
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2008

Applications of genetic algorithms in
bioinformatics
Amie Judith Radenbaugh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Radenbaugh, Amie Judith, "Applications of genetic algorithms in bioinformatics" (2008). Master's Theses. 3495.
DOI: https://doi.org/10.31979/etd.m44r-26hr
https://scholarworks.sjsu.edu/etd_theses/3495

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/70407284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3495&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3495?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3495&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

APPLICATIONS OF GENETIC ALGORITHMS IN BIOINFORMATICS

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Amie Judith Radenbaugh

May 2008

UMI Number: 1458165

Copyright 2008 by

Radenbaugh, Amie Judith

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1458165

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

©2008

Amie Judith Radenbaugh

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

1A M A o ; ^ c
Dr. Sami Khuri, Department of Computer Science

Dr. Robert Fowler, Department of Biological Sciences

Dr. Mark Stamp, Department of Computer Science

APPROVED FOR THE UNIVERSITY

A iA/AJA^^n^Hr>^ Ob// ?/o£>

ABSTRACT

APPLICATIONS OF GENETIC ALGORITHMS IN BIOINFORMATICS

by Amie Judith Radenbaugh

This thesis examines three challenging problems in bioinformatics:

Multiple Sequence Alignment, Gene Prediction, and Population Genetics

Modeling. It evaluates existing algorithms for the problems and provides

implementations of genetic algorithms for each problem. The results from the

genetic algorithms are compared to the existing algorithms.

Being able to align multiple sequences of DNA, RNA, or amino acids is

essential for biologists to determine similarity in sequences which often leads to

similarity in function and provides valuable evolutionary information.

The goal of Gene Prediction is to identify regions of genomic DNA that will

encode into proteins. Computational methods are necessary to keep up with the

annotation of the rapidly increasing sequencing of genomes.

Modeling population genetics for unpredictable environments provides a

tool for improving population forecasts. These forecasts are made by observing

past environmental fluctuations on natural selection and how these fluctuations

affect population genetics.

ACKNOWLEDGEMENTS

I would like to extend my heartfelt thanks to my advisor, Dr. Sami Khuri,

for introducing me to bioinformatics and filling me with enthusiasm for the topics

in the field. I have greatly appreciated his guidance and expertise and his

constant support and encouragement.

In addition, I would like to thank Dr. Robert Fowler for sharing his

biological knowledge and for his participation in our bioinformatics seminar. I

thank Dr. Mark Stamp for his early interest in my thesis and for showing me how

the genetic algorithms presented here could also be used in information security.

Many thanks also to Dr. Chris Brinegar for rekindling my interest in biology

through his excellent lectures.

There are many people who contributed one way or another to the

completion of this thesis. My thanks to Tom Austin for the outstanding

collaboration on the Multiple Sequence Alignment problem. Thanks to Natasha

Khuri and Shane Berreen for the brain-storming sessions about the Gene

Prediction problem. Thanks to Dr. Ulrich Steiner for the collaboration and for

introducing me to Population Genetics. Thanks to the entire Technical Team at

TAIR and a big thanks to all of my friends who have stood by me through these

past three years.

Finally, I especially would like to thank my parents and Dr. Katrin Erdmann

for encouraging me to pursue my Master's Degree and for the countless hours of

listening to the ups and downs of the entire process.

v

Table of Contents

List of Tables ix
List of Figures x
Mendelian Genetics 1
Genetic Algorithm Basics 2

Initial Population 4
Reproduction 5
Crossover 6
Mutation 7
Conclusion 7

Multiple Sequence Alignment 8
Review of the Literature 9

Initial Populations 9
Reproduction 11
Crossover 13
Mutation 15
Fitness Function 16
Doping Genetic Algorithms 17
Conclusion 19

GAMSA Implementation 19
Basic Process 20

Initial populations 20
Reproduction 21
Crossover and mutation 21
Evaluation of operators 21

Fitness Functions 22
DNAScorer 22
Blossum62Scorer 23

Operators 23
Selection of operators 23
No changes operator: No Ops 24
Crossovers 25
Mutations 28

Termination Conditions 29
Configuration 30

Analysis of Results 31
Amino Acid Test Case 1 31
Amino Acid Test Case 2 32
DNA Simple Test Case 32
DNAMYH16 Test Case 33
DNA Beta Globin Test Case 34
DNA HIV Test Case 35
DNABRCA1 Test Case 35

vi

Future Research 36
Gene Prediction 36

Gene Prediction Software 37
Literature Review 40

Initial Populations 40
Reproduction 44
Crossover 45
Mutation 46
Fitness Function 46
Conclusion 49

Gene Prediction Implementation 49
Initialization 50
Initial Populations 51

Completely random 52
Random non-coding regions 53
Random minimum intergenic length 54

Fitness Functions 55
GENSCAN 56
geneid 59
GeneMark and GeneMark.hmm 61
Scoring matrix 64

Reproduction 64
Crossover 65
Mutations 66
Termination Conditions 67
Configuration Options 67

Analysis of Results 68
Single Gene Test 68
Multiple Gene Test 72

Conclusion 78
Population Genetics 79

Population Genetics Implementation 82
Initialization 82
Initial Populations 83

Equal allele frequencies 84
Unequal allele frequencies 85

Fitness Function 86
Reproduction 87
Crossover 88
Mutations 89
Termination Conditions 89
Configuration Options 89

Analysis of Results 90
Stable Environment 90

vii

Fluctuating Selection Environment 94
Hitch-Hiking Effect 97

Conclusion 100
References 101
Appendix A: Amino Acid Test Cases 105
Appendix B: DNA Test Cases 117

VIII

List of Tables

Table 1. Punnett Square for Offspring Possibilities 2
Table 2. Sample Fitness Values 6
Table 3. Scoring Matrix for Gene Prediction Software Programs 64

IX

List of Figures

Figure 1. Flow-Chart of a Genetic Algorithm 3
Figure 2. Initial Population of Strings 5
Figure 3. A User Given Genomic DNA Sequence 41
Figure 4. Last Exon from Gene 2 Missing 42
Figure 5. First Exon from Gene 3 Missing, Second Exon Missing Starting Point42
Figure 6. Only Two of the Three Exonsfrom Gene 2 Are Included 42
Figure 7. Exon 3 from Gene 1 and Exons 1 and 2 from Gene 2 Are Included42
Figure 8. All of the Exons from Gene 2 Remain Intact 43
Figure 9. All of the Exons from Gene 1 and Gene 2 Are Included 44
Figure 10. Two Parent Individuals Selected for Crossover 45
Figure 11. Two New Children Individuals for the Next Generation 46
Figure 12. FASTA Formatted File for AT1G05205 from Arabidopsis thaliana 50
Figure 13. GENSCAN Sample Output 57
Figure 14. Explanation of GENSCAN Output 58
Figure 15. geneid Sample Output 59
Figure 16. Explanation of geneid Output 60
Figure 17. GeneMark Sample Output 62
Figure 18. GeneMark.hmm Sample Output 63
Figure 19. GBrowse Visualization of AT1G05205.1 69
Figure 20. Gene Features for AT1G05205.1 69
Figure 21. GENSCAN Predictions for AT1G05205.1 70
Figure 22. geneid Predictions for AT1G05205.1 70
Figure 23. Genetic Algorithm Predictions for AT1G05205.1 71
Figure 24. GBrowse Visualization of Chromosome 1 from 1 to 10,000 72
Figure 25. Gene Features for AT1G01010.1 73
Figure 26. Gene Features for AT1G01020.1 74
Figure 27. Gene Features for AT1G01020.2 75
Figure 28. GENSCAN Predictions for Chromosome 1 from 1 to 10,000 76
Figure 29. geneid Predictions for Chromosome 1 from 1 to 10,000 77
Figure 30. Genetic Algorithm Predictions for AT1G05205.1 78
Figure 31. Trait Frequencies for an Initial Population with Equal Frequencies....84
Figure 32. Allele Frequencies for an Initial Population with Equal Frequencies..85
Figure 33. Random Percentages of Population with Given Allele in Trait 85
Figure 34. Initial Population with Unequal Trait and Allele Frequencies 86
Figure 35. Initial Population of Stable Environment with Equal Frequencies 91
Figure 36. Final Population of Stable Environment with Equal Frequencies 92
Figure 37. Initial Population of Stable Environment with Unequal Frequencies..93
Figure 38. Final Population of Stable Environment with Unequal Frequencies...94
Figure 39. Initial Population with Randomly Distributed Frequencies 95
Figure 40. Final Population of an Environment with One Fluctuating Allele 96
Figure 41. Fluctuation of Allele 3 When All Alleles Are Fluctuating 97

x

Figure 42. Initial Population with Randomly Distributed Frequencies 98
Figure 43. Final Population of an Environment with One Fluctuating Allele 99

XI

Mendelian Genetics

Gregor Mendel, a Central European monk, spent his early adult life doing

basic genetic research. He experimented with selective cross-breading of

common pea plants over many generations and noticed that certain traits

showed up in offspring without any blending of characteristics. This was

extremely important at that time, because the leading biological theory was that

inherited traits blend from generation to generation. Mendel determined that

genes were passed on to descendents unaltered and that for any particular trait,

the parent genes separate and one part of each parent gene is used to form a

new gene in the descendent. The part of the parent gene that is passed on to

the descendent is a matter of chance (Mendel, 1865).

Mendel (1865) also observed the concept between dominant and

recessive genes and that dominant genes do not alter recessive genes in any

way so that they can be passed on to successive generations. Assume that

traits in parents are represented as two bit strings where 1 represents a dominant

part of the gene and 0 represents a recessive part, then the likelihood that a

certain trait will be passed on to a child can be easily determined. Obviously, if

the mother trait is "11" and the father trait is "11", the child will inherit the "11"

trait. If the mother trait is "11" and the father trait is "00", then the child will have

a mixed trait with one part "0" and one part " 1 " . The order that they are combined

is irrelevant, so that "01" has the same meaning as "10". One could compute the

1

so called "Punnett Squares" for all possibilities. One of the more interesting

possibilities using this simplified schema is:

Table 1. Punnett Square for Offspring Possibilities

0
1

0
00
01

1
10
11

Source: Author's Research

There is a 25% chance that the child gets either "00" or "11" and a 50% chance

that the child gets "01" or "10". The next chapter will introduce genetic algorithms

and explain how the ideas behind the discoveries that Mendel made are used to

solve computational problems.

Genetic Algorithm Basics

Genetic algorithms use evolutionary techniques to find good approximate

solutions. They use survival of the fittest techniques and have self-repair, self-

guidance, and reproduction methods. They are highly randomized and are ideal

for search and optimization problems.

There are four major steps in a genetic algorithm. The first challenge is to

determine how the initial population will be created. Each individual in the

population is a possible solution to the problem and should be generated

randomly. The biggest challenge in a genetic algorithm is to determine a good

fitness function. The fitness function measures the "goodness" of a solution

versus other solutions. There is a reproduction phase which is based on both the

fitness value and chance. There is a crossover phase where two parent

2

individuals are chosen and two new children individuals are created by mixing

the traits of the two parent individuals. There is a mutation phase where one

parent individual is selected and a mutation is done. A mutation on an individual

occurs at a very low rate.

The last step in the genetic algorithm is to determine when to terminate.

This is typically done in one of two ways. The user can either specify the

maximum number of rounds that the genetic algorithm should run, or they can

specify a maximum number of rounds to run where the highest fitness value

hasn't changed. These are the basics of genetic algorithms. A flow-chart for

genetic algorithms is shown in Figure 1:

Create Initial Population

l i |
Calculate Fitness

ZZ I
Reproduction

Crossover

~ ~ X _
Mutation

No ^-^^^^^^V^^^^~--_
<c^Z~ Terminate? J ^ >

^" " " " " " - " j - " ' Yes

Figure 1. Flow-Chart of a Genetic Algorithm

In every generation, a new set of artificial individuals is created using bits

and pieces from the fittest individuals of the population and an occasional new

part that is tried for good measure. Although genetic algorithms are randomized,

3

they efficiently exploit historical information to speculate on new search points

with expected improved performance. Features for self-repair, self-guidance,

and reproduction are the rule in biological systems, whereas they barely exist in

the most sophisticated artificial systems (Goldberg, 1989).

Initial Population

Genetic algorithms require that there is a mapping between the real world

representation of a problem and a data structure which can be as simple as a

string. The string can be just a sequence of 1s and Os where parts of the string

represent pieces of the real world. In the genetic algorithms that will be

introduced in this thesis, the individuals will be alignments of DNA sequences,

sets of gene predictions for a DNA sequence, and pairs of alleles making up a

trait.

To get started, here is a simple example from Goldberg (1989). For an

initial population: assume there is a black-box with five switches on it where the

output of the box is a dollar value based upon the configuration of the switches.

The goal is to find the combination of the switches being on or off that will lead to

the most money coming out of the box. The five switches can be represented as

a string of 1s and Os where 1 means the switch is on and 0 means the switch is

off. The population size is four, and the strings are randomly generated by

flipping a coin for each 0 or 1 in each string. One of the powerful aspects of

genetic algorithms is that they start with a population of strings instead of just one

4

starting point, which results in the ability to search many solutions in parallel

(Goldberg, 1989). A possible initial population is shown in Figure 2:

01101

11000

01000

10011

Figure 2. Initial Population of Strings

Reproduction

Reproduction is the first process in a genetic algorithm where the

individual strings in the population are evaluated according to their optimality

which is determined by an objective function. Biologists call this the fitness

function. The fitness function is just a way to measure the profit, utility, or

goodness that is trying to be maximized. Selecting strings according to their

fitness values means that strings with a higher fitness value have a higher

probability of contributing one or more offspring to the next generation. This

correlates to natural selection - survival of the fittest. In natural populations

fitness is determined by a creature's ability to survive and reproduce (Goldberg,

1989).

Assume that the fitness function is a simple f(x) = x2. Table 2 shows the

initial population from Figure 2, the integer value of the binary string, the fitness

values, and the percentage that each of the strings has compared to the total

5

fitness sum. The simplest way to reproduce is to use the classic "roulette wheel"

approach. A roulette wheel is spun and 14.4 % of the time, the ball will land in

the slot for the first string, 49.2% of the time, the ball will land in the slot for the

second string, etc. This assures that strings with a higher fitness value are most

likely to produce offspring for the next generation. The wheel is spun four times,

and the new generation is created with the four individuals that were randomly

selected from the spins (Goldberg, 1989).

Table 2. Sample Fitness Values

Individual

01101
11000
01000
10011
Total

Integer

13
24
8
19

Fitness f(x)
= x2

169
576
64
361
1170

%of
Total
14.4
49.2
5.5

30.9
100

Source: Goldberg, 1989

Crossover

From the new population, pairs of strings are randomly chosen for

crossover. Crossover is just a swapping of parts of the strings. A random

crossover point is generated, and two new strings are generated by combining

the first part of Individual 1 up to the crossover point with the last part of

Individual 2 after the crossover point. The other new string will have the first part

of Individual 2 up to the crossover point and the last part of Individual 1 after the

crossover point. For example, consider the following individuals:

6

Individual 1 =0110 | 1

Individual 2 = 1100 | 0

Where the pipe symbol "|" indicates the crossover point. The new individuals

after crossover takes place will be:

New Individual 1 =01100

New Individual 2 = 11001

Mutation

Mutation is the last step in the process. The chance that mutation occurs

is very low. For this example, the strings are evaluated on a bit-by-bit basis and

the bits are switched from a 0 to a 1 or a 1 to a 0. The probability that this

happens at each bit is usually much less than 5%. This also coincides with the

feeling for how often mutation occurs in the real world.

Conclusion

The mechanics of genetic algorithms are highly randomized, yet this is

one of the main sources of their power. At first it seems surprising that chance

should play such a fundamental role, but if some "idea" could be represented as

a string, where substrings represent certain "notions" about the idea, then it can

be clearly seen that the populations are not just stringent solutions to a problem,

but rather "ideas" containing some helpful "notions" and some less helpful

"notions" with the goal being to find the optimal "idea". Genetic algorithms keep

combining the helpful "notions" from one "idea" with other helpful "notions" from

other "ideas" until an optimal "idea" is found (Goldberg, 1989).

7

The next chapter will expand on some of the basic ideas presented here

and show how they apply to the first application of genetic algorithms in

bioinformatics that was studied in this thesis.

Multiple Sequence Alignment

Multiple Sequence Alignment (MSA) is a challenging and important

problem to be solved in bioinformatics. Being able to align multiple sequences of

DNA, RNA, or amino acids is essential for biologists to determine similarity in

sequences which often leads to similarity in function and provides valuable

evolutionary information. There are a variety of algorithms that exist for finding

the most optimal alignment of a given set of sequences, including the

Needleman-Wunsch Algorithm, the Smith-Waterman Algorithm, and the use of

Hidden Markov Models to name a few.

A literature review on how Genetic Algorithms (GAs) have been used for

MSA will be given. The similarities and differences during each phase of the GA

will be analyzed. For each phase, either the approach with clearly the best

results or the approach that is used by all authors, making it a practical standard,

will be considered in the implementation of a GA, called GAMSA (Genetic

Algorithm for Multiple Sequence Alignment) (Radenbaugh & Austin, 2006). Most

researchers have a common approach on the population representation and on

the reproduction phase, but they vary slightly on the crossover and mutation

phases and vary highly on the fitness function that should be used.

8

The intention is to implement a GA for the MSA problem and to find the

best approach to take for each phase. The goal is to create a GA that can

perform as good as or better than the industry standard ClustalW. ClustalW is

designed for global alignments where all of the sequences are aligned over their

entire length. The sequences are typically similar and all have roughly the same

size. ClustalW can also be used for local alignments where only certain parts of

the sequences are aligned, but it is not optimized for local alignments. The

sequences for local alignments might be dissimilar and have varying lengths.

The goal of this thesis is to investigate how genetic algorithms perform not only

on global alignments but also on local alignments.

Review of the Literature

In this section, a review of the literature on how genetic algorithms have

been used to solve the MSA problem will be given. Each phase of the genetic

algorithm will be reviewed and the similarities and differences will be noted.

Initial Populations

The first challenge of a genetic algorithm is to determine what the

individuals of the population will represent and to generate an initial population

with some degree of randomness. All of the literature that was reviewed for this

thesis (Hernandez, Grass, & Appel, 2004; Horng, Wu, Lin, & Yang, 2005; Shyu,

Sheneman, & Foster, 2004; Wang & Lefkowitz, 2005) suggests that each

individual in the population should be one multiple alignment of all the given

sequences, but the way that they came up with the initial population varies.

9

Horng et al. (2005), Shyu et al. (2004) and Wang & Lefkowitz (2005) increased

the sequence length by a certain percentage and randomly inserted gaps or

buffers of gaps into the sequences. Hernandez et al. (2004) took a new

approach and used previously developed tools to align the sequences to a

certain degree and then used the GA to optimize the alignment.

Another important initial setting is to determine the best population size.

There was no consensus for this and all authors mentioned that it is dependent

upon the sequence lengths and is best calculated through testing and fine-tuning

and should be left as configurable.

Since the approach with inserting random gaps or buffers of gaps to each

sequence in the alignment is widely accepted as among the best, it will be used

in the implementation of GAMSA. The initial population will be generated in the

following way: For each column in the alignment, either the next element in the

sequence will be taken or a gap will be inserted. The probability of a gap in a

sequence is proportional to its length. This will hopefully achieve a more random

dispersal of the elements. To make this clearer, here is an example: suppose

that there is an attempt to align these sequences of nucleotides:

Sequence 1: ATTGCCGACT

Sequence 2: AC

Sequence 3: GACCCTAG

The longest of these sequences is ten nucleotides. The number of gaps

to be inserted to every sequence for this example is also ten, so the total

10

alignment length would be twenty. For each column, there is a 50% chance of

inserting a nucleotide for Sequence 1, a 10% chance for Sequence 2, and a 40%

chance for Sequence 3. (Note that these are independent probabilities. An

element from some, all, or none of these sequences might be inserted). The

ending result might look something like this:

Sequence 1: AT-TGC C-G-A-CT

Sequence 2: AC

Sequence 3: — G AC-C C-TAG

The sequences are now randomly aligned and have enough gaps so that

the nucleotides can be shifted later in the algorithm.

Reproduction

All of the authors (Hernandez et al., 2004; Horng et al., 2005; Shyu et al.,

2006; Wang & Lefkowitz, 2005) used the typical tournament style, also known as,

"roulette wheel" style of reproduction. Two of them (Horng et al., 2006; Wang &

Lefkowitz, 2005) also used some sort of elitism while further restrictions were

made by Wang & Lefkowitz (2005) to only allow the top scores to reproduce.

As shown with the roulette wheel approach in Section 2.2, for every

generation, each alignment in the population is judged according to a fitness

function. This will determine the chance of survival for each of these alignments.

After all alignments have been scored, they will be randomly selected

using weighted probabilities. The population size will stay the same, but there

11

may be copies of some of the alignments, and others will disappear. For

instance, suppose there are 3 alignments with the following scores:

Alignment 1 = 25

Alignment 2 = 15

Alignment3 = 10

The total population fitness is the sum of all of the individual alignment

fitness scores in the population which is for this example fifty. This means that

Alignment 1 will have a 50% chance (Alignment 1 individual fitness divided by the

population total fitness) of being selected, Alignment 2 will have a 30% chance,

and Alignment 3 will have a 20% chance. A roulette wheel is created with one

hundred slots on it. Alignment 1 will occupy slots 1-50, Alignment 2 will occupy

slots 51-80, and Alignment 3 will occupy slots 81-100.

A random number will be generated to determine which alignments will be

added to the next generation. In the example, three random numbers are

generated between 1 and 100. If the numbers are 23, 44, and 92, then the

alignments that occupy these slots on the roulette wheel will be added to the next

generation. The new population will consist of two copies of Alignment 1 and

one copy of Alignment 3. Alignment 2, though not the lowest scoring alignment,

dies off.

Finally, since elitism is used by two of the authors and ensures that at

least one copy of the highest scoring alignment survives this stage, it will also be

used in the implementation of GAMSA.

12

Crossover

After reproduction, pairs of alignments from the old population are

randomly chosen for crossover. The most common type of crossover is called

"One Point Crossover" (Hernandez et al., 2004; Shyu et al., 2005) and is the

process of dividing the sequences in the alignments at a random point, and then

swapping the first halves of the first alignment with the first halves of the second

alignment. As an example, assume that the alignments each have three

sequences:

Alignment 1: Alignment 2:

AATTCC AATTCC

ATC A-T-C-

-ATTC- -AT-TC

A random crossover point for these sequences is generated. For this

example, assume the random crossover point is three. All of the sequences in

the first alignment will be cut at the crossover point. In order to account for gaps

in the sequences in the first alignment, the sequences in the second alignment

will be cut according to the number of nucleotides or amino acids in the

corresponding sequence in Alignment 1. It is essential to preserve the

sequences by not changing the number of nucleotides or amino acids in them.

For example, the second sequence in Alignment 1 doesn't have any gaps, but

the second sequence in Alignment 2 does, so the second sequence in Alignment

2 will be cut at the fifth position:

13

Alignment 1: Alignment 2:

AAT | TCC AAT | TCC

ATC | A-T-C | -

-AT | TC- -AT | -TC

Now the first parts of all of the sequences from Alignment 1 are swapped

with the first parts of all of the sequences from Alignment 2 to generate brand

new sequences in each alignment. The result is:

Alignment 1: Alignment 2:

AATTCC AATTCC

ATC A-T-C—

-AT-TC -ATTC-

Another popular form of crossover is called the "Point-to-Point Crossover"

(Hernandez et al., 2004). Two random points are generated, and the sequences

between these two points are used for crossover. Each nucleotide or amino acid

at each position in the crossover range is randomly swapped. A third form of

crossover called "Slide-Crossover" is used by Hernandez et al. (2004). Parts of

the sequences are shifted left and right to achieve a better alignment. Horng et

al. (2005) introduce yet another form of crossover where multiple crossover

points are defined and crossover occurs between many blocks.

One Point Crossover is used the most, but the other suggestions by the

authors also sound interesting. The GA implementation should definitely support

14

One Point Crossover, but it might also support other forms of crossover where

the type of crossover that is used on each generation is randomly chosen.

Mutation

Mutation is the last step in the process. There are a few ways to do

mutation for this problem and they all have to do with gaps and sliding

subsequences left or right. Hernandez et al. (2004) have two forms of mutation.

They either remove a gap or slide a sub-sequence next to a gap into the gap

space which essentially moves the gap from the beginning of the sub-sequence

to the end or vice versa. Homg et al. (2005) have four forms of mutation.

"MergeSpace" merges two or three spaces together, "MoveSpaceCol" tries to

move spaces in the current column to a neighboring column, "FullSpaceCol"

adds a column of spaces if the current column has a space, and

"MoveRowSpace" selects specific columns and moves spaces in the sequences

at these columns to another column. Shyu et al. (2004) randomly select columns

in the sequences and then swap nucleotides and spaces in these columns.

Wang & Lefkowitz (2005) have three forms of mutation. "Random_gap"

randomly inserts a gap into every sequence, or "Local_gap_shuffle" moves one

gap in every sequence to a new position in the sequence, and

"Block_gap_shuffle" moves multiple gaps in certain columns of the sequences to

new positions in the sequence.

Since all of the authors use such a variation at this phase, it is difficult to

determine the best course of action. The GA implementation should at least

15

provide two forms of mutation: one for manipulating gaps and one for sliding

subsequences left or right.

Fitness Function

The fitness function determines how "good" an alignment is. The most

common strategy that is used by all of the authors, albeit with significant

variations, is called the "Sum-Of-Pair" Objective Function. It is typically done in

one of two ways:

1) Compare each element in a column to every other element in a column.

For nucleotide sequences, use the normal +1 for matches, -1 for

mismatches, and -2 for gaps for scoring. For amino acid sequences use

the BLOSUM or PAM matrix and the appropriate gap penalty for scoring.

The BLOSUM or PAM matrix version should be variable in order to

account for different types of sequences (ones that are fairly similar or

fairly diverse).

2) For each column, find out what the consensus element is. If there is one,

use it as the value to compare all the other values in the columns against.

Again, use the typical scoring systems as mentioned in 1.

Hernandez et al. (2004) and Wang & Lefkowitz (2005) create their own

scoring matrices based upon the sequences that they are trying to align.

Hernandez et al. (2004) measured how unexpected the nucleotide or amino acid

frequencies inside the columns are compared to their background frequencies

that are estimated from the entire set. The matrix is calculated once at the

16

beginning and used for the whole GA. Wang & Lefkowitz (2005) creates a library

of optimal pair-wise alignments from the sequences that they are trying to align

and then evaluates the consistency of the calculated multiple alignment with the

ones in the library. Homg et al. (2005) uses the straight-forward Sum-of-Pairs

calculation. Shyu et al. (2004) uses the nucleic acid scoring matrix from the

International Union of Biochemistry (IUB). This matrix groups nucleotides

together according to certain properties, e.g., Purines (A or G) and Pyrimidines

(C or T).

Determining the fitness function of the GA is the most difficult part. The

function needs to include a biological reference in order to align strands in a

biologically relevant way, which is the ultimate goal. The combination of using

the PAM and BLOSSUM matrices for amino acids and the IUB matrix for

nucleotides could be interesting. Using the consensus sequence as the

comparative sequence might also lead to interesting results.

Doping Genetic Algorithms

For most genetic algorithms, the evolution is fairly constant. There is

typically a constant percentage probability assigned for each crossover and

mutation. Doping genetic algorithms are different. For these, there is a

"continuous evolution of the evolution" (Buscema, 2004).

One approach is to use some of the principles of genetic algorithms on the

crossovers and mutations themselves. While the actual functions of the

crossovers and mutations are not altered in any way, a fitness value is assigned

17

to them. The fitness value is based upon how much the operation improved the

current generation compared to the parent generation. In using this approach,

the algorithm can optimize itself while running. This is the approach taken by the

Sequence Alignment by Genetic Algorithm (SAGA) package (Notredame &

Higgins, 1996).

Unlike most other approaches, SAGA groups mutations and crossovers

together and allows them to be selected by their fitness. The strength of

combining these two groups is that the balance of crossovers and mutations can

shift over the course of the program's execution. However, this also leads to a

fundamental problem: crossovers and mutations are not very similar in their

effect. Mutations tend to produce stronger results in the short term. Crossovers

can break up local maximums and make huge improvements, but in the short

term they are often more destructive. As a result, mutations may dominate

crossovers without some special care. The solution that the designers of SAGA

came up with was to give partial credit to operators for descendents of the

children produced by an operator. This seems to resolve the issue.

An alternate approach is used by the GenD algorithm (Buscema, 2004).

In this design, the alignments are grouped into tribes. While members of the

tribes may interact a little, they are mostly isolated groups. In addition, the

algorithm is designed to increase the average health of the population rather than

promoting the fitness of the very best. The effect of the tribe approach combined

with the promotion of the general health leads to an "inner instability", as the

18

authors put it. This limited isolation of the population means that they will

develop a greater diversity of solutions.

Conclusion

The implementation of GAMSA will use some approaches that are widely

accepted as standard and will combine some other successful approaches in an

attempt to produce even better multiple sequence alignments. It will have a

standard initial representation where random gaps will be inserted and will use

the standard tournament style of reproduction with an elitism component. It will

provide at least the "One Point Crossover" method. It will have multiple ways of

doing mutation which will consist of removing and inserting gaps as well as

shifting subsequences left and right. Finally, the fitness function will use the

standard "Sum-Of-Pair" scoring method using the PAM and BLOSSUM matrices.

Ideally, the IUB matrix will also be included. A comparison between the elements

in the sequences to the consensus sequence will be done, which is something

that has never been tried before.

GAMSA Implementation

The implementation of the genetic doping algorithm presented in this

thesis is called GAMSA. Compared to all of the previously discussed

approaches, GAMSA resembles the SAGA design the most. In this section, a

description of the approach and comparison to other genetic algorithms will be

given, with special emphasis on SAGA.

19

Basic Process

The main class in the implementation is MultiSeqAligner.java. By default,

it is configured to align sequences of amino acids, scoring the alignments using

the BLOSUM62 Matrix. A property object can be specified to override these

settings.

This class has a findSolution method that takes an array of strings and

returns an Alignment object representing the best solution found. The

TestCases.java file contains a main method that demonstrates how to use this

package. Two amino acid and five DNA sample data sets are provided. The

user can enter a number between 0-6 that will correspond to the test that they

want to run. To change any default parameters, such as the population size or

the number of unchanged rounds needed before GAMSA will terminate, refer to

the getDefaultProperties() method in the MutliSeqAligner class.

First, the process will be covered at a high level before going into more

detail on key elements of GAMSA's design.

Initial populations. The first step in a genetic algorithm is to generate the

initial population. This is only done once each time the program is run.

