons which are color-coded 

form a separate gene. By randomly selecting a starting point and randomly 

selecting a length, it is very likely that all of the exons belonging to one gene will 

not end up in the same subsequence as shown in Figure 4. It is also likely that 

exons will be cut so that their starting or ending points are not a part of the 

subsequence as shown in Figure 5. The dependency of the fitness function on 

having the entire structure of the gene together will be an essential factor. 
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Start: 1000, Length: 400 I ! Z H I—I 
1000 1400 

Figure 4. Last Exon from Gene 2 Missing 

2000 2200 

Figure 5. First Exon from Gene 3 Missing, Second Exon Missing Starting Point 

A second method would be to randomly choose the number of exons that 

are allowed in a subsequence. This method assumes that prior information 

about the coding and non-coding regions of the sequence is known. There are 

many ways to obtain this information, but the problem that the entire structure of 

the gene might get destroyed still remains. Consider the user given DNA 

sequence from Figure 3. The subsequences to be analyzed by the fitness 

function in the initial population using this method could be: 

Start: 1000, Exons: 2 I 1 3-CZZ~}-H 
1000 1200 

Figure 6. Only Two of the Three Exons from Gene 2 Are Included 

Start: 600, Exons: 3 H—i 1 1—I—H 

600 1200 

Figure 7. Exon 3 from Gene 1 and Exons 1 and 2 from Gene 2 Are Included 
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A third method would be to randomly choose the maximum intergenic 

length between the exons. This method also assumes that prior information 

about the coding and non-coding regions is known. The minimum and maximum 

intergenic length could be determined before-hand based on the genes of the 

organism. This method could be utilized to keep the grouping of the exons 

together and might aid in speeding up the process by avoiding huge gaps of 

intergenic material. It will be beneficial to have a minimum and maximum for the 

random intergenic length. Making the length too small will result in 

subsequences with no exons and making the length too large will lead to the 

whole sequence being processed in every individual. 

Consider again the user given DNA sequence from Figure 3. Figure 8 

shows an individual that could result when the intergenic length is 100. All of the 

exons from Gene 2 remain intact, because the largest intergenic material is from 

position 1225 to position 1275 which is less than 100. Figure 9 shows an 

individual that could result when the intergenic length is 400. All of the exons 

from Gene 1 and Gene 2 are included in the individual, because the largest 

intergenic material between the two genes is from position 650 to position 1010 

which is less than 400. 

Intergenic Length: 100 I—i- I—CZJ—CZZZ]—I 
1000 1225-1275 1400 

Figure 8. All of the Exons from Gene 2 Remain Intact 
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Intergenic Length: 400 HT—[z~~T-n~i 1 h-r~~H H 

200 650-1010 1400 

Figure 9. All of the Exons from Gene 1 and Gene 2 Are Included 

A similar method to the third method with the random intergenic length 

was used by Jacob et al. (2005) when doing operon prediction in prokaryotes. 

The overall accuracy of the prediction algorithm was quite good, but it is difficult 

to determine if this was one of the main contributing factors. Also, operon 

prediction in prokaryotes is significantly different from gene prediction in 

eukaryotes, but it is definitely a method that should be examined further for 

eukaryotic gene prediction. 

Another important initial setting is to determine the best population size. 

This is likely to be dependent upon the length of the original DNA sequence 

provided by the user. Therefore, the population size parameter will be left as 

configurable to the user. 

Reproduction 

The most well-known type of reproduction is the roulette wheel style of 

reproduction that was discussed in Sections 2.2 and 4.2. It is likely that some 

sort of elitism will be used to guarantee the survival of the best solutions. 

For every generation, each individual in the population is judged according 

to the fitness function. This will determine the chance of survival for each of 

these individuals. 
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Crossover 

After reproduction, pairs of individuals from the current population are 

randomly chosen for crossover. The most common type of crossover is called 

"One Point Crossover" which was discussed in Section 3.1.3. Although the 

representation of the individuals for the MSA problem and this problem are very 

different, the same concept can be used. "One Point Crossover" is the process 

of dividing the sequences in the individuals at one random point, and then 

swapping the first halves of the first individual with the first halves of the second 

individual. Assume that the following two individuals are randomly selected for 

crossover: 

Parent 1: h - c z r a - a 1 

Figure 10. Two Parent Individuals Selected for Crossover 

In Parent 1, three exons that belong to the same gene are found. In 

Parent 2, three exons that belong to the same gene are found where the gene in 

Parent 2 is different than the gene in Parent 1. Now the random crossover point 

for these sequences is generated. The random crossover point is indicated by 

the dark vertical line. The first half of Parent 1 will be combined with the second 

half of Parent 2. The first half of Parent 2 will be combined with the second half 

of Parent 1. The result is two new individuals with mixed traits from their 
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parents: 

New Child 1: 

New Child 2: 

Figure 11. Two New Children Individuals for the Next Generation 

The first child will have a very high fitness value and will most likely move 

on to future generations while the second child will have a very low fitness value 

and will most likely die out in the next generation. 

Mutation 

Mutation is the last step in the process. The general idea behind the 

mutation phase for this problem is to try to repair the beginnings and ends of 

subsequences that may have been split in the middle of an exon. If a predicted 

donor or acceptor site doesn't match the expected conserved sequence due to 

an interruption to the sequence, the starting, or respectively ending, position of 

the subsequence will be extended in order to include more of the sequence. The 

hope is that the extension will lead to accurate donor and acceptor sites and 

ultimately to full exons. 

Fitness Function 

The fitness function calculates how "good" an individual is. There are 

many gene prediction programs available today. They use different 

computational approaches, they focus on certain kinds of predictions, and they 
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are modelled after specific organisms. This results in a complex matrix when 

choosing the best gene prediction program for one's specific needs. 

In this research, the model organism, Arabidopsis thaliana, will be studied. 

There has already been a lot of research done on Arabidopsis, and there are 

already databases which contain annotation information. This will make it easier 

to verify the results of the predictions made by the genetic algorithm. 

The study by Pavy et al. (1999) showed that GeneMark.hmm was the 

most accurate gene prediction program for Arabidopsis. The original GeneMark 

program evaluates ORFs and runs in parallel on both DNA strands. It takes into 

consideration the codon frequency and the G+C vs. A+T content regions. It 

creates inhomogeneous Markov Models for the coding regions of the DNA 

sequences from a specific species and homogeneous Markov Models for the 

non-coding regions of the DNA sequences from a specific species. The 

algorithm computes and returns an aposteriori probability that a coding region is 

correct (Borodovsky & Mclninch, 1993). This probability score will be used in the 

genetic algorithm fitness function. 

GeneMark.hmm incorporates some of the basic functionality from 

GeneMark to predict coding and non-coding regions. It then uses a three-

periodic Markov Model of order five to exploit hexamer composition. It uses 

hidden states to represent further characteristics of genes such as the acceptor 

and donor sites, start and stop codons, and introns themselves (Borodovsky & 

Mclninch, 1993). Unfortunately, GeneMark.hmm does not return any probability 
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or log-odds score for its predictions. An attempt to integrate GeneMark.hmm is 

still given and a general approach to incorporating gene prediction software that 

doesn't return confidence scores is proposed. 

Since the last comprehensive study of gene prediction software was done 

some eight years ago and since GENSCAN is constantly among one of the best 

gene prediction programs, the fitness function will include predictions from 

GENSCAN. GENSCAN returns both an overall confidence score for each exon 

and a log-odds score. GENSCAN and GeneMark.hmm use similar approaches 

to gene prediction. They both evaluate both strands in parallel, and use species 

specific information about codon frequency and G+C vs. A+T content regions. 

GENSCAN also uses three-periodic inhomogeneous fifth order Markov Models 

for the coding regions of the DNA sequences (Burge & Karlin, 1997). Since 

GENSCAN and GeneMark.hmm use similar techniques for gene prediction, they 

will be used together to set the appropriate confidence scores for 

GeneMark.hmm. 

geneid uses a combination of Position Weight Matrices (PWMs) and 

Markov Models for predicting gene structure. It first scans the sequence from 

start to finish and uses PWMs to predict acceptor and donor sites and start and 

stop codons. It then uses these predictions to find the exons of a gene. The 

exons are scored using the scores from the PWMs in combination with the log-

likelihood ratios from a Markov Model for coding regions of DNA sequences from 

a specific model organism (Parra, Blanco, & Guigo, 2000). 
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The fitness function of the genetic algorithm will use multiple gene 

prediction programs that take similar and varying approaches to predict the gene 

structure of sequences taken from the model organism Arabidopsis thaliana. 

This approach of combining multiple gene prediction programs to work in parallel 

has never been tried before. 

Conclusion 

Implementing a genetic algorithm for gene prediction has never been done 

before. Some of the phases will experiment using new approaches and other 

phases will use traditional, proven methods. The initial phase is completely 

experimental, since none of the three approaches have ever been tested. The 

third method described with the intergenic length has been used in operon 

prediction for prokaryotes and might be a good approach for eukaryotes as well. 

The traditional roulette wheel style reproduction with elitism will be used, and the 

traditional "One Point Crossover" will be implemented. The mutation phase 

introduces a new approach to assist in repairing interruptions in the sequences. 

Finally, the possibility of using multiple industry standard gene prediction 

programs in combination has never been tried before. 

Gene Prediction Implementation 

The implementation of a genetic algorithm that can be used for gene 

prediction is presented in this section. A description of the approach that was 

taken at each phase of the genetic algorithm will be given. 
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Initialization 

The genetic algorithm starts out by reading in the file that contains the 

user specified DNA sequence. The file should be in the standard FASTA file 

format. The FASTA format can be used for both DNA sequences and amino acid 

sequences. The individual nucleotides and amino acids must use their one letter 

abbreviation e.g. "A" for Adenine, "G" for Guanine, "C" for Cytidine, and "T" for 

Thymidine for nucleic sequences and "M" for Methionine, "L" for Leucine, "W" for 

Tryptophan, etc. for amino acid sequences. Each sequence starts with a one 

line description that starts with the ">" symbol. The description typically contains 

an identifier and the source of the sequence that can be the database or the 

genome that it was retrieved from or both. After the one line description, the 

sequence begins on the next line. Each file may also include multiple 

sequences. Whenever a ">" symbol is detected, it is assumed that a new 

sequence is beginning. Figure 12 shows an example of a FASTA formatted file 

for the AT1G05205 mRNA from Arabidopsis: 

>gi|18390491|ref|NM_100399.1| Arabidopsis thaliana (AT1G05205) mRNA, complete cds 
GCGTTTGAGATTTCACCAGGAGCAAGAGAAAGATGAGCGAGACGAGACCAGTGCCGAGGAGAGAGAGTCC 
ATGGGGTTTACCGGAAGGTCACCGTGAGCCCAAAGCTCACCGCTGCAACGATCGTGCDTGAAGACGTTATC 
CAGGCGTTATTCGAGGGAAACCCATTCAAGACAGTTCCAGGACCTTTCAAACTCTTCTACCGATGO?ATGC 
GCTCTAAGCCAGGAGAGGAGCCAACAGAGCCATTCAAATACCTCGACCTGGAACCTCCAAAGAGAGAAGT 
TAAAC T T GAAGAAGCAAAGC T T GAGT AAAGT GATAT T CAC T C C C T T T T T TAT T C C T GCATAC TTTTTAGC 
TGAGCGTGTAAGCGCCATCACTGTGAa?a?TTAAGTTTACCTTCAATATGTGTCAACAACATCTTATTTTCT 
CTTAATAAAATTGATACTCGGAGTTTC 

Figure 12. FASTA Formatted File for AT1G05205 from Arabidopsis thaliana 

The user can configure the directory location and name of the file that 

should be evaluated. The main class of the algorithm creates the initial 

population and loops through each phase of the genetic algorithm until a 

50 



termination condition is satisfied. The user can define the maximum number of 

generations or the maximum number of generations where the highest fitness 

value has not changed or both. The population size is also configurable to the 

user along with a variety of other parameters that are detailed in Section 4.3.7: 

Configuration Options. 

Initial Populations 

After the genetic algorithm has read and parsed the DNA sequence 

specified by the user, the initial population is created. The individuals in a 

population represent a possible solution to the problem. In this genetic algorithm, 

the individuals of the population are subsequences of the initial DNA sequence 

along with their predicted gene structure. 

The initial individuals in the population are created using only a 

subsequence of the original DNA sequence. Three methods for randomly 

creating these subsequences were investigated. The first method needs no prior 

information about the coding and non-coding regions of the sequence. The 

second and third methods need prior information about the coding and non-

coding regions that were obtained using other gene prediction software. The 

three methods for generating an initial population will be described in this section 

along with their advantages and disadvantages. 

Some gene prediction programs expect to read the sequences from a file 

and instead of returning the predictions to the standard output, they write the 

results to a file where the name of the file is the name of the input file with an 
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extension added to the end (e.g. "1st" is used by GeneMark and 

GeneMark.hmm). In order to accommodate such gene prediction programs, the 

original DNA sequence is read in from the user-specified file location and is used 

to generate a file for each individual in the population. Each individual in the 

population has to have a separate file, because the sequence for each individual 

is only a sub-sequence of the original sequence. Each individual is given an 

index number when it is created. The file that is generated has the index of the 

individual inserted at the beginning of the file. If a user specifies "AT1G05205.fa" 

as the name of the file that contains the original DNA sequence to be evaluated. 

The files that would be generated for the individuals would have the names: 

"0_AT1G05205.fa", "1_AT1G05205.fa", etc. When the gene prediction programs 

are executed on the files, they create corresponding output files called 

"0_AT1G05205.fa.lst", "1_AT1G05205.fa.lst", etc. 

Completely random. The original sequence is obtained and for each initial 

individual in the population, a random starting point and a random length are 

generated. The individual will be initialized with the subsequence of the original 

sequence starting at the random starting point and ending after the random 

length. 

The major advantage of this method is that no prior information about 

coding and non-coding regions is necessary. On the other hand, by randomly 

chopping up the sequence, the gene structure itself may be destroyed. At first it 

seemed that this approach to generating the initial population was too 
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destructive. Gene prediction software relies heavily on the entire sequence 

remaining intact. In the end, it was found that with a larger population size, all of 

the individuals with a low fitness were quickly removed from the population, and 

the completely random approach to generating the initial individuals was 

sufficient. It is also the preferred approach, because no prior information about 

the coding and non-coding regions is necessary. The next two methods only 

allow the sequence to be cut in non-coding regions. Of course, this approach is 

dependent on the gene prediction software itself that predicts where the coding 

and non-coding regions are. 

Random non-coding regions. The original sequence is obtained and a 

predefined gene prediction software program is run once on the original 

sequence. The user can specify which gene prediction software program should 

be used in the configuration properties. All of the predictions that are returned 

are marked as coding regions and the parts of the sequence before, after, and 

between the coding regions are marked as non-coding regions. The sequence 

can only be cut in a non-coding region. After the non-coding regions are 

determined, each individual in the population is created in the following way: two 

non-coding regions are randomly selected, within each non-coding region a 

random cutting point is generated, the initial individual of the population will 

contain the subsequence of the original sequence between the two random 

points. 
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The advantage to this approach is that the predicted coding regions are 

kept intact, but it could still be that the individual exons for predicted genes get 

separated. The major disadvantage of this method is that information about 

coding and non-coding regions must be known. 

Random minimum intergenic length. The original sequence is obtained 

and a predefined gene prediction software program is run once on the original 

sequence to again determine coding and non-coding regions. A lower and upper 

bound for the minimum intergenic length can be specified by the user in the 

configuration properties file. Within this range, a random number will be 

generated and used as the minimum intergenic length. All of the non-coding 

regions where the sequence is shorter than the minimum intergenic length are 

discarded except for the first and the last non-coding region that are always 

retained. A cut is only allowed in a non-coding region that is larger than the 

intergenic length that is specified. This will be done per individual so that there 

will be a variety of individuals where the minimum intergenic length is possibly 

different for each one, but they are all within a pre-defined range. 

The major advantage of this method is that the individual exons of the 

genes are likely to be a part of one individual. This allows the genetic algorithm 

to work on one entire gene at a time. The intergenic length can be specified as 

appropriate for the model organism that is being worked on. The major 

disadvantage of this method is again that information about coding and non-

coding regions must be known. 
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Fitness Functions 

With genetic algorithms, the most critical part is how to score the fitness of 

a given individual in the population. The idea behind the fitness function for this 

implementation was to choose multiple existing gene prediction programs that 

use similar and different computational approaches for a selected model 

organism and to combine their results. GeneMark, GeneMark.hmm, GENSCAN, 

and geneid all use Markov Models to some degree, but they vary the way they 

are used. They also use other computational methods to find further 

characteristics of the gene structure ranging from extrinsic homology methods to 

Position Weight Matrices (PWMs). The tests for this thesis were run on the 

model organism, Arabidopsis thaliana. 

Gene prediction programs usually return an overall confidence score or a 

log-odds score or both. The user can specify the scoring mechanism that they 

prefer to use in the configuration properties. The results of the tests in this thesis 

did not vary when using one scoring mechanism versus the other. Unfortunately, 

some gene prediction software programs do not provide confidence scores in 

their output. GeneMark.hmm is an example of a program that does not return a 

confidence score for each predicted exon. An attempt to incorporate 

GeneMark.hmm was made, and a generic approach to adding such programs 

has been provided. 

The user can configure one or more of the gene prediction software 

programs to be used in the fitness function. The user can also specify the gene 
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prediction software program that should be used to set the confidence scores for 

the programs that don't return a confidence score. If a program does not return a 

confidence score and the exon that it predicts matches a predicted exon from a 

program that does return a confidence score, then the confidence score for the 

program that does not return one is set to the confidence score of the program 

that does return one. When setting confidence scores for a program, it is 

recommended that the scores from programs that use similar computational 

approaches be used. 

The fitness function starts by finding all of the predictions for the sequence 

of the individual from every user specified gene prediction program. It then 

creates a superset of the predictions. If two prediction programs generate the 

same exon, then the one with the higher score will be added to the superset. 