As with most genetic algorithms, the population is a collection of possible

solutions. In the case of GAMSA, the individuals of the population are different

alignments of the input sequences. The sequences themselves may be of either

nucleotides or of amino acids. The design is flexible enough that alignments of

20

other sequences might be possible as well, though most likely this would take a

certain amount of customization.

By default, the population consists of one hundred alignments. For each

sequence in these alignments, gaps are randomly inserted to pad all sequences

to the same length. This length is set to 15% of the length of the longest

sequence (before padding) in the alignment. These settings can be overridden

by specifying "populationSize" and "percentagelncrease" in the configuration

options.

Reproduction. For every generation, the first step to be performed is

reproduction. Each alignment in the population is given a percentage chance of

survival equal to its relative fitness. Every alignment has at least some

probability of being selected.

A spot is reserved for the individual(s) with the highest fitness in the population.

This individual will be added back to the population after all other steps have

been performed, guaranteeing that the best score in the population will never

drop in a new generation.

Crossover and mutation. After the new generation has been created,

members are selected for crossover or mutation. These may be merged into a

single step, but it was found that the best results are achieved by performing

these as two distinct steps.

Evaluation of operators. The crossovers and mutations themselves form a

population. While they do not change, each operator does have a fitness value.

21

This is based on the relative increase or decrease in the new alignments they

create. If an operator has recently been more successful at creating healthy

alignments, it is more likely to be used for future operations.

At this step in the algorithm, each operator's success is determined and its

fitness is recalculated.

Fitness Functions

With genetic algorithms, the most critical piece of information is how to

score the fitness of a given individual in the population. In GAMSA, each

alignment within the population determines its fitness by comparing each pair of

its sequences and then summing the scores. However, the logic for scoring the

sequences themselves is stored in a separate class called a scorer.

Each scorer implements the gamsa.scorer.Scorer interface and may be

specified in the configuration file with the "seqScorer" property. With this design,

anyone using GAMSA can create his or her own scoring methods, depending on

the nature of the sequences to be aligned.

The two implementations included with GAMSA are DNAScorer and

Blosum62Scorer.

DNAScorer. This class is designed to score the alignment of two

sequences of nucleotides. Each nucleotide that matches counts for +1. Each

pair of nucleotides that is misaligned counts for - 1 .

Gaps are treated differently. If a gap exists in the middle of one sequence

it is scored as -2. Leading or trailing gaps are scored as - 1 . The main reason for

22

this is that gaps outside of a sequence should not be overly punished, but at the

same time, some penalty is necessary to avoid rewarding sequences that are

totally unaligned. Initially, leading and trailing gaps were ignored. This resulted

in very bad alignments and lots of out of memory errors.

Blossum62Scorer. This class is used to score sequences of amino acids

using the BLOSUM62 matrix. However, gaps in the middle of a sequence are

scored differently. At the point where a new gap is started the penalty is -12.

Any extension to a new gap by subsequent gaps gets a penalty of -4. Like the

DNAScorer, leading and trailing gaps are only punished half the normal amount.

Operators

One of the advantages of GAMSA is that new operators can be easily

added. They only need to extend either the gamsa.operator.Mutation class or

the gamsa.operator.Crossover class. This allows designers to create their own

operators that may be more useful for different types of alignments.

Mutations are excellent for making incremental improvements to

individuals in the population. However, they have a noticeable tendency to get

stuck in local maximums. Crossovers help to break these up and to mix the best

parts of different alignments. While they are less profitable in the short term, they

are essential to producing a good solution.

Selection of operators. For doping algorithms, the selection of operators

is not fixed. There are multiple ways of doing this, but GAMSA takes a similar

approach to SAGA. Like SAGA, the operators are scored based on the success

23

of the new alignments that they create compared to the parent alignments.

However, unlike SAGA, GAMSA does not give any credit for future generations.

The principle reason for SAGA's design is that crossover operations are

inherently destructive - splitting an alignment creates new gaps to maintain the

alignment of the elements. By crediting crossovers with some of the success of

future generations, the designers of SAGA hoped to take care of this situation.

GAMSA takes a simpler approach. The main problem with the SAGA

implementation was that the mutations and crossovers were combined into a

single pool of operators. Since mutations tend to be more profitable in the short

term, they tend to dominate if the operators are mixed together, unless some

extra measures are taken.

GAMSA may be configured this way as well (by setting the "mergeOps"

parameter to true), but that is not the default. Instead, the operators are divided

into separate groups. Since the crossovers are now compared only to other

crossovers, they are fairly represented.

No changes operator: No Ops. In most genetic algorithms, there is a

(usually fixed) percentage chance of a mutation or crossover. For GAMSA, the

entire population goes through both a crossover and a mutation. An operator

that makes no changes called a "No op" is used instead. NoopCrossover.java

and NoopMutation.java are (respectively) a crossover and a mutation that return

the original alignments without modification. Like all operators, the chance of

24

their selection is determined by their recent success. However, in the case of

these operators, their rating is always zero.

This has a rather elegant effect. If crossovers and mutations are

producing better and better results, more will happen. If, on the other hand, they

are producing poor results, the no ops will dominate. Even though the operators

are divided into two groups, the ratio of crossovers and mutations can change in

this way.

No ops might also be exploitable to create a new termination condition,

though this was not pursued for the current design of GAMSA.

Crossovers. After reproduction, pairs of alignments from the old

population, a mother and a father, are randomly chosen for crossover. In order

to try to avoid cases where the exact same alignment is chosen for both the

mother and the father, the algorithm tries to select new fathers until the

alignments are different or until 10 new alignments have been tried. In the rare

case that the mother and father are still the exact same alignment, then

crossover will have no affect on the alignments.

There are two main forms of Crossover: a "No Operation Crossover" and

a "One Point Crossover". As expected, the No Operation Crossover leaves the

mother and father alignments untouched. The One Point Crossover divides the

sequences in the alignments at a random point, and then swaps the first halves

of the first alignment with the first halves of the second alignment. There are

25

three variations to the One Point Crossover: 1) Gaps at Beginning, 2) Gaps in

Middle, 3) Gaps at End.

The One Point Crossover begins by generating a crossover point which is

a random number between zero and the length of the sequences in the mother

alignment. If the crossover point is zero, then the original mother and father

alignments are returned untouched. The process of swapping the first halves of

the first alignment with the first halves of the second alignment is not as easy as

it might seem. One problem is that the two alignments selected for crossover

can have varying lengths. The number of actual nucleotides or amino acids in

the alignments is the same, but the alignments can have varying amounts of

gaps. For example, assume that the alignments each have the following three

sequences where Alignment 1 has sequences of length six and Alignment 2 has

sequences of length five:

Alignment 1: Alignment 2:

A-T-C- ATCC-

ATC --ATC

-ATTC- AT-TC

The random crossover point is generated and is, for example, at position three.

All of the sequences in the first alignment will be cut at the crossover point. In

order to account for gaps in the sequences in the first alignment, the sequences

in the second alignment will be cut according to the number of nucleotides or

amino acids in the corresponding sequence in Alignment 1. It is essential to

26

preserve the sequences by not changing the number of nucleotides or amino

acids in them. For example, the first sequence in Alignment 1 will be cut after "A-

T" which contains one gap, but the first sequence in Alignment 2 doesn't have a

gap between the A and the T. The first sequence in Alignment 2 will be cut after

the second position. The same type of problem occurs in the third sequence of

each alignment, but the second sequence shows a different problem. The

second sequence of Alignment 1 will be cut after "ATC", but the second

sequence of Alignment 2 is padded with some leading gaps and will be cut at the

end at position five. The following alignments show where the sequences are cut

using the pipe "|" symbol:

Alignment 1: Alignment 2:

A-T | -C- AT | CC-

ATC | —ATC |

-AT | TC- AT | -TC

Now the first parts of all of the sequences from Alignment 1 are swapped with the

first parts of all of the sequences from Alignment 2 to generate brand new

sequences in each alignment. The result is:

Alignment 1: Alignment 2:

A-TCC- AT-C-

ATC ATC

-AT-TC ATTC-

27

Notice now that the sequences within an alignment do not have the same length.

The best example is sequence two in each alignment. In Alignment 1, the

second sequence only has three elements, while both the first and third

sequences have six elements. In Alignment 2, the second sequence has nine

elements, while both the first and third have five elements. The sequences within

an alignment must have the same length! In order to account for these

differences, gaps are added to the sequences.

The three variations of the "One Point Crossover" provide three different

ways to add gaps to the sequences. The gaps can be added to the beginning of

the sequences, to the middle of the sequences, or to the end of the sequences.

The suspicion was that adding the gaps to the middle where the jagged edges

from the crossover occurred would prove to be the most effective, but adding

them to the beginning and end lead to some interesting results upon crossover in

the future generations.

Mutations. Each mutation is designed to make small changes to a single

alignment that may improve the design.

BlockShuffleMutation.java takes a single sequence in the input alignment.

It selects a random point in the sequence. If it is an element, it looks either to its

left or right (again chosen randomly) for the next series of gaps. It will slide that

block of elements over until it touches the next block of elements. If a gap is at

the chosen position instead, the procedure is the same, except that the block of

gaps is moved instead of the block of elements.

28

GapDeletionMutation.java eliminates a single, randomly chosen gap from

each sequence in the alignment. However, if no gap can be found in any one

sequence, the operation is aborted, and the original unchanged alignment is

returned instead. Interestingly, this tends to be the most profitable mutation in

the early stages.

GaplnsertionMutation.java is the opposite of GapDeletion. It adds a single

gap to each sequence within the alignment. The positions for the gaps are

chosen randomly.

GapColumnDeletionMutation deletes all the columns of gaps in an

alignment. It loops through each column of every sequence, and if there is a gap

in this position in every sequence, then it removes the gap in this column from

every sequence.

Termination Conditions

After a population has gone through reproduction, crossover and mutation

and a new generation has been formed, it must be evaluated to determine if a

solution to the MSA problem has been found or not. If so, the best solution in the

population is returned. If not, the population goes through another loop to create

yet another new generation. One of the major challenges in designing a genetic

algorithm is how to determine when a solution has been found. In general, the

goal is to look for some indications that the algorithm has reached a stable point.

GAMSA allows for two different termination conditions to be set. The first

is to simply specify the maximum number of rounds that the algorithm will run.

29

The advantage of this approach is that the running time can be given a maximum

bound. The second termination condition is to count the number of rounds that

the best fitness score in the population has not changed. Since the best member

of the population is preserved each generation, this score will never drop. When

it has held steady for a number of generations, it is assumed that the model has

reached a stable point. By trial and error, fifty generations seems to be the best

setting for this parameter.

Either or both of these conditions can be used in parallel. The parameter

"maxRounds" specifies the maximum number of rounds that will be run. If it is

omitted, no limit will be used. The parameter "unchangedRoundsNeeded"

specifies the number of rounds that the best scoring solution must not be

changed for the second condition to be met. If this is a larger value than

"maxRounds", it will not be used.

Configuration

GAMSA has a set of default values optimized for amino acid alignment.

However, these can be overridden with a configuration file. The constructor for

gamsa.MultiSeqAligner takes a property object. Here is a sample file:

Config for calculating proteins, using BLOSUM62
mergeOps=false
seqScorer=gamsa.scorer.Blosum62Scorer
percentagelncrease=15.0
populations!ze=l00
unchangedRoundsNeeded=50

30

Analysis of Results

The results from GAMSA were compared to the industry standard

ClustalW. When run locally, ClustalW was noticeably faster. This was not

entirely unexpected. While some care was taken to see that GAMSA was

efficient, the emphasis was not on performance. Also, GAMSA is written in Java,

and suffers some performance penalty from that.

The results of the tests varied. In one case, GAMSA's answer was

different by only a single amino acid! In others, the results were quite different.

In this section some of the results will be covered.

Amino Acid Test Case 1

This test involved seven sequences of amino acids. They varied in both

length and similarity. Three different settings for the parameters for the

population size (100 and 400) and the number of unchanged rounds needed (20

and 50) were evaluated. The population sizes/unchanged rounds that were

tested were 100/20, 100/50, and 400/50. The tests were run on a Pentium 4

machine running Fedora Core 4.

The number of unchanged rounds mostly made a difference in the

reliability of the results. While the scores were just as high and the results were

just as quick, there were times when the scores would be much worse simply

because a local maximum was found.

Population size had a noticeable impact on both the quality and time

needed for the results. While the scores ranged roughly from 1000-1500 for a

31

population of 100, they were 1700-2200 for a population of 400. However, the

run times rose from about two minutes to about fifteen minutes.

Amino Acid Test Case 2

For the second test case, ten fairly long sequences of amino acids were

used. The sequences were much more similar than those in test case one.

Again, population sizes/unchanged rounds of 100/20, 100/50, and 400/50 were

used. These tests were performed on the same machine as the previous test.

As with the last case, the unchanged rounds did not make much

difference in the score, but seemed to make the results more consistent.

However, somewhat surprisingly in this case, the unchanged rounds had a very

noticeable effect on performance. On average, the 100/20 case finished in about

one third of the time of the other two, and with only a slight decrease in the

quality of the results.

Population size seemed to mildly improve the results, but not substantially.

Also, its performance increase was not dramatic. In fact, in the examples in the

appendix, it took less time than the 100/50 case. One possible explanation for

this difference is that these sequences are fairly closely related. As a result,

GAMSA seems to make small steps towards the solution, and patience (reflected

in the "unchangedRounds" setting) is better rewarded.

DNA Simple Test Case

The first simple sequences got very similar results to those from ClustalW:

32

GAMSA Best Individual:
ATTGCCA-TT
ATGGCCA-TT
ATCCAATTTT
ATCTTC—TT
ATT
—GGCCA-T-
ATTG
Fitness: -74.0

ClustalW Solution Individual:
ATCTTCTT—
ATCCAATTTT
ATT
—GGCCAT—
ATGGCCATT-
ATTGCCATT-

ATTG

Fitness: -84.0

For these kinds of short sequences, the results were better when the

population size was bigger than the default size of 100. It was interesting to see

GAMSA keep the "ATTG" in the last sequence together and either place it at the

beginning as shown in this test or at the end of the sequence as in the ClustalW

solution.

DNA MYH16 Test Case

This was the best test result received, even outscoring ClustalW. The

original sequences were very similar, so it was expected that ClustalW would do

an optimal job on aligning them. The solution from GAMSA has only one

nucleotide difference to the solution from ClustalW. In the sequence with the

gaps, GAMSA created gaps over "CA" and aligned the next "C" to the column

33

after the gaps. ClustalW created gaps over "AC" and aligned the "C" to the

column before the gaps:

GAMSA Best Individual:
GAGCAGCTGAACAAGCTGATGACCACCCTCCACAGCACTGCACCCCaTTTTGTCCGCTGTATTGTGCCCAATGAGTTTAAGCAGTCAG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTGTCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTGTCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAG—CCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG

Fitness: 2322.0

ClustalW Solution Individual:
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGC—CGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTATCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTGTCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCATAGCACCGCACCCCATTTTGTCCGCTGTATTGTCCCCAATGAGTTTAAGCAATCGG
GAGCAGCTGAACAAGCTGATGACCACCCTCCACAGCACTGCACCCCATTTTGTCCGCTGTATTGTGCCCAATGAGTTTAAGCAGTCAG

Fitness: 1728.0

DNA Beta Globin Test Case

These original sequences were less similar, and as is the case with

ClustalW, GAMSA struggles more with sequences that are less similar. It is

interesting to observe the positions where GAMSA starts to insert gaps

compared to the positions where ClustalW starts to insert gaps. In this respect,

the alignments are quite similar. The entire alignments can be viewed in

Appendix B, but shown below are the beginnings of the columns where 4 of the 5

sequences align in the same way as ClustalW:

GAMSA Best Individual:
GTTTACGTTTG

ACATTTG
TAGGGCCCCTGCTGC

ACACTTG
AGCTAGATTAGTTTC
Fitness: 53.0

34

ClustalW Solution Individual:
GTTTACGTTTGCTTC

ACATTTGCTTC
TAGGGCCCCTGCTGC

ACACTTGCTTC
AGCTAGATTAGTTTC
Fitness: 352.0

DNA HIV Test Case

These sequences are also not very similar and a lot longer than any of the

previous tests. The longest sequence length is approximately 650. It is again

interesting to compare where gaps are inserted and extended in the GAMSA

solution compared to the ClustalW solution. The entire sequences can be found

in Appendix B.

DNA BRCA1 Test Case

This test was partially done to evaluate the performance of GAMSA.

There were 9 sequences with an approximate length of 800. The population size

was increased to 400 and the number of unchanged rounds stayed at 50. The

scores converged fairly quickly, but there were small increases at the end leading

to the entire run taking over an hour and running close to 2800 rounds. Of

course, lowering the population size or the number of unchanged rounds would

have taken significantly less time and also given results that are not significantly

worse than the final result.

It is again interesting to compare the gaps in the 2 alignments. GAMSA

tends to have more gaps on these types of long sequences and does not cluster

them together as well as ClustalW. This could be due to the fact that the fitness

35

function only scores -2 for all gaps and does not distinguish well between gap

opening and gap extending as is done for the amino acid sequences. Altering

the DNA Scorer to account for this could lead to better results.

Future Research

One of the interesting discoveries was that the "no op" mutations and

crossovers gave some indication of the development of the solution. One

possibility for a termination condition would be to monitor their comparative

fitness to other operators and terminate the program when they become the

dominant operation. This might be a better indicator than the current methods.

Another interesting approach would be to add in the concept of tribes to GAMSA.

By having multiple threads running, with individuals occasionally being copied

over to other threads, some of the benefits of the GenD approach (Buscema,

2004) might be achieved. Combining these with the fluctuating operators of

SAGA (Notredame et al, 1996) might produce some strong results.

The next chapter will present the second application of genetic algorithms

in bioinformatics that was studied in this thesis. The application is very different

from the MSA problem and displays the diversity of problems that genetic

algorithms can be used to solve.

Gene Prediction

One of the most challenging problems in bioinformatics today is gene

prediction. The goal is to identify regions of genomic DNA that will encode into

proteins. As more and more genomes are being sequenced, the need to analyze

36

these data is becoming more and more important. Using traditional experimental

methods is costly and time-consuming. The need for accurate computational

methods would be very beneficial.

The first step in gene prediction is to locate coding and non-coding regions

in a genomic sequence. This can be done using extrinsic homology methods

and/or intrinsic computational methods. There are a variety of algorithms and

software packages that can be used for gene prediction. The most common and

accurate gene prediction approaches will be evaluated.

Genetic algorithms have never been used in the literature for gene

prediction in eukaryotes. Genetic algorithms have recently been used for operon

prediction in prokaryotes with considerable accuracy (Jacob, Sasikumar, & Nair,

2005). The intention of this project is to implement a genetic algorithm for gene

prediction in eukaryotes and to identify the advantages and disadvantages of this

approach.

Gene Prediction Software

The general procedure for gene prediction is to obtain a new genomic

DNA sequence and to first find the Open Reading Frames (ORFs). For any

sequence, there are six ORFs. Typically, the longest ORFs will be the reading

frames where the genes are located. There are three basic tests (Mount, 2004)

that can be done to verify the ORF:

1) It is known from biology that every third base tends to be the same much

more often than by chance. This can be computationally verified.

37

2) Check the codon frequency. Organisms tend to prefer a specific codon for

a specific amino acid. Check to see whether the codons in the ORF

correspond to other genes in the organism.

3) Translate the ORF into an amino acid sequence and compare it to a

database of existing sequences.

There are several ORF finding software packages: BioEdit is available on

the Windows platform. DNA STRIDER is a nice visual tool available for

Macintoshes. PLOTORF, GETORF, and SIXPACK are available for the Unix

platform. ORF Finder and EMBOSS are available over the web.

The next step in gene prediction is to apply extrinsic content sensors.

Extrinsic content sensors are homology based. Approximately 50% of all genes

can be found by extrinsic content sensors alone (Mathe, Sagot, Schiex, &

Rouzze, 2002). Sequence similarity search methods are used to identify coding

and non-coding regions. The genomic DNA is compared to existing DNA or

protein sequence databases using tools such as BLAST and CLUSTALW. There

are several problems with this approach. If no similar sequences exist, then

nothing will be found. It is still hard to determine where the exon and intron

boundaries are with these kinds of methods. Small exons are easily missed.

The genomic DNA is also compared to existing cDNA or EST databases. cDNA

is made up of exons which helps identify the exon and intron boundary. ESTs

provide information about partial exons and give hints to alternative splicing, but

they only give local and limited information on the gene structure since they are

38

only partial mRNA (Mathe et al., 2002). Extrinsic content sensors aid in

identifying coding vs. non-coding regions, but they don't provide more detailed

information about the structure of the gene.

The next step in gene prediction is to apply intrinsic content sensors.

Intrinsic content sensors are computational methods. They incorporate

knowledge from biology to analyze the data. Determining the probable ORF and

verifying the codon composition is done very well with computational methods

today. Determining hexamer frequency which is the frequency of 6 nucleotides

in a sequence is also done using computational methods. This is used very often

with Hidden Markov Models. G+C rich areas tend to have high gene density

while A+T areas tend to have low gene density. Therefore, identifying these

regions is essential in gene prediction. Lastly, a probabilistic method is applied

to the gene prediction problem.

Gene prediction programs use computational approaches such as Hidden

Markov Models, Neural Networks, and Bayesian Classifiers. They also focus on

different kinds of predictions. They all focus on predicting the exons that will

eventually produce a protein, but some software programs also predict

promoters, poly-A sites, start and stop codons and others. Lastly, they are

trained on data for certain model organisms. Some of the most common model

organisms are Arabidopsis thaliana, Caenorhabditis elegans, Drosophila

melanogaster, Mus musculus, and Oryza sativa.

39

With all of these choices, what is the best gene prediction method? The

best method uses a known set of gene structures for training the model. The

prediction itself is then done on data that are not in the training set but are similar

to it. The gene prediction programs are much better at shorter sequences rather

than longer ones. The best approach is to apply multiple methods (Mount,

2004).

After using any gene prediction software, it is essential to verify the

predictions that are made. The most advanced gene prediction programs today

are only accurate at best 70% of the time.

Literature Review

Since genetic algorithms have not been used for gene prediction in

eukaryotes, the review of the literature will focus on general gene prediction

algorithms and on how genetic algorithms were used for gene prediction in

prokaryotes.

Initial Populations

The first phase of the genetic algorithm is to determine what the

individuals in the population will consist of and to generate an initial population

with some degree of randomness. The user will provide the genomic DNA

sequence. Three methods for generating an initial population will be

investigated. The first method needs no prior information about the coding and

non-coding regions of the sequence. The second and third methods need prior

40

information about the coding and non-coding regions that can either be obtained

by extrinsic homology methods or by intrinsic computational methods.

The first method is to divide the given sequence into smaller

subsequences by randomly selecting a starting point and randomly selecting a

length. The length will be dependent on the length of the entire DNA sequence.

There could be a parameter for controlling the maximum size of the random

length that is generated. For example, the parameter could state that the length

cannot be longer than 50% of the entire sequence.

0 800 1600 2400

Figure 3. A User Given Genomic DNA Sequence

Consider the user given genomic DNA sequence given in Figure 3 where

each box represents an exon and each set of three exons which are color-coded

form a separate gene. By randomly selecting a starting point and randomly

selecting a length, it is very likely that all of the exons belonging to one gene will

not end up in the same subsequence as shown in Figure 4. It is also likely that

exons will be cut so that their starting or ending points are not a part of the

subsequence as shown in Figure 5. The dependency of the fitness function on

having the entire structure of the gene together will be an essential factor.

41

Start: 1000, Length: 400 I ! Z H I—I
1000 1400

Figure 4. Last Exon from Gene 2 Missing

2000 2200

Figure 5. First Exon from Gene 3 Missing, Second Exon Missing Starting Point

A second method would be to randomly choose the number of exons that

are allowed in a subsequence. This method assumes that prior information

about the coding and non-coding regions of the sequence is known. There are

many ways to obtain this information, but the problem that the entire structure of

the gene might get destroyed still remains. Consider the user given DNA

sequence from Figure 3. The subsequences to be analyzed by the fitness

function in the initial population using this method could be:

Start: 1000, Exons: 2 I 1 3-CZZ~}-H
1000 1200

Figure 6. Only Two of the Three Exons from Gene 2 Are Included

Start: 600, Exons: 3 H—i 1 1—I—H

600 1200

Figure 7. Exon 3 from Gene 1 and Exons 1 and 2 from Gene 2 Are Included

42

A third method would be to randomly choose the maximum intergenic

length between the exons. This method also assumes that prior information

about the coding and non-coding regions is known. The minimum and maximum

intergenic length could be determined before-hand based on the genes of the

organism. This method could be utilized to keep the grouping of the exons

together and might aid in speeding up the process by avoiding huge gaps of

intergenic material. It will be beneficial to have a minimum and maximum for the

random intergenic length. Making the length too small will result in

subsequences with no exons and making the length too large will lead to the

whole sequence being processed in every individual.

Consider again the user given DNA sequence from Figure 3. Figure 8

shows an individual that could result when the intergenic length is 100. All of the

exons from Gene 2 remain intact, because the largest intergenic material is from

position 1225 to position 1275 which is less than 100. Figure 9 shows an

individual that could result when the intergenic length is 400. All of the exons

from Gene 1 and Gene 2 are included in the individual, because the largest

intergenic material between the two genes is from position 650 to position 1010

which is less than 400.

Intergenic Length: 100 I—i- I—CZJ—CZZZ]—I
1000 1225-1275 1400

Figure 8. All of the Exons from Gene 2 Remain Intact

43

Intergenic Length: 400 HT—[z~~T-n~i 1 h-r~~H H

200 650-1010 1400

Figure 9. All of the Exons from Gene 1 and Gene 2 Are Included

A similar method to the third method with the random intergenic length

was used by Jacob et al. (2005) when doing operon prediction in prokaryotes.

The overall accuracy of the prediction algorithm was quite good, but it is difficult

to determine if this was one of the main contributing factors. Also, operon

prediction in prokaryotes is significantly different from gene prediction in

eukaryotes, but it is definitely a method that should be examined further for

eukaryotic gene prediction.

Another important initial setting is to determine the best population size.

This is likely to be dependent upon the length of the original DNA sequence

provided by the user. Therefore, the population size parameter will be left as

configurable to the user.

Reproduction

The most well-known type of reproduction is the roulette wheel style of

reproduction that was discussed in Sections 2.2 and 4.2. It is likely that some

sort of elitism will be used to guarantee the survival of the best solutions.

For every generation, each individual in the population is judged according

to the fitness function. This will determine the chance of survival for each of

these individuals.

44

Crossover

After reproduction, pairs of individuals from the current population are

randomly chosen for crossover. The most common type of crossover is called

"One Point Crossover" which was discussed in Section 3.1.3. Although the

representation of the individuals for the MSA problem and this problem are very

different, the same concept can be used. "One Point Crossover" is the process

of dividing the sequences in the individuals at one random point, and then

swapping the first halves of the first individual with the first halves of the second

individual. Assume that the following two individuals are randomly selected for

crossover:

Parent 1: h - c z r a - a 1

Figure 10. Two Parent Individuals Selected for Crossover

In Parent 1, three exons that belong to the same gene are found. In

Parent 2, three exons that belong to the same gene are found where the gene in

Parent 2 is different than the gene in Parent 1. Now the random crossover point

for these sequences is generated. The random crossover point is indicated by

the dark vertical line. The first half of Parent 1 will be combined with the second

half of Parent 2. The first half of Parent 2 will be combined with the second half

of Parent 1. The result is two new individuals with mixed traits from their

45

parents:

New Child 1:

New Child 2:

Figure 11. Two New Children Individuals for the Next Generation

The first child will have a very high fitness value and will most likely move

on to future generations while the second child will have a very low fitness value

and will most likely die out in the next generation.

Mutation

Mutation is the last step in the process. The general idea behind the

mutation phase for this problem is to try to repair the beginnings and ends of

subsequences that may have been split in the middle of an exon. If a predicted

donor or acceptor site doesn't match the expected conserved sequence due to

an interruption to the sequence, the starting, or respectively ending, position of

the subsequence will be extended in order to include more of the sequence. The

hope is that the extension will lead to accurate donor and acceptor sites and

ultimately to full exons.

Fitness Function

The fitness function calculates how "good" an individual is. There are

many gene prediction programs available today. They use different

computational approaches, they focus on certain kinds of predictions, and they

46

S-^ZZKHT>

are modelled after specific organisms. This results in a complex matrix when

choosing the best gene prediction program for one's specific needs.

In this research, the model organism, Arabidopsis thaliana, will be studied.

There has already been a lot of research done on Arabidopsis, and there are

already databases which contain annotation information. This will make it easier

to verify the results of the predictions made by the genetic algorithm.

The study by Pavy et al. (1999) showed that GeneMark.hmm was the

most accurate gene prediction program for Arabidopsis. The original GeneMark

program evaluates ORFs and runs in parallel on both DNA strands. It takes into

consideration the codon frequency and the G+C vs. A+T content regions. It

creates inhomogeneous Markov Models for the coding regions of the DNA

sequences from a specific species and homogeneous Markov Models for the

non-coding regions of the DNA sequences from a specific species. The

algorithm computes and returns an aposteriori probability that a coding region is

correct (Borodovsky & Mclninch, 1993). This probability score will be used in the

genetic algorithm fitness function.

GeneMark.hmm incorporates some of the basic functionality from

GeneMark to predict coding and non-coding regions. It then uses a three-

periodic Markov Model of order five to exploit hexamer composition. It uses

hidden states to represent further characteristics of genes such as the acceptor

and donor sites, start and stop codons, and introns themselves (Borodovsky &

Mclninch, 1993). Unfortunately, GeneMark.hmm does not return any probability

47

or log-odds score for its predictions. An attempt to integrate GeneMark.hmm is

still given and a general approach to incorporating gene prediction software that

doesn't return confidence scores is proposed.

Since the last comprehensive study of gene prediction software was done

some eight years ago and since GENSCAN is constantly among one of the best

gene prediction programs, the fitness function will include predictions from

GENSCAN. GENSCAN returns both an overall confidence score for each exon

and a log-odds score. GENSCAN and GeneMark.hmm use similar approaches

to gene prediction. They both evaluate both strands in parallel, and use species

specific information about codon frequency and G+C vs. A+T content regions.

GENSCAN also uses three-periodic inhomogeneous fifth order Markov Models

for the coding regions of the DNA sequences (Burge & Karlin, 1997). Since

GENSCAN and GeneMark.hmm use similar techniques for gene prediction, they

will be used together to set the appropriate confidence scores for

GeneMark.hmm.

geneid uses a combination of Position Weight Matrices (PWMs) and

Markov Models for predicting gene structure. It first scans the sequence from

start to finish and uses PWMs to predict acceptor and donor sites and start and

stop codons. It then uses these predictions to find the exons of a gene. The

exons are scored using the scores from the PWMs in combination with the log-

likelihood ratios from a Markov Model for coding regions of DNA sequences from

a specific model organism (Parra, Blanco, & Guigo, 2000).