Any predictions made by one program and not by another will be added to the 

superset. 

GENSCAN. GENSCAN is freely available for academic use. There is an 

academic license agreement form on the GENSCAN web page, and after 

submitting the form, one can download the appropriate executable. GENSCAN 

has a parameter file for certain organisms. The parameter file contains 

information about the characteristics of the organism. It contains information 

about the gene density, the number of exons per gene, the hexamer composition 

of coding regions vs. non-coding regions (Burge, 1998) to name a few. The 
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"Arabidopsis.smat" parameter file was used when running the command-line 

version of GENSCAN. 

The following command was executed from within Java to receive the 

predictions from GENSCAN: 

/usr/bin/genscan /usr/lib/GENSCAN/Arabidopsis.smat <FileName> 

Figure 13 shows a sample output file from GENSCAN: 

Predicted genes/exons: 

Gn.Ex Type S .Begin . . .End .Len Fr Ph I/Ac Do/T CodRg P Tscr . . 

1.01 I n i t + 33 143 111 2 0 70 17 65 0.795 2.86 
1.02 I n t r + 511 590 80 0 2 30 75 68 0.876 2.13 
1.03 Term + 846 930 85 0 1 74 39 102 0.923 5.05 
1.04 PlyA + 1046 1051 6 1.05 

Figure 13. GENSCAN Sample Output 

The output has thirteen columns that provide detailed information about the 

predicted genes and or exons. The information that is essential for this genetic 

algorithm is the start and end indexes located in the fourth and fifth columns 

labeled "Begin" and "End" and confidence scores. The overall probability that the 

exon is correctly predicted is in the twelfth column labeled "P...." and the log-

odds score is in the thirteenth column labeled "Tscr" for "Total Score". 

GENSCAN interprets the probability scores as follows (Burge, n.d.): 
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1) Very high probability GENSCAN exons (e.g., P > 0.99) are almost always 

exactly correct 

2) Moderate- to high-probability GENSCAN exons (e.g., 0.50 < P < 0.99) are 

exactly correct most of the time, with the likelihood of exact correctness 

only slightly lower on average than the stated probability. 

3) Low-probability GENSCAN exons (P < 0.50) are not reliable and should 

be treated with caution. 

Figure 14 shows a complete explanation of the table (Burge, n.d.): 

Figure 14. Explanation of GENSCAN Output 

The GENSCAN executable is run and the predictions are returned to the 

standard output. The output is parsed and Prediction objects are created for 

every exon that was returned with a probability score or a log-odds score. Note 

that Poly-adenine Tails never have a probability score and are thus ignored when 
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the user specifies that the probability scores should be used. On the other hand, 

it does return a log-odds score that can be used if this scoring mechanism is 

selected. 

geneid. geneid is freely available under the GNU General Public License, 

geneid has a parameter file for most model organisms. The parameter file 

contains information that is used by the Position Weight Matrices (PWMs) for 

generating acceptor and donor sites and start and stop codons. For example, it 

includes cut-off points and weights for exons. It also contains transition 

probabilities for the different characteristics of a gene that are used by the 

Markov Model. The "arabidopsis.param.Aug_4_2004" parameter file was used 

when running the command-line version of geneid. 

The following command was executed from within Java to receive the 

predictions from geneid: 

/usr/bin/geneid -vP /usr/lib/geneid/arabidopsis_20040804.param <FileName> 

Figure 15 shows a sample output file from geneid: 

Figure 15. geneid Sample Output 

Figure 16 shows the description of each of the geneid columns (Genome 

Bioinformatics Research Lab, n.d.): 
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Description of columns (geneid format) 

Type 

Positions 

Strand 

Type of predicted exon: First, Internal, Terminal or Single 

Start and finish positions of current exon 

Score (reliability) of this exon 

Reading sense: forward or reverse 

Left uncomplete codon length in this exon 

Right uncomplete codon length in this exon 

Scores (log likelihood) from: 

• Score for both signals defining exon 
• Protein coding potential (exon content) 
• Homology information score (SR regions): provided by user 

Amino acids corresponding to the exon translation 

Gene identifier 

Figure 16. Explanation of geneid Output 

As shown in Figures 14 and 15, geneid returns the start and end indexes 

located in the second and third columns. The log-odds score corresponding to 

the "Protein coding potential (exon content)" is returned in the eighth column and 

no overall probability score is returned. 
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The geneid executable is run and the predictions are returned to the 

standard output. The output is parsed and Prediction objects are created for 

every exon that was returned with a log-odds score. 

GeneMark and GeneMark.hmm. GeneMark and GeneMark.hmm are also 

freely available for academic purposes. After faxing in a signed license 

agreement, an FTP site with a user and password was provided where the 

program could be downloaded. GeneMark and GeneMark.hmm provide training 

sets for many model organisms including Arabidopsis. The "at_lo_3.mat" and 

"a_thaliana.mod" training sets were used when executing the command-line 

version of GeneMark and GeneMark.hmm respectively. 

The following command was executed from within Java to receive the 

predictions from GeneMark: 

/usr/bin/gm -Ix -m /usr/lib/gm/at_lo_3.mat <FileName> 

Figure 17 shows a sample output from GeneMark: 
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List of Open reading frames predicted as CDSs, shown with alternate starts 

(regions from start to stop codon w/ coding function >0.50) 

Left Right DNA Coding Avg Start 

end end Strand Frame Prob Prob 

33 176 direct fr 3 0.51 

51 176 direct fr 3 0.51 

List of Regions of interest 

(regions from stop to stop codon w/ a signal in between) 

LEnd REnd Strand Frame 

6 176 direct fr 3 

List of Protein-Coding Exons 

(regions between acceptor and donor site w/ coding function >0.500000) 

Left Right 
End End Strand Frame Prob 

64 123 direct fr 3 0.9330 
66 94 0.9334 

Figure 17. GeneMark Sample Output 

As shown in Figure 16, GeneMark returns a list of "Protein-Coding Exons" 

with the probability that they are accurate. It also returns the start and end 

indexes located in the first and second columns labeled "Left End" and "Right 

End" and the overall confidence score in column four labeled "Prob". Note that 

GeneMark does not return any log-odds scores, therefore it should only be used 

in combination with other programs that also return overall confidence scores. 

The GeneMark executable is run on the specified file and the program 

writes the output to a file with the same name with an ".1st" extension added to 
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the end of it. The output file is then parsed and Prediction objects are created for 

every exon that was returned with a probability score. 

The following command was executed from within Java to receive the 

predictions from GeneMark.hmm: 

/usr/bin/gmhmme3 -m /usr/lib/gmhmme3/a_thaliana.mod <FileName> 

Figure 18 shows a sample output file from GeneMark.hmm: 

Predicted genes/exons 

Gene Exon Strand Exon 

# f 

1 1 + 
1 2 + 
1 3 + 

Type 

Initial 
Internal 
Terminal 

Exon Range 

33 143 
511 590 
846 930 

Exon 
Length 

111 
80 
85 

Start/End 
Frame 

1 3 
1 2 
3 3 

Figure 18. GeneMark.hmm Sample Output 

As shown in Figure 18, GeneMark.hmm returns the start and end indexes 

located in the fifth and sixth columns labeled "Exon" and "Range". Notice that 

GeneMark.hmm does not return any probability or log-odds scores. Since 

GENSCAN and GeneMark.hmm use similar computational approaches, the 

scores from GENSCAN can be used to set the scores for GeneMark.hmm. 

The GeneMark.hmm executable is run on the specified file and the 

program writes the output to a file with the same name with an ".1st" extension 

added to the end of it. The output file is then parsed and Prediction objects are 
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created for every exon that was returned and prediction scores are assigned 

from a comparable gene prediction program. 

Scoring matrix. The matrix shown in Table 3 summarizes the scores that 

the gene prediction software provides. 

Table 3. Scoring Matrix for Gene Prediction Software Programs 

Probability 
Scores 

Log-odds 
Scores 

GENSCAN 

Yes 

Yes 

geneid 

No 

Yes 

GeneMark 

Yes 

No 

GeneMark.hmm 

No 

No 

Source: Author's Research 

Currently the user can choose to use a maximum of three different 

programs in parallel. If they choose to use probability scores, they can use 

GENSCAN, GeneMark, and GeneMark.hmm where probability scores for 

GeneMark.hmm can be assigned from GENSCAN or GeneMark when the 

predicted exons match. If the user chooses to use log-odds scores, then they 

can use GENSCAN, geneid, and GeneMark.hmm where the log-odds scores for 

GeneMark.hmm can be assigned from GENSCAN or geneid when the predicted 

exons match. 

Reproduction 

Reproduction is the first step to be performed in the genetic algorithm. 

Each individual in the population is given a percentage chance of survival equal 

to its relative fitness. Every individual has at least some probability of being 

selected. A form of elitism is also used: all individuals with the maximum fitness 

scored are automatically added to the next generation. 

64 



Crossover 

After reproduction, two individuals from the population are randomly 

chosen for crossover. During crossover there are many situations that can 

occur. There are three cases where individuals are added to the next generation 

unchanged. Since the individuals are randomly selected, it could be that the 

same individual is selected twice. In this case, both of the individuals are simply 

added to the next generation. Crossover is only performed a certain percentage 

of the time. The user can specify how often crossover should happen as a 

percentage. Crossover percentages usually range around 70%, but they can 

vary depending on the type of problem. If two individuals are selected, but the 

random crossover percentage for these two individuals is greater than the 

specified crossover percentage, then the two individuals are added to the next 

generation without any changes. If the two randomly selected individuals don't 

have any overlapping of the sequence because possibly one individual only 

covers the beginning of the user given sequence and the other individual only 

covers the end of the sequence, then the two individuals are added to the next 

generation untouched. 

There are two situations where crossover occurs: when the individuals 

partially overlap or when one individual is completely contained within another 

individual. When the individuals only partially overlap, then the randomly 

generated crossover point has to be within the region where they overlap. When 

the individuals completely overlap, then the randomly generated crossover point 
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has to again occur in the region where they overlap which is between the start 

and end index of the smaller individual. After the random crossover point has 

been determined, the first and second halves of the individuals are swapped. 

Mutations 

Mutations occur at a very low rate. The idea here is to randomly add parts 

of the sequence to the start or end of the sequence. This is especially beneficial 

if the sequence only contains part of an exon at the beginning or end. By adding 

part of the sequence to the start or end, the chance that an exon will become 

whole again is increased. 

First, it is randomly decided if the sequence should be extended at the 

start or the end. If the start is chosen, then a random point is generated from 

zero to the start of the individual. The algorithm checks to see if the random 

point is in a coding or non-coding region. It loops until it finds a random point in a 

non-coding region and then adds all of the sequence from the random point to 

the original start index to the individual. Similarly, if the end is chosen to be 

extended, then a random point is generated from the end of the individual to the 

end of the original sequence. The algorithm again loops until it finds a random 

point in a non-coding region and then adds all of the sequence from the end of 

the individual to the random point to the individual. In this way, sequences of the 

individuals are extended either at the start or end. 
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Termination Conditions 

After a population has gone through reproduction, crossover and mutation 

and a new generation has been formed, the new generation is evaluated to see if 

the algorithm should halt. The genetic algorithm finds the individual with the 

maximum fitness. If the fitness is greater than the maximum fitness thus far, then 

it is recorded and the algorithm continues. If the maximum fitness is the same as 

the maximum fitness thus far, then the count of the number of generations with 

this maximum fitness is incremented. If the number of generations with this 

maximum fitness is equal to the "UnchangedRoundsNeeded" parameter that the 

user may specify, then the algorithm terminates. If the parameter is not 

specified, then the algorithm is run as many times as specified by the 

"GenerationSize" parameter. These parameters can be used separately or in 

combination. The goal is to allow the algorithm to reach some kind of stable 

point. 

Configuration Options 

The user is allowed to specify a variety of parameters to influence the 

behavior of the genetic algorithm. The constructor for predictor.PredictorMain 

takes a Property object as a parameter. Here is a sample file: 

InitialSequencePath="/home/user/workspace/GenePrediction/co 

de/cfg/sequences/"; 
InitialSequenceFileName="ATlG05205_l.txt"; 
PopulationSize="10"; 
GenerationSize="5"; 
UnchangedRoundsNeeded="5" ; 
ProbabilityCrossover="75" ; 
ProbabilityMutation="5"; 
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GenscanExecutablePath="/usr/bin/genscan"; 
GenscanModelPath="/usr/lib/GENSCAN/Arabidopsis.smat"; 
GeneMarkExecutablePath="/usr/bin/gm"; 
GeneMarkModel="/usr/lib/gm/at_lo_3.mat"; 
GeneMarkHmmExecutablePath="/usr/bin/gmhmme3"; 
GeneMarkHmmModel="/usr/lib/gmhmme3/a_thaliana.mod"; 
GeneIdExecutablePath="/usr/bin/geneid"; 
GeneIdModel="/usr/lib/geneid/arabidopsis_20040804.param"; 

// 0=Completely Random, l=Non-Coding Regions, 2=lntergenic 
Length 
InitialPopulationType="0"; 

// 0=Genscan, l=GeneMark, 2=GeneId 
NonCodingGenePredictionSoftware="0"; 
IntergenicLengthLowerBound="50"; 
IntergenicLengthUpperBound="100"; 

FitnessUseGenscan="0"; 
FitnessUseGeneMarkHmm="0"; 
FitnessUseGeneMark="0"; 
FitnessUseGeneId="l"; 

Analysis of Results 

In this section two tests will be evaluated. The actual resulting predictions 

are only as good as the gene prediction programs themselves, but the results will 

demonstrate the advantage of using multiple gene prediction programs in 

parallel. 

Single Gene Test 

This test was done on a small DNA sequence called "AT1G05205.1" from 

Arabidopsis thaliana. The DNA sequence itself was shown in Figure 12 as an 

example of a FASTA formatted file. The gene has three exons, two introns, and 

a 5' Untranslated Region (UTR) and a 3' UTR. Figure 19 shows the GBrowse 
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visualization of the gene from The Arabidopsis Information Resource (TAIR) 

(n.d.): 

Protein Coding Gene Models 
AT1G05205.1 

Figure 19. GBrowse Visualization of AT1G05205.1 

The dark blue boxes represent the coding regions, the lines between the 

coding regions are the introns, and the 5' and 3' UTR regions are represented by 

the light blue boxes. Figure 20 shows a summary of the gene features from the 

TAIR website: 

Gene Feature type coordinates annotation source date 

ORF 33-930 

5" utr 1-32 

coding_region 33-143 

coding_region 511-590 

codingjegion 846-930 

exon 1-143 

intron 144-510 

exon 511-590 

intron 591-845 

exon 846-1069 

3'utr 931-1069 

Figure 20. Gene Features for AT1G05205.1 

The different characteristics of the gene are specified. The labeled exons in 

Figure 20 include the 5' and 3' UTR regions. Most gene prediction programs do 

not include the 5' and 3' UTR regions in their predictions. The exons that they 

predict correspond to the coding regions that are listed above which are the 
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regions that actually encode for a protein. The coordinates for the coding regions 

are Exon 1: 33-143, Exon 2: 511-590, Exon 3: 846-930. 

The genetic algorithm was run on this sequence with the following 

parameters: 

PopulationSize="200"; 
GenerationSize="10"; 
UnchangedRoundsNeeded="3"; 
ProbabilityCrossover="75"; 
ProbabilityMutation="5"; 

The log-odds scores from GENSCAN and geneid were used in parallel 

and the initial population was created using the "Completely Random" method. 

Figure 21 shows the predictions obtained from GENSCAN: 

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr.. 

1.01 Init + 33 143 111 2 0 70 17 65 0.795 2.86 
1.02 Intr + 511 590 80 0 2 30 75 68 0.876 2.13 
1.03 Term + 846 930 85 0 1 74 39 102 0.923 5.05 
1.04 PlyA + 1046 1051 6 1.05 

Figure 21. GENSCAN Predictions for AT1G05205.1 

Notice that GENSCAN makes all of the correct predictions and returns the log-

odds scores for the predictions. Figure 22 shows the predictions obtained from 

geneid: 

Internal 20 143 3.82 + 1 0 1.47 1.23 17.33 0.00 AA 1:42 >AT1G052 05. 1_1 
Internal 511 590 2.49 + 0 2 5.42 2.29 4.22 0.00 AA 43:69 >AT1G05205.1_1 
Terminal 846 930 3.23 + 1 0 4.46 0.00 12.38 0.00 AA 69:97 >AT1G0S2 05.1_1 

Figure 22. geneid Predictions for AT1G05205.1 

Notice that geneid correctly predicts the second and third exons but the start 

coordinate for the first exon is incorrect. Also notice the log-odds scores for the 

70 



exons in the eighth column. The second exon from geneid has a log-odds score 

of 5.42 while the second exon from GENSCAN has a log-odds score of 2.13. All 

of the other log-odds scores are higher from GENSCAN. Since the superset of 

exons with the highest scores is used, the resulting solution from the genetic 

algorithm will contain the second exon from geneid. Figure 23 shows an 

individual with the maximum fitness from the final population from the genetic 

algorithm that displays this result: 

1.01 Init + 33 143 111 0 0 81.6 3.06 
Internal + 511 590 0 2 2.49 

1.03 Term + 846 930 85 1 1 92.7 5.05 
1.04 PlyA + 1046 1051 6 1.05 
Indexes(29,1068) Fitness: 1458 

Figure 23. Genetic Algorithm Predictions for AT1G05205.1 

The "fittest" individual had a start index of 29 and an end index of 1068, and all of 

the exons that were predicted came from the GENSCAN predictions except for 

the second exon which came from the geneid predictions as expected. 

With small sequences, all of the gene prediction programs perform quite 

well. Even though the most destructive method for creating the initial population 

was used, the genetic algorithm stabilized only after five generations. With a 

population size of 200, a generation size often, and the number of unchanged 

rounds at three, the genetic algorithm stopped after just five generations and 

already had 15 individuals with the maximum fitness. The start and end indexes 

of the sequences varied slightly, but every individual started before the first exon 

and ended after the last exon and made all of the correct exon predictions. 
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Multiple Gene Test 

Another test was done on the first 10,000 nucleotides from Chromosome 1 

from Arabidopsis thaliana. There are two genes in the first 10,000 nucleotides 

where one of the genes has two variations due to alternative splicing. The first 

gene called "AT1G01010.1" has six exons, five introns, and the 5' and 3' UTRs. 