48

The fitness function of the genetic algorithm will use multiple gene

prediction programs that take similar and varying approaches to predict the gene

structure of sequences taken from the model organism Arabidopsis thaliana.

This approach of combining multiple gene prediction programs to work in parallel

has never been tried before.

Conclusion

Implementing a genetic algorithm for gene prediction has never been done

before. Some of the phases will experiment using new approaches and other

phases will use traditional, proven methods. The initial phase is completely

experimental, since none of the three approaches have ever been tested. The

third method described with the intergenic length has been used in operon

prediction for prokaryotes and might be a good approach for eukaryotes as well.

The traditional roulette wheel style reproduction with elitism will be used, and the

traditional "One Point Crossover" will be implemented. The mutation phase

introduces a new approach to assist in repairing interruptions in the sequences.

Finally, the possibility of using multiple industry standard gene prediction

programs in combination has never been tried before.

Gene Prediction Implementation

The implementation of a genetic algorithm that can be used for gene

prediction is presented in this section. A description of the approach that was

taken at each phase of the genetic algorithm will be given.

49

Initialization

The genetic algorithm starts out by reading in the file that contains the

user specified DNA sequence. The file should be in the standard FASTA file

format. The FASTA format can be used for both DNA sequences and amino acid

sequences. The individual nucleotides and amino acids must use their one letter

abbreviation e.g. "A" for Adenine, "G" for Guanine, "C" for Cytidine, and "T" for

Thymidine for nucleic sequences and "M" for Methionine, "L" for Leucine, "W" for

Tryptophan, etc. for amino acid sequences. Each sequence starts with a one

line description that starts with the ">" symbol. The description typically contains

an identifier and the source of the sequence that can be the database or the

genome that it was retrieved from or both. After the one line description, the

sequence begins on the next line. Each file may also include multiple

sequences. Whenever a ">" symbol is detected, it is assumed that a new

sequence is beginning. Figure 12 shows an example of a FASTA formatted file

for the AT1G05205 mRNA from Arabidopsis:

>gi|18390491|ref|NM_100399.1| Arabidopsis thaliana (AT1G05205) mRNA, complete cds
GCGTTTGAGATTTCACCAGGAGCAAGAGAAAGATGAGCGAGACGAGACCAGTGCCGAGGAGAGAGAGTCC
ATGGGGTTTACCGGAAGGTCACCGTGAGCCCAAAGCTCACCGCTGCAACGATCGTGCDTGAAGACGTTATC
CAGGCGTTATTCGAGGGAAACCCATTCAAGACAGTTCCAGGACCTTTCAAACTCTTCTACCGATGO?ATGC
GCTCTAAGCCAGGAGAGGAGCCAACAGAGCCATTCAAATACCTCGACCTGGAACCTCCAAAGAGAGAAGT
TAAAC T T GAAGAAGCAAAGC T T GAGT AAAGT GATAT T CAC T C C C T T T T T TAT T C C T GCATAC TTTTTAGC
TGAGCGTGTAAGCGCCATCACTGTGAa?a?TTAAGTTTACCTTCAATATGTGTCAACAACATCTTATTTTCT
CTTAATAAAATTGATACTCGGAGTTTC

Figure 12. FASTA Formatted File for AT1G05205 from Arabidopsis thaliana

The user can configure the directory location and name of the file that

should be evaluated. The main class of the algorithm creates the initial

population and loops through each phase of the genetic algorithm until a

50

termination condition is satisfied. The user can define the maximum number of

generations or the maximum number of generations where the highest fitness

value has not changed or both. The population size is also configurable to the

user along with a variety of other parameters that are detailed in Section 4.3.7:

Configuration Options.

Initial Populations

After the genetic algorithm has read and parsed the DNA sequence

specified by the user, the initial population is created. The individuals in a

population represent a possible solution to the problem. In this genetic algorithm,

the individuals of the population are subsequences of the initial DNA sequence

along with their predicted gene structure.

The initial individuals in the population are created using only a

subsequence of the original DNA sequence. Three methods for randomly

creating these subsequences were investigated. The first method needs no prior

information about the coding and non-coding regions of the sequence. The

second and third methods need prior information about the coding and non-

coding regions that were obtained using other gene prediction software. The

three methods for generating an initial population will be described in this section

along with their advantages and disadvantages.

Some gene prediction programs expect to read the sequences from a file

and instead of returning the predictions to the standard output, they write the

results to a file where the name of the file is the name of the input file with an

51

extension added to the end (e.g. "1st" is used by GeneMark and

GeneMark.hmm). In order to accommodate such gene prediction programs, the

original DNA sequence is read in from the user-specified file location and is used

to generate a file for each individual in the population. Each individual in the

population has to have a separate file, because the sequence for each individual

is only a sub-sequence of the original sequence. Each individual is given an

index number when it is created. The file that is generated has the index of the

individual inserted at the beginning of the file. If a user specifies "AT1G05205.fa"

as the name of the file that contains the original DNA sequence to be evaluated.

The files that would be generated for the individuals would have the names:

"0_AT1G05205.fa", "1_AT1G05205.fa", etc. When the gene prediction programs

are executed on the files, they create corresponding output files called

"0_AT1G05205.fa.lst", "1_AT1G05205.fa.lst", etc.

Completely random. The original sequence is obtained and for each initial

individual in the population, a random starting point and a random length are

generated. The individual will be initialized with the subsequence of the original

sequence starting at the random starting point and ending after the random

length.

The major advantage of this method is that no prior information about

coding and non-coding regions is necessary. On the other hand, by randomly

chopping up the sequence, the gene structure itself may be destroyed. At first it

seemed that this approach to generating the initial population was too

52

destructive. Gene prediction software relies heavily on the entire sequence

remaining intact. In the end, it was found that with a larger population size, all of

the individuals with a low fitness were quickly removed from the population, and

the completely random approach to generating the initial individuals was

sufficient. It is also the preferred approach, because no prior information about

the coding and non-coding regions is necessary. The next two methods only

allow the sequence to be cut in non-coding regions. Of course, this approach is

dependent on the gene prediction software itself that predicts where the coding

and non-coding regions are.

Random non-coding regions. The original sequence is obtained and a

predefined gene prediction software program is run once on the original

sequence. The user can specify which gene prediction software program should

be used in the configuration properties. All of the predictions that are returned

are marked as coding regions and the parts of the sequence before, after, and

between the coding regions are marked as non-coding regions. The sequence

can only be cut in a non-coding region. After the non-coding regions are

determined, each individual in the population is created in the following way: two

non-coding regions are randomly selected, within each non-coding region a

random cutting point is generated, the initial individual of the population will

contain the subsequence of the original sequence between the two random

points.

53

The advantage to this approach is that the predicted coding regions are

kept intact, but it could still be that the individual exons for predicted genes get

separated. The major disadvantage of this method is that information about

coding and non-coding regions must be known.

Random minimum intergenic length. The original sequence is obtained

and a predefined gene prediction software program is run once on the original

sequence to again determine coding and non-coding regions. A lower and upper

bound for the minimum intergenic length can be specified by the user in the

configuration properties file. Within this range, a random number will be

generated and used as the minimum intergenic length. All of the non-coding

regions where the sequence is shorter than the minimum intergenic length are

discarded except for the first and the last non-coding region that are always

retained. A cut is only allowed in a non-coding region that is larger than the

intergenic length that is specified. This will be done per individual so that there

will be a variety of individuals where the minimum intergenic length is possibly

different for each one, but they are all within a pre-defined range.

The major advantage of this method is that the individual exons of the

genes are likely to be a part of one individual. This allows the genetic algorithm

to work on one entire gene at a time. The intergenic length can be specified as

appropriate for the model organism that is being worked on. The major

disadvantage of this method is again that information about coding and non-

coding regions must be known.

54

Fitness Functions

With genetic algorithms, the most critical part is how to score the fitness of

a given individual in the population. The idea behind the fitness function for this

implementation was to choose multiple existing gene prediction programs that

use similar and different computational approaches for a selected model

organism and to combine their results. GeneMark, GeneMark.hmm, GENSCAN,

and geneid all use Markov Models to some degree, but they vary the way they

are used. They also use other computational methods to find further

characteristics of the gene structure ranging from extrinsic homology methods to

Position Weight Matrices (PWMs). The tests for this thesis were run on the

model organism, Arabidopsis thaliana.

Gene prediction programs usually return an overall confidence score or a

log-odds score or both. The user can specify the scoring mechanism that they

prefer to use in the configuration properties. The results of the tests in this thesis

did not vary when using one scoring mechanism versus the other. Unfortunately,

some gene prediction software programs do not provide confidence scores in

their output. GeneMark.hmm is an example of a program that does not return a

confidence score for each predicted exon. An attempt to incorporate

GeneMark.hmm was made, and a generic approach to adding such programs

has been provided.

The user can configure one or more of the gene prediction software

programs to be used in the fitness function. The user can also specify the gene

55

prediction software program that should be used to set the confidence scores for

the programs that don't return a confidence score. If a program does not return a

confidence score and the exon that it predicts matches a predicted exon from a

program that does return a confidence score, then the confidence score for the

program that does not return one is set to the confidence score of the program

that does return one. When setting confidence scores for a program, it is

recommended that the scores from programs that use similar computational

approaches be used.

The fitness function starts by finding all of the predictions for the sequence

of the individual from every user specified gene prediction program. It then

creates a superset of the predictions. If two prediction programs generate the

same exon, then the one with the higher score will be added to the superset.

Any predictions made by one program and not by another will be added to the

superset.

GENSCAN. GENSCAN is freely available for academic use. There is an

academic license agreement form on the GENSCAN web page, and after

submitting the form, one can download the appropriate executable. GENSCAN

has a parameter file for certain organisms. The parameter file contains

information about the characteristics of the organism. It contains information

about the gene density, the number of exons per gene, the hexamer composition

of coding regions vs. non-coding regions (Burge, 1998) to name a few. The

56

"Arabidopsis.smat" parameter file was used when running the command-line

version of GENSCAN.

The following command was executed from within Java to receive the

predictions from GENSCAN:

/usr/bin/genscan /usr/lib/GENSCAN/Arabidopsis.smat <FileName>

Figure 13 shows a sample output file from GENSCAN:

Predicted genes/exons:

Gn.Ex Type S .Begin . . .End .Len Fr Ph I/Ac Do/T CodRg P Tscr . .

1.01 I n i t + 33 143 111 2 0 70 17 65 0.795 2.86
1.02 I n t r + 511 590 80 0 2 30 75 68 0.876 2.13
1.03 Term + 846 930 85 0 1 74 39 102 0.923 5.05
1.04 PlyA + 1046 1051 6 1.05

Figure 13. GENSCAN Sample Output

The output has thirteen columns that provide detailed information about the

predicted genes and or exons. The information that is essential for this genetic

algorithm is the start and end indexes located in the fourth and fifth columns

labeled "Begin" and "End" and confidence scores. The overall probability that the

exon is correctly predicted is in the twelfth column labeled "P...." and the log-

odds score is in the thirteenth column labeled "Tscr" for "Total Score".

GENSCAN interprets the probability scores as follows (Burge, n.d.):

57

1) Very high probability GENSCAN exons (e.g., P > 0.99) are almost always

exactly correct

2) Moderate- to high-probability GENSCAN exons (e.g., 0.50 < P < 0.99) are

exactly correct most of the time, with the likelihood of exact correctness

only slightly lower on average than the stated probability.

3) Low-probability GENSCAN exons (P < 0.50) are not reliable and should

be treated with caution.

Figure 14 shows a complete explanation of the table (Burge, n.d.):

Figure 14. Explanation of GENSCAN Output

The GENSCAN executable is run and the predictions are returned to the

standard output. The output is parsed and Prediction objects are created for

every exon that was returned with a probability score or a log-odds score. Note

that Poly-adenine Tails never have a probability score and are thus ignored when

58

the user specifies that the probability scores should be used. On the other hand,

it does return a log-odds score that can be used if this scoring mechanism is

selected.

geneid. geneid is freely available under the GNU General Public License,

geneid has a parameter file for most model organisms. The parameter file

contains information that is used by the Position Weight Matrices (PWMs) for

generating acceptor and donor sites and start and stop codons. For example, it

includes cut-off points and weights for exons. It also contains transition

probabilities for the different characteristics of a gene that are used by the

Markov Model. The "arabidopsis.param.Aug_4_2004" parameter file was used

when running the command-line version of geneid.

The following command was executed from within Java to receive the

predictions from geneid:

/usr/bin/geneid -vP /usr/lib/geneid/arabidopsis_20040804.param <FileName>

Figure 15 shows a sample output file from geneid:

Figure 15. geneid Sample Output

Figure 16 shows the description of each of the geneid columns (Genome

Bioinformatics Research Lab, n.d.):

59

Description of columns (geneid format)

Type

Positions

Strand

Type of predicted exon: First, Internal, Terminal or Single

Start and finish positions of current exon

Score (reliability) of this exon

Reading sense: forward or reverse

Left uncomplete codon length in this exon

Right uncomplete codon length in this exon

Scores (log likelihood) from:

• Score for both signals defining exon
• Protein coding potential (exon content)
• Homology information score (SR regions): provided by user

Amino acids corresponding to the exon translation

Gene identifier

Figure 16. Explanation of geneid Output

As shown in Figures 14 and 15, geneid returns the start and end indexes

located in the second and third columns. The log-odds score corresponding to

the "Protein coding potential (exon content)" is returned in the eighth column and

no overall probability score is returned.

60

The geneid executable is run and the predictions are returned to the

standard output. The output is parsed and Prediction objects are created for

every exon that was returned with a log-odds score.

GeneMark and GeneMark.hmm. GeneMark and GeneMark.hmm are also

freely available for academic purposes. After faxing in a signed license

agreement, an FTP site with a user and password was provided where the

program could be downloaded. GeneMark and GeneMark.hmm provide training

sets for many model organisms including Arabidopsis. The "at_lo_3.mat" and

"a_thaliana.mod" training sets were used when executing the command-line

version of GeneMark and GeneMark.hmm respectively.

The following command was executed from within Java to receive the

predictions from GeneMark:

/usr/bin/gm -Ix -m /usr/lib/gm/at_lo_3.mat <FileName>

Figure 17 shows a sample output from GeneMark:

61

List of Open reading frames predicted as CDSs, shown with alternate starts

(regions from start to stop codon w/ coding function >0.50)

Left Right DNA Coding Avg Start

end end Strand Frame Prob Prob

33 176 direct fr 3 0.51

51 176 direct fr 3 0.51

List of Regions of interest

(regions from stop to stop codon w/ a signal in between)

LEnd REnd Strand Frame

6 176 direct fr 3

List of Protein-Coding Exons

(regions between acceptor and donor site w/ coding function >0.500000)

Left Right
End End Strand Frame Prob

64 123 direct fr 3 0.9330
66 94 0.9334

Figure 17. GeneMark Sample Output

As shown in Figure 16, GeneMark returns a list of "Protein-Coding Exons"

with the probability that they are accurate. It also returns the start and end

indexes located in the first and second columns labeled "Left End" and "Right

End" and the overall confidence score in column four labeled "Prob". Note that

GeneMark does not return any log-odds scores, therefore it should only be used

in combination with other programs that also return overall confidence scores.

The GeneMark executable is run on the specified file and the program

writes the output to a file with the same name with an ".1st" extension added to

62

the end of it. The output file is then parsed and Prediction objects are created for

every exon that was returned with a probability score.

The following command was executed from within Java to receive the

predictions from GeneMark.hmm:

/usr/bin/gmhmme3 -m /usr/lib/gmhmme3/a_thaliana.mod <FileName>

Figure 18 shows a sample output file from GeneMark.hmm:

Predicted genes/exons

Gene Exon Strand Exon

f

1 1 +
1 2 +
1 3 +

Type

Initial
Internal
Terminal

Exon Range

33 143
511 590
846 930

Exon
Length

111
80
85

Start/End
Frame

1 3
1 2
3 3

Figure 18. GeneMark.hmm Sample Output

As shown in Figure 18, GeneMark.hmm returns the start and end indexes

located in the fifth and sixth columns labeled "Exon" and "Range". Notice that

GeneMark.hmm does not return any probability or log-odds scores. Since

GENSCAN and GeneMark.hmm use similar computational approaches, the

scores from GENSCAN can be used to set the scores for GeneMark.hmm.

The GeneMark.hmm executable is run on the specified file and the

program writes the output to a file with the same name with an ".1st" extension

added to the end of it. The output file is then parsed and Prediction objects are

63

created for every exon that was returned and prediction scores are assigned

from a comparable gene prediction program.

Scoring matrix. The matrix shown in Table 3 summarizes the scores that

the gene prediction software provides.

Table 3. Scoring Matrix for Gene Prediction Software Programs

Probability
Scores

Log-odds
Scores

GENSCAN

Yes

Yes

geneid

No

Yes

GeneMark

Yes

No

GeneMark.hmm

No

No

Source: Author's Research

Currently the user can choose to use a maximum of three different

programs in parallel. If they choose to use probability scores, they can use

GENSCAN, GeneMark, and GeneMark.hmm where probability scores for

GeneMark.hmm can be assigned from GENSCAN or GeneMark when the

predicted exons match. If the user chooses to use log-odds scores, then they

can use GENSCAN, geneid, and GeneMark.hmm where the log-odds scores for

GeneMark.hmm can be assigned from GENSCAN or geneid when the predicted

exons match.

Reproduction

Reproduction is the first step to be performed in the genetic algorithm.

Each individual in the population is given a percentage chance of survival equal

to its relative fitness. Every individual has at least some probability of being

selected. A form of elitism is also used: all individuals with the maximum fitness

scored are automatically added to the next generation.

64

Crossover

After reproduction, two individuals from the population are randomly

chosen for crossover. During crossover there are many situations that can

occur. There are three cases where individuals are added to the next generation

unchanged. Since the individuals are randomly selected, it could be that the

same individual is selected twice. In this case, both of the individuals are simply

added to the next generation. Crossover is only performed a certain percentage

of the time. The user can specify how often crossover should happen as a

percentage. Crossover percentages usually range around 70%, but they can

vary depending on the type of problem. If two individuals are selected, but the

random crossover percentage for these two individuals is greater than the

specified crossover percentage, then the two individuals are added to the next

generation without any changes. If the two randomly selected individuals don't

have any overlapping of the sequence because possibly one individual only

covers the beginning of the user given sequence and the other individual only

covers the end of the sequence, then the two individuals are added to the next

generation untouched.

There are two situations where crossover occurs: when the individuals

partially overlap or when one individual is completely contained within another

individual. When the individuals only partially overlap, then the randomly

generated crossover point has to be within the region where they overlap. When

the individuals completely overlap, then the randomly generated crossover point

65

has to again occur in the region where they overlap which is between the start

and end index of the smaller individual. After the random crossover point has

been determined, the first and second halves of the individuals are swapped.

Mutations

Mutations occur at a very low rate. The idea here is to randomly add parts

of the sequence to the start or end of the sequence. This is especially beneficial

if the sequence only contains part of an exon at the beginning or end. By adding

part of the sequence to the start or end, the chance that an exon will become

whole again is increased.

First, it is randomly decided if the sequence should be extended at the

start or the end. If the start is chosen, then a random point is generated from

zero to the start of the individual. The algorithm checks to see if the random

point is in a coding or non-coding region. It loops until it finds a random point in a

non-coding region and then adds all of the sequence from the random point to

the original start index to the individual. Similarly, if the end is chosen to be

extended, then a random point is generated from the end of the individual to the

end of the original sequence. The algorithm again loops until it finds a random

point in a non-coding region and then adds all of the sequence from the end of

the individual to the random point to the individual. In this way, sequences of the

individuals are extended either at the start or end.

66

Termination Conditions

After a population has gone through reproduction, crossover and mutation

and a new generation has been formed, the new generation is evaluated to see if

the algorithm should halt. The genetic algorithm finds the individual with the

maximum fitness. If the fitness is greater than the maximum fitness thus far, then

it is recorded and the algorithm continues. If the maximum fitness is the same as

the maximum fitness thus far, then the count of the number of generations with

this maximum fitness is incremented. If the number of generations with this

maximum fitness is equal to the "UnchangedRoundsNeeded" parameter that the

user may specify, then the algorithm terminates. If the parameter is not

specified, then the algorithm is run as many times as specified by the

"GenerationSize" parameter. These parameters can be used separately or in

combination. The goal is to allow the algorithm to reach some kind of stable

point.

Configuration Options

The user is allowed to specify a variety of parameters to influence the

behavior of the genetic algorithm. The constructor for predictor.PredictorMain

takes a Property object as a parameter. Here is a sample file:

InitialSequencePath="/home/user/workspace/GenePrediction/co

de/cfg/sequences/";
InitialSequenceFileName="ATlG05205_l.txt";
PopulationSize="10";
GenerationSize="5";
UnchangedRoundsNeeded="5" ;
ProbabilityCrossover="75" ;
ProbabilityMutation="5";

67

GenscanExecutablePath="/usr/bin/genscan";
GenscanModelPath="/usr/lib/GENSCAN/Arabidopsis.smat";
GeneMarkExecutablePath="/usr/bin/gm";
GeneMarkModel="/usr/lib/gm/at_lo_3.mat";
GeneMarkHmmExecutablePath="/usr/bin/gmhmme3";
GeneMarkHmmModel="/usr/lib/gmhmme3/a_thaliana.mod";
GeneIdExecutablePath="/usr/bin/geneid";
GeneIdModel="/usr/lib/geneid/arabidopsis_20040804.param";

// 0=Completely Random, l=Non-Coding Regions, 2=lntergenic
Length
InitialPopulationType="0";

// 0=Genscan, l=GeneMark, 2=GeneId
NonCodingGenePredictionSoftware="0";
IntergenicLengthLowerBound="50";
IntergenicLengthUpperBound="100";

FitnessUseGenscan="0";
FitnessUseGeneMarkHmm="0";
FitnessUseGeneMark="0";
FitnessUseGeneId="l";

Analysis of Results

In this section two tests will be evaluated. The actual resulting predictions

are only as good as the gene prediction programs themselves, but the results will

demonstrate the advantage of using multiple gene prediction programs in

parallel.

Single Gene Test

This test was done on a small DNA sequence called "AT1G05205.1" from

Arabidopsis thaliana. The DNA sequence itself was shown in Figure 12 as an

example of a FASTA formatted file. The gene has three exons, two introns, and

a 5' Untranslated Region (UTR) and a 3' UTR. Figure 19 shows the GBrowse

68

visualization of the gene from The Arabidopsis Information Resource (TAIR)

(n.d.):

Protein Coding Gene Models
AT1G05205.1

Figure 19. GBrowse Visualization of AT1G05205.1

The dark blue boxes represent the coding regions, the lines between the

coding regions are the introns, and the 5' and 3' UTR regions are represented by

the light blue boxes. Figure 20 shows a summary of the gene features from the

TAIR website:

Gene Feature type coordinates annotation source date

ORF 33-930

5" utr 1-32

coding_region 33-143

coding_region 511-590

codingjegion 846-930

exon 1-143

intron 144-510

exon 511-590

intron 591-845

exon 846-1069

3'utr 931-1069

Figure 20. Gene Features for AT1G05205.1

The different characteristics of the gene are specified. The labeled exons in

Figure 20 include the 5' and 3' UTR regions. Most gene prediction programs do

not include the 5' and 3' UTR regions in their predictions. The exons that they

predict correspond to the coding regions that are listed above which are the

69

regions that actually encode for a protein. The coordinates for the coding regions

are Exon 1: 33-143, Exon 2: 511-590, Exon 3: 846-930.

The genetic algorithm was run on this sequence with the following

parameters:

PopulationSize="200";
GenerationSize="10";
UnchangedRoundsNeeded="3";
ProbabilityCrossover="75";
ProbabilityMutation="5";

The log-odds scores from GENSCAN and geneid were used in parallel

and the initial population was created using the "Completely Random" method.

Figure 21 shows the predictions obtained from GENSCAN:

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..

1.01 Init + 33 143 111 2 0 70 17 65 0.795 2.86
1.02 Intr + 511 590 80 0 2 30 75 68 0.876 2.13
1.03 Term + 846 930 85 0 1 74 39 102 0.923 5.05
1.04 PlyA + 1046 1051 6 1.05

Figure 21. GENSCAN Predictions for AT1G05205.1

Notice that GENSCAN makes all of the correct predictions and returns the log-

odds scores for the predictions. Figure 22 shows the predictions obtained from

geneid:

Internal 20 143 3.82 + 1 0 1.47 1.23 17.33 0.00 AA 1:42 >AT1G052 05. 1_1
Internal 511 590 2.49 + 0 2 5.42 2.29 4.22 0.00 AA 43:69 >AT1G05205.1_1
Terminal 846 930 3.23 + 1 0 4.46 0.00 12.38 0.00 AA 69:97 >AT1G0S2 05.1_1

Figure 22. geneid Predictions for AT1G05205.1

Notice that geneid correctly predicts the second and third exons but the start

coordinate for the first exon is incorrect. Also notice the log-odds scores for the

70

exons in the eighth column. The second exon from geneid has a log-odds score

of 5.42 while the second exon from GENSCAN has a log-odds score of 2.13. All

of the other log-odds scores are higher from GENSCAN. Since the superset of

exons with the highest scores is used, the resulting solution from the genetic

algorithm will contain the second exon from geneid. Figure 23 shows an

individual with the maximum fitness from the final population from the genetic

algorithm that displays this result:

1.01 Init + 33 143 111 0 0 81.6 3.06
Internal + 511 590 0 2 2.49

1.03 Term + 846 930 85 1 1 92.7 5.05
1.04 PlyA + 1046 1051 6 1.05
Indexes(29,1068) Fitness: 1458

Figure 23. Genetic Algorithm Predictions for AT1G05205.1

The "fittest" individual had a start index of 29 and an end index of 1068, and all of

the exons that were predicted came from the GENSCAN predictions except for

the second exon which came from the geneid predictions as expected.

With small sequences, all of the gene prediction programs perform quite

well. Even though the most destructive method for creating the initial population

was used, the genetic algorithm stabilized only after five generations. With a

population size of 200, a generation size often, and the number of unchanged

rounds at three, the genetic algorithm stopped after just five generations and

already had 15 individuals with the maximum fitness. The start and end indexes

of the sequences varied slightly, but every individual started before the first exon

and ended after the last exon and made all of the correct exon predictions.

71

Multiple Gene Test

Another test was done on the first 10,000 nucleotides from Chromosome 1

from Arabidopsis thaliana. There are two genes in the first 10,000 nucleotides

where one of the genes has two variations due to alternative splicing. The first

gene called "AT1G01010.1" has six exons, five introns, and the 5' and 3' UTRs.

The second gene called "AT1G01020" has two variations "AT1G01020.1" and

"AT1G01020.2". The second gene is also located on the reverse strand of the

DNA which can be seen by the direction of the arrows in Figure 22. This means

that the 5' UTR is located on the right end and the 3' UTR is located on the left

end. "AT1G01020.1" has nine exons, eight introns, and the 5' and 3' UTRs.

"AT1 G01020.2" has seven exons, seven introns, and the 5' and 3' UTRs where

the 3' UTR starts before the last intron and continues to the end. Figure 24

shows the GBrowse visualization of the first 10,000 nucleotides from

Chromosome 1 from TAIR:

Prote in Coding Gene Models
flTlGOlOlO.l _ fiTlGOlOgO .1 _ ^ ^ ^ ^ ^

flTlG01020.2 . _ . _ • _ _ ̂ _ J J ^ _

Figure 24. GBrowse Visualization of Chromosome 1 from 1 to 10,000

Figure 25 shows a summary of the gene features for "AT1G01010.1" from the

TAIR website:

72

Gene Feature © type

ORF
5'utr
coding_region
coding.
coding.
coding.
coding.

.region

.region

.region

.region
coding_region
exon
intron
exon
intron
exon
intron
exon
intron
exon
intron
exon
3'utr

coordinates
130-2000
1-129
130-283
366-646
856-975
1076-1465
1544-1696
1809-2000
1-283
284-365
366-646
647-855
856-975
976-1075
1076-1465
1466-1543
1544-1696
1697-1808
1809-2269
2001-2269

annotation source date

Figure 25. Gene Features for AT1G01010.1

Figure 26 shows a summary of the gene features for "AT1G01020.1" from the

TAIR website:

73

Gene Feature 9 type
ORF
5'utr
coding_region
coding_region
cocling_region
coding_region
coding_region
coding_region
coding_region
coding_region
coding_region
exon
intron
exon
intron
exon
intron
exon
intron
exon
intron
exon
intron
exon
intron
exon
intron
exon
3'utr

coordinates
72-1823
1-71
72-167
274-321
413-502
751-796
903-976
1089-1174
1288-1354
1506-1581
1669-1823
1-167
168-273
274-321
322-412
413-502
503-750
751-796
797-902
903-976
977-1088
1089-1174
1175-1287
1288-1354
1355-1505
1506-1581
1582-1668
1669-1948
1824-1948

annotation source date

Figure 26. Gene Features for AT1 G01020.1

Figure 27 shows a summary of the gene features for "AT1G01020.2" from the

TAIR website:

74

Gene Feature © type
ORF
5'utr
coding.
coding.
coding.

_region
.region
.region

coding_region
coding. .region
coding_region
coding.
exon
intron
exon
intron
exon
intron
exon
intron
exon
intron
exon
intron
exon
intron
exon
3'utr
3' utr

.region

coordinates annotation source date
72-1423
1-71
72-167
274-321
413-502
751-796
903-976
1089-1174
1288-1423
1-167
168-273
274-321
322-412
413-502
503-750
751-796
797-902
903-976
977-1088
1089-1174
1175-1287
1288-1581
1582-1668
1669-1948
1424-1581
1669-1948

Figure 27. Gene Features for AT1G01020.2

Again, only the coding regions that are shown for the genes are of interest. The

genetic algorithm was run on this sequence with the following parameters:

PopulationSize="50";
GenerationSize="10";
UnchangedRoundsNeeded="3";
ProbabilityCrossover="75";
ProbabilityMutation="5";

75

The log-odds scores from GENSCAN and geneid were used in parallel

and the initial population was created using the "Completely Random" method.

Figure 28 shows the predictions obtained from GENSCAN:

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..

1.
1.
1.
1.
1.
1.
1.
1.

2.
2.
2.
2.
2.
2.

01
02
03
04
05
06
07
08

06
05
04
03
02
01

Init
Intr
Intr
Intr
Intr
Intr
Term

PlyA

PlyA
Term
Intr
Intr
Intr
Init

+
+
+
+
+
+
+
+

-
-
-
-
-
-

264
3641
3996
4486
4706
5174
5439
5872

6396
6594
7232
8325
8464
8666

327
3 913
4276
4605
5095
5326
5630
5877

6391
6428
7157
8236
8 417
8625

64
273
281
12 0
390
153
192

6

6
167
76
90
48
42

2
0
1
0
1
1
2

1
2
0
1
2

1
0
2
0
0
0
0

2
1
0
0
0

51
59
43
39
83
74
92

-62
66
70
36
86

82
87
5
89

103
9

48

36
77
98
26
65

27
352
225
113
455
191
152

190
2

30
117
20

0.
0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.

,710
, 991
954
997
3SS
999
994

, 13 9
. 17 8
, 966
, 897
. 802

4.
33.
10.
11.
45.
14.
13.
1.

-3.
0.
0.
6.
3.
4.

,76
,79
97
27
49
, 15
, 04
, 05

, 84
, 90
, 07
, 47
,26
, 97

Figure 28. GENSCAN Predictions for Chromosome 1 from 1 to 10,000

GENSCAN falsely predicts exon 1.01. The start of exon 1.02 is predicted at

3641 but the real start is at 3761. The end of exon 1.02 is correctly predicted.

The rest of the exons for gene one are correct.

GENSCAN predicts the start of exon 2.01 correctly, but not the end. It

correctly predicts exons 2.02 and 2.03, but then it misses four exons. Exon 2.04

is also correct, but the last exon is predicted at 6428-6594 when it really is at

6914-7068.

Figure 29 shows the predictions obtained from geneid:

76

Gene 1
Internal
Internal
Internal
Internal
Internal
Terminal

Gene 2
Single

Gene 3
Terminal
Internal
Internal
Internal

First

(Eorward
3686
3996
4486
4706
5174
5439

(Reverse
6428

(Reverse
7208
7564
8236
8417
8625

. 6 exons. 455 aa
3913
4276
4605
5095
5326
5630

5.02
8.21
1.20
9. 17
3. 69
3. 06

. 1 exons. 76
6655 6. 03

. 5 exons. 97
7232
7649
8325
8464
8666

-1.30
0.71
1.59
2. 44
1. 06

+ 2
+ 2
+ 0
+ 0
+ D
+ 0

aa.
- 0

aa.
- 1
- 0
- 0
- 0
- D

Score
1 -0
0 5
0 0
0 4
0 3
D 3

Score =
0 0

Score =
0 0
2 3
0 4
0 1
0 2

= 30
75
5B
22
36
91
46

= 6.
00

= 4.
00
11
51
50
25

36
2. 14
1. Bl
2.20
4. 64
0. 68
0. 00

03
-1. 95

51
5. 13
2. 9B
4.31
3. 94
3.56

23
21
10
20
13
13

32

-1
2

-0
B
3

18
19
37
90
45
75

27

92
17
40
30
65

0
0
0
0
0
0

0

0
0
0
0
0

00
00
00
00
00
00

00

00
00
00
00
00

AA
AA
AA
AA
AA
AA

AA

AA
AA
AA
AA
AA

1
77

171
211
341
392

1

89
61
31
15
1

77
17 0
210
340
391
455

76

97
89
60
30
14

Chrl
Chrl
Chrl
Chrl
Chrl
Chrl

Chrl

Chrl
Chrl
Chrl
Chrl
Chrl

1.
1.
1.
1.
1.
1.

1.

1.
1.
1.
1.
1.

.10000

. IOOOO"

. IOOOO"

. ioooo"

. ioooo"

. ioooo]

. 10000_

.10000

. ioooo"

. ioooo"

. ioooo"

.ioooo"

1
~1
"l
"l
~1
"l

_2

3
3
"3
3
3

Figure 29. geneid Predictions for Chromosome 1 from 1 to 10,000

The start of the first exon is predicted at 3686 but the real start is at 3761. The

end of the first exon is correctly predicted. The rest of the exons for gene 1 are

correct.

For the second gene, geneid makes a false single exon prediction under

"Gene 2". Under "Gene 3", the first three exons are correctly predicted. At this

point, geneid finds an exon that GENSCAN missed. The last exon has the

correct end position, but the start is 7208 instead of 7157.

Figure 39 shows an individual with the maximum fitness from the final

population from the genetic algorithm:

77

1. 01
1. 02
1. 03
1.04
1. 05
1. 06
1.07
1.08
2 . 06
2 . 05
2 . 04

2 . 03
2 . 02
2 . 01

I n i t
I n t r
I n t r
I n t r
I n t r
I n t r
Term
PlyA
PlyA
Term
I n t r
I n t e r n a l
I n t r
I n t r
I n i t

+
+
+
+
+
+
+
+
-
-
-
-
-
-
-

2 6 4
3641
3996
4486
4706
5174
5439
5872
6391
6428
7157
7564
8236
8417
8625

3 2 7
3913
4276
4605
5095
5326
5630
5877
6396
6594
7232
7649
8325
8464
8666

64
2 7 3
2 8 1
12 0
3 9 0
153
192
6
6
167
7 6

90
48
42

0
1
2
1
2
2
0

2
0
0
1
2
0

1
0
2
0
0
0
0

2
1
2
0
0
0

9 1 . 10
98 . 9
95 .39
9 9 . 7
99 . 9
99. 9
9 9 . 4

13 . 9 0
17. 9

9 6 . 7
89. 8
80 .30

4 . 7 6
3 3 . 7 9
10. 97
1 1 . 2 7
45 . 49
14. 15
1 3 . 04
1. 05
- 3 . 84
0 .90
0. 07
3 . 11
6 .47
3 . 2 6
4. 97

Indexes(233,9528) Fitness: 15330

Figure 30. Genetic Algorithm Predictions for AT1G05205.1

The genetic algorithm returns the superset of the predictions from GENSCAN

and geneid. For the first gene, it returns the first falsely predicted exon from

GENSCAN. All of the scores from GENSCAN are higher than those returned

from geneid, so all of the GENSCAN predictions are returned.

For the second gene, again all of the scores from GENSCAN are higher

than those returned from geneid, so all of the GENSCAN predictions are

returned. Here, the true benefit of being able to combine the results from

multiple gene prediction programs can be seen. The correctly predicted fourth

exon from geneid was missed by GENSCAN, and the genetic algorithm returns it

as part of the final solution.

Conclusion

Genetic algorithms provide a flexible platform for integrating multiple gene

prediction programs and using them in parallel. Gene prediction programs use

78

various computational approaches and by combining the results, better

predictions can be made.

As gene prediction programs continue to improve, the necessity for

defined input and output interfaces is becoming more popular, geneid now uses

Gene Finding Format (GFF) which is a standard format for describing gene

structure for its output. As more and more gene prediction programs standardize

their input and output, it will be easier to integrate them into a hybrid system.

The next chapter will present the third application of genetic algorithms in

bioinformatics that was studied in this thesis. Unlike the first and second

applications, this application is not aimed at "solving" a problem. Rather the

focus is in on modeling various environments and how they change over time.

Population Genetics

Population Genetics is the study of allele frequency distribution and

fluctuation due to the four factors that define evolution: natural selection, genetic

drift, mutation, and gene flow. In order to understand some of the concepts

behind population genetics, a brief review of some basic biological principles is

given.

A character is some kind of attribute that allows one organism to be

compared to another. For example, the color of the petals of a flower is a

character. A trait is a distinct phenotypic character of an organism that may be

inherited, environmentally influenced, or a combination of the two. When

considering the color of the petals of a flower character, the traits would be the

79

actual colors that can be seen such as red, orange, or yellow. A single gene

controls the color of the petals, even though the alleles that make up the gene

can be different. One allele-pair might result in red petals while another might

result in yellow petals. The resulting color depends on the two alleles that the

gene has and how they interact with each other.

The genotype of an individual describes the genetic make-up, the DNA, of

the individual. Diploid organisms like human beings, contain two copies of each

chromosome - one from the mother and one from the father. The genes contain

one allele from one chromosome and one allele from the other. Alleles can also

be dominant or recessive. For example, there are 3 possible genotypes for some

gene that has two alleles: dominant R and recessive r. The 3 possible genotypes

are RR (homozygous dominant), Rr (heterozygous), and rr (homozygous

recessive).

The phenotype is any observable trait of an individual. For the three

genotypes listed above, let R be the dominant allele for red flower petals, then

both genotypes RR and Rr will produce the phenotype for red flower petals.

Some phenotypes are controlled entirely by the individual's genes. Others are

controlled by genes but are also influenced by extra-genetic or environmental

factors.

The interaction between genotypes and phenotypes can be thought of as

the genotype plus environmental factors which will give you the phenotype. The

genotype is known by looking at the DNA, while the phenotype is known by

80

observing an outward appearance of an organism. In 1974, Lewontin proposed

the goal of mapping "genotypic space" and "phenotypic space" as follows:

The challenge of a complete theory of population genetics is to provide a

set of laws that predictably map a population of genotypes (G1) to a

phenotype space (P1), where selection takes place, and another set of

laws that map the resulting population (P2) back to genotype space (G2)

where Mendelian genetics can predict the next generation of genotypes,

thus completing the cycle.

Gl -** Pl _ ^ p 2 -& Q2 ^Ti G[~~> • ••

The goal is, of course, gigantic, but small steps are being taken every day.

Natural selection is the process where traits that are favorable in

individuals are inherited and increase in successive generations while traits that

are unfavorable will decrease. Genetic drift is the tendency of an allele

distribution in a population with a limited size to statistically alter over time due to

random events. The fluctuation of the distribution may cause an allele and the

traits that are made up of the allele to increase or decrease over successive

generations.

The goal of this project was to be able to model population genetics for

unpredictable environments. The underlying question is: can an improvement to

population forecasts be made based on past environmental fluctuations on

natural selection and their affects on population genetics? The first goal of this

project was to model a stable environment where the selection on the alleles

81

remains constant. The second goal was to model an environment where the

selection on one or more alleles fluctuates over time while the other alleles

remain constant. The third goal was to model the hitch-hiking effect. If the

selection on one or more alleles fluctuates over time and is not paired with

certain other alleles, then the prediction is that the alleles that do not pair with the

fluctuating allele will increase over time while the alleles that do pair with the

fluctuating allele will decrease over time.

Population Genetics Implementation

The implementation of a genetic algorithm that can be used for modeling

different environments in population genetics is presented. In this section, a

description of the algorithm will be given.

Initialization

The genetic algorithm starts out by reading in the configuration properties

that the user specifies for the situation that they want to model. One of the most

important parameters is the number of alleles that they want to model. The user

can also define the standard genetic algorithm parameters such as the

population size and the maximum number of generations or the maximum

number of generations where the highest fitness value has not changed or both.

The complete list of parameters that is available is detailed in Section 5.1.8:

Configuration Options.

82

The main class of the algorithm starts out by creating the initial population

and looping through each phase of the genetic algorithm until a termination

condition is satisfied.

Initial Populations

After the genetic algorithm has read in the user specified parameters, the

initial population is created. The user specifies the number of alleles that they

want to model. The individuals in the population are diploid organisms that

contain two copies of each chromosome - one from the mother and one from the

father. The individuals represent traits or, for diploid organisms, pairs of alleles in

the population. It is assumed that all combinations of allele pairs are possible

unless the user specifies that certain pairs are not possible in one of the

configuration parameters. For each population, the frequency of the individuals

or traits is monitored along with the frequency of the single alleles themselves.

The user can specify that certain combinations of alleles are not possible

with the "Nonpairs" parameter. The user can also specify a comma separated

list of allele pairs that are not allowed to combine for a trait. The allele pairs

themselves are separated by a hyphen. If allele "0" cannot pair with either allele

" 1 " or allele "2", then the parameter would be: "Nonpairs" = "0-1, 0-2";

There are two methods for randomly creating the initial population. The

first method assumes that the frequency of each allele is initially equal. The

second method creates a random distribution of the alleles so that the initial

frequencies of the alleles are unequal. The first method is useful for initially

83

testing the situation that one wants to model. The second method is more

realistic to what is seen in nature where the frequencies of alleles will differ.

Equal allele frequencies. The user specifies the number of alleles that

they want to model. Each individual will be randomly assigned two alleles - one

from the mother and one from the father. The overall distribution of the allele-

pairs will be equal and the overall distribution of alleles will be equal.

If the user specifies that the number of alleles that they want to model is

four, then the genetic algorithm will create the following alleles: {0, 1, 2, 3}.

There are 42 possible allele pair combinations. They are: {00, 01, 02, 03, 10, 11,

12, 13, 20, 21, 22, 23, 30, 31, 32, 33}. An example of an initial population with

equal frequencies could have the distribution of traits shown in Figure 31:

Tra i t Frequencies:
[oo;
[01"
[02
[03'
[10
[11
[12
[13
[20
[21
[22
[23
[30
[31
[32
[33

= 6.
= 6.
= 6.
= 6.
= 6.
= 6.
= 6.
= 6.
= 6.
= 6.
= 6.
]=6.
1=6.
1=5.
1=6.
=5.

0
5
270000457763672
109999656677246
899999618530273
549999713897705
079999923706055
109999656677246
260000228881836
380000114440918
329999923706055
139999866485596
050000190734863
980000019073486
420000076293945
920000076293945

Figure 31. Trait Frequencies for an Initial Population with Equal Frequencies

And the distribution of alleles shown in Figure 32:

84

Allele Frequencies:
[0]=25.044998168945312
[1]=25.52S001525878906
[2]=25.10 499 954223 632 8
[3]=24.32499885559082

Figure 32. Allele Frequencies for an Initial Population with Equal Frequencies

Unequal allele frequencies. The user again specifies the number of

alleles that they want to model. For each allele, a random percentage is

generated which corresponds to the percentage of the population that will be

created with this allele in the trait. The allele will be randomly set as the first or

second allele in the trait. The other allele in the trait will be randomly selected

from all possible alleles. The distribution of both traits and alleles will therefore

be unequal.

If the user again specifies that the number of alleles that they want to

model is four, then a possible random percentage of the population that will be

created with this allele in the trait could be:

InitialFrequency[0] =17
InitialFrequency[1]=63
InitialFrequency[2] =13
InitialFrequency[3]=7

Figure 33. Random Percentages of Population with Given Allele in Trait

The overall trait and allele frequencies will be slightly higher or lower than the

initial frequencies because at least one allele per individual is still randomly

selected from all possible alleles. A possible population with the initial

85

frequencies from Figure 33 could consist of the following trait and allele

frequencies:

Trait Fre
[00;
[01
[02
[03
[10
[11
[12
[13
[20
[21
[22
[23
[30
[31
[32
[33

= 1. 0
= 12. 0
= 4. 0
=3. 0
= 6. 0
= 14. 0
1=13.0
]=6. 0
]=6. 0
]=9. 0
1=1. 0
1=4. 0
1=5. 0
1=10.0
1=4. 0
1=2. 0

A l l e l e F r e q u e n c i e s :
[0] = 1 9 . 0
[1] = 4 2 . 0
[2] = 2 1 . 0
[3] = 1 8 . 0

Figure 34. Initial Population with Unequal Trait and Allele Frequencies

Fitness Function

The fitness function for this genetic algorithm is largely configurable by the

user. In order to model different situations, the user configurable parameters will

have to be set in different ways. Each individual starts out with a fitness value of

100. The user can choose to have the fitness of one or more alleles fluctuate

with the "AllelesToAlter" and "AlleleUpperBoundAlteration" parameters. The user

can specify a comma separated list of alleles to alter in the "AllesToAlter"

86

parameter, and an upper bound on the percentage that the allele is allowed to

fluctuate in the "AlleleUpperBoundAlteration". The user can also specify whether

the allele will increase or decrease with the "IncreaseAllele" parameter. The user

can choose to always increase the fitness value, always decrease the fitness

value, or do both. If both increasing and decreasing are allowed, then it is

randomly decided.

For each generation, random percentages between zero and the value

specified in the "AlleleUpperBoundAlteration" will be generated for each allele

that is allowed to fluctuate. In other words, the percentage that the allele

fluctuates remains constant for all individuals in one generation. Similarly,

whether the allele should increase or decrease or both remains constant in one

generation. After all of the phases of the genetic algorithm for one generation

are done, new fluctuation percentages are generated and whether an allele

should increase or decrease is again randomly determined.

If an individual contains one of the alleles that is allowed to alter, then the

fitness value for that individual will increase or decrease according to the

specified percentage for that allele.

Reproduction

Reproduction is the first step in every generation. The classic roulette

wheel style reproduction is performed. Each alignment in the population is given

a percentage chance of survival equal to its relative fitness. Every alignment has

at least some probability of being selected. No form of elitism is used.

87

Crossover

After reproduction, two individuals are randomly selected from the

population for crossover. During crossover, the first allele from the first individual

is combined with the second allele from the second individual. Conversely, the

first allele from the second individual is combined with the second allele from the

first individual. The two new individuals with new pairs of alleles are added to the

population.

There are 3 situations where crossover will not be performed and the

selected individuals will be added to the next population without any changes.

First of all, crossover is only performed a percentage of the time. The user can

specify the crossover percentage in the configuration parameters. The crossover

percentage is typically around 70%. For every two individuals that are selected,

a random percentage is generated to see if crossover should be performed or

not. If the random percentage is greater than the specified crossover, then the

two individuals are added to the population with no changes. Secondly, if the

randomly chosen individuals are in fact the same individual, then the crossover

will also have no effect. Thirdly, if the user has specified pairs of alleles that are

not allowed to combine, then before the crossover of alleles, there is a check to

make sure that the crossover of alleles will not result in invalid combinations of

alleles. If the crossover would create an invalid combination, then the crossover

is not performed and the individuals are added to the population with no

changes.

88

Mutations

Mutation happens very rarely. If an individual is selected for mutation,

than one of the alleles is randomly changed to another allele. Whether the first

allele or the second allele will be changed is determined randomly. Then, a new

random allele is generated and a check is done to make sure that the new

combination of alleles is valid. A new random allele is generated until a valid

combination is found.

Termination Conditions

After a population has gone through reproduction, crossover and mutation

and a new generation has been formed, the new generation is evaluated to see if

the algorithm should halt. The user can specify the maximum number of

generations with the "GenerationSize" parameter. They can also specify the

maximum number of unchanged rounds with the "UnchangedRoundsNeeded"

parameter. Note that the "UnchangedRoundsNeeded" parameter should not be

used when modeling the stable environment where the fitness value for all

individuals is the same and does not change. The parameters can be used

separately or in combination. The goal is allow the algorithm to reach a stable

point.

Configuration Options

The user is allowed to specify a variety of parameters to influence the

behavior of the genetic algorithm. The constructor for the main class takes a

Property object as a parameter. Here is a sample file:

89

// 0 = Equal, 1 = Random
"InitialPopulation"="l";

// 0 = decrease, 1 = increase, 2 = both
"IncreaseAllele"="2";

"AlleleSize"="4";
"AllelesToAlter"="0";
"Nonpairs"="0-1, 0-2";
"AlleleUpperBoundAlteration"="20";
"PopulationSize"="100000";
"GenerationSize"="100";
"UnchangedRoundsNeeded"="5";
"ProbabilityCrossover"=".15";
"ProbabilityMutation"=".01";

Analysis of Results

Stable Environment

The first goal of this project was to model a stable environment where the

selection on the alleles was constant. The genetic algorithm was set up to have

four alleles with no environmental fluctuation. The population size was 100,000

and the genetic algorithm ran for 100 generations. The crossover probability was

75% while the mutation probability was 5%. The initial population for the first

model was created so that the trait and allele frequencies were equal. Figure 35

shows the frequencies from the initial population:

90

Generation 0:

Trait Frequencies:
[00]
[01]
[02;
[03;
[10]
[ii;
[12;
[13;
[20]
[21]
[22:
[23;
[3o;
[3i;
[32]
[33]

= 6
= 6
= 6
=6
= 6
=6
= 6
= 6
= 6
= 6
= 6
= 6
= 6
=6
=6
=6

203999996185303
324999809265137
2689995765686035
296999931335449
177999973297119
153000354766846
289999961853027
233999729156494
079999923706055
1570000648498535
267999649047852
239999771118164
249000072479248
236000061035156
492000102996826
328000068664551

Allele Frequencies:
[0]=24.9 029 9 9 877929688
[1]=24.863 0 0 08 69750977
[2]=25.031999588012695
[3]=25.20199966430664

Statistics:
Random Allele Alterations: {3=0.0, 2=0.0, 0=0.0, 1=0.0}
Random Allele Increase Flags: {3=false, 2=false, 0=false, l=false}
Fitness Sum: 1.0E7
Fitness Average: 100.0
Fitness Max: 100.0

Figure 35. Initial Population of Stable Environment with Equal Frequencies

After running the genetic algorithm for 100 generations with equal selection and

no fluctuation, the frequencies of the alleles changed slightly but overall they

remained stable:

91

Final Generation:

[00]
[01]
[02]
[03]
[10]
[11]
[12]
[13]
[20]
[21]
[22]
[23]
[30]
[31]
[32]
[33]

Trait Frequencies:
=6.109999656677246
=6.050000190734863
=5.986000061035156
=5.876999855041504
=6.395999908447266
=6.2729997634887695

1=6.429000377655029
1=6.144999980926514
1=6.486000061035156
=6.378000259399414
1=6.289000034332275
=6.205999851226807
=6.430999755859375
1=6.430000305175781
=6.204999923706055
=6.308999538421631

Allele Frequencies:
[0]=24.722 9 9 9572753 9 06
[1]=25.187000274658203
[2]=25.134000778198242
[3]=24.95599937438965

Statistics:
Random Allele Alterations: {3=0.0, 2=0.0, 0=0.0, 1=0.0}
Random Allele Increase Flags: {3=false, 2=false, 0=false, l=false}
Fitness Sum: 1.0E7
Fitness Average: 100.0
Fitness Max: 100.0

Figure 36. Final Population of Stable Environment with Equal Frequencies

In reality, it is very rare that alleles will all have the exact same frequency.

Another test was done where the allele frequencies of the initial population were

distributed randomly. It can be seen in Figure 37 that the initial frequencies do

not alter the outcome of the test. The environment remains stable when

selection is constant.

92

Generation 0:

Trait Frequencies:
[00
[01
[02
[03
[10
[11
[12
[13
[20
[21
[22
[23
[30
[31
[32
[33

=5.480999946594238
=5.546999931335449
=5.572000026702881
=5.427999973297119
=9.914999961853027
=9.888999938964844
=10.104999542236328
=9.98799991607666
=5.51200008392334
=5.629000186920166
=5.684000015258789
=5.585000038146973
=3.9230000972747803
=3.867999792098999
=3.926999807357788
=3.9469997882843018

Allele Frequencies:
[0]=23.429 4 9867248535
[1]=32.415000915527344
[2]=23.849000930786133
[3]=20.306499481201172

Statistics:
Random Allele Alterations: {3=0.0, 2=0.0, 1=0.0, 0=0.0}
Random Allele Increase Flags: {}
Fitness Sum: 1.0E7
Fitness Average: 100.0
Fitness Max: 100.0

Figure 37. Initial Population of Stable Environment with Unequal Frequencies

93

Final Generation:

[00]
[01]
[02]
[03]
[10]
[11]
[12]
[13]
[20]
[21]
[22]
[23]
[30]
[31]
[32]
[33]

Trait Frequencies:
=5.578999996185303
=5.936999797821045
=6.352999687194824
=5.2779998779296875
=9.076000213 623047
--9. 86400032043457

1=10.473999977111816
=8.54699993133545
=5.442999839782715
=5.778000354766846
=6.091000080108643
=4.995999813079834
=4.065000057220459
=4.253000259399414
=4.5279998779296875
=3.73799991607666

Allele Frequencies:
[0]=23.655000686645508
[1]=31.896499633789062
[2]=24.876998901367188
[3]=19.57149887084961

Statistics:
Random Allele Alterations: {3=0.0, 2=0.0, 1=0.0, 0=0.0}
Random Allele Increase Flags: {}
Fitness Sum: 1.0E7
Fitness Average: 100.0
Fitness Max: 100.0

Figure 38. Final Population of Stable Environment with Unequal Frequencies

Fluctuating Selection Environment

The second goal was to model an environment where the selection on one

or more alleles fluctuates over time while the other alleles remain constant. The

first test illustrates the effects of having just one allele fluctuate. The genetic

algorithm was set up to have four alleles where allele "3" was allowed to fluctuate

over time while all other alleles remained constant. The population size was

100,000 and the genetic algorithm ran for 100 generations. The crossover

94

probability was 75% while the mutation probability was 0.125%. The initial

population was created with a random allele distribution.

Generation 0:

Trait Frequencies:
[0 0]=16.809999465942383
[01]=8.697 0 005 035 4 003 9
[02]=9.237 9 9991607 666
[03]=11.503000259399414
[10]=8.730000495910645
[11]=0.7559999823570251
[12]=1.218999981880188
[13]=3.2150 0 0152587 8 906
[20]=9.255000114440918
[21]=1.2400000095367432
[22]=1.77699 9 95 04 08 9355
[23]=3.7349 9 98 950 95 825
[30]=11.1100006103515 62
[31]=3.2790 000438690186
[32]=3.6630001068115234
[33]=5.773 0 002 40325 928

Allele Frequencies:
[0]=46.076499938964844
[1]=13.946000099182129
[2]=15.95199966430664
[3]=24.02549934387207

Statistics:
Random Allele Alterations: {3=0.22, 2=0.0, 1=0.0, 0=0.0}
Random Allele Increase Flags: {3=false, 2=true, l=true, 0=false}
Fitness Sum: 8970819.31999914
Fitness Average: 89.7081931999914
Fitness Max: 100.0

Figure 39. Initial Population with Randomly Distributed Frequencies

Although allele "3" is increasing and decreasing over time, the fact that it is

fluctuating at all compared to the other alleles that are not fluctuating results in an

overall decrease of allele "3". All of the other alleles increase to make up for the

decrease in allele "3". Similarly, one can also see that the traits with allele "3"

decrease while the other traits increase.

95

Pinal Generation:

Trait Frequencies:
[00]
[01]
[02]
[03]
[10]
[11]
[12]
[13]
[20]
[21]
[22]
[23!
[30]
[3i;
[32]
[33]

=31.865999221801758
=9.
=i;
=2.
=9.
=2.
=3.
= 0.

92300033569336
i.26300048828125
267000198364258
173999786376953
758999824523926
929999828338623
6599999666213989

=12.645999908447266
=3.
=5.
= 0.
= 1.
= 0.
= 0.
= 0.

9099998474121094
269000053405762
9490000009536743
840000033378601
5950000286102295
7980000376701355
1509999930858612

Allele Frequencies:
[0]=56.42250061035156
[1]=16.854999542236328
[2]=23.017000198364258
[3]=3.7055001258850098

Statistics:
Random Allele Alterations: {3=0.18, 2=0.0, 1=0.0f 0=0.0}
Random Allele Increase Flags: {3=false, 2=false, l=false, 0=true}
Fitness Sum: 9867091.240000026
Fitness Average: 98.67091240000026
Fitness Man: 100.0

Figure 40. Final Population of an Environment with One Fluctuating Allele

The second test illustrates the effects of having multiple alleles fluctuate.

The genetic algorithm was set up to have four alleles that were allowed to

increase and decrease over time. The population size was 100,000 and the

genetic algorithm ran for 100 generations. The crossover probability was 75%

while the mutation probability was 1%. The initial population was created with a

random allele distribution. One can see that the alleles fluctuate up and down in

96

cycles but that overall they remain within 5-10% of their original frequency over

time.

50 -I

AE. -
4D

40 -

« 35-

* 30-
«3

> < -

° 25

1 20 -

:re
q

h

m -
IU

o

0 -

1

I I I

0 10
1 1

20
i I

30
1 1 1 1 1 1

40 50 60

Generation

i i

70
1 1

80
1 1

90
1 1

100

Figure 41. Fluctuation of Allele 3 When All Alleles Are Fluctuating

Hitch-Hiking Effect

The third goal was to model the hitch-hiking effect. If the selection on one

or more alleles fluctuates over time and is not paired with certain other alleles,

then the alleles that do not pair with the fluctuating allele will increase at a higher

rate than the other non-fluctuating alleles. The genetic algorithm was set up to

have four alleles where allele "3" was allowed to fluctuate over time while all

other alleles remained constant. In addition, allele "3" was not allowed to pair

with allele "0". All other combinations of alleles were valid. The population size

97

was 100,000 and the genetic algorithm ran for 100 generations. The crossover

probability was 75% while the mutation probability was 0.125%. The initial

population was created with a random allele distribution.

Generation 0:

Trait Frequencies:
[00
[01
[02
[03
[10
[11
[12
[13
[20
[21
[22
[23
[30
[31
[32
[33

=16.270000457763 672
=10.418999671936035
=8.32699966430664
= 0. 0
=9.486000061035156
=9.440999984741211
=7.331000328063965
=2.8329999446868896
=7.327000141143799
=7.198999881744385
=7.2669997215271
=2.812999963760376
=0. 0

=3.765000104904175
=3.7129998207092285
=3.809000253677368

Allele Frequencies:
[0]=34.04949951171875
[1]=29.957500457763 672
[2]=25.62200164794922
[3]=10.371000289916992

Statistics:
Random Allele Alterations: {3=0.22, 2=0.0, 1=0.0, 0=0.0}
Random Allele Increase Flags: {3=false, 2=false, l=true, 0=false}
Fitness Sum: 9562111.559999805
Fitness Average: 95.62111559999805
Fitness Man: 100.0

Figure 42. Initial Population with Randomly Distributed Frequencies

98

Final Generation:

Trait Frequencies:
[00
[01
[02
[03
[10
[11
[12
[13
[20
[21
[22
[23
[30
[31
[32
[33

=15.003999710083008
=12.494999885559082
=11.83899974822998
= 0. 0
=10.652999877929688
=8.821000099182129
=8.307000160217285
=1.52100002765 65552
=9.723999977111816
=8.388999938964844
=7.652000427246094
=1.3380000591278076
= 0. 0
=2.0260000228881836
=1.8750001192092896
=0.35600000619888306

Allele Frequencies:
[01=37.359500885009766
[11=3 0.5164 9 85 65 673 828
[21=28.38800048828125
[31=3.73 60 0 0 06103515 62

Statistics:
Random Allele Alterations: {3=0.04, 2=0.0, 1=0.0, 0=0.0}
Random Allele Increase Flags: {3=true, 2=false, l=true, 0=false}
Fitness Sum: 1.0029944960000038E7
Fitness Average: 100.29944960000039
Fitness Max: 108.16

Figure 43. Final Population of an Environment with One Fluctuating Allele

In Figure 43, it can again be seen that the frequency of allele "3" has

decreased and all of the pairs that have the fluctuating "3" have decreased. All of

the other allele frequencies have increased, but allele "0" that was not paired with

allele "3" has increased at the highest rate. Similarly, allele pairs that don't have

allele "3" have increased, but allele pairs that have allele "0" have increased at

the highest rate.