The second gene called "AT1G01020" has two variations "AT1G01020.1" and 

"AT1G01020.2". The second gene is also located on the reverse strand of the 

DNA which can be seen by the direction of the arrows in Figure 22. This means 

that the 5' UTR is located on the right end and the 3' UTR is located on the left 

end. "AT1G01020.1" has nine exons, eight introns, and the 5' and 3' UTRs. 

"AT1 G01020.2" has seven exons, seven introns, and the 5' and 3' UTRs where 

the 3' UTR starts before the last intron and continues to the end. Figure 24 

shows the GBrowse visualization of the first 10,000 nucleotides from 

Chromosome 1 from TAIR: 

Prote in Coding Gene Models 
flTlGOlOlO.l _ fiTlGOlOgO .1 _ ^ ^ ^ ^ ^ 

flTlG01020.2 . _ . _ • _ _ ̂  _ J J ^ _ 

Figure 24. GBrowse Visualization of Chromosome 1 from 1 to 10,000 

Figure 25 shows a summary of the gene features for "AT1G01010.1" from the 

TAIR website: 
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Gene Feature © type 

ORF 
5'utr 
coding_region 
coding. 
coding. 
coding. 
coding. 

.region 

.region 

.region 

.region 
coding_region 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
3'utr 

coordinates 
130-2000 
1-129 
130-283 
366-646 
856-975 
1076-1465 
1544-1696 
1809-2000 
1-283 
284-365 
366-646 
647-855 
856-975 
976-1075 
1076-1465 
1466-1543 
1544-1696 
1697-1808 
1809-2269 
2001-2269 

annotation source date 

Figure 25. Gene Features for AT1G01010.1 

Figure 26 shows a summary of the gene features for "AT1G01020.1" from the 

TAIR website: 
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Gene Feature 9 type 
ORF 
5'utr 
coding_region 
coding_region 
cocling_region 
coding_region 
coding_region 
coding_region 
coding_region 
coding_region 
coding_region 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
3'utr 

coordinates 
72-1823 
1-71 
72-167 
274-321 
413-502 
751-796 
903-976 
1089-1174 
1288-1354 
1506-1581 
1669-1823 
1-167 
168-273 
274-321 
322-412 
413-502 
503-750 
751-796 
797-902 
903-976 
977-1088 
1089-1174 
1175-1287 
1288-1354 
1355-1505 
1506-1581 
1582-1668 
1669-1948 
1824-1948 

annotation source date 

Figure 26. Gene Features for AT1 G01020.1 

Figure 27 shows a summary of the gene features for "AT1G01020.2" from the 

TAIR website: 
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Gene Feature © type 
ORF 
5'utr 
coding. 
coding. 
coding. 

_region 
.region 
.region 

coding_region 
coding. .region 
coding_region 
coding. 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
intron 
exon 
3'utr 
3' utr 

.region 

coordinates annotation source date 
72-1423 
1-71 
72-167 
274-321 
413-502 
751-796 
903-976 
1089-1174 
1288-1423 
1-167 
168-273 
274-321 
322-412 
413-502 
503-750 
751-796 
797-902 
903-976 
977-1088 
1089-1174 
1175-1287 
1288-1581 
1582-1668 
1669-1948 
1424-1581 
1669-1948 

Figure 27. Gene Features for AT1G01020.2 

Again, only the coding regions that are shown for the genes are of interest. The 

genetic algorithm was run on this sequence with the following parameters: 

PopulationSize="50"; 
GenerationSize="10"; 
UnchangedRoundsNeeded="3"; 
ProbabilityCrossover="75"; 
ProbabilityMutation="5"; 
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The log-odds scores from GENSCAN and geneid were used in parallel 

and the initial population was created using the "Completely Random" method. 

Figure 28 shows the predictions obtained from GENSCAN: 

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr.. 

1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 

2. 
2. 
2. 
2. 
2. 
2. 

01 
02 
03 
04 
05 
06 
07 
08 

06 
05 
04 
03 
02 
01 

Init 
Intr 
Intr 
Intr 
Intr 
Intr 
Term 

PlyA 

PlyA 
Term 
Intr 
Intr 
Intr 
Init 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-
-
-
-
-
-

264 
3641 
3996 
4486 
4706 
5174 
5439 
5872 

6396 
6594 
7232 
8325 
8464 
8666 

327 
3 913 
4276 
4605 
5095 
5326 
5630 
5877 

6391 
6428 
7157 
8236 
8 417 
8625 

64 
273 
281 
12 0 
390 
153 
192 

6 

6 
167 
76 
90 
48 
42 

2 
0 
1 
0 
1 
1 
2 

1 
2 
0 
1 
2 

1 
0 
2 
0 
0 
0 
0 

2 
1 
0 
0 
0 

51 
59 
43 
39 
83 
74 
92 

-62 
66 
70 
36 
86 

82 
87 
5 
89 

103 
9 

48 

36 
77 
98 
26 
65 

27 
352 
225 
113 
455 
191 
152 

190 
2 

30 
117 
20 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

0. 
0. 
0. 
0. 
0. 

,710 
, 991 
954 
997 
3SS 
999 
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, 13 9 
. 17 8 
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. 802 

4. 
33. 
10. 
11. 
45. 
14. 
13. 
1. 

-3. 
0. 
0. 
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3. 
4. 

,76 
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97 
27 
49 
, 15 
, 04 
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, 84 
, 90 
, 07 
, 47 
,26 
, 97 

Figure 28. GENSCAN Predictions for Chromosome 1 from 1 to 10,000 

GENSCAN falsely predicts exon 1.01. The start of exon 1.02 is predicted at 

3641 but the real start is at 3761. The end of exon 1.02 is correctly predicted. 

The rest of the exons for gene one are correct. 

GENSCAN predicts the start of exon 2.01 correctly, but not the end. It 

correctly predicts exons 2.02 and 2.03, but then it misses four exons. Exon 2.04 

is also correct, but the last exon is predicted at 6428-6594 when it really is at 

6914-7068. 

Figure 29 shows the predictions obtained from geneid: 

76 



# Gene 1 
Internal 
Internal 
Internal 
Internal 
Internal 
Terminal 

# Gene 2 
Single 

# Gene 3 
Terminal 
Internal 
Internal 
Internal 

First 

(Eorward 
3686 
3996 
4486 
4706 
5174 
5439 

(Reverse 
6428 

(Reverse 
7208 
7564 
8236 
8417 
8625 

. 6 exons. 455 aa 
3913 
4276 
4605 
5095 
5326 
5630 

5.02 
8.21 
1.20 
9. 17 
3. 69 
3. 06 

. 1 exons. 76 
6655 6. 03 

. 5 exons. 97 
7232 
7649 
8325 
8464 
8666 

-1.30 
0.71 
1.59 
2. 44 
1. 06 

+ 2 
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+ 0 
+ 0 
+ D 
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aa. 
- 0 

aa. 
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- D 

Score 
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0 3 
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Score = 
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00 
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Figure 29. geneid Predictions for Chromosome 1 from 1 to 10,000 

The start of the first exon is predicted at 3686 but the real start is at 3761. The 

end of the first exon is correctly predicted. The rest of the exons for gene 1 are 

correct. 

For the second gene, geneid makes a false single exon prediction under 

"Gene 2". Under "Gene 3", the first three exons are correctly predicted. At this 

point, geneid finds an exon that GENSCAN missed. The last exon has the 

correct end position, but the start is 7208 instead of 7157. 

Figure 39 shows an individual with the maximum fitness from the final 

population from the genetic algorithm: 
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1. 01 
1. 02 
1. 03 
1.04 
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Indexes(233,9528) Fitness: 15330 

Figure 30. Genetic Algorithm Predictions for AT1G05205.1 

The genetic algorithm returns the superset of the predictions from GENSCAN 

and geneid. For the first gene, it returns the first falsely predicted exon from 

GENSCAN. All of the scores from GENSCAN are higher than those returned 

from geneid, so all of the GENSCAN predictions are returned. 

For the second gene, again all of the scores from GENSCAN are higher 

than those returned from geneid, so all of the GENSCAN predictions are 

returned. Here, the true benefit of being able to combine the results from 

multiple gene prediction programs can be seen. The correctly predicted fourth 

exon from geneid was missed by GENSCAN, and the genetic algorithm returns it 

as part of the final solution. 

Conclusion 

Genetic algorithms provide a flexible platform for integrating multiple gene 

prediction programs and using them in parallel. Gene prediction programs use 
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various computational approaches and by combining the results, better 

predictions can be made. 

As gene prediction programs continue to improve, the necessity for 

defined input and output interfaces is becoming more popular, geneid now uses 

Gene Finding Format (GFF) which is a standard format for describing gene 

structure for its output. As more and more gene prediction programs standardize 

their input and output, it will be easier to integrate them into a hybrid system. 