99

Conclusion

Genetic algorithms provide an effective way to model population genetics

for different environments. They provide a stable yet flexible platform to model

various scenarios. The genetic algorithm implementation presented in this thesis

is able to model stable environments where the selection on the alleles remains

constant and fluctuating environments where the selection on one or more alleles

fluctuates. It is also able to model the hitch-hiking effect which shows how the

alleles that do not pair with the fluctuating allele will increase at a higher rate than

alleles that do pair with the fluctuating allele. The overall conclusion is that

alleles that are affected by environmental fluctuation decrease in their frequency

which also leads to a decrease in genetic diversity in the population.

One could expand the genetic algorithm implementation provided in this

thesis to control the environment at a more detailed level. For example, instead

of randomly selecting whether to increase or decrease the fitness of an individual

per generation, one might want to support cycles of multiple generations that

decrease and then increase. Also, one might want to set the upper bound of the

fluctuation for each allele separately. Only fluctuating alleles with the lowest or

highest frequencies would be another option.

100

References

Besemer, J., & Borodovsky, M. (1999). Heuristic approach to deriving models for
gene finding. Nucleic Acids Research, 27(19), 3911-3920.

Besemer, J., & Borodovsky, M. (2005). GeneMark: Web software for gene
finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Research,
33, Web Server Issue, W451-W454.

Blanco E., Parra, G., & Guigo R. (2002). Using geneid to identify genes (A.
Baxevanis, Ed). Current Protocols in Bioinformatics, Unit 4.3. New York:
John Wiley & Sons Inc.

Blanco E., Parra G., Castellano S., Abril J.F., Burset M., Fustero X., et al. (2001).
Gene prediction in the post-genomic era. Poster presented at the IXth

meeting of the International Society for Matrix Biology, Copenhagen,
Denmark.

Borodovsky, M., & Mclninch, J. (1993). Genmark: Parallel gene recognition for
both DNA strands. Computers Chem., 17(2), 123-133.

Burge, C.B., & Karlin, S. (1997). Prediction of complete gene structures in human
genomic DNA. Journal of Molecular Biology, 268, 78-94.

Burge, C.B., & Karlin, S. (1998). Finding the genes in genomic DNA. Current
Opinion in Structural Biology, 8, 346-354.

Burge, C.B. (1998). GENSCAN command-line version README.txt
documentation. (Version 1.0) [Computer Software]. Stanford University,
Stanford, California.

Burge, C.B. (n.d.). GENSCAN: Accuracy vs. exon probability. Massachusetts
Institute of Technology, Cambridge, Burge Group, Retrieved March 21,
2008 from http://genes.mit.edu/ExonProb.html

Buscema, M. (2004). Genetic doping algorithm (GenD): Theory and
applications. Expert Systems, 21(2), 63-79.

Genome Bioinformatics Research Lab. (n.d.). Geneid output format
(Description). Retrieved April 18, 2002, from
http://genome.imim.es/software/geneid/docs/chapter4/formats_html/genei
d.html

101

http://genes.mit.edu/ExonProb.html
http://genome.imim.es/software/geneid/docs/chapter4/formats_html/genei

Genome Bioinformatics Research Lab. (n.d.). Geneid home page main features.
Retrieved February 07, 2008, from
http://genome.imim.es/software/geneid/

GeneMark: Background information. Georgia Institute of Technology, Atlanta,
Borodovsky Group, Retrieved March 21, 2008, from
http://exon.gatech.edu/GeneMark/background.html

Gillespie, J.H. (1972). Molecular evolution and polymorphism in a random
environment. Theoretical Population Biology, 4, 193-195.

Gillespie, J.H. (1984). The interaction of genetic drift and mutation with selection
in a fluctuating environment. Theoretical Population Biology, 27, 222-237.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization & machine
learning. Reading, MA: Addison-Wesley Publishing Company, Inc.

Guigo R. (1998). Assembling genes from predicted exons in linear time with
dynamic programming. Journal of Computational Biology, 5, 681-702.

Guigo R., Knudsen S., Drake N., & Smith, T.F. (1992). Prediction of gene
structure. Journal of Molecular Biology, 226, 141-157.

Hernandez, D., Grass, R., & Appel, R. (2004). MoDEL: an efficient strategy for
ungapped local multiple alignment. Computational Biology and Chemistry,
28, 119-128.

Horng, J.T., Wu, L.C., Lin CM., & Yang, B.H. (2005). A genetic algorithm for
multiple sequence alignment. Soft Computing, 9, 407-420.

Jacob, E., Sasikumar, R., & Nair, K.N.R. (2005). A fuzzy guided genetic
algorithm for operon prediction. Bioinformatics, 21, 1403-1407.

Kimura, M. (1953). Process leading to quasi-fixation of genes in natural
populations due to random fluctuation of selection intensities. Genetics,
39, 280-295.

Lukashin, A.V., & Borodovsky, M. (1998). GeneMark.hmm: New solutions for
gene finding. Nucleic Acids Research, 26(4), 1107-1115.

Mathe, C, Sagot, M.F., Schiex, T., & Rouzze, P. (2002). Current methods of
gene prediction, their strengths and weaknesses. Nucleic Acids
Research, 30, 4103-4117.

102

http://genome.imim.es/software/geneid/
http://exon.gatech.edu/GeneMark/background.html

Mendel, G. (1865). Versuche ueber Pflanzen-Hybriden (Experiments in plant
hybridization). Retrieved March 21, 2008, from
http://www.mendelweb.org/Mendel.html

Moon, S.H., Choi, S.S. & Moon, B.R. (2006). A hybrid genetic search for multiple
sequence alignment. Proceedings of the 8th annual conference on
Genetic and evolutionary computation GECCO '06 Publisher: ACM Press,
July 2006.

Mount, D.W. (2004). Bioinformatics: Sequence and genome analysis (2nd ed.).
Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Notredame, C, & Higgins, D.G. (1996). SAGA: Sequence alignment by genetic
algorithm. Nucleic Acids Research, 24, 8, 1515-1524.

Parra G., Blanco E., & Guigo, R. (2000). Geneid in Drosophila. Genome
Research, 10, 4, 511-515.

Pavy, N., Rombauts, S., Dehais, P., Mathe, C, Ramana, D.V.V., Leroy, P., etal.
(1999). Evaluation of gene prediction software using a genomic data set:
Application to Arabidopsis thaliana sequences. Bioinformatics, "/5(H),
887-899.

Radenbaugh, A.J. (2005). Applications of genetic algorithms in computing
architectures. San Jose State University, Department of Computer
Science, Course 247: Computer Architecture, Dr. Chun.

Radenbaugh, A.J. (2006). Multiple sequence alignment using genetic
algorithms: A review of the literature. San Jose State University,
Department of Computer Science, Course 100W: Technical Writing,
Debra Caires, M.S.

Radenbaugh, A. J., Austin T. (2006). Genetic algorithm for multiple sequence
alignment: GAMSA. San Jose State University, Department of Computer
Science, Course 286: Advanced Bioinformatics, Dr. Khuri.

Seeluangsawat, P. & Chongstitvatana, P. (2005). A multiple objective
evolutionary algorithm for multiple sequence alignment. Proceedings of
the 2005 conference on Genetic and evolutionary computation GECCO
'05 Publisher: ACM Press, June 2005.

103

http://www.mendelweb.org/Mendel.html

Shyu, C, Sheneman, L., & Foster, J.A. (2004). Multiple sequence alignment
with evolutionary computation. Genetic Programming and Evolvable
Machines, 5, 121-14.

Steiner, U.K., Gaston, A.J., & Hipfner, J.M. (2002). Hard and soft selection on
chick growth rate in the thick-billed murre, and the implications of climate
change. Stanford University, Biological Sciences, Herrin Labs, Stanford,
California.

Takahata, N., Ishii, K., & Matsuda, H. (1975). Effect of temporal fluctuation of
selection coefficient on gene frequency in a population. Genetics, 72('\/\),
4541-4545.

Takahata, N. (1981). Genetic variability and rate of gene substitution in a finite
population under mutation and fluctuating selection. Genetics, 98, 427-
440.

The Arabidopsis Information Resource. (2008). GBrowse visualization.
Retrieved March 21, 2008, from http://www.arabidopsis.org/cgi-
bin/gbrowse/arabidopsis/

Uyar, H. Turgut, U., Sima, A., & Harmanci, E. (2006). Pairwise sequence
comparison for fitness evaluation in evolutionary structural software
testing. Proceedings of the 8th annual conference on Genetic and
evolutionary computation GECCO '06 Publisher: ACM Press, July 2006.

Wang, C, & Lefkowitz, E.J. (2005). Genomic multiple sequence alignments:
Refinement using a genetic algorithm. BMC Bioinformatics, 6:200.

Wikipedia (2008). FASTA format. Retrieved March 21, 2008, from
http://en.wikipedia.org/wiki/FASTA_format

Wikipedia (2008). Population genetics. Retrieved March 21, 2008, from
http://en.wikipedia.org/wiki/Population_genetics

Zhang, C, & Wong, A. (1997). A genetic algorithm for multiple sequence
alignment. Computer Application Bioscience, 13, 565-581.

104

http://www.arabidopsis.org/cgi-
http://en.wikipedia.org/wiki/FASTA_format
http://en.wikipedia.org/wiki/Population_genetics

A
pp

en
di

x
A

:
A

m
in

o
A

ci
d

T
es

t
C

as
es

A
m

in
o

A
ci

d
H

em
og

lo
bi

n
S

eq
ue

nc
es

 -
 P

op
ul

at
io

ns
00

,
U

nc
ha

ng
ed

 R
ou

nd
s=

20

[1
]

G
V
L
T
D
V
Q
V
A
L
V
K
S
S
F
E
E
F
N
A
N
I
P
K
N
T
H
R
F
F
T
L
V
L
E
I
A
P
G
A
K
D
L
F
S
F
L
K
G
S
S
E
V
P
Q
N
N
P
D
L
Q
A
H
A
G
K
V
F
K
L
T
Y
E
A
A
I
Q
L
Q
V
N
G
A
V
A
S
D
A
T
L

K
S
L
G
S
V
H
V
S
K
G
-
V
V
D
A
H
F
P
V
V
K
E
A
I
L
K
T
I
K
E
W
G
D
K
W
S
E
E
L
N
T
A
W
T
I
A
Y
D
E
L
A
I
I
I
K
K
E
M
K
D
A
A

[2
]

V
L
S
E
G
E
W
Q
L
V
L
H
V
W
A
K
V
E
A
D
I
A
G
H
G
Q
D
I
L
I
R
L
F
K
H
H
P
E
T
L
E
K
F
D
R
F
K
H
L
K
S
E
A
E
M
K
A
S
E
D
L
K
K
H
G
V
T
V
L
T
A
L
G
A
I
L
K
K
K
G
H
H
E
A
E
L

K
P
L
A
Q
S
H
A
T
K
H
K
I
P
I
K
Y
L
E
F
I
S
E
A
I
I
H
V
L
H
S
R
H
P
A
D
F
G
A
D
A
Q
G
A
M
S
K
A
L
E
L
F
R
K
D
I
A
A
K
Y
K
E
L
G
Y
Q
G

[3
]

P
I
V
D
T
G
S
V
A
P
L
S
A
A
E
K
T
K
I
R
S
A
W
A
P
V
Y
S
N
Y
E
T
S
G
V
D
I
L
V
K
F
F
T
S
T
P
A
A
Q
E
F
F
P
K
F
K
G
L
T
T
A
D
Q
L
K
K
S
A
D
V
R
W
H
A
E
R
I
I
N
A
V
N
D
A
V
V
S
M
D
D
T
E
K
M
S

M
K
L
R
D
L
S
G
K
H
A
K
S
F
Q
V
D
P
Q
Y
F
K
V
L
A
A
V
I

A
D
T
V
A
A
G
D
A
G
F
E
K
L
M
S
M
I
C
I
L
L
R
S
A
Y

[4
]

V
L
S
P
A
D
K
T
N
V
K
A
A
W
G
K
V
G
A
H
A
G
E
Y
G
A
E
A
L
E
R
M
F
L
S
F
P
T
T
K
T
Y
F
P
H
F
D
L
S
H
G
S
A
Q
V
K
G
H
G
K
K
V
A
D
A
L
T
N
A
V
A
H
V
D
D
M
P
N
A
L

S
A
L
S
D
L
H
A
H
K
L
R
V
D
P
V
N
F
K
L
L
S
H
C
L
L
V
T
L
A
A
H
L
P
A
E
F
T
P
A
V
H
A
S
L
D
K
F
L
A
S
V
S
T
V
L
T
S
K
Y
R

[5
]

V
L
S
P
A
D
K
T
N
V
K
A
A
W
G
K
V
G
A
H
A
G
E
Y
G
A
E
A
L
E
R
M
F
L
S
F
P
T
T
K
T
Y
F
P
H
F
D
L
S
H
G
S
A
Q
V
K
G
H
G
K
K
V
A
D
A
L
T
N
A
V
A
H
V
D
D
M
P
N
A
L

S
A
L
S
D
L
H
A
H
K
L
R
V
D
P
V
N
F
K
L
L
S
H
C
L
L
V
T
L
A
A
H
L
P
A
E
F
T
P
A
V
H
A
S
L
D
K
F
L
A
S
V
S
T
V
L
T
S
K
Y
R

[6
]

V
Q
L
S
G
E
E
K
A
A
V
L
A
L
W
D
K
V
N
E
E
E
V
G
G
E
A
L
G
R
L
L
V
V
Y
P
W
T
Q
R
F
F
D
S
F
G
D
L
S
N
P
G
A
V
M
G
N
P
K
V
K
A
H
G
K
K
V
L
H
S
F
G
E
G
V
H
H
L
D
N
L
K
G
T
F

A
A
L
S
E
L
H
C
D
K
L
H
V
D
P
E
N
F
R
L
L
G
N
V
L
V
V
V
L
A
R
H
F
G
K
D
F
T
P
E
L
Q
A
S
Y
Q
K
V
V
A
G
V
A
N
A
L
A
H
K
Y
H

[7
]

V
H
L
T
P
E
E
K
S
A
V
T
A
L
W
G
K
V
N
V
D
E
V
G
G
E
A
L
G
R
L
L
V
V
Y
P
W
T
Q
R
F
F
E
S
F
G
D
L
S
T
P
D
A
V
M
G
N
P
K
V
K
A
H
G
K
K
V
L
G
A
F
S
D
G
L
A
H
L
D
N
L
K
G
T
F

A
T
L
S
E
L
H
C
D
K
L
H
V
D
P
E
N
F
R
L
L
G
N
V
L
V
C
V
L
A
H
H
F
G
K
E
F
T
P
P
V
Q
A
A
Y
Q
K
V
V
A
G
V
A
N
A
L
A
H
K
Y
H

F
i
t
n
e
s
s
:

1
3
6
1
.
0

T
i
m
e

e
l
a
p
s
e
d
:

2
:
2
4

C
o
m
p
a
r
e

w
i
t
h
:

2
7
7
5
.
0

A
m

in
o

A
ci

d
H

em
og

lo
bi

n
S

eq
ue

nc
es

 -
P

op
ul

at
io

ns

00
,

U
nc

ha
ng

ed
 R

ou
nd

s=
50

[1
]

G
V
L
T
D
V
Q
V
A
L
V
K
S
S
F
E
E
F
N
A
N
I
P
K
N
T
H
R
F
F
T
L
V
L
E
I
A
P
G
A
K
D
L
F
S
F
L
K
G
S
S
E
V
P
Q
N
N
P
D
L
Q
A
H
A
G
K
V
F
K
L
T
Y
E
A
A
I
Q
L
Q
V
N
G
A
V
A
S
D
A
T
L
K

S
L
G
S
V
H
V
S
K
G
V
V
D
A
H
F
P
V
V
K
E
A
I
L
K
T
I
K
E
V
V
G
D
K
W
S
E
E
L
N
T
A
W
T
I
A
Y
D
E
L
A
I
I
I
K
K
E
M
K
D
A
A

[2
]

V
L
S
E
G
E
W
Q
L
V
L
H
V
W
A
K
V
E
A
D
I
A
G
H
G
Q
D
I
L
I
R
L
F
K
H
H
P
E
T
L
E
K
F
D
R
F
K
H
L
K
S
E
A
E
M
K
A
S
E
D
L
K
K
H
G
V
T
V
L
T
A
L
G
A
I
L
K
K
K
G
H
H
E
A
E
L
K
P
L
A
Q
S

H
A
T
K
H
K
I
P
I
K
Y
L
E
F
I
S
E
A
I
I
H
V
L
H
S
R
H

P
A
D
F
G
A
D
A
Q
G
A
M
S
K
A
L
E
L
F
R
K
D
I
A
A
K
Y
K
E
L
G
Y
Q
G

[3
]

P
I
V
D
T
G
S
V
A
P
L
S
A
A
E
K
T
K
I
R
S
A
W
A
P
V
Y
S
N
Y
E
T
S
G
V
D
I
L
V
K
F
F
T
S
T
P
A
A
Q
E
F
F
P
K
F
K
G
L
T
T
A
D
Q
L
K
K
S
A
D
V
R
W
H
A
E
R
I
I
N
A
V
N
D
A
V
V
S
M
D
D
T
E
K
M
S

M
K
L
R
D
L
S
G
K
H
A
K
S
F
Q
V
D
P
Q
Y
F
K
V
L
A
A
V

I
A
D
T
V
A
A
G
D
A
G
F
E
K
L
M
S
M
I
C
I
L
L
R
S
A
Y

[4
]

V
L
S
P
A
D
K
T
N
V
K
A
A
W
G
K
V
G
A
H
A
G
E
Y
G
A
E
A
L
E
R
M
F
L
S
F
P
T
T
K
T
Y
F
P
H
F
D
L
S
H
G
S
A
Q
V
K
G
H
G
K
K
V
A
D
A
L
T
N
A
V
A
H
V
D
D
M
P
N
A
L
S
A
L
S
D
L

H
A
H
K
L
R
V
D
P
V
N
F
K
L
L
S
H
C
L
L
V
T
L
A
A
H
L

P
A
E
F
T
P
A
V
H
A
S
L
D
K
F
L
A
S
V
S
T
V
L
T
S
K
Y
R

[5
]

V
L
S
P
A
D
K
T
N
V
K
A
A
W
G
K
V
G
A
H
A
G
E
Y
G
A
E
A
L
E
R
M
F
L
S
F
P
T
T
K
T
Y
F
P
H
F
D
L
S
H
G
S
A
Q
V
K
G
H
G
K
K
V
A
D
A
L
T
N
A
V
A
H
V
D
D
M
P
N
A
L
S
A
L
S
D
L

H
A
H
K
L
R
V
D
P
V
N
F
K
L
L
S
H
C
L
L
V
T
L
A
A
H
L

P
A
E
F
T
P
A
V
H
A
S
L
D
K
F
L
A
S
V
S
T
V
L
T
S
K
Y
R

[6
]

V
Q
L
S
G
E
E
K
A
A
V
L
A
L
W
D
K
V
N
E
E
E
V
G
G
E
A
L
G
R
L
L
V
V
Y
P
W
T
Q
R
F
F
D
S
F
G
D
L
S
N
P
G
A
V
M
G
N
P
K
V
K
A
H
G
K
K
V
L
H
S
F
G
E
G
V
H
H
L
D
N
L
K
G
T
F
A
A
L
S
E
L

H
C
D
K
L
H
V
D
P
E
N
F
R
L
L
G
N
V
L
V
V
V
L
A
R
H
F

G
K
D
F
T
P
E
L
Q
A
S
Y
Q
K
V
V
A
G
V
A
N
A
L
A
H
K
Y
H

[7
]

V
H
L
T
P
E
E
K
S
A
V
T
A
L
W
G
K
V
N
V
D
E
V
G
G
E
A
L
G
R
L
L
V
V
Y
P
W
T
Q
R
F
F
E
S
F
G
D
L
S
T
P
D
A
V
M
G
N
P
K
V
K
A
H
G
K
K
V
L
G
A
F
S
D
G
L
A
H
L
D
N
L
K
G
T
F
A
T
L
S
E
L

H
C
D
K
L
H
V
D
P
E
N
F
R
L
L
G
N
V
L
V
C
V
L
A
H
H
F

G
K
E
F
T
P
P
V
Q
A
A
Y
Q
K
V
V
A
G
V
A
N
A
L
A
H
K
Y
H

F
i
t
n
e
s
s
:

1
0
4
8
.
0

T
i
m
e

e
l
a
p
s
e
d
:

2
:
1
4

C
o
m
p
a
r
e

w
i
t
h
:

2
7
7
5
.
0

A
m

in
o

A
ci

d
H

em
og

lo
bi

n
S

eq
ue

nc
es

 -
 P

op
ul

at
io

n=
40

0,
 U

nc
ha

ng
ed

 R
ou

nd
s=

50

[1
]

G
V
L
T
D
V
Q
V
A
L
V
K
S
S
F
E
E
F
N
A
N
I
P
K
N
T
H
R
F
F
T
L
V
L
E
I
A
P
G
A
K
D
L
F
S
F
L
K
-
G
S
S
E
V
P
Q
N
N
P
D
L
Q
A
H
A
G
K
V
F
K
L
T
Y
E
A
A
I
Q
L
Q
V
N
G
A
V
A
S

D
A
T
L
K
S
L
G
S
V
H
V
S
K
G
V
V
D
A
H
F
P
V
V
K
E
A
I
L
K
T
I
K
E
V
V
G
D
K
W
S
E
E
L
N
T
A
W
T
I
A
Y
D
E
L
A
I
I
I
K
K
E
M
K
D
A
A

[2
]

V
L
S
E
G
E
W
Q
L
V
L
H
V
W
A
K
V
E
A
D
I
A
G
H
G
Q
D
I
L
I
R
L
F
K
H
H
P
E
T
L
E
K
F
D
R
F
K
H
L
K
S
E
A
E
M
K
A
S
E
D
L
K
K
H
G
V
T
V
L
T
A
L
G
A
I
L
K
K
K
G
H
H
E
A
E
L

K
P
L
A
Q
S
H
A
T
K
H
K
I
P
I
K
Y

L
E
F
I
S
E
A
I
I
H
V
L
H
S
R
H
P
A
D
F
G
A
D
A
Q
G
A
M
S
K
A
L
E
L
F
R
K
D
I
A
A
K
Y
K
E
L
G
Y
Q
G

[3
]

P
I
V
D
T
G
S
V
A
P
L
S
A
A
E
K
T
K
I
R
S
A
W
A
P
V
Y
S
N
Y
E
T
S
G
V
D
I
L
V
K
F
F
T
S
T
P
A
A
Q
E
F
F
P
K
F
K
G
L
T
T
A
D
Q
L
K
K
S
A
D
V
R
W
H
A
E
R
I
I
N
A
V
N
D
A
V
V
S
M
D
D
T
E
K
M
S

M
K
L
R
D
L
S
G
K
H
A
K
S
F
Q
V
D

P
Q
Y
F
K
V
L
A
A
V
I
A
D
T
V
A
A
G
D
A
G
F
E
K
L
M
S
M
I
C
I
L
L
R

S
A
Y

[
4]

V
L
S
P
A
D
K
T
N
V
K
A
A
W
G
K
V
G
A
H
A
G
E
Y
G
A
E
A
L
E
R
M
F
L
S
F
P
T
T
K
T
Y
F
P

H
F
D
L
S
H
G
S
A
Q
V
K
G
H
G
K
K
V
A
D
A
L
T
N
A
V
A
H
V
D
D
M
P
N
A
L

S
A
L
S
D
L
H
A
H
K
L
R
V
D
P
V
N

F
K
L
L
S
H
C
L
L
V
T
L
A
A
H
L
P
A
E
F
T
P
A
V
H
A
S
L
D
K
F
L
A
S
V
S
T
V
L
T
S
K
Y
R

[5
]

V
L
S
P
A
D
K
T
N
V
K
A
A
W
G
K
V
G
A
H
A
G
E
Y
G
A
E
A
L
E
R
M
F
L
S
F
P
T
T
K
T
Y
F
P
H
F

D
L
S
H
G
S
A
Q
V
K
G
H
G
K
K
V
A
D
A
L
T
N
A
V
A
H
V
D
D
M
P
N
A
L

S
A
L
S
D
L
H
A
H
K
L
R
V
D
P
V
N

F
K
L
L
S
H
C
L
L
V
T
L
A
A
H
L
P
A
E
F
T
P
A
V
H
A
S
L
D
K
F
L
A
S
V
S
T
V
L
T
S
K
Y
R

[6
]

V
Q
L
S
G
E
E
K
A
A
V
L
A
L
W
D
K
V
N
E
E
E
V
G
G
E
A
L
G
R
L
L
V
V
Y
P
W
T
Q
R
F
F
D
S
F
G
D
L
S
N
P
G
A
V
M
G
N
P
K
V
K
A
H
G
K
K
V
L
H
S
F
G
E
G
V
H
H
L
D
N
L
K
G
T
F

A
A
L
S
E
L
H
C
D
K
L
H
V
D
P
E
N

F
R
L
L
G
N
V
L
V
V
V
L
A
R
H
F
G
K
D
F
T
P
E
L
Q
A
S
Y
Q
K
V
V
A
G
V
A
N
A
L
A
H
K
Y
H

[7
]

V
H
L
T
P
E
E
K
S
A
V
T
A
L
W
G
K
V
N
V
D
E
V
G
G
E
A
L
G
R
L
L
V
V
Y
P
W
T
Q
R
F
F
E
S
F
G
D
L
S
T
P
D
A
V
M
G
N
P
K
V
K
A
H
G
K
K
V
L
G
A
F
S
D
G
L
A
H
L
D
N
L
K
G
T
F

A
T
L
S
E
L
H
C
D
K
L
H
V
D
P
E
N

F
R
L
L
G
N
V
L
V
C
V
L
A
H
H
F
G
K
E
F
T
P
P
V
Q
A
A
Y
Q
K
V
V
A
G
V
A
N
A
L
A
H
K
Y
H

F
i
t
n
e
s
s
:

2
0
6
8
.
0

T
i
m
e

e
l
a
p
s
e
d
:

1
4
:
1
6

C
o
m
p
a
r
e

w
i
t
h
:

2
7
7
5
.
0

A
m

in
o

A
ci

d
H

em
og

lo
bi

n
S

eq
ue

nc
es

 -
C

lu
st

al
W

 R
es

ul
t

[1
]

G
V
L
T
D
V
Q
V
A
L
V
K
S
S
F
E
E
F
N
A
N
I
P
K
N
T
H
R
F
F
T
L
V
L
E
I
A
P
G
A
K
D
L
F
S
F
L
K
G
S
S
E
V
P
-
Q
N
N
P
D
L
Q
A
H
A
G
K
V
F
K
L
T
Y
E
A
A
I
Q
L
Q
V
N
G
A
V
A
S

D
A
T
L
K
S
L
G
S
V
H
V
S
K
G
V
V
D
-
A
H
F
P
V
V
K
E
A
I
L
K
T
I
K
E
V
V
G
D
K
W
S
E
E
L
N
T
A
W
T
I
A
Y
D
E
L
A
I
I
I
K
K
E
M
K
D
A
A

[2
]

V
L
S
E
G
E
W
Q
L
V
L
H
V
W
A
K
V
E
A
D
I
A
G
H
G
Q
D
I
L
I
R
L
F
K
H
H
P
E
T
L
E
K
F
D
R
F
K
H
L
K
S
E
A
E
M
K
A
S
E
D
L
K
K
H
G
V
T
V
L
T
A
L
G
A
I
L
K
K
K
G
H

H
E
A
E
L
K
P
L
A
Q
S
H
A
T
K
H
K
I
P
I
K
Y
L
E
F
I
S
E
A
I
I
H
V
L
H
S
R
H
P
A
D
F
G
A
D
A
Q
G
A
M
S
K
A
L
E
L
F
R
K
D
I
A
A
K
Y
K
E
L
G
Y
Q
G

[3
]

P
I
V
D
T
G
S
V
A
P
L
S
A
A
E
K
T
K
I
R
S
A
W
A
P
V
Y
S
N
Y
E
T
S
G
V
D
I
L
V
K
F
F
T
S
T
P
A
A
Q
E
F
F
P
K
F
K
G
L
T
T
A
D
Q
L
K
K
S
A
D
V
R
W
H
A
E
R
I
I
N
A
V
N
D
A
V
V
S
M
D
D
T
-
E
K
M

S
M
K
L
R
D
L
S
G
K
H
A
K
S
F
Q
V
D
P
Q
Y
F
K
V
L
A
A
V
I
A
D
T
V
A
A
G

D
A
G
F
E
K
L
M
S
M
I
C
I
L
L
R
S
A
Y

[4
]

V
L
S
P
A
D
K
T
N
V
K
A
A
W
G
K
V
G
A
H
A
G
E
Y
G
A
E
A
L
E
R
M
F
L
S
F
P
T
T
K
T
Y
F
P
H
F
-
D
L
S

H
G
S
A
Q
V
K
G
H
G
K
K
V
A
D
A
L
T
N
A
V
A
H
V
D
D

M

P
N
A
L
S
A
L
S
D
L
H
A
H
K
L
R
V
D
P
V
N
F
K
L
L
S
H
C
L
L
V
T
L
A
A
H
L
P
A
E
F
T
P
A
V
H
A
S
L
D
K
F
L
A
S
V
S
T
V
L
T
S
K
Y
R

[5
]

V
L
S
P
A
D
K
T
N
V
K
A
A
W
G
K
V
G
A
H
A
G
E
Y
G
A
E
A
L
E
R
M
F
L
S
F
P
T
T
K
T
Y
F
P
H
F
-
D
L
S

H
G
S
A
Q
V
K
G
H
G
K
K
V
A
D
A
L
T
N
A
V
A
H
V
D
D

M

P
N
A
L
S
A
L
S
D
L
H
A
H
K
L
R
V
D
P
V
N
F
K
L
L
S
H
C
L
L
V
T
L
A
A
H
L
P
A
E
F
T
P
A
V
H
A
S
L
D
K
F
L
A
S
V
S
T
V
L
T
S
K
Y
R

[6
]

V
Q
L
S
G
E
E
K
A
A
V
L
A
L
W
D
K
V
—
N
E
E
E
V
G
G
E
A
L
G
R
L
L
V
V
Y
P
W
T
Q
R
F
F
D
S
F
G
D
L
S
N
P
G
A
V
M
G
N
P
K
V
K
A
H
G
K
K
V
L
H
S
F
G
E
G
V
H
H
L
D
N

L

K
G
T
F
A
A
L
S
E
L
H
C
D
K
L
H
V
D
P
E
N
F
R
L
L
G
N
V
L
V
V
V
L
A
R
H
F
G
K
D
F
T
P
E
L
Q
A
S
Y
Q
K
V
V
A
G
V
A
N
A
L
A
H
K
Y
H