The next chapter will present the third application of genetic algorithms in 

bioinformatics that was studied in this thesis. Unlike the first and second 

applications, this application is not aimed at "solving" a problem. Rather the 

focus is in on modeling various environments and how they change over time. 

Population Genetics 

Population Genetics is the study of allele frequency distribution and 

fluctuation due to the four factors that define evolution: natural selection, genetic 

drift, mutation, and gene flow. In order to understand some of the concepts 

behind population genetics, a brief review of some basic biological principles is 

given. 

A character is some kind of attribute that allows one organism to be 

compared to another. For example, the color of the petals of a flower is a 

character. A trait is a distinct phenotypic character of an organism that may be 

inherited, environmentally influenced, or a combination of the two. When 

considering the color of the petals of a flower character, the traits would be the 
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actual colors that can be seen such as red, orange, or yellow. A single gene 

controls the color of the petals, even though the alleles that make up the gene 

can be different. One allele-pair might result in red petals while another might 

result in yellow petals. The resulting color depends on the two alleles that the 

gene has and how they interact with each other. 

The genotype of an individual describes the genetic make-up, the DNA, of 

the individual. Diploid organisms like human beings, contain two copies of each 

chromosome - one from the mother and one from the father. The genes contain 

one allele from one chromosome and one allele from the other. Alleles can also 

be dominant or recessive. For example, there are 3 possible genotypes for some 

gene that has two alleles: dominant R and recessive r. The 3 possible genotypes 

are RR (homozygous dominant), Rr (heterozygous), and rr (homozygous 

recessive). 

The phenotype is any observable trait of an individual. For the three 

genotypes listed above, let R be the dominant allele for red flower petals, then 

both genotypes RR and Rr will produce the phenotype for red flower petals. 

Some phenotypes are controlled entirely by the individual's genes. Others are 

controlled by genes but are also influenced by extra-genetic or environmental 

factors. 

The interaction between genotypes and phenotypes can be thought of as 

the genotype plus environmental factors which will give you the phenotype. The 

genotype is known by looking at the DNA, while the phenotype is known by 
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observing an outward appearance of an organism. In 1974, Lewontin proposed 

the goal of mapping "genotypic space" and "phenotypic space" as follows: 

The challenge of a complete theory of population genetics is to provide a 

set of laws that predictably map a population of genotypes (G1) to a 

phenotype space (P1), where selection takes place, and another set of 

laws that map the resulting population (P2) back to genotype space (G2) 

where Mendelian genetics can predict the next generation of genotypes, 

thus completing the cycle. 

Gl -** Pl _ ^ p 2 -& Q2 ^Ti G[ ~~> • •• 

The goal is, of course, gigantic, but small steps are being taken every day. 

Natural selection is the process where traits that are favorable in 

individuals are inherited and increase in successive generations while traits that 

are unfavorable will decrease. Genetic drift is the tendency of an allele 

distribution in a population with a limited size to statistically alter over time due to 

random events. The fluctuation of the distribution may cause an allele and the 

traits that are made up of the allele to increase or decrease over successive 

generations. 

The goal of this project was to be able to model population genetics for 

unpredictable environments. The underlying question is: can an improvement to 

population forecasts be made based on past environmental fluctuations on 

natural selection and their affects on population genetics? The first goal of this 

project was to model a stable environment where the selection on the alleles 
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remains constant. The second goal was to model an environment where the 

selection on one or more alleles fluctuates over time while the other alleles 

remain constant. The third goal was to model the hitch-hiking effect. If the 

selection on one or more alleles fluctuates over time and is not paired with 

certain other alleles, then the prediction is that the alleles that do not pair with the 

fluctuating allele will increase over time while the alleles that do pair with the 

fluctuating allele will decrease over time. 

Population Genetics Implementation 

The implementation of a genetic algorithm that can be used for modeling 

different environments in population genetics is presented. In this section, a 

description of the algorithm will be given. 

Initialization 

The genetic algorithm starts out by reading in the configuration properties 

that the user specifies for the situation that they want to model. One of the most 

important parameters is the number of alleles that they want to model. The user 

can also define the standard genetic algorithm parameters such as the 

population size and the maximum number of generations or the maximum 

number of generations where the highest fitness value has not changed or both. 

The complete list of parameters that is available is detailed in Section 5.1.8: 

Configuration Options. 
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The main class of the algorithm starts out by creating the initial population 

and looping through each phase of the genetic algorithm until a termination 

condition is satisfied. 

Initial Populations 

After the genetic algorithm has read in the user specified parameters, the 

initial population is created. The user specifies the number of alleles that they 

want to model. The individuals in the population are diploid organisms that 

contain two copies of each chromosome - one from the mother and one from the 

father. The individuals represent traits or, for diploid organisms, pairs of alleles in 

the population. It is assumed that all combinations of allele pairs are possible 

unless the user specifies that certain pairs are not possible in one of the 

configuration parameters. For each population, the frequency of the individuals 

or traits is monitored along with the frequency of the single alleles themselves. 

The user can specify that certain combinations of alleles are not possible 

with the "Nonpairs" parameter. The user can also specify a comma separated 

list of allele pairs that are not allowed to combine for a trait. The allele pairs 

themselves are separated by a hyphen. If allele "0" cannot pair with either allele 

" 1 " or allele "2", then the parameter would be: "Nonpairs" = "0-1, 0-2"; 

There are two methods for randomly creating the initial population. The 

first method assumes that the frequency of each allele is initially equal. The 

second method creates a random distribution of the alleles so that the initial 

frequencies of the alleles are unequal. The first method is useful for initially 
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testing the situation that one wants to model. The second method is more 

realistic to what is seen in nature where the frequencies of alleles will differ. 

Equal allele frequencies. The user specifies the number of alleles that 

they want to model. Each individual will be randomly assigned two alleles - one 

from the mother and one from the father. The overall distribution of the allele-

pairs will be equal and the overall distribution of alleles will be equal. 

If the user specifies that the number of alleles that they want to model is 

four, then the genetic algorithm will create the following alleles: {0, 1, 2, 3}. 

There are 42 possible allele pair combinations. They are: {00, 01, 02, 03, 10, 11, 

12, 13, 20, 21, 22, 23, 30, 31, 32, 33}. An example of an initial population with 

equal frequencies could have the distribution of traits shown in Figure 31: 

Tra i t Frequencies: 
[oo; 
[01" 
[02 
[03' 
[10 
[11 
[12 
[13 
[20 
[21 
[22 
[23 
[30 
[31 
[32 
[33 

= 6. 
= 6. 
= 6. 
= 6. 
= 6. 
= 6. 
= 6. 
= 6. 
= 6. 
= 6. 
= 6. 
]=6. 
1=6. 
1=5. 
1=6. 
=5. 

0 
5 
270000457763672 
109999656677246 
899999618530273 
549999713897705 
079999923706055 
109999656677246 
260000228881836 
380000114440918 
329999923706055 
139999866485596 
050000190734863 
980000019073486 
420000076293945 
920000076293945 

Figure 31. Trait Frequencies for an Initial Population with Equal Frequencies 

And the distribution of alleles shown in Figure 32: 
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Allele Frequencies: 
[0]=25.044998168945312 
[1]=25.52S001525878906 
[2]=25.10 499 954223 632 8 
[3]=24.32499885559082 

Figure 32. Allele Frequencies for an Initial Population with Equal Frequencies 

Unequal allele frequencies. The user again specifies the number of 

alleles that they want to model. For each allele, a random percentage is 

generated which corresponds to the percentage of the population that will be 

created with this allele in the trait. The allele will be randomly set as the first or 

second allele in the trait. The other allele in the trait will be randomly selected 

from all possible alleles. The distribution of both traits and alleles will therefore 

be unequal. 

If the user again specifies that the number of alleles that they want to 

model is four, then a possible random percentage of the population that will be 

created with this allele in the trait could be: 

InitialFrequency[0] =17 
InitialFrequency[1]=63 
InitialFrequency[2] =13 
InitialFrequency[3]=7 

Figure 33. Random Percentages of Population with Given Allele in Trait 

The overall trait and allele frequencies will be slightly higher or lower than the 

initial frequencies because at least one allele per individual is still randomly 

selected from all possible alleles. A possible population with the initial 
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frequencies from Figure 33 could consist of the following trait and allele 

frequencies: 

Trait Fre 
[00; 
[01 
[02 
[03 
[10 
[11 
[12 
[13 
[20 
[21 
[22 
[23 
[30 
[31 
[32 
[33 

= 1. 0 
= 12. 0 
= 4. 0 
=3. 0 
= 6. 0 
= 14. 0 
1=13.0 
]=6. 0 
]=6. 0 
]=9. 0 
1=1. 0 
1=4. 0 
1=5. 0 
1=10.0 
1=4. 0 
1=2. 0 

A l l e l e F r e q u e n c i e s : 
[ 0 ] = 1 9 . 0 
[ 1 ] = 4 2 . 0 
[ 2 ] = 2 1 . 0 
[ 3 ] = 1 8 . 0 

Figure 34. Initial Population with Unequal Trait and Allele Frequencies 

Fitness Function 

The fitness function for this genetic algorithm is largely configurable by the 

user. In order to model different situations, the user configurable parameters will 

have to be set in different ways. Each individual starts out with a fitness value of 

100. The user can choose to have the fitness of one or more alleles fluctuate 

with the "AllelesToAlter" and "AlleleUpperBoundAlteration" parameters. The user 

can specify a comma separated list of alleles to alter in the "AllesToAlter" 
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parameter, and an upper bound on the percentage that the allele is allowed to 

fluctuate in the "AlleleUpperBoundAlteration". The user can also specify whether 

the allele will increase or decrease with the "IncreaseAllele" parameter. The user 

can choose to always increase the fitness value, always decrease the fitness 

value, or do both. If both increasing and decreasing are allowed, then it is 

randomly decided. 