[7
]

V
H
L
T
P
E
E
K
S
A
V
T
A
L
W
G
K
V
—
N
V
D
E
V
G
G
E
A
L
G
R
L
L
V
V
Y
P
W
T
Q
R
F
F
E
S
F
G
D
L
S
T
P
D
A
V
M
G
N
P
K
V
K
A
H
G
K
K
V
L
G
A
F
S
D
G
L
A
H
L
D
N

L

K
G
T
F
A
T
L
S
E
L
H
C
D
K
L
H
V
D
P
E
N
F
R
L
L
G
N
V
L
V
C
V
L
A
H
H
F
G
K
E
F
T
P
P
V
Q
A
A
Y
Q
K
V
V
A
G
V
A
N
A
L
A
H
K
Y
H

F
i
t
n
e
s
s
:

2
7
7
5
.
0

A
m

in
o

A
ci

d
G

ro
w

th
 H

or
m

on
e

S
eq

ue
nc

es
 -

 P
op

ul
at

io
n=

10
0,

 U
nc

ha
ng

ed
 R

ou
nd

s=
20

[1
]

-
M
A
A
D
S
Q
T
P
W
L
L
T
F
S
L
L
C
L
L
W
P
Q
E
A
G
A
L
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S

I
-
Q
N
A
-
Q
A
A
F
-
C
F
S
E
T
I
P
A

P
T
G
K
E
E
A
Q
Q
R
T
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
I
F
T
N
S
L
M
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
G
I
Q
A
L
M
Q
E
L
E
D
G
S
P
R
I
G
Q
I
L
K
Q
T
Y
D
K
F
D
A
N
M
R
S
D
D
A

L
L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
A
E
S
S
C
A
F
-

[2
]

-
M
A
A
S
P
R
N
S
V
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A
Q

A
—
A
F
C
-
F
S
E
T
I
P
A

P
T
G
K
D
E
A
Q
Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A

L
L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F
-

[3
]

-
M
A
A
G
P
R
N
S
V
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
V
G
T
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q

R
Y
S
I
Q
N
A
Q
A
A
F
-
C
F
S
E
T
I
P
A

P
T
G
K
D
E
A
Q
Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
G
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A

L
L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F
-

[4
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
G
L
L
C
L
P
W
P
Q
D
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S

I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P

-
T
G
K
D
E
A
Q
Q
R
S
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
L
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
R
D
L
-
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A

L
L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F
-

O

[5
]

-
M
A
A
G
S
W
T
A
G
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
A
S
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A

Q
A
A
F
-
C
F
S
E
T
I
P
A
P

^

T
G
K
D
E
A
Q
Q
R
S
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
A
F
T
N
T
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
V
G
Q
L
L
K
Q
T
Y
D
K
F
D
T
N
L
R
G
D
D
A
L

L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
V
F
-

[6
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
T
L
L
C
L
P
W
P
Q
E
A
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
T
Y
I
P
E
G
Q
R
Y
S
I
Q
N

A
Q
A
A

F
C
-
F
S
E
T
I
P
A
P

T
G
K
D
E
A
Q
Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
R
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L

L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F
-

[7
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
A
L
L
C
L
P
W
T
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N

A
Q
A

A
F
C
F
S
E
T
I
P
A

P
T
G
K
D
E
A
Q
Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A

L
L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F
-

[8
]

-
M
A
A
G
P
R
T
S
M
L
L
A
F
A
L
L
C
L
P
W
T
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I

Q
N
T
Q
A
-
-
A
F
-
C
F
S
E
T
I
P
A

P
T
G
K
D
E
A
Q
Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
M
R
S
D
D
A

L
L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F
-

[9
]

M
M
A
A
G
P
R
T
S
L
L
L
A
F
A
L
L
C
L
P
W
T
Q
M
V
G
A
F
P
A
M
S
L
S
G
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
F
K
E
F
E
R
T
Y
I
P
E
G
Q
R
-
Y
S
I
Q

N
T
Q
V
-
-
A
F
-
C
F
S
E
T
I
P
A

P
T
G
K
N
E
A
Q
Q
K
S
D
L
E
L
L
R
I
S
L
L
L
I
Q
S
W
L
G
P
L
Q
F
L
S
R
V
F
S
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
G
I
L
A
L
M
R
E
L
E
D
G
T
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
M
R
S
D
D
A

L
L
K
N
Y
G
L
L
S
C
F
R
K
D
L
H
K
T
E
T
Y
L
R
V
M
K
C
R
R
F
G
E
A
S
C
A
F
-

[
1
0
]

-
M
A
T
G
S
R
T
S
L
L
L
A
F
G
L
L
C
L
P
W
L
Q
E
G
S
A
F
P
T
I
P
L
S
R
L
F
D
N
A
S
L
R
A
H
R
L
H
Q
L
A
F
D
T
Y
Q
E
F
E
E
A
Y
I
P
K
E
Q

K

Y
S
F
L
Q
N
P
Q
T
S
L
C
F
S
E
S
I
P
T

P
S
N
R
E
E
T
Q
Q
K
S
N
L
E
L
L
R
I
S
L
L
L
I
Q
S
W
L
E
P
V
Q
F
L
R
S
V
F
A
N
S
L
V
Y
G
A
S
D
S
N
V
Y
D
L
L
K
D
L
E
E
G
I
Q
T
L
M
G
R
L
E
D
G
S
P
R
T
G
Q
I
F
K
Q
T
Y
S
K
F
D
T
N
S
H
N
D
D
A

L
L
K
N
Y
G
L
L
Y
C
F
R
K
D
M
D
K
V
E
T
F
L
R
I
V
Q
C
-
R
S
V
E
G
S
C
G
F
-

F
i
t
n
e
s
s
:

3
8
9
3
1
.
0

T
i
m
e

e
l
a
p
s
e
d
:

6:
24

C
o
m
p
a
r
e

w
i
t
h
:

4
3
5
2
0
.
0

A
m

in
o

A
ci

d
G

ro
w

th
 H

or
m

on
e

S
eq

ue
nc

es
 -

P
op

ul
at

io
n=

10
0,

 U
nc

ha
ng

ed
 R

ou
nd

s=
50

[1
]

-
M
A
A
D
S
Q
T
P
W
L
L
T
F
S
L
L
C
L
L
W
P
Q
E
A
G
A
L
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
E
E
A
Q

Q
R
—
T
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
I
F
T
N
S
L
M
F
G
T
-
S
D
R
V
Y
E
K
L
K
D
L
-
E
E
-
G
I
Q
A
L
M
Q
E
L
E
D
G
S
P
R
I
G
Q
I
L
K
Q
T
Y
D
K
F
D
A
N
M
R
S
D
D
A
L
L
K
N

Y
G
L

[2
]

L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
A
E
S
S
C
A
F
-
M
A
A
S
P
R
N
S
V
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E

G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q
Q
R
S
D
V
E
L
L
—
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
-
K
-
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D

G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[3
]

-
M
A
A
G
P
R
N
S
V
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
V
G
T
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
-
-
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
-
K
D
L
-
E
E
G
I
-
Q
A
L
M
R
E
L
E
D
G
S
P
R
G
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N

Y
G
L
L
S
C

[4
]

F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F
-
M
A
A
G
P
R
T
S
V
L
L
A
F
G
L
L
C
L
P
W
P
Q
D
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R

Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q
Q
R
—
S
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
L
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
—
K
L
R
D
L
E
E
-
G
I
Q
A
L
M
R
E
L
E
D
G
S

P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[5
]

-
M
A
A
G
S
W
T
A
G
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
A
S
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
—
S
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
A
F
T
N
-
T
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
-
D
L
E
E
-
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
V
G
Q
L
L
K
Q
T
Y
D
K
F
D
T
N
L
R
G
D
D
A
L
L
K
N

Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
V
F

[6
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
T
L
L
C
L
P
W
P
Q
E
A
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
T
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
—
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
-
K
-
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
R
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y

G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[7
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
A
L
L
C
L
P
W
T
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
—
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
-
K
L
K
D
L
-
E
E
G
-
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N

Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[8
]

-
M
A
A
G
P
R
T
S
M
L
L
A
F
A
L
L
C
L
P
W
T
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
T
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
—
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
—
D
-
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
M
R
S
D
D
A
L
L
K
N

Y
G
L
L
S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[9
]

M
M
A
A
G
P
R
T
S
L
L
L
A
F
A
L
L
C
L
P
W
T
Q
M
V
G
A
F
P
A
M
S
L
S
G
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
F
K
E
F
E
R
T
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
T
Q
V
A
F
C
F
S
E
T
I
P
A
P
T
G
K
N
E
A
Q

Q
K
—
S
D
L
E
L
L
R
I
S
L
L
L
I
Q
S
W
L
G
P
L
Q
F
L
S
R
V
F
S
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K

D
L
E
E
G
I
L
A
L
M
R
E
L
E
D
G
T
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
M
R
S
D
D
A
L
L
K
N

Y
G
L
L
S
C
F
R
K
D
L
H
K
T
E
T
Y
L
R
V
M
K
C
R
R
F
G
E
A
S
C
A
F

[1
0]

-
M
A
T
G
S
R
T
S
L
L
L
A
F
G
L
L
C
L
P
W
L
Q
E
G
S
A
F
P
T
I
P
L
S
R
L
F
D
N
A
S
L
R
A
H
R
L
H
Q
L
A
F
D
T
Y
Q
E
F
E
E
A
Y
I
P
K
E
Q
K
Y
S
F
L
Q
N
P
Q
T
S
L
C
F
S
E
S
I
P
T
P
-
S
N
R
E
E
T

Q
Q
K
-
S
N
L
E
L
L
R
I
S
L
L
L
I
Q
S
W
L
E
P
V
Q
F
L
R
S
V
F
A
N
S
L
V
Y
G
A
S
D
S
N
V
Y
D
L
-
L
K
D
L
E
E
G
I
Q
T
L
M
G
R
L
E
D
G
S
P
R
T
G
Q
I
F
K
Q
T
Y
S
K
F
D
T
N
S
H
N
D
D
A
L
L
K
N
Y

G
L
L
Y
C
F
R
K
D
M
D
K
V
E
T
F
L
R
I
V
Q
-
C
R
S
V
E
G
S
C
G
F

F
i
t
n
e
s
s
:

3
8
7
2
8
.
0

T
i
m
e

e
l
a
p
s
e
d
:

1
8
:
3
9

C
o
m
p
a
r
e

w
i
t
h
:

4
3
5
2
0
.
0

A
m

in
o

A
ci

d
G

ro
w

th
 H

or
m

on
e

S
eq

ue
nc

es
 -

 P
op

ul
at

io
n=

40
0,

 U
nc

ha
ng

ed
 R

ou
nd

s=
50

[1
]

-
M
A
A
D
S
Q
T
P
W
L
L
T
F
S
L
L
C
L
L
W
P
Q
E
A
G
A
L
P
A
M
P
L
S
S
L
F
A
N
-
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
E
E
A
Q

Q
R
T
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
I
F
T
N
S
L
M
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
Q
E
L
E
D
G
S
-
P
R
I
G
Q
I
L
K
Q
T
Y
D
K
F
D
A
N
M
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
A
E
S
S
C
A
F

[2
]

-
M
A
A
S
P
R
N
S
V
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
-
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
-
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[3
]

-
M
A
A
G
P
R
N
S
V
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
V
G
T
F
P
A
M
P
L
S
S
L
F
A
N
-
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
-
P
R
G
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[4
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
G
L
L
C
L
P
W
P
Q
D
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
-
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
L
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
R
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
-
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[5
]

-
M
A
A
G
S
W
T
A
G
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
A
S
A
F
P
A
M
P
L
S
S
L
F
A
N
-
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
M
E
L
L
R
F
S
L
L
L
L
Q
S
W
L
G
P
V
Q
F
L
S
R
A
F
T
N
T
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
-
P
R
V
G
Q
L
L
K
Q
T
Y
D
K
F
D
T
N
L
R
G
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
V
F

[6
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
T
L
L
C
L
P
W
P
Q
E
A
G
A
F
P
A
M
P
L
S
S
L
F
A
N
-
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
T
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
E
E
G
L
Q
A
L
M
R
E
L
E
D
G
S
-
P
R
A
G
Q
I
L
R
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[7
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
A
L
L
C
L
P
W
T
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
-
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
-
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
 C
 F
K
K
D
L
H
K
A
E
 T
 Y
L
R
V
M
K
C
R
R
F
V
E
S
 S
 C
A
F

[8
]

-
M
A
A
G
P
R
T
S
M
L
L
A
F
A
L
L
C
L
P
W
T
Q
E
V
G
A
F
-
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
I
Q
N
T
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
L
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
-
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
M
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[9
]

M
M
A
A
G
P
R
T
S
L
L
L
A
F
A
L
L
C
L
P
W
T
Q
M
V
G
A
F
P
A
M
S
L
S
G
L
F
A
N
-
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
F
K
E
F
E
R
T
Y
I
P
E
G
Q
R
Y
S
I
Q
N
T
Q
V
A
F
C
F
S
E
T
I
P
A
P
T
G
K
N
E
A
Q

Q
K
S
D
L
E
L
L
R
I
S
L
L
L
L
Q
S
W
L
G
P
L
Q
F
L
S
R
V
F
S
N
S
L
V
F
G
T
S
D
R
V
Y
E
K
L
K
D
L
E
E
G
I
L
A
L
M
R
E
L
E
D
G
T
-
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
M
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
R
K
D
L
H
K
T
E
T
Y
L
R
V
M
K
C
R
R
F
G
E
A
S
C
A
F
-

[1
0]

M
A
T
G
S
R
T
S
L
L
L
A
F
G
L
L
C
L
P
W
L
Q
E
G
S
A
F
P
T
I
P
L
S
R
L
F
D
N
A
S
L
R
A
H
R
L
H
Q
L
A
F
D
T
Y
Q
E
F
E
E
A
Y
I
P
K
E
Q
K
Y
S
F
L
Q
N
P
Q
T
S
L
C
F
S
E
S
I
P
T
P
S
N
R
E
E
T
Q
Q

K
S
N
L
E
L
L
R
I
S
L
L
L
I
Q
S
W
L
E
P
V
Q
F
L
R
S
V
F
A
N
S
L
V
Y
G
A
S
D
S
N
V
Y
D
L
L
K
D
L
E
E
G
I
Q
T
L
M
G
R
L
E
D
G
S
P
R
T
G
Q
I
F
K
Q
T
Y
S
K
F
D
T
N
S
H
N
D
D
A
L
L
K
N
Y
G
L
L
Y

C
F
R
K
D
M
D
K
V
E
T
F
L
R
I
V
Q
C
R
S
-
V
E
G
S
C
G
F

F
i
t
n
e
s
s
:

4
0
5
3
1
.
0

T
i
m
e

e
l
a
p
s
e
d
:

1
8
:
0
6

C
o
m
p
a
r
e

w
i
t
h
:

4
3
5
2
0
.
0

A
m

in
o

A
ci

d
G

ro
w

th
 H

or
m

on
e

S
eq

ue
nc

es
 -

C
lu

st
al

W
 R

es
ul

t

[1
]

-
M
A
A
S
P
R
N
S
V
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
-
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[2
]

-
M
A
A
G
P
R
N
S
V
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
V
G
T
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
-
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
G
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[3
]

-
M
A
A
D
S
Q
T
P
W
L
L
T
F
S
L
L
C
L
L
W
P
Q
E
A
G
A
L
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
E
E
A
Q

Q
R
T
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
I
F
T
N
S
L
M
F
G
T
S
D
R
-
V
Y
E
K
L
K
D
L
E
E
G
L
Q
A
L
M
Q
E
L
E
D
G
S
P
R
I
G
Q
I
L
K
Q
T
Y
D
K
F
D
A
N
M
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
A
E
S
S
C
A
F

[4
]

-
M
A
A
G
S
W
T
A
G
L
L
A
F
A
L
L
C
L
P
W
P
Q
E
A
S
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
A
F
T
N
T
L
V
F
G
T
S
D
R
-
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
V
G
Q
L
L
K
Q
T
Y
D
K
F
D
T
N
L
R
G
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
V
F

[5
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
T
L
L
C
L
P
W
P
Q
E
A
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
T
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
-
V
Y
E
K
L
K
D
L
E
E
G
L
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
R
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[6
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
G
L
L
C
L
P
W
P
Q
D
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
M
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
L
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
-
V
Y
E
K
L
R
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[7
]

-
M
A
A
G
P
R
T
S
V
L
L
A
F
A
L
L
C
L
P
W
T
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
A
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
-
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
L
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
 C
 F
K
K
D
L
H
K
A
E
 T
Y
L
R
V
M
K
C
R
R
F
V
E
 S
 S
 C
A
F

[8
]

-
M
A
A
G
P
R
T
S
M
L
L
A
F
A
L
L
C
L
P
W
T
Q
E
V
G
A
F
P
A
M
P
L
S
S
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
Y
K
E
F
E
R
A
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
T
Q
A
A
F
C
F
S
E
T
I
P
A
P
T
G
K
D
E
A
Q

Q
R
S
D
V
E
L
L
R
F
S
L
L
L
I
Q
S
W
L
G
P
V
Q
F
L
S
R
V
F
T
N
S
L
V
F
G
T
S
D
R
-
V
Y
E
K
L
K
D
L
E
E
G
I
Q
A
L
M
R
E
L
E
D
G
S
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
M
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
K
K
D
L
H
K
A
E
T
Y
L
R
V
M
K
C
R
R
F
V
E
S
S
C
A
F

[9
]

M
M
A
A
G
P
R
T
S
L
L
L
A
F
A
L
L
C
L
P
W
T
Q
M
V
G
A
F
P
A
M
S
L
S
G
L
F
A
N
A
V
L
R
A
Q
H
L
H
Q
L
A
A
D
T
F
K
E
F
E
R
T
Y
I
P
E
G
Q
R
Y
S
-
I
Q
N
T
Q
V
A
F
C
F
S
E
T
I
P
A
P
T
G
K
N
E
A
Q

Q
K
S
D
L
E
L
L
R
I
S
L
L
L
I
Q
S
W
L
G
P
L
Q
F
L
S
R
V
F
S
N
S
L
V
F
G
T
S
D
R
-
V
Y
E
K
L
K
D
L
E
E
G
I
L
A
L
M
R
E
L
E
D
G
T
P
R
A
G
Q
I
L
K
Q
T
Y
D
K
F
D
T
N
M
R
S
D
D
A
L
L
K
N
Y
G
L
L

S
C
F
R
K
D
L
H
K
T
E
T
Y
L
R
V
M
K
C
R
R
F
G
E
A
S
C
A
F

[
1
0
]

-
M
A
T
G
S
R
T
S
L
L
L
A
F
G
L
L
C
L
P
W
L
Q
E
G
S
A
F
P
T
I
P
L
S
R
L
F
D
N
A
S
L
R
A
H
R
L
H
Q
L
A
F
D
T
Y
Q
E
F
E
E
A
Y
I
P
K
E
Q
K
Y
S
F
L
Q
N
P
Q
T
S
L
C
F
S
E
S
I
P
T
P
S
N
R
E
E
T
Q

Q
K
S
N
L
E
L
L
R
I
S
L
L
L
I
Q
S
W
L
E
P
V
Q
F
L
R
S
V
F
A
N
S
L
V
Y
G
A
S
D
S
N
V
Y
D
L
L
K
D
L
E
E
G
I
Q
T
L
M
G
R
L
E
D
G
S
P
R
T
G
Q
I
F
K
Q
T
Y
S
K
F
D
T
N
S
H
N
D
D
A
L
L
K
N
Y
G
L
L

Y
C
F
R
K
D
M
D
K
V
E
T
F
L
R
I
V
Q
C
R
-
S
V
E
G
S
C
G
F

F
i
t
n
e
s
s
:

4
3
5
2
0
.
0

A
pp

en
di

x
B

:
D

N
A

 T
es

t
C

as
es

D
N

A
 S

im
pl

e
S

eq
ue

nc
es

G
A
M
S
A

B
e
s
t

I
n
d
i
v
i
d
u
a
l
:

[1
]

A
T
T
G
C
C
A
-
T
T

[2
]

A
T
G
G
C
C
A
-
T
T

[3
]

A
T
C
C
A
A
T
T
T
T

[4
]

A
T
C
T
T
O
-
T
T

[5
]

A
T
T

[6
]

-
-
G
G
C
C
A
-
T
-

[7
]

A
T
T
G

F
i
t
n
e
s
s
:

-
7
4
.
0

C
l
u
s
t
a
l
W

S
o
l
u
t
i
o
n

I
n
d
i
v
i
d
u
a
l
:

[1
]

A
T
C
T
T
C
T
T
-
-

[2
]

A
T
C
C
A
A
T
T
T
T

[3
]

A
T
T

[4
]

—
G
G
C
C
A
T
-
-

[5
]

A
T
G
G
C
C
A
T
T
-

[6
]

A
T
T
G
C
C
A
T
T
-

[7
]

A
T
T
G

F
i
t
n
e
s
s
:

-
8
4
.
0

S
t
a
t
i
s
t
i
c
s
:

T
i
m
e

E
l
a
p
s
e
d

(
H
H
:
m
m
:
s
s
:
S
S
)
:

0
0
:
0
0
:
0
7
:
4
8
5

P
o
p
u
l
a
t
i
o
n

S
i
z
e
:

2
0
0

N
u
m
b
e
r

o
f

U
n
c
h
a
n
g
e
d

R
o
u
n
d
s
:

5
0

N
u
m
b
e
r

o
f

T
o
t
a
l

R
o
u
n
d
s
:

6
8

G
o
o
d
b
y
e
,

a
n
d

t
h
a
n
k

y
o
u

f
o
r

f
l
y
i
n
g

G
A
M
S
A
.

D
N

A
 M

Y
H

16
 S

eq
ue

nc
es

G
A
M
S
A

B
e
s
t

I
n
d
i
v
i
d
u
a
l
:

[
 1
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
C
A
G
C
A
C
T
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
G
T
G
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
G
T
C
A
G

[
 2
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
G
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 3
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
G
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 4
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 5
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[6
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 7
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 8
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
—
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

F
i
t
n
e
s
s
:

2
3
2
2
.
0

C
l
u
s
t
a
l
W

S
o
l
u
t
i
o
n

I
n
d
i
v
i
d
u
a
l
:

[
 1
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
—
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 2
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 3
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 4
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
A
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 5
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
G
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[
 6
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
T
A
G
C
A
C
C
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
G
T
C
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
A
T
C
G
G

[7
]

G
A
G
C
A
G
C
T
G
A
A
C
A
A
G
C
T
G
A
T
G
A
C
C
A
C
C
C
T
C
C
A
C
A
G
C
A
C
T
G
C
A
C
C
C
C
A
T
T
T
T
G
T
C
C
G
C
T
G
T
A
T
T
G
T
G
C
C
C
A
A
T
G
A
G
T
T
T
A
A
G
C
A
G
T
C
A
G

F
i
t
n
e
s
s
:

1
7
2
8
.
0

S
t
a
t
i
s
t
i
c
s
:

T
i
m
e

E
l
a
p
s
e
d

(
H
H
:
m
m
:
s
s
:
S
S
)
:

0
0
:
0
0
:
1
6
:
3
6
0

P
o
p
u
l
a
t
i
o
n

S
i
z
e
:

2
0
0

N
u
m
b
e
r

o
f

U
n
c
h
a
n
g
e
d

R
o
u
n
d
s
:

5
0

N
u
m
b
e
r

o
f

T
o
t
a
l

R
o
u
n
d
s
:

1
0
5

G
o
o
d
b
y
e
,

a
n
d

t
h
a
n
k

y
o
u

f
o
r

f
l
y
i
n
g

G
A
M
S
A
.

D
N

A
 B

et
a

G
lo

bi
n

S
eq

ue
nc

es

G
A
M
S
A

B
e
s
t

I
n
d
i
v
i
d
u
a
l
:

[1
]

G
T
T
T
A
C
G
T
T
T
G
C
T
T
C
T
G
A
T
T
C
T
G
T
T
G
T
G
T
T
G
A
C
T
T
G
C
A
A
C
C
T
C
A
G
A
A
A
C
A
G
A
C
A
T
C
A
T
G
G
T
G
C
A
C
C
T

G
A
C
T
G
A
T
G
C
T
G
A
G
A
A
G
G
C
T
G
C

T
G
T
C
T
C

T
G
G
C
C
T
G
T
G
G
G
G
A
A
A
G
G
T
G
A
A
C
G
C
C
G
A
T
G
A
A
G
T
T
G
G
T
G
G
T
G
A
G
G
C
C
C
T
G
G
G
C
A
G
G
C

[2
]

A
C
A
T
T
T
G
C
T
T
C
T
G
A
C
A
C
A
A
C
T
G
T
G
T
T
C
A
C
T
A
G
C
A
A
C
C
T
C
A
A
-
-
A
C
A
G
A
C
A
C
C
A
T
G
G
T
G
C
A
T
C
T
G
A
C
T
C
C
T
G
A
-
G
G
A
-
G
A
A
G
T
C
T
G
C
C

G
T
T
-
A
-
C
-
T
G
C
C
C
T
G
T
G
G
G
G
C
A
A
G
G
T
G
A
A
C
G
T
G
G
A
T
G
A
A
G
T
T
G
G
T
G
G
T
G
A
G
G
C
C
C
T
G
G
G
C
A
G
G
C

[3
]

T
A
G
G
G
C
C
C
C
T
G
C
T
G
C
T
T
A
C
A
C
C
T
G
C
T
T
T
T
G
A
C
A
C
A
A
C
T
T
G
C
A
G
C
T
G
G
G
T
A
A
A
C
A
C
A
C
A
T
C
A
T
G
G
T
G
C
A
T
C
T

G
A
C
T
C
T
A
G
A
A
G
A
G
A
A
G
G
C
T
A
C

T
-
T
G
T
C
-
A
C
T
G
C
C
C
T
G
T
G
G
A
G
C
A
A
G
A
T
G
A
G
G
G
T
G
G
C
T
G
A
A
G
T
T
G
G
T
G
T
T
G
A
A
A
C
C
C
T
A
G
G
C
A
G
G
C

[4
]

A
C
A
C
T
T
G
C
T
T
C
T
G
A
C
A
C
-
A
C
C
G
T
G
C
T
C
A
C
T
A
G
C
A
G
C
T
G
C
A
C
A
A
A
C
A
C
A
C
A
C
C
A
T
G
C
-
-
T
-
G
A
C
 —

T

G
C
T
G
A
G
G
A
G
A
A
G
G
C
T
G
C

C
G
T
C
A
C
—
C
-
G
G
C
T
T
C
T
G
G
G
G
C
A
A
G
G
T
G
A
A
A
G
T
G
G
A
T
G
A
A
G
T
T
G
G
T
G
C
T
G
A
G
G
C
C
C
T
G
G
G
C
A
G
G
T

[5
]

A
G
C
T
A
G
A
T
T
A
G
T
T
T
C
A
G
C
A
T
C
A
T
A
C
T
A
C
T
T
T
T
G
A
C
A
C
A
G
C
T
C
T
G
T
G
T
T
C
A
C
A
A
G
T
A
A
A
C
T
T
T
C
A
A
A
A
T
G
G
T
G
C
A
C
T
T
G
A
C
T
T
C
T
G
A
G
G
A
G
A
A
G
A
A

C
T
G
C
A
T
C
A
C
T
A
C
C
A
T
C
T
G
G
T
C
T
A
A
G
G
T
G
C
A
G
G
T
T
G
A
C
C
A
G
A
C
T
G
G
T
G
G
T
G
A
G
G
C
C
C
T
T
G
G
C
A
G
G
T

F
i
t
n
e
s
s
:

5
3
.
0

C
l
u
s
t
a
l
W

S
o
l
u
t
i
o
n

I
n
d
i
v
i
d
u
a
l
:

[1
]

G
T
T
T
A
C
G
T
T
T
G
C
T
T
C

T
G
A
T
T
C

T
G
T
T
G
T
G
T
T
G
A
C
T

T
G
C
A
A
C
C
T
C
A
G
A
A
A
C
A
G
A
C
A
T
C
A
T
G
G
T
G
C
A
C
C
T
G
A
C
T
G
A
T
G
C
T
G
A
G
A
A
G
G

C
T
G
C
T
-
G
T
C
T
C
T
G
G
C
C
T
G
T
G
G
G
G
A
A
A
G
G
T
G
A
A
C
G
C
C
G
A
T
G
A
A
G
T
T
G
G
T
G
G
T
G
A
G
G
C
C
C
T
G
G
G
C
A
G
G
C

[2
]

A
C
A
T
T
T
G
C
T
T
C

T
G
A
C
A
C

A
A
C
T
G
T
G
T
T
C
A
C
T

A
G
C
A
A
C
C
T
C
~
A
A
A
C
A
G
A
C
A
C
C
A
T
G
G
T
G
C
A
T
C
T
G
A
C
T
C
C
T
G
A
G
G
A
G
A
A
G
T
C

T
G
C
C
-
G
T
T
A
C
T
G
C
C
C
T
G
T
G
G
G
G
C
A
A
G
G
T
G
A
A
C
G
T
G
G
A
T
G
A
A
G
T
T
G
G
T
G
G
T
G
A
G
G
C
C
C
T
G
G
G
C
A
G
G
C

[3
]

T
A
G
G
G
C
C
C
C
T
G
C
T
G
C

T
T
A
C
A
C
C
T
G
C
T
T
T
T
G
A
C
A
C
A
A
C
T

T
G
C
A
G
C
T
G
G
G
T
A
A
A
C
A
C
A
C
A
T
C
A
T
G
G
T
G
C
A
T
C
T
G
A
C
T
C
T
A
G
A
A
G
A
G
A
A
G
G

C
T
A
C
T
T
G
T
C
A
C
T
G
C
C
C
T
G
T
G
G
A
G
C
A
A
G
A
T
G
A
G
G
G
T
G
G
C
T
G
A
A
G
T
T
G
G
T
G
T
T
G
A
A
A
C
C
C
T
A
G
G
C
A
G
G
C

[4
]

A
C
A
C
T
T
G
C
T
T
C

T
G
A
C
A
C
A
C
C
G
T
G
C
T
C
A
C

T

A
G
C
A
G
C
T
G
C
A
C
A
A
A
C
A
C
A
C
A
C
C
A
T
G

C
T
G
A
C
T
G
C
T
G
A
G
G
A
G
A
A
G
G

C
T
G
C
C
-
G
T
C
A
C
C
G
G
C
T
T
C
T
G
G
G
G
C
A
A
G
G
T
G
A
A
A
G
T
G
G
A
T
G
A
A
G
T
T
G
G
T
G
C
T
G
A
G
G
C
C
C
T
G
G
G
C
A
G
G
T

[
 5
]

A
G
C
T
A
G
A
T
T
A
G
T
T
T
C
A
G
C
A
T
C
A
T
A
C
-
T
A
C
T
T
T
T
G
A
C
A
C
A
G
C
T
C
T
G
T
G
T
T
C
A
C
A
A
G
T
A
A
A
C
T
T
T
C
A
A
A
A
T
G
G
T
G
C
A
C
T
T
G
A
C
T
T
C
T
G
A
G
G
A
G
A
A
G
A

A
C
T
G
C
-
A
T
C
A
C
T
A
C
C
A
T
C
T
G
G
T
C
T
A
A
G
G
T
G
C
A
G
G
T
T
G
A
C
C
A
G
A
C
T
G
G
T
G
G
T
G
A
G
G
C
C
C
T
T
G
G
C
A
G
G
T

F
i
t
n
e
s
s
:

3
5
2
.
0

S
t
a
t
i
s
t
i
c
s
:

T
i
m
e

E
l
a
p
s
e
d

(
H
H
:
m
m
:
s
s
:
S
S
)
:

0
0
:
0
0
:
2
6
:
4
0
7

P
o
p
u
l
a
t
i
o
n

S
i
z
e
:

2
0
0

N
u
m
b
e
r

o
f

U
n
c
h
a
n
g
e
d

R
o
u
n
d
s
:

7
0

N
u
m
b
e
r

o
f

T
o
t
a
l

R
o
u
n
d
s
:

2
0
0

G
o
o
d
b
y
e
,

a
n
d

t
h
a
n
k

y
o
u

f
o
r

f
l
y
i
n
g

G
A
M
S
A
.