For each generation, random percentages between zero and the value 

specified in the "AlleleUpperBoundAlteration" will be generated for each allele 

that is allowed to fluctuate. In other words, the percentage that the allele 

fluctuates remains constant for all individuals in one generation. Similarly, 

whether the allele should increase or decrease or both remains constant in one 

generation. After all of the phases of the genetic algorithm for one generation 

are done, new fluctuation percentages are generated and whether an allele 

should increase or decrease is again randomly determined. 

If an individual contains one of the alleles that is allowed to alter, then the 

fitness value for that individual will increase or decrease according to the 

specified percentage for that allele. 

Reproduction 

Reproduction is the first step in every generation. The classic roulette 

wheel style reproduction is performed. Each alignment in the population is given 

a percentage chance of survival equal to its relative fitness. Every alignment has 

at least some probability of being selected. No form of elitism is used. 
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Crossover 

After reproduction, two individuals are randomly selected from the 

population for crossover. During crossover, the first allele from the first individual 

is combined with the second allele from the second individual. Conversely, the 

first allele from the second individual is combined with the second allele from the 

first individual. The two new individuals with new pairs of alleles are added to the 

population. 

There are 3 situations where crossover will not be performed and the 

selected individuals will be added to the next population without any changes. 

First of all, crossover is only performed a percentage of the time. The user can 

specify the crossover percentage in the configuration parameters. The crossover 

percentage is typically around 70%. For every two individuals that are selected, 

a random percentage is generated to see if crossover should be performed or 

not. If the random percentage is greater than the specified crossover, then the 

two individuals are added to the population with no changes. Secondly, if the 

randomly chosen individuals are in fact the same individual, then the crossover 

will also have no effect. Thirdly, if the user has specified pairs of alleles that are 

not allowed to combine, then before the crossover of alleles, there is a check to 

make sure that the crossover of alleles will not result in invalid combinations of 

alleles. If the crossover would create an invalid combination, then the crossover 

is not performed and the individuals are added to the population with no 

changes. 
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Mutations 

Mutation happens very rarely. If an individual is selected for mutation, 

than one of the alleles is randomly changed to another allele. Whether the first 

allele or the second allele will be changed is determined randomly. Then, a new 

random allele is generated and a check is done to make sure that the new 

combination of alleles is valid. A new random allele is generated until a valid 

combination is found. 

Termination Conditions 

After a population has gone through reproduction, crossover and mutation 

and a new generation has been formed, the new generation is evaluated to see if 

the algorithm should halt. The user can specify the maximum number of 

generations with the "GenerationSize" parameter. They can also specify the 

maximum number of unchanged rounds with the "UnchangedRoundsNeeded" 

parameter. Note that the "UnchangedRoundsNeeded" parameter should not be 

used when modeling the stable environment where the fitness value for all 

individuals is the same and does not change. The parameters can be used 

separately or in combination. The goal is allow the algorithm to reach a stable 

point. 

Configuration Options 

The user is allowed to specify a variety of parameters to influence the 

behavior of the genetic algorithm. The constructor for the main class takes a 

Property object as a parameter. Here is a sample file: 
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// 0 = Equal, 1 = Random 
"InitialPopulation"="l"; 

// 0 = decrease, 1 = increase, 2 = both 
"IncreaseAllele"="2"; 

"AlleleSize"="4"; 
"AllelesToAlter"="0"; 
"Nonpairs"="0-1, 0-2"; 
"AlleleUpperBoundAlteration"="20"; 
"PopulationSize"="100000"; 
"GenerationSize"="100"; 
"UnchangedRoundsNeeded"="5"; 
"ProbabilityCrossover"=".15"; 
"ProbabilityMutation"=".01"; 

Analysis of Results 

Stable Environment 

The first goal of this project was to model a stable environment where the 

selection on the alleles was constant. The genetic algorithm was set up to have 

four alleles with no environmental fluctuation. The population size was 100,000 

and the genetic algorithm ran for 100 generations. The crossover probability was 

75% while the mutation probability was 5%. The initial population for the first 

model was created so that the trait and allele frequencies were equal. Figure 35 

shows the frequencies from the initial population: 
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Generation 0: 

Trait Frequencies: 
[00] 
[01] 
[02; 
[03; 
[10] 
[ii; 
[12; 
[13; 
[20] 
[21] 
[22: 
[23; 
[3o; 
[3i; 
[32] 
[33] 

= 6 
= 6 
= 6 
=6 
= 6 
=6 
= 6 
= 6 
= 6 
= 6 
= 6 
= 6 
= 6 
=6 
=6 
=6 

203999996185303 
324999809265137 
2689995765686035 
296999931335449 
177999973297119 
153000354766846 
289999961853027 
233999729156494 
079999923706055 
1570000648498535 
267999649047852 
239999771118164 
249000072479248 
236000061035156 
492000102996826 
328000068664551 

Allele Frequencies: 
[0]=24.9 029 9 9 877929688 
[1]=24.863 0 0 08 69750977 
[2]=25.031999588012695 
[3]=25.20199966430664 

Statistics: 
Random Allele Alterations: {3=0.0, 2=0.0, 0=0.0, 1=0.0} 
Random Allele Increase Flags: {3=false, 2=false, 0=false, l=false} 
Fitness Sum: 1.0E7 
Fitness Average: 100.0 
Fitness Max: 100.0 

Figure 35. Initial Population of Stable Environment with Equal Frequencies 

After running the genetic algorithm for 100 generations with equal selection and 

no fluctuation, the frequencies of the alleles changed slightly but overall they 

remained stable: 
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Final Generation: 

[00] 
[01] 
[02] 
[03] 
[10] 
[11] 
[12] 
[13] 
[20] 
[21] 
[22] 
[23] 
[30] 
[31] 
[32] 
[33] 

Trait Frequencies: 
=6.109999656677246 
=6.050000190734863 
=5.986000061035156 
=5.876999855041504 
=6.395999908447266 
=6.2729997634887695 

1=6.429000377655029 
1=6.144999980926514 
1=6.486000061035156 
=6.378000259399414 
1=6.289000034332275 
=6.205999851226807 
=6.430999755859375 
1=6.430000305175781 
=6.204999923706055 
=6.308999538421631 

Allele Frequencies: 
[0]=24.722 9 9 9572753 9 06 
[1]=25.187000274658203 
[2]=25.134000778198242 
[3]=24.95599937438965 

Statistics: 
Random Allele Alterations: {3=0.0, 2=0.0, 0=0.0, 1=0.0} 
Random Allele Increase Flags: {3=false, 2=false, 0=false, l=false} 
Fitness Sum: 1.0E7 
Fitness Average: 100.0 
Fitness Max: 100.0 

Figure 36. Final Population of Stable Environment with Equal Frequencies 

In reality, it is very rare that alleles will all have the exact same frequency. 

Another test was done where the allele frequencies of the initial population were 

distributed randomly. It can be seen in Figure 37 that the initial frequencies do 

not alter the outcome of the test. The environment remains stable when 

selection is constant. 
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Generation 0: 

Trait Frequencies: 
[00 
[01 
[02 
[03 
[10 
[11 
[12 
[13 
[20 
[21 
[22 
[23 
[30 
[31 
[32 
[33 

=5.480999946594238 
=5.546999931335449 
=5.572000026702881 
=5.427999973297119 
=9.914999961853027 
=9.888999938964844 
=10.104999542236328 
=9.98799991607666 
=5.51200008392334 
=5.629000186920166 
=5.684000015258789 
=5.585000038146973 
=3.9230000972747803 
=3.867999792098999 
=3.926999807357788 
=3.9469997882843018 

Allele Frequencies: 
[0]=23.429 4 9867248535 
[1]=32.415000915527344 
[2]=23.849000930786133 
[3]=20.306499481201172 

Statistics: 
Random Allele Alterations: {3=0.0, 2=0.0, 1=0.0, 0=0.0} 
Random Allele Increase Flags: {} 
Fitness Sum: 1.0E7 
Fitness Average: 100.0 
Fitness Max: 100.0 

Figure 37. Initial Population of Stable Environment with Unequal Frequencies 
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Final Generation: 

[00] 
[01] 
[02] 
[03] 
[10] 
[11] 
[12] 
[13] 
[20] 
[21] 
[22] 
[23] 
[30] 
[31] 
[32] 
[33] 

Trait Frequencies: 
=5.578999996185303 
=5.936999797821045 
=6.352999687194824 
=5.2779998779296875 
=9.076000213 623047 
--9. 86400032043457 

1=10.473999977111816 
=8.54699993133545 
=5.442999839782715 
=5.778000354766846 
=6.091000080108643 
=4.995999813079834 
=4.065000057220459 
=4.253000259399414 
=4.5279998779296875 
=3.73799991607666 

Allele Frequencies: 
[0]=23.655000686645508 
[1]=31.896499633789062 
[2]=24.876998901367188 
[3]=19.57149887084961 

Statistics: 
Random Allele Alterations: {3=0.0, 2=0.0, 1=0.0, 0=0.0} 
Random Allele Increase Flags: {} 
Fitness Sum: 1.0E7 
Fitness Average: 100.0 
Fitness Max: 100.0 

Figure 38. Final Population of Stable Environment with Unequal Frequencies 

Fluctuating Selection Environment 

The second goal was to model an environment where the selection on one 

or more alleles fluctuates over time while the other alleles remain constant. The 

first test illustrates the effects of having just one allele fluctuate. The genetic 

algorithm was set up to have four alleles where allele "3" was allowed to fluctuate 

over time while all other alleles remained constant. The population size was 

100,000 and the genetic algorithm ran for 100 generations. The crossover 
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probability was 75% while the mutation probability was 0.125%. The initial 

population was created with a random allele distribution. 