*
*
*
*
*
*

D
N

A
 H

IV
 S

eq
ue

nc
es

G
A

M
SA

B

e
s

t
I

n
d

iv
id

u
a

l:

[1
]

G
-A

A
G

G
A

A
A

T
C

A
G

A
T

A
C

A
T

G
T

T
A

T
A

A
A

G
C

C
A

G
T

T
T

-T
A

C
C

A
A

A
G

C
T

A
A

A
C

A
A

T
C

T
G

T
T

T
G

A
A

T
-A

T
G

C
-G

G
T

G
T

C
A

G
A

G
G

A
A

A
A

-T
G

G
A

T
G

T
T

G
G

C

T
C

T
T

T
-C

A
—

C
C

C
A

T
C

C
T

G

--
G

C
A

-T
A

T
G

T
G

T
A

T
-T

T
A

T
A

A
A

A
G

A
A

T
G

T
T

T
G

A
A

-A
G

T
G

A
A

A
A

C
A

A
A

A
T

C
C

T
G

T
C

C
A

A
A

G
A

A
G

G
T

G
T

T

A
T

C
C

A
--

T
T

T
T

T
T

G
G

A
G

C
T

G

T
-A

T
G

A
A

A
C

A
A

A
G

A
T

T
C

T
T

C
C

A
T

T
T

T
C

A
C

C
A

G
A

A
T

-T
T

T
C

T
G

A
G

T
T

T
A

T
T

A
T

T
G

G
A

C
C

A
T

-T
A

A
T

G
G

A
T

G
C

G

C
T

T
T

C
A

G
A

G
A

G
C

T
C

T
C

T
G

T
A

T
A

G
C

A
G

G
T

-C
C

C
C

A
G

G
C

C
A

G
C

C
A

A
T

A
G

G
A

A
G

C
T

G
-T

T
C

T
C

C
A

T
T

G
G

G
A

C
T

G
A

A
A

T
T

A
C

-A
G

A
A

G
T

T
T

T
T

A
G

T
C

A
C

T

T
A

T
A

T
T

T
C

T
C

T
T

C
T

T
C

C
A

G
A

A
G

-A
—

A
-A

T
A

A
A

G
A

-G
T

A
G

C
T

T
C

C
T

A
T

T
G

A
A

G
T

T
T

A
T

T
C

G
G

A
A

G
A

T
G

A
C

A
A

G
—

T
A

G
G

C
A

-T
T

G
G

-T
-G

T
G

C
T

-G

-T
T

C
-C

C
A

T
T

T
T

-G
T

T
T

C
T

A
T

C
T

A
A

G
-G

C
T

T
T

G

-G
C

A
A

A
T

G
T

C
C

C
A

A
-G

A
C

A
--

T
A

-A
G

G
C

C
C

—
T

G
G

-G
T

A
-T

A
G

A
T

G
G

G
C

T
T

C
-T

T
-G

C

T
C

-T
C

A

G
G

G
A

-T
G

T
T

A
T

T
C

A
T

T
G

—
C

-A
C

T
A

T
G

A
T

C
A

-C
-A

C
A

T
C

A
G

A
T

T
C

T
C

C
T

G
A

G
A

G
G

G
G

C
A

G
C

C
C

A
A

T
G

C
T

A
C

C
T

T
C

T
T

C
A

A
A

C
A

G

C
T

A
T

G
A

A
T

T
T

G
C

T
A

G
A

T
G

T
G

G
A

G
A

A
A

G
T

G
T

C
A

C
T

T
T

C
T

[2
]

G
-A

A
G

G
A

A
A

T
C

A
G

A
T

A
C

A
T

G
T

T
A

T
A

A
A

G
C

C
A

G
T

T
T

-T
A

C
C

A
A

A
G

C
T

A
A

A
C

A
A

T
C

T
G

T
T

T
G

A
A

T
A

T
G

C
G

G
T

G
T

C
A

G
A

G
G

A
A

A
A

T
G

G
A

T
G

T
T

G
G

C
T

C

T
T

T
C

A
C

C
C

A
T

C
C

T
G

G
C

A
T

A
T

G
T

G

T
A

T
T

T
A

T
A

A
A

A
G

A
A

T
G

T
T

T
G

A
A

A
G

T
G

A
A

A
A

C
-A

-A
A

A
T

-C
-C

T
G

T
-C

C
A

A
A

G
A

A
G

G
T

G
T

-T
A

T
C

C
A

T

T
T

-T
-T

T
G

G
-A

G
C

—
T

G
T

A
T

G
-A

A
A

-C
A

A
A

G
A

T
T

C
T

T
-C

C
A

T
T

T
T

C
A

C
C

A
G

A
A

T
T

T
T

-C
T

G
A

G
—

T
T

T
A

-T
T

A
T

T
G

G
A

C
C

A
-T

T
A

A
T

G
G

A
T

G
C

G

C
T

T
T

C
A

G
A

G
A

G
C

T
C

T
C

T
G

T
A

T
A

G
C

A
G

G
T

C
C

C
C

A
G

G
C

C
-A

G
C

C
A

A
T

A
G

G
A

A
G

C
T

G
T

T
C

T
-C

C
A

T
T

G
G

G
A

C
T

G
A

A
A

T
T

A
C

A
G

A
-A

G
T

T
T

T
T

A
G

T
C

A
C

T

T
A

T
A

T
T

T
C

T
C

T
T

C
T

T
C

C
A

G
A

A
G

-A
A

A
T

A
A

A
G

A
G

T
A

G
C

T
T

C
-C

T
A

T
T

G
A

A
G

T
T

T
A

T
T

C
G

G
A

A
G

-A
—

T
G

A
C

A
A

-G
T

-A
G

G
C

A
-T

T
G

G
—

T
G

T
G

-C

T
G

-T
-T

C
C

C
-A

T
-T

T
 —

 T
G

T
T

T
C

T

A
T

C
T

A
-A

G

G
C

T
T

-T
-G

G
C

A
A

A
T

G

T
C

C
C

A
A

-G
A

C
A

T
A

A
G

G
C

C
C

T
G

G
G

T
A

T
A

G
A

T
G

G

G
C

T
T

C
T

T
G

C
T

C
T

C
A

-G
G

G
A

T
G

T
T

A
T

T
C

A
T

T
G

-C
A

C
T

A
T

G
A

T
C

A
C

A
C

A
T

C
A

G
A

T
T

C
T

C
C

T
G

A
G

A
G

G
G

G
C

A
G

C
C

C
A

A
T

G
C

T
A

C
C

T
T

C
T

T
C

A
A

A
C

A
G

C

T
A

T
G

A
A

T
T

T
G

C
T

A
G

A
T

G
T

G
G

A
G

A
A

A
G

T
G

T
C

A
C

T
T

T
C

T

[3
]

-G
A

C
A

G
T

C
T

A
G

T
G

G
T

T
C

G
A

G
T

A
—

A
T

-T
T

T
G

G
A

-G
—

G
-T

T
T

-C
C

C
C

A
C

A
—

G
C

A
A

G
--

T
C

A
C

T
C

T
C

C
T

T
T

T
C

—
A

G
C

C
C

C
A

A
A

C
T

A
C

A
G

G
T

G
G

-
A

A
G

T
G

C
T

G
—

C
A

T
C

A
G

T
A

A
A

-T
G

-C

T
A

A
T

T
T

T
G

C
T

C
A

T
T

T
T

G
A

T
A

A
C

T
T

C
-C

C
C

A
A

A
T

C
C

T
C

C
A

G
T

G
C

T
G

A
T

T
T

T
G

G
A

A
C

C
T

-T
C

A
-A

T
A

C
T

T

C
-C

C
A

G
-A

G
T

C
A

T
C

A
A

A
C

A
G

C
-A

T
C

-A
G

C
T

G
T

T
A

G
T

-A
A

A
G

T
T

T
C

A
A

C
G

A
A

C
A

A
A

G
C

T
G

G
T

T
T

A
C

A
G

A
C

T
G

C
A

G
A

C
A

A
A

T
A

T
G

C
A

G
C

A
C

T
T

G
C

T

A
A

T
T

T
A

G
A

C
-A

A
T

A
T

-C
T

T
C

A
G

-T
G

C
-C

G
G

G
C

A
A

G
G

T
G

G
T

G
-A

T
C

A
G

G
G

A

A
G

T
G

G
C

T
T

T
G

G
G

A
C

C
A

C
A

G
G

T
-A

A
A

G
C

T
C

C
T

G
T

T
G

G
T

T
C

-T

G
T

G
G

T
T

T
C

A
G

-T
T

C
C

C
A

G
T

C
A

-G
-T

C
A

A
G

T
G

C
A

T
C

T
-T

C
A

G
-A

C
A

A
G

T
A

T

G
C

A
-G

C
T

C
-T

G
G

C
A

G
-A

A
C

T
A

G
A

C
A

--
G

-C
G

T
-T

-T
T

C
A

G
T

T

C
T

G
C

A
G

C
-C

-A
C

C
T

C
C

-A
G

T
A

A
T

G
C

G
T

A
T

A
C

T
T

C

C
A

C
-A

-A
G

T
A

A
T

G
C

T
A

G
C

A
G

C
A

A

T
G

T
T

T
-T

T
G

-G
-A

A
C

A
G

-T
G

C
C

A
G

T
G

G
T

T
G

C

—
T

T
C

T

G
C

A
C

—
A

G
A

C
-A

C
A

G
C

C
T

G
C

T
T

C
A

-T
C

A
A

G
T

G
T

G
C

C
T

G
C

-T
C

C
A

—
T

T
-T

-G
G

A
G

C
T

A
C

G
C

C
T

T
C

-C
A

C
A

A
A

T
C

C
A

T
T

T
G

T
T

G
C

T

G
C

T
G

C
T

G
G

T
C

C
T

T
C

T
G

T
G

G
C

A
T

C
T

T
C

T
A

C
A

A
A

C
C

C
A

T

[4
]

G
C

G
A

C
A

C
C

A
G

C
T

G
C

A
C

T
G

G
-T

C
A

G
G

G
C

C
C

-C
A

G
C

A
A

G
A

A
G

G
C

A
G

C
C

A
A

G
C

A
C

A
A

G
G

C
A

G
C

T
G

A
G

G
T

G
G

C

C
C

T
C

A
A

A
C

A
C

C
-T

C
A

A
A

G
G

G

G
G

G
A

G
C

A
T

G
C

T
G

G
A

G
C

C
G

-G
C

C
C

-T
G

—
G

A
G

G
A

C
A

G
C

A
G

T
T

-C
T

T
T

T
T

C
T

C
C

C
C

T
A

—
G

A
-C

T
C

-T
T

C
-A

C
T

G
C

C
T

G
A

G
G

A
C

A
T

T
C

C
G

G
T

T
T

T
T

A

C
T

G
C

T
G

C
A

G
C

A
G

C
T

G
C

T
A

C
C

C
C

—
A

G
--

T
T

C
C

A
-T

C
T

-G
T

A
G

-T
C

C
T

A
A

C
-C

A
G

G
A

G
C

C
C

C
-C

C
C

A
T

G
G

A
A

-C
T

G

C
A

G
C

C
-C

C
C

T
G

T
C

T
C

C
C

-C

-T
C

A
G

C
A

G
T

C
T

G
A

G
T

G
C

A
A

C
C

C
C

G
T

T
G

G
T

G
-C

T
C

T
G

C
A

G
G

A
G

C
T

G
G

T
G

G
-T

G
C

A
G

A
A

A
G

G
C

T
G

G
C

G
G

T
T

G
C

C
-G

G
A

G
-T

A
C

A
C

A
G

T
G

A
C

C
C

A
G

G
A
G
T
C
T
G
G
G
C
-
C
A
G
C
C
C
A
C
-
C
G
-
C
A
-
A
A
G
A
A
T
T
C
-
A
C
C
A
T
G
A
C
C
T
G
T
C
G
-
A
G
T
G
G
-
A
G
C
G
T
T
-
T
C
-
A
T
T
G
A
G
A
T
-
T
G
G
G
A
G
T
G
G
C
A
C
T
T
C
C
A
A
A
A

A
-
A
T
T
G
G
C
A
-
A
A
G
C
-
G
—
G
A
A
T
G
C
G
G
C
G
G
C
C
-
A
A
A
A
T
G
C
T
G
C
T
-
T
C
G
A
G
T
G
C
A
C
-
A
C
G
G

T
G
C
C
T
C
T
G
-
G
A
T
G
C
C
C
G
G
G
A
T
—
G
G
C
A
-
A
T
G
A

G
G
T
G
G
A
G
-
C
C
T
G
A
T
-
G
A
T
G
A
C
C
A
C
T
T
C
T
C
C
A
T
T
G
G
T
G
T
G
G
G
C
T
C
C
C
G
C
C
T
G
G
A
T
G
G
T
C
T
T
C
G
A
A
A
C
C
G
G
G
G
C
C
C
A
G
G
T
T
G
C
A
C
C
T
G
G
G
A
T
T
C
T
C
T

A
C
G
A
A
A
T
T
C
A
G
T
A
G
G
A
G
A
G
A
A
G
A
T
C
C
T
G
T
C
C
C
T
C
C
G
C

[5
]

A
G
T
G
C
C
-
C
A
G
C
G
A
G
A
C
A
G
C
C
C
C
G
G
C
C
T
C
G
-
-
G
T
T
T
T
T
C
C
C
C
A
G
A
A
T
G
G
A
-
G
C
C
G
C
C
C
-
G
T
A
-
G
G
G
C
A
G
T
-
G
-
G
C
A
G
C
C
C
A
G
C
C
A
G
G
A
C
G

-
-
G
-
A
A
G
C
G
A
A
A
A
-
T
C
G
A
A
T
T
G
T
T
-
T
G
G
G
C
A
C
T
G
A
T
G
A
G
G
A
C
T
C
C
C
A
G
G
A
C
A
G
C
T
C
T
G
A
T
G
G
A
A
T
A
C
C
G
T
C
A
G
C
A
C
C
A
C
G
C
A
T
G
A
C
T
G
G
C
A
G
C
C
-

T
G
G
-
T
-
G
T
C
T
G
A
T
C
G
A
A
G
C
C
A
C
G
A
C
G
A
C
A
T
C
G
T
C
A
C
C
C
G
G
A
T
G
A
A
G
A
A
C
A
T
T
G
A
G
T
G
C
A
T
-
T
G
-
A
G
C
T
G
G
G
C
C
G
G
C
A
C
C
G
C
C
T
C
A
-
A
G
C
C
G
T
G
G
T

A
C
T
T
C
T
C
C
C
—
C
G
T
A
C
C
C
A
C
A
G
G
A
A
C
T
C
A
C
-
C
A
C
A
T
T
G
C
C
T
G
T
C
C
T
C
T
A
-
-
C
C
T
G
T
G
C
G
A
G
T
-
T
C
T
G
C
C
T
C
A
A
-
G
T
-
A
C
-
G
G
-
C
-
C
G
T
A
G
T
C
T
C
A

A
G
T
G
T
C
T
—
T
C
A
G
C
G
T
C
A
T
-
T
T
G
A
C
C
-
A
A
—
G
T
G
T
-
G
A
C
C
T
-
A
C
G
A
C
A
T
C
C
-
T
C
C
A
G
G
C
A
A
T
G
A
-
G
-
A
T
T
T
A
C
C
G
C
A
A
G
G
G
C
A
C
C
A
T
C
T
C
C
T
T
-
C

T
T
—
T
G
A
G
A
T
T
G
-
A
T
G
G
A
C
G
T
A
A
-
G
A
A
C
A
A
G
A
G
—
T
-
T
—
A
T
T
C
C
C
A
G
A
A
C
C
T
G
T
G
T
C
T
T
T
T
-
G
G
C
C
A
A
-
G
T
G
-
T
T
T
C
C
-
T
T
-
G
A
C
C
-
A
T
A
-
A
G
A

C
A
C
-
T
G
T
A
C
T
A
T
G
A
C
A
C
A
-
G
A
C
C
C
—
T
-
T
T
C
C
T
C
T
T
C
T
A
C
-
G
T
-
C
A
T
G
A
C
A
G
A
G
T
A
T
G
A
C
T
G
T
A
A
G
G
G
C
T
T
C
C
A
C
A
T
C
G
T
G
G
G
C
T
A
C
T
-
T
C
-
T
C
C

A
A
G
G
A
G
A
A
A
G
A
A
T
C
A
A
C
G
G
A
A
G
A
C
T
A
C
A
A
T
G
T
G
G
C
C
-

[6
]

A
A
G
T
G
T
C
A
T
G
T
A
C
A
C
A
A
—
G
C
A
T
T
T
C
T
C
A
G
A
—
T
A
C
T
T
G
G
G
C
A
G
A
A
T
A
G
C
C
C
T
G
C
C
A
T
T
G
T
C
A
T
A
T
G
C
A
A
-
A
G
T
C
G
A
T
G
A
G
A
A
T
A
T
G
A
C
C
C
A
A
A
G

G
A
C
A
C
T
G
G
T
C
A
C
C
A
A
-
C
G
C
-
A
G
C
—
C
A
T
G
C
A
A
G
G
G
A
T
A
G
-
G
A
T
T
-
C
A
A
C
A
-
T
T
G
-
C
C
C
A
G
G
T
G
C
T
G
G
G
G
C
A
-
G
C
A
-
T
G
C
G
-
G
G
C
T
T
G
G
A
G
A
A
G
T
A

C
C
C
C
A
T
T
T
G
G
A
-
A
-
A
-
G
C
A
C
-
-
C
T
C
A
G
A
C
T
-
T
T
G
C
C
C
C
T
C
G
G
C
T
T
A
G
A
A
T
C
C
T
C
C
A
T
C
C
C
-
C
T
T
G
T
G
T
T
T
A
C
C
T
T
C
—
C
A
C
C
T
C
T
G
A
C
-
A
G
C
G
T
G

G
C
C
A
C
C
C
T
G
G
G
A
G
G
T
A
G
C
A
A
G
C
G
A
A
T
G
C
T
T
-
T
C
T
C
C
A
G
C
C
A
G
T
A
G
C
T
T
G
-
G
A
G
-
C
T
C
T
T
C
A
T
G
G
A
A
A
C
C
A
A
G
C
A
-
G
C
A
G
A
A
A
A
G
G
G
T
C
A
A
-
A
G
A
A

G
A
A
A
A
G
A
T
G
T
A
C
G
G
A
C
A
G
-
A
T
T
G
T
G
G
-
A
G
G
A
-
G
-
C
T
-
T
-
A
G
T
G
C
T
G
T
G
G
A
G
C
T
G
A
C
C
A
-
A
C
T
C
A
G
A
C
-
A
T
C
A
A
A
A
A
G
G
A
C
C
T
C
T
C
C
C
-
G
C
C
C
C
C
A

G
A
-
A
A
C
C
C
C

A
G
C
T
G
G
-
T
-
T
C
G
A
C
A
A
G
G
-
A
-
T
G
T
G
C
T
T
C
T
G
A
G
C
C
A
A
A
A
G
A
—
T
G
G
C
T
T
G
C
A
G
T
C
A
G
G
G
T
C
A
T
-
C
T
T
-
C
C
T
T
C
T
C
C
T
C
G
C
T
G
T

C
G
C
C
-
C
T
C
C
-
T
C
A
T
C
T
C
A
A
G
A
C
T
A
T
C
C
T
T
C
T
G
T
T
A
G
C
C
C
G
T
C
T
T
C
C
A
G
G
G
A
G
C
C
A
T
T
C
C
C
G
C
C
C
A
G
C
A
-
A
G
G
A
G
A
T
G
C
T
T
T
C
C
G
G
T
T
C
C
C
G
G
G
C
A

C
C
A
C
T
T
C
C
G
G
G
G
C
A
G
A
A
G
T
C
C
A
G
T
G
G
G
C
C
T
T
C

F
i
t
n
e
s
s
:

-
6
5
5
7
.
0

C
l
u
s
t
a
l
W

S
o
l
u
t
i
o
n

I
n
d
i
v
i
d
u
a
l
:

[
 1
]

G
A
A
G
G
A
A
A
T
C
A
G
A
T
A
C
A
T
G
T
T
A
T
A
A
A
G
C
C
A
G
T
T
T
T
A
C
C
A
A
A
G
C
T
A
A
A
C
A
A
T
C
T
G
T
T
T
G
A
A
T
A
T
G
C
G
G
T
G
T
C
A
G
A
G
G
A
A
A
A
T
G
G
A
T
G
T
T
G
G
C
T
C
T
T

T
C
A
C
C
C
A
T
C
C
T
G
G
C
A
T
A
T
G
T
G
T
A
T
T
T
A
T
A
A
A
A
G
A
A
T
G
T
T
T
G
A
A
A
G
T
G
A
A
A
-
A
C
A
A
A
A
T
C
C
T
G
T
C
C
A
A
A
G
A
A
G
G
T
G
-
T
T
A
T
C
C
A
T
T
T
-
T
T
T
G
G
A
G
C

T
G
T
A
T
G
A
A
A
C
A
A
A
G
A
T
T
C
T
T
C
C
A
T
T
T
T
C
A
C
-
C
A
G
A
A
T
T
T
T
C
T
G
A
G
T
T
T
A
T
T
A
T
T
G
G
A
C
C
A
T
T
A
A
T
G
G
A
T
G
C
G
C
T
—
T
T
C
A
G
A
G
-
A
G
C
T
C
T
C
T
G
T
A

T
A
G
C
A
-
G
G
T
—
C
C
C
C
A
G
G
C
C
A
G
C
C
A
A
T
A
G
—
G
A
A
G
C
T
G
T
T
C
T
C
C
A
T
T
G
G
G
A
C
T
G
A
A
A
T
T
-
A
C
A
—
G
A
A
G
T
T
T
T
T
A
G
T
C
A
C
T
T
A
T
A
T
T
T
C
T
C
-
T
T
C

T
T
-
C
C
A
G
-
A
A
G
A
A
A
T
A
A
A
G
A
G
T
A
G
C
T
T
C
C

T
A
T
T
G
A
A
G
T
T
T
A
T
T
C
G
G
A
A
G
A
T
G
A
C
A
A
G
T
A
G
G
C
-
A
T
T
G
G
T
G
T
-
G
C
T
G
T
T
-
C
C
C
A
T
T
T
T
G
T
T
T
C

T
-
A
T
C
T
A
A
G
G
C
T
T
T
G
G
C
A
A
A
T
G
T
C
C
C
A
A
G
A
C
A
T
A
A
G
G
C
C
C
T
G
G
G
T
A
T
A
G
A
T
G
G
G
C
T
T
C
T
T
G
C
T
C
T
C
A
G
G
G
A
T
G
T
T
A
T
T
C
A
T
T
G
C
A
C
T
A
T
G
A
T
C
A
C

A
C
A
T
C
A
G
A
T
T
C
T
C
C
T
G
A
G
A
G
G
G
G
C
A
G
C
C
C
A
A
T
G
C
T
A
C
C
T
T
C
T
T
C
A
A
A
C
A
G
C
T
A
T
G
A
A
T
T
T
G
C
T
A
G
A
T
G
T
G
G
A
G
A
A
A
G
T
G
T
C
A
C
T
T
T
C
T

[
 2
]

G
A
A
G
G
A
A
A
T
C
A
G
A
T
A
C
A
T
G
T
T
A
T
A
A
A
G
C
C
A
G
T
T
T
T
A
C
C
A
A
A
G
C
T
A
A
A
C
A
A
T
C
T
G
T
T
T
G
A
A
T
A
T
G
C
G
G
T
G
T
C
A
G
A
G
G
A
A
A
A
T
G
G
A
T
G
T
T
G
G
C
T
C
T
T

T
C
A
C
C
C
A
T
C
C
T
G
G
C
A
T
A
T
G
T
G
T
A
T
T
T
A
T
A
A
A
A
G
A
A
T
G
T
T
T
G
A
A
A
G
T
G
A
A
A
-
A
C
A
A
A
A
T
C
C
T
G
T
C
C
A
A
A
G
A
A
G
G
T
G
-
T
T
A
T
C
C
A
T
T
T
-
T
T
T
G
G
A
G
C

T
G
T
A
T
G
A
A
A
C
A
A
A
G
A
T
T
C
T
T
C
C
A
T
T
T
T
C
A
C
-
C
A
G
A
A
T
T
T
T
C
T
G
A
G
T
T
T
A
T
T
A
T
T
G
G
A
C
C
A
T
T
A
A
T
G
G
A
T
G
C
G
C
T
—
T
T
C
A
G
A
G
-
A
G
C
T
C
T
C
T
G
T
A

T
A
G
C
A
-
G
G
T
-
-
C
C
C
C
A
G
G
C
C
A
G
C
C
A
A
T
A
G
—
G
A
A
G
C
T
G
T
T
C
T
C
C
A
T
T
G
G
G
A
C
T
G
A
A
A
T
T
-
A
C
A
—
G
A
A
G
T
T
T
T
T
A
G
T
C
A
C
T
T
A
T
A
T
T
T
C
T
C
-
T
T
C

T
T
-
C
C
A
G
-
A
A
G
A
A
A
T
A
A
A
G
A
G
T
A
G
C
T
T
C
C

T
A
T
T
G
A
A
G
T
T
T
A
T
T
C
G
G
A
A
G
A
T
G
A
C
A
A
G
T
A
G
G
C
-
A
T
T
G
G
T
G
T
-
G
C
T
G
T
T
-
C
C
C
A
T
T
T
T
G
T
T
T
C

T
-
A
T
C
T
A
A
G
G
C
T
T
T
G
G
C
A
A
A
T
G
T
C
C
C
A
A
G
A
C
A
T
A
A
G
G
C
C
C
T
G
G
G
T
A
T
A
G
A
T
G
G
G
C
T
T
C
T
T
G
C
T
C
T
C
A
G
G
G
A
T
G
T
T
A
T
T
C
A
T
T
G
C
A
C
T
A
T
G
A
T
C
A
C

A
C
A
T
C
A
G
A
T
T
C
T
C
C
T
G
A
G
A
G
G
G
G
C
A
G
C
C
C
A
A
T
G
C
T
A
C
C
T
T
C
T
T
C
A
A
A
C
A
G
C
T
A
T
G
A
A
T
T
T
G
C
T
A
G
A
T
G
T
G
G
A
G
A
A
A
G
T
G
T
C
A
C
T
T
T
C
T

G
A
C
A
G
T
C
T
A
G
T
G
G
T
T
C
G
A
G
T
A
A
T
T
T
T
G
G
A
G
G
T
T
T
C
C
C
C
A
C
A
G
C
A
A
G
T
C
A
C
T
C
T
C

C
T
T
T
T
C
A
G
C
C
C
C
A
A
A
C
T
A
C
A
G
G
T
G
G
A
A
G
T
G
C
T
G
C
A
T

-
C
A
G
T
A
A

A
T
G
C
T
A
A
T
T

T
T
G
C
T
C
A

T
T
T
T
G
A
T
A
A
C
T
T
C
C
C
C
A
A
A
T
C
C
T
C
C
A
G
T
G
C
T
G
A
T
T
T
T
G
G
A
A
C
C
T
T
C
A
A
T
A
C
T
T
C
C
C
A
G
A
G

T
C
A
T
C
A
A
A
C
A
G
C
A
T
C
A
G
C
T
G
T
T
A
G
-
T
A
A
A
G
T
T
T
C
A
A
C
G
A
A
C
A
A
A
G
C
T
G
G
T
T
T
A
C
A
G
A
C
T
G
C
A
G
A
C
A
A
A
T
A
T
G
C
A
G
C
A
C
T
T
G
C
T
-
-
A
A
T
T

T
A
G

A
C
A
A
T
A
-
T
C
T
—
T
C
A
G
T
G
C
C
G
G
G
C
A
A
G
G
T
G
-
-
G
T
G
A
T
C
A
G
G
G
A
—
A
G
T
G
G
C
T
T
T
G
G
G
A
C
C
-
A
C
A
G
G
T
A
A
A
G
C
T
C
C
T
G
T
T
G
G
T
T
C
T
G
T
G
G
T
T
T
-
C
A

G
T
T
-
C
C
C
A
-
G
T
-
C
A
G
T
C
A
A
G
T
G
C
A
T
C
T
T
C
A

G
A
C
A
A
G
T
A
T
G
C
A
G
C
T
C
T
G
G
C
A
G
A
A
C
T
A
G
A
C
A
G
C
-
G
T
T
T
T
C
A
G
T
T
C
T
G
C
A
G
C
C
A
C
C
T
C
C
A
G
T
A

A
T
-
G
C
G
T
A
T
A
C
T
T
C
C
A
C
-
A
A
G
T
A
A
T
G
C
T
A
G
C
A
G
C
A
A
T
G
T
T
T
T
T
G
G
A
A
C
A
G
T
G
C
C
A
G
T
G
G
T
T
G
C
T
T
C
T
G
C
A
C
A
-
G
A
C
A
C
A
G
C
C
T
G
C
T
T
C
A
T
C
A
A
-
G

T
G
T
G
C
C
T
G
C
T
C
C
A
T
T
T
G
G
-
A
G
C
T
A
C
G
C
C
T
T
C
C
A
C
A
A
A
T
C
C
A
T
T
T
G
T
T
G
C
T
G
C
T
G
C
T
G
G
T
C
C
T
T
C
T
G
T
G
G
C
A
T
C
T
T
C
T
A
C
A
-
A
A
C
C
C
A
T