Generation 0: 

Trait Frequencies: 
[0 0]=16.809999465942383 
[01]=8.697 0 005 035 4 003 9 
[02]=9.237 9 9991607 666 
[03]=11.503000259399414 
[10]=8.730000495910645 
[11]=0.7559999823570251 
[12]=1.218999981880188 
[13]=3.2150 0 0152587 8 906 
[20]=9.255000114440918 
[21]=1.2400000095367432 
[22]=1.77699 9 95 04 08 9355 
[23]=3.7349 9 98 950 95 825 
[30]=11.1100006103515 62 
[31]=3.2790 000438690186 
[32]=3.6630001068115234 
[33]=5.773 0 002 40325 928 

Allele Frequencies: 
[0]=46.076499938964844 
[1]=13.946000099182129 
[2]=15.95199966430664 
[3]=24.02549934387207 

Statistics: 
Random Allele Alterations: {3=0.22, 2=0.0, 1=0.0, 0=0.0} 
Random Allele Increase Flags: {3=false, 2=true, l=true, 0=false} 
Fitness Sum: 8970819.31999914 
Fitness Average: 89.7081931999914 
Fitness Max: 100.0 

Figure 39. Initial Population with Randomly Distributed Frequencies 

Although allele "3" is increasing and decreasing over time, the fact that it is 

fluctuating at all compared to the other alleles that are not fluctuating results in an 

overall decrease of allele "3". All of the other alleles increase to make up for the 

decrease in allele "3". Similarly, one can also see that the traits with allele "3" 

decrease while the other traits increase. 
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Pinal Generation: 

Trait Frequencies: 
[00] 
[01] 
[02] 
[03] 
[10] 
[11] 
[12] 
[13] 
[20] 
[21] 
[22] 
[23! 
[30] 
[3i; 
[32] 
[33] 

=31.865999221801758 
=9. 
=i; 
=2. 
=9. 
=2. 
=3. 
= 0. 

92300033569336 
i.26300048828125 
267000198364258 
173999786376953 
758999824523926 
929999828338623 
6599999666213989 

=12.645999908447266 
=3. 
=5. 
= 0. 
= 1. 
= 0. 
= 0. 
= 0. 

9099998474121094 
269000053405762 
9490000009536743 
840000033378601 
5950000286102295 
7980000376701355 
1509999930858612 

Allele Frequencies: 
[0]=56.42250061035156 
[1]=16.854999542236328 
[2]=23.017000198364258 
[3]=3.7055001258850098 

Statistics: 
Random Allele Alterations: {3=0.18, 2=0.0, 1=0.0f 0=0.0} 
Random Allele Increase Flags: {3=false, 2=false, l=false, 0=true} 
Fitness Sum: 9867091.240000026 
Fitness Average: 98.67091240000026 
Fitness Man: 100.0 

Figure 40. Final Population of an Environment with One Fluctuating Allele 

The second test illustrates the effects of having multiple alleles fluctuate. 

The genetic algorithm was set up to have four alleles that were allowed to 

increase and decrease over time. The population size was 100,000 and the 

genetic algorithm ran for 100 generations. The crossover probability was 75% 

while the mutation probability was 1%. The initial population was created with a 

random allele distribution. One can see that the alleles fluctuate up and down in 
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cycles but that overall they remain within 5-10% of their original frequency over 

time. 
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Figure 41. Fluctuation of Allele 3 When All Alleles Are Fluctuating 

Hitch-Hiking Effect 

The third goal was to model the hitch-hiking effect. If the selection on one 

or more alleles fluctuates over time and is not paired with certain other alleles, 

then the alleles that do not pair with the fluctuating allele will increase at a higher 

rate than the other non-fluctuating alleles. The genetic algorithm was set up to 

have four alleles where allele "3" was allowed to fluctuate over time while all 

other alleles remained constant. In addition, allele "3" was not allowed to pair 

with allele "0". All other combinations of alleles were valid. The population size 
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was 100,000 and the genetic algorithm ran for 100 generations. The crossover 

probability was 75% while the mutation probability was 0.125%. The initial 

population was created with a random allele distribution. 

Generation 0: 

Trait Frequencies: 
[00 
[01 
[02 
[03 
[10 
[11 
[12 
[13 
[20 
[21 
[22 
[23 
[30 
[31 
[32 
[33 

=16.270000457763 672 
=10.418999671936035 
=8.32699966430664 
= 0. 0 
=9.486000061035156 
=9.440999984741211 
=7.331000328063965 
=2.8329999446868896 
=7.327000141143799 
=7.198999881744385 
=7.2669997215271 
=2.812999963760376 
=0. 0 

=3.765000104904175 
=3.7129998207092285 
=3.809000253677368 

Allele Frequencies: 
[0]=34.04949951171875 
[1]=29.957500457763 672 
[2]=25.62200164794922 
[3]=10.371000289916992 

Statistics: 
Random Allele Alterations: {3=0.22, 2=0.0, 1=0.0, 0=0.0} 
Random Allele Increase Flags: {3=false, 2=false, l=true, 0=false} 
Fitness Sum: 9562111.559999805 
Fitness Average: 95.62111559999805 
Fitness Man: 100.0 

Figure 42. Initial Population with Randomly Distributed Frequencies 
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Final Generation: 

Trait Frequencies: 
[00 
[01 
[02 
[03 
[10 
[11 
[12 
[13 
[20 
[21 
[22 
[23 
[30 
[31 
[32 
[33 

=15.003999710083008 
=12.494999885559082 
=11.83899974822998 
= 0. 0 
=10.652999877929688 
=8.821000099182129 
=8.307000160217285 
=1.52100002765 65552 
=9.723999977111816 
=8.388999938964844 
=7.652000427246094 
=1.3380000591278076 
= 0. 0 
=2.0260000228881836 
=1.8750001192092896 
=0.35600000619888306 

Allele Frequencies: 
[01=37.359500885009766 
[11=3 0.5164 9 85 65 673 828 
[21=28.38800048828125 
[31=3.73 60 0 0 06103515 62 

Statistics: 
Random Allele Alterations: {3=0.04, 2=0.0, 1=0.0, 0=0.0} 
Random Allele Increase Flags: {3=true, 2=false, l=true, 0=false} 
Fitness Sum: 1.0029944960000038E7 
Fitness Average: 100.29944960000039 
Fitness Max: 108.16 

Figure 43. Final Population of an Environment with One Fluctuating Allele 

In Figure 43, it can again be seen that the frequency of allele "3" has 

decreased and all of the pairs that have the fluctuating "3" have decreased. All of 

the other allele frequencies have increased, but allele "0" that was not paired with 

allele "3" has increased at the highest rate. Similarly, allele pairs that don't have 

allele "3" have increased, but allele pairs that have allele "0" have increased at 

the highest rate. 
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Conclusion 

Genetic algorithms provide an effective way to model population genetics 

for different environments. They provide a stable yet flexible platform to model 

various scenarios. The genetic algorithm implementation presented in this thesis 

is able to model stable environments where the selection on the alleles remains 

constant and fluctuating environments where the selection on one or more alleles 

fluctuates. It is also able to model the hitch-hiking effect which shows how the 

alleles that do not pair with the fluctuating allele will increase at a higher rate than 

alleles that do pair with the fluctuating allele. The overall conclusion is that 

alleles that are affected by environmental fluctuation decrease in their frequency 

which also leads to a decrease in genetic diversity in the population. 

One could expand the genetic algorithm implementation provided in this 

thesis to control the environment at a more detailed level. For example, instead 

of randomly selecting whether to increase or decrease the fitness of an individual 

per generation, one might want to support cycles of multiple generations that 

decrease and then increase. Also, one might want to set the upper bound of the 

fluctuation for each allele separately. Only fluctuating alleles with the lowest or 

highest frequencies would be another option. 
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