G
C
G
A
C
A
C
C
A
G
C
T
G
C
A
C
T
G
G
T
C
A
G
G
G
C
C
C
C
A
G
C
A
A
G
A
A
G
G
C
A
G
C
C
A
A
G
C
A
C
A
A
G
G
C
A
G
C
T
G
A
G
G
T
G
G
C
C
C
T
C
A
A
A
C
A
C
C
T
C
A
A
A
G
-
G
G
G
G
G
A
G
C
A
T

G
C
T
G
G
A
G
C
C
G
G
C
C
C
T
G
G
A
G

G
A
C
A
G
C
A
G
T
T
C
T
T
T
T
T
C
T
C
C
C
C
T
A
G
A
C
T
C
T
T
C
A
C
T
G
C
C
T
G
A
G
G
A
C
A
T
T
C
C
G
G
T
T
T
T
T
A
C
T
G
C
T
G
C
A
G
C
A
G
C

T
G
C
-
T
A
C
C
C
C
A
G
T
T
C
C
A
T
C
T
G
T
A
G
T
C
C
T
A
A
C
C
A
G
G
A
G
C
C
C
C
C
C
C
A
T
G
G
A
A
C
T
G
C
A
G
C
C
C
C
C
T
G
T
C
T
C
C
C
C
T
C
A
G
C
A
G
T
C
T
G
A
G
-
T
G
C
A
A
C
C
C
C
G
T

T
G
G
T
G
C
T
C
r
-
-
G
C
A
G
G
A
G
C
T
G
G
T
G
G
T
G
C
A
G
A
A
A
G
G
C
T
G
G
C
G
G
T
T
G
C
C
G
G
A
G
T
A
C
A
C
A
G
T
G
A
C
C
C
A
G
G
A
G
T
C
T
G
G
G
C
C
A
G
C
C
C
A
C
C
G
C
A
A
A
G
-
A
A
T

T
C
-
A
C
C
A
T
G
A
C
C
T
G
T
C
G
A
G
T
G
G
A
G
C
G
T
T
T

C
A
T
T
G
A
G
A
-
T
T
G
G
G
A
G
T
G
G
C
A
C
T
T
C
C
A
A
A
A
A
A
T
T
G
G
C
A
A
A
G
C
G
G
A
A
T
G
C
G
G
C
G
G
C
C
A
A
A
A
T
G
C

T
-
G
C
T
T
C
G
A
G
-
T
G
C
A
C
A
C
G
G
T
G
C
C
T
C
T
G
G
A
T
G
C
C
C
G
G
G
A
T
G
G
C
A
A
T
G
A
G
G
T
G
G
A
—
G
C
C
T
G
A
T
G
A
T
G
A
C
C
A
-
C
T
T
C
T
C
C
A
T
T
G
G
T
G
T
G
G
G
C
T
C
C
C

G
-
C
C
T
G
G
A
T
G
G
T
C
T
T
C
G
A
A
A
C
C
G
G
G
G
C
C
C
A
-
G
G
T
T
G
C
A
C
C
T
G
G
G
A
T
T
C
T
C
T
A
C
G
A
A
A
T
T
C
A
G
T
A
G
G
A
G
A
G
A
A
G
A
T
C
C
T
G
T
C
C
C
T
C
C
G
C

A
G
T
G
C
C
C
A
G
C
G
A
G
A
C
A
G
C
C
C
C
G
G
C
C
T
C
G
G
T
T
T
T
T
C
C
C
C
A
G
A
A
T
G
G
A
G
C
C
G
C
C
C
G

T
A
G
G
G
C
A
G
T
G
G
C
A
G
C
C
C
A
G
C
C
A
G
G
A
C
G
G
A
A
G
C
G
A
A
A

-
A
T
C
G
A
A
T
T
G
T
T
T
G
G
G
C
A

C
T
G
A
T
G
A
G
G
A
C
T
C
C
C
A
G
G
A
C
A
G
C
T
C
T
G
A
T
G
G
A
A
T
A
C
C
G
T
C
A
G
C
A
C
C
A
C
G
C
A
-
T
G
A
C
T
G
G
C
A
G
C
C
T
G
G
T
G
T
C
T

G
A
T
C
G
A
A
G
C
C
A
C
G
A
C
G
A
C
A
T
C
G
T
C
A
C
C
C
G
G
A
T
G
A
A
G
A
A
C
A
T
T
G
A
G
T
G
C
A
T
T
G
A
G
C
T
G
G
G
C
C
G
G
C
A
C
C
G
C
C
T
C
A
A
G
C
C
G
T
G
G
T
-
A
C
T
T
C
T
C
C
C
C
G
T

A

C
C
C
-
A
C
A
G
G
A
A
C
T
C
A
C
C
A
C
A
T
T
G
C
C
T
G
T
C
C
T
C
T
A
C
C
T
G
T
G
C
G
A
G
T
T
C
T
G
C
C
T
C
A
A
G
T
A
C
G
G
C
C
G
T
A
G
T
C
T
C
A
A
G
T
G
T
C
T
T
C
A
G
C
G
T
C
A
T
T

T
G
A
C
C
A
A
G
r
G
T
G
A
C
C
T
A
C
G
A
C
A
T
C
C
T
C
C
A
G
G
C
A
A
T
G
A
G
A
T
T
T
A
C
C
G
C
A
A
G
G
G
C
A
C
C
A
T
C
T
C
C
T
T
C
T
T
T
G
A
G
A
T
T
G
A
T
G
G
A
C
G
T
A
A
G
A
A
C
A
A
G
A
G
T

T
A
T
T
C
C
C
A
G

A
A
C
C
T
G
T
G
T
C
T
T
T
T
G
G
C
C
A
A
G
T
G
T
T
T
C
C
T
T
G
A
C
C
A
T
A
A
G
A
C
A
C
T
G
-
T
A
C
T
A
T
G
A
C
A
C
A
G
A
C
C
C
T
T
T
C
C
T
C
T
T
C
T
A
C
G
T
C
A
T
G
A

C
A
G
A
G
T
A
T
G
A
C
T
G
T
A
A
G
G
G
C
T
T
C
C
A
C
A
T
C
G
T
G
G
G
C
T
A
C
T
T
C
T
C
C
A
A
G
G
A
G
A
A
A
G
A
A
T
C
A
A
C
G
G
A
A
G
A
C
T
A
C
A
A
T
G
T
G
G

C
C

G
A
A
G
T
G
T
C
A
T
G
T
A
C
A
C
A
A
G
C
A
T
T
T
C
T
C
A
G
A
T
A
C
T
T
G
G
G
C
A
G
A
A
T
A
G
C
C
C
T
G
C
C
A
T
T
G
T
C
A
T
A
T
G
C
A
A
A
G
T
C
G
A
T
G
A
G
A
A
T
A
T
G
A
C
C
C
A
A
A
G
G
A
C
A

C
T
G
G
T
C
A
C
C
A
A
C
G
C
A
G
C
C
A
T
G
C
A
A
G
G
G
A
T
A
G
G
A
T
T
C
A
A
C
A
T
T
G
C
C
C
A
G
G
T
G
C
T
G
G
G
G
C
A
G
C
A
T
G
C
G
G
G
C
T
T
G
G
A
G
A
A
G
T
A
C
C
C
C
A
T
T
T
G
G
A
A
A
G
C

A
C
C
T
C
A
G
A
C
T
T
T
G
C
C
C
C
T
C
G
G
C
T
T
A
G
A
A
T
C
C
T
C
C
A
T
C
C
C
C
T
T
G
T
G
T
T
T
A
C
C
T
T
C
C
A
C
C
T
C
T
G
A
C
A
G
C
G
T
G
G
C
C
A
C
C
C
T
G
G
G
A
G
G
T
A
G
C
A
A
G
C
G
A
A

T
G
C
T
T
T
C
T
C
C
A
G
C
C
A
G
T
A
G
C
T
T
G
G
A
G
C
T
C
T
T
C
A
T
G
G
A
A
A
C
C
A
A
G
C
A
G
C
A
G
A
A
A
A
G
G
G
T
C
A
A
A
G
A
A
G
A
A
A
A
G
A
T
G
T
A
C
G
G
A
C
A
G
A
T
T
G
T
G
G
A
G
G
-
A

G
C
T
T
A
G
T
G
C
T
G
T
G
G
A
G
C
T
G
A
C
C
A
A

C
T
C
A
G
A
C
A
T
C
A
A
A
A
A
G
G
A
C
C
T
C
T
C
C
C
G
C
C
C
C
C
A
G
A
A
A
C
C

C
C
A
G
C
T
G
G
T
T
C
G
A
C
A
A
G
G
A
T
G
T
G
C
T

T
C

T
G

A
G

C
C

A
A

A
A

G
A

T
G

G
C

T
T

G
C

A
G

T
C

A
G

G
G

T
C

A
T

C
T

T
C

C
T

T
C

T
C

C
T

C
G

C
T

G
T

C
G

C
C

C
T

C
C

T
C

A
T

C
T

C
A

A
G

A
C

T
A

T
C

C
T

T
C

T
G

T
T

A
G

C
C

C
G

T
C

T
T

C

C
A

G
G

G
A

G
C

C
A

T
T

C
C

C
G

C
C

C
A

G

C
A

A
G

G
A

G
A

T
G

C
T

T
T

C
C

G
G

T
T

C
C

C
G

G
G

C
A

C
C

A
C

T
T

C
C

G
G

G
G

C
A

G
A

A
G

T
C

C
A

G
T

G
G

G
C

C
T

T
C

F
it

n
e

s
s

:
-3

5
7

1
.0

S
t
a
t
i
s
t
i
c
s
:

T
i
m
e

E
l
a
p
s
e
d

(
H
H
:
m
m
:
s
s
:
S
S
)
:
 0
0
:
0
1
:
0
1
:
9
8
6

P
o
p
u
l
a
t
i
o
n

S
i
z
e
:

2
0
0

N
u
m
b
e
r

o
f

U
n
c
h
a
n
g
e
d

R
o
u
n
d
s
:

7
0

N
u
m
b
e
r

o
f

T
o
t
a
l

R
o
u
n
d
s
:

2
0
0

G
o
o
d
b
y
e
,

a
n
d

t
h
a
n
k

y
o
u

f
o
r

f
l
y
i
n
g

G
A
M
S
A
.

D
N

A
 B

R
C

A
1

S
eq

ue
nc

es
 -

M
ax

im
um

 N
um

be
r

of
 R

ou
nd

s
=

 2
00

G
A

M
SA

B

e
st

I

n
d

iv
id

u
a

l:

[1
]

C
A

G
A

G
T

A
T

T
T

C
T

A
T

T
T

C
A

A
A

T
G

T
G

T
G

T
G

T
G

G
A

G
C

C
A

T
G

T
G

G
C

A
C

A
G

A
T

G
C

T
C

A
T

G
C

C
A

G
-C

T
C

A
T

T
A

C
A

G
C

C
T

G
A

G
A

C
C

A
G

C
A

G
T

T
T

A
T

T

G
C

T
C

A
T

T
G

A
A

G
A

C
A

G
A

A
T

G
A

A
T

G
C

A
G

A
A

A
A

G
G

-C
T

G
A

A
T

T
C

T
-G

T
A

A
-T

A
A

A
A

G
C

A
A

A
C

A
G

-C
C

—
T

G
G

C
A

T
A

-G
C

A
G

T
G

A
G

C
C

A
G

C
A

G
A

G
C

A
G

A

T
G

G
G

C
T

G
C

A
A

G
T

-A
A

A
G

G
-A

A
C

A
T

G
T

A
A

C
-G

A
C

A
G

G
C

A

G
G

T
T

C
C

C
A

G
C

A
C

T
G

G
G

G
A

A
A

A
G

G
T

A
G

G
T

C
C

A
A

A
C

G
C

T
-G

A
C

T
C

C

C
T

T
A

G
T

G
A

T
A

G
A

G
A

-G
-A

A
—

G
T

-G
G

A
C

-T
C

A
C

—
C

-C
G

C
A

A
A

G
T

C
T

G
T

G
C

C
C

T
G

A
G

A
A

T
T

C
T

G
G

A
G

C
T

A
C

C
A

C
C

G
A

T
G

T
T

C
C

T
T

G
G

A
T

A
A

C
A

C
T

A

A
A

—
T

A
G

C
A

G
C

G
T

T
C

A
G

A
A

A
G

T
T

A
A

T
G

A
G

T

G
G

T
T

T
T

C
C

A

G
A

A
-C

T
G

G

T
G

A
A

A
T

G
T

T
A

A
C

T
T

C
T

G
A

C
A

G
C

G
C

A
T

C

T
G

C
C

A
G

G
A

G
G

C
A

C
G

A
G

T
C

—
A

A
--

A
T

G
C

T
G

A
A

G
C

A
G

C
T

G
T

T
G

T
G

T
T

G
G

A
A

G
T

T
T

C
A

A
—

A
C

G
A

A
G

T
G

G
A

T
G

G
-G

G
G

T
T

T
T

A
-G

T
T

C
T

T
C

A

A

G
G

A
A

A
A

C
A

G
A

C
T

T
A

G
T

A
A

C
C

C
C

-C
G

A
C

C

C
C

C
A

—
T

C
A

T
A

C
T

T
T

A
A

-T
G

T
G

T
A

A
A

A
G

T
-G

G
A

A
G

A
G

A
C

T
T

C
T

C
C

A
-A

A
C

C
A

G
T

A
G

A
G

G
A

T
A

A
T

A

T
C

A
G

T
G

A
T

A
A

A
A

T
A

T
T

T
G

G
G

A
A

A
T

C
C

T
A

T
-C

A
G

A
G

A
A

A
G

G
G

A
A

G
C

C
G

C
C

C
T

C
A

C
C

T
G

A
A

C
C

A
T

-G
T

G
A

C
T

G
A

A
A

T
T

A
T

A
G

G
C

A
C

A
T

T
T

A
T

T
A

C
A

G

A
A

C
C

A
C

A
G

A
T

A
A

C
A

C
A

A
G

A
G

[2
]

—
C

C
G

C
G

T
A

T
T

T
C

T
G

-T
T

-G
C

A
A

A
C

G
T

G
C

A
C

G
T

-G
G

A
G

C
C

G
T

G
T

G
G

C
A

C
A

G
A

T
G

C
T

C
G

T
G

C
C

A
-G

C
T

C
A

T
T

A
C

A
G

C
G

T
G

G
G

A
C

C
C

G
C

A
G

T
T

T
A

T
T

G

T
T

C
A

C
T

G
A

G
G

A
C

A
G

A
C

T
G

G
A

T
G

C
A

G
A

A
A

A
G

G
C

T
G

A
A

T
T

C
T

G
T

G
A

T
A

G
A

A
G

C
A

A
A

C
A

G
T

C
T

G
G

C
G

-C
A

G
-C

A
G

T
G

A
G

C
-C

A
G

—
C

-A
G

A
G

C
A

G
A

T

G
G

G
C

T
G

A
-C

-A
G

T
-A

A
A

G
A

A
A

C
A

T
G

T
A

A
-T

G
G

C
A

G
G

C
C

G
G

T
T

C
C

C

C
G

C
A

-C
T

G
A

—
G

G
G

A
A

A
G

G
C

A
G

A
T

C
C

A
A

A
T

G
T

G
G

A
T

T
C

C
-C

T
C

T
G

T
-

G
G

T
A

G
-A

A
A

G
C

A
-G

T
G

G
A

A
T

C
A

T
C

C
G

A
A

A
A

G
C

-C
T

G
T

-G
C

-C
C

T
G

A
G

A
A

T
T

C
T

G
G

A
G

C
T

A
C

C
A

C
T

G
A

C
G

T
T

C
C

T
T

G
G

A
T

A
A

C
A

C
T

G
A

A
T

A
G

C
A

G
C

A

T
T

C
-A

G
A

A
A

G
T

G
A

A
T

G
A

G
T

G
G

T
T

T
T

C
C

A
G

A
—

A
C

T

G
G

-T

G
-A

A
A

T
-G

T
T

A
A

-C
T

T
C

T
G

A
C

-A
A

T
G

C
A

T
C

T
G

A
C

A
G

G

A
G

G
C

C
T

G
C

G
T

C
A

A
A

T
G

C
A

G
A

A
G

C
T

G
-C

-T
G

T
T

G
T

G
T

T
A

G
A

A
G

T
T

T
C

A
A

A
T

G
A

A
G

T
G

G
A

T
G

G
A

T
G

T
T

T
C

A
G

T
T

C
T

T
C

A
A

A
G

A
A

A
A

T
-A

G
A

C
T

T
A

G
-

T
T

G
C

C
C

-C
T

G
A

-T
C

C
C

G
A

-T
A

A
T

G
C

T
G

T
A

A
T

G
T

G
T

-A
C

A
A

G
T

G
G

A
-A

G
A

—
G

A
C

T
-T

C
T

C
-C

A
A

G
C

C
A

G
T

-A
G

A
G

A
-A

T
A

T
T

A
T

C
A

A
C

G
A

T
A

A
A

A

T
A

T
T

T
G

G
G

A
A

A
A

C
C

T
A

T
C

A
G

A
G

A
A

A
G

G
G

—
A

A
G

C
C

G
C

-C
C

T
C

A

C
-T

T
G

A
A

C
C

-A
-T

G
T

G
A

-C
T

G
A

A
A

T
T

A
T

A
G

G
C

A
C

A
T

T
T

A
C

T
A

C
A

G
A

A

C
C

A
C

A
G

A
T

T
A

T
A

C
A

A
G

A
G

[3
]

C
A

G
G

G
T

A
T

T
T

C
T

G
T

T
T

C
A

A
A

C
T

T
G

C
A

T
-G

T
G

G
A

G
C

C
A

T
G

T
G

G
C

A
C

A
A

A
T

A
C

T
C

A
T

G
C

C
A

-G
C

T
C

A
T

T
A

C
A

G
C

A
T

G
A

G
A

A
C

A
G

C
A

G
T

T
T

A
-T

T

A
C

T
C

A

C
T

-A
A

--
A

C
A

C
A

G
A

A
T

G
A

A
T

G
T

-A
G

A
A

-A
A

G
-G

C
T

G
A

A
A

T
C

T
-G

T
A

A
T

A
A

C
-A

G
C

A
A

A
C

A
G

C
C

T
G

G
-C

T
-T

A
G

C
A

A
G

G
A

G
-C

C
A

A
C

A

G
A

G
C

A
-G

A
T

G
G

G
C

T
G

A
A

A
G

T
A

A
G

G
A

A
A

C
A

T
G

T
-A

A
T

G
A

T
A

G
G

C
A

G
A

T
T

C
C

C
A

G
C

A
C

A

G
A

G
A

-A
A

—
A

A
G

G
T

A
G

T
T

G
T

G
A

A
-T

G
C

T
G

A
T

C
T

C

C
T

G
T

G
T

G
G

G
A

G
A

A
A

A
G

A
A

C
T

G
A

A
T

A
A

A
C

A
G

A
A

A
C

C
T

C
C

A
C

A
C

T
C

T
G

A
T

A
G

T
C

C
T

A
G

A
G

A
T

T
C

C
C

A
A

G
A

T
G

T
T

C
C

T
T

G
G

A
T

A
A

C
A

C
T

G
A

A
T

A
-G

T

A
G

C
-A

-T
A

C
G

G
A

A
A

G
T

T
A

A
T

G
A

G
T

G
G

T
 —

 T
T

T
C

C

A
G

A
A

G
T

G
-A

C
G

A
A

—
A

T
A

T
T

A
A

C
T

T
C

-T
-G

A
T

G
A

-T
T

-C
A

C
A

T
G

A
C

A
G

A
G

G
A

T
C

T
G

-A

A
T

T
G

A
A

T
A

C
T

-G
A

A
G

-T
A

G
G

T
G

—
G

T
G

C
A

G
T

A
G

A
A

G
T

T
C

C
A

A
A

T
G

A
A

G
T

G
G

G
T

G
A

A
T

A
T

T
C

T
G

-G
T

-T
C

T
—

T
C

T
G

A
G

A
A

A
-A

T
A

G
A

C
T

-T
A

A

T
G

G
C

C
A

G
T

G
A

T
-C

C
-T

C
A

G
G

A
T

G
C

T
-T

T
C

A
-T

A

T
G

T
G

A
A

A
G

-T
-G

A
A

A
G

A
G

-T
C

C
-A

C
A

C
C

-A
A

G
C

C
A

G
T

A
G

G
A

G
G

T
A

A
T

A
T

C
G

A
A

G
A

T
A

A

A
A

T
A

T
T

T
G

G
A

-A
A

A
-A

C
C

T
A

T
-C

-G
G

A
G

G
-A

A
G

G
C

A
A

-G
C

C
T

C
C

C
T

A
A

G
G

T
G

A
G

C
C

A
C

A
C

A
A

C
T

G
A

A
G

T
T

C
T

A
A

C
T

A
T

A
G

G
A

G
C

G
T

G
T

G
C

T
A

T
A

G

A
A

C
C

T
C

A
G

A
C

A
A

T
G

C
A

A
A

C
C

[4
]

T
T

T
T

C
A

A
C

T
T

G
C

A
T

G
T

-G
G

A
G

C
C

A
T

G
T

G
G

C
A

C
A

A
A

T
-A

C
T

C
A

T
—

G
C

C
A

G
C

T
C

T
T

T
A

C
A

T
T

A
T

G
-A

G
C

A
C

A
G

C
A

G
-T

T
T

A
T

T
A

C
T

C
A

C
T

G
A
A
G
A
C
A
G
A
A
T
G
A
A

T
G
T
A
G
-
A
A
A
A
G
G
C
-
T
G
A
A
T
T
C
T
G
T
A
A
-
T
-
A
-
A
A
A
G
C
A
-
A
G
C
A
G
C
-
C
T
G
G
C
T
T
A
G
—
C
A
A
G
G
-
A
G
C
C
A
A
C
A
G
A
G
C
A
G
A
T

G
G
G
C
T
G
A
A
A
G
T
A
A
G
G
A
A
A
C
A
—
T
-
G
T
A
A
T
G
A
T
A
G
G
C
A
G
A
C
T
C
C

C
A
G
C
A
C
A
G
-
A
G
G
A
A
A
A
T
G
T
A
G
T
T
C
T
G
A
A
T
A
C
T
G
A
T
C
C
C
C
T
G
A
A
T
G
G

G
A
G
A
A
A
A
G
-
A
-
A
-
C
T
G
A
A
T
A
A
G
C
A
G
A
A
—
A
C
—
C
T
C
C
A
T
G
C
T
C
T
G
A
C
A
-
G
T
-
C
C
T
A
G
-
G
G
A
T
T
C
C
C
A
A
G
T
T
G
T
T
G
C
A
T
G
G
A
T
A
A
C
A
C
A
G
A
A
T
A
G
T

A
G
C
A
T
A
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T
T
C
C
A
—
G

A
C
G
T
G
A
T
G
A
A
A
T
A
T
T
A
A
C
T
T
C
T
C
-
A
T
A
G
C
T
C
A
T
G
T
T
A
T

G
G
G
A
G
A
G
C
T
G
A
A
T
C
A
A
A
T
A
C
A
G
A
A
G
T
A
T
C
T
G
G
T
G
C
A
G
T
A
G
A
A
G
T
T
C
C
A
C
T
T
G
A
A
G
T
A
G
A
T
G
G
A
T
T
T
T
C
T
G
G
C
T
-
C
T
A
C
A
G
A
G
A
A
A
A
T
A
A
C
-
C
T
T
A

A
T
G
A
C
C
A
G
T
G
A
T
C
C
T
C
A
T
G
A
T
G
C
T
G
T
A
A
T
A
-
T
—
G
T
G
A
A
A
G
T
G
G
-
A
A
G
A
G
T
C
C
A
C
T
C
C
A
A
—
A
C
C
A
T
T
G
G
A
A
A
G
T
A
C
T
A
T
T
G
A
A
G
A
T
A
-
A
-
A
A
T
A

T
T
T
-
G
G
-
G
A
A
A
A
-
C
-
C
T
A
T
C
G
G
A
G
G
A
A
G
G
-
C
A
A
G
C
C
T
-
C
C
C
T
A
A
C
T
T
-
C
A
G
C
C
A
C
A
-
C
A
-
A
C
T
G
A
A
A
A
C
A
T
A
A
T
T
A
T
A
G
G
A
G
C
A
T
C
T
G
C
T
G
T
A
G
A

A
C
C
T
C
A
G
A
T
A
A
C
A
C
A
A
G
A
G

-
C
A
G
G
-
G
-
T
A
G
T
T
C
T
G
T
T
-
T
C
A
-
A
A
C
T
T
G
C
A
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
A
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
-
C
A
G
C
A
T
G
A
G
A
A
C
A
G
C
A
G
-
T
T
T
A
T

T
A
C
T
C
A
C
T
A
A
A
G
A
C
A
G
A
A
T
G
A
A
T
G
T
A
G
A
A
-
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
G
A
A
C
-
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
G
G
A
G
C
C
A
A
C
A
T
A
A
C
A
G
A
T
G
G
G

C
T
G
G
A
A
G
T
A
A
G
G
A
A
A
C
A
T
G
T
A
A
T
G
A
T
A
G
G
C
G
G
A
C
T
C
C
C
-
A

G
-
C
A
C

A
G
A
A
A
A
A
A
A
G
G
T
A
G
A
T
C
T
G
A
A
T
G
C
T
G
A
T
C
C
C
C
T
G
T
G

T
G
A
G
A
G
A
A
A
A
G
A
A
T
G
G
A
A
T
A
A
G
C
A
G
A
A
A
C
T
G
C
C
A
T
G
-
C
T
C
A
G
A
G
A
A
T
C
-
C
T
A
G
A
G
A
T
A
C
T
—
G
A
A
G
A
T
G
T
T
-
C
C
T
T
G
G
A
T
-
A
A
C
A
C
T
A
-
A
A
T
A
G
C

A
G
C
A
T
T
-
C
A
G
A
A
A
G
T
T
A
A
T
G
-
A
G
-
T
G
G
-
T
T
T
T
C
C
A
G
A
-
A

G
T
G
A
T
G
A
-
A
C
T
G
T
T
A
G
G
T
T
C
T
G
A
T
G
A
C
T
C
A
C
A
T
G
A
T
G
G
G

G
G
G
T
C
T
G
A
A
T
C
-
A
A
A
T
G
C
C
A
-
A
A
G
-
T
A
G
C
T
G
-
A
T
G
T
A
T
T
G
G
A
C
G
T
T
C
T
A
A
A
T
G
A
G
G
T
A
G
A
T
G
A
A
T
A
T
T
C
-
T
G
G
T
T
C
T
-
T
C
A
A
A
G
A
-
A
A
A
T
A
G
A
C
T

T
A
C
T
G
G
C
C
A
G
C
G
-
A
T
C
C
T
C
A
T
G
A
G
G
-
C
-
T

T
-
T
A
A
T
A
T
G
T
A
A
A
A
G
-
T
G
A
-
A
A
-
G
A
G
T
T
C
A
C
T
C
C
A
A
A
T
C
A
G
T
A
G
A
-
G
A
G
T
A
A
T
A
-
C
T
G
A
A
G
A
C

A
A
A
A
T
A
T
T
T

G
G
G
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
-
A
A
G
G
C
A
A
-
G
C
C
T
C
C
C
C
A
A
C
T
T
A
A
G
C
C
A
T
G
T
A
A
C
T
G
A
A
A
A
T
C
T
A
A
T
T
A
T
A
G
G
A
G
C
A
T
T
T
G
T
T
A
C
T

G
A
G
C
C
A
C
A
G
A
T
A
A
T
A
C
A
A
G
A
G

G
T
A
T
T
T
C
T
G
T
T
T
C
A
G
A
C
-
T
T
T
C
A
C
G
-
T
G
G
-
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
-
A
C
T
C
A
T
G
C
C
A
G
C
-
T
C
A
T
T
A
C
A
G
C
A
T
G
A
G
A
A
C
-
A
G
C
A
G
T
T
T
A
T
T
G
C
T
C

-
A
C
T
G
A
A
A
A
C
A
G
A
C
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
-
A
C
A
G
C
C
T
G
T
C
T
T
A
G
T
-
A
A
A
G
A
G
-
C
C
A
G
C
A
-
G
A
G
C
A
G
A
T
G
G
G
C
T

G
A
A
A
G
-
T
-
A
A
-
G
G
G
C
A
C
A
T
G
-
T
A
A
G
G
-
A
-
T
A
G
G
C
A
G

A
T
T
C
C
C
A
G
C
A
C
T
G
A
G
A
A
A
A
A
G
A
-
T
A
G
T
T
C
T
G
A
A
T
A
C
T
G
A
T
C
C
C
C
T
G
-
T
A

C
A
G
A
A
G
A
A
A
A
G
A
A
C
T
G
C
G
T
A
A
-
G
C
A
G
A
A
A
C
C
T
G
C
A
T
G
C
C
C
T
G
A
C
A
G
T
C
C
T
-
G
G
A
G
A
T
T
C
C
C
A
A
G
A
T
G
T
T
C
C
T
T
G
G
G
T
A
A
C
C
C
T
G
A
A
T
A
A
T
A
G
C
-
A

T
A
—
C
A
G
A
A
A
G
T
T
-
A
A
T
G
-
A
C
T
G
G
T
T
T

T
C
C
A
G
A
A
G
T
G
A
T
G
A
A
A
T
A
T
T
A
A
C
T
T
C
T
G
A
T
G
A
C
T
C
G
T
G
C
G

A
T
G
G
G
G
G
G
T
C
T
G
A
A
T
C
A
A
A
T
A
A
T
G
A
-
A
G
T
A
G
C
T
G
G
T
G
-
C
A
G
T
G
G
A
A
A
T
T
C
-
-
C
A
A
A
-
T
A
A
A
G
T
A
G
A
T
G
G
A
T
A
T
T
C
A
G
G
T
T
C
T
T
C
A
G
A
G
A
A
A
A
T
C
A

A
C
T
T
A
A
T
G
G
-
C
C
-
A
G
—
T
G
A
T
C
C
T
C
A
T
G
G
T
-
A
C
T
T
T
A
A
T
A
-
C
A
C
G
A
A
A
-
G
A
G
T
C
C

A
C
T
C
C
A
A
A
-
C
C
C
G
T
A
G
-
A
-
G
A
-
G
T
A
A
T
A
T
T
G
-
A
A
G
A
T

A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
-
A
A
G
T
C
A
A
-
G
T
C
T
C
C
C
T
A
A
C
T
T
C
A
G
C
C
A
C
A
T
A
G
C
T
G
A
A
G
A
T
C
T
A
A
T
T
C
T
A
G
G
C
G
C
A
T
T
T
A
C
T
G
T
A
G
A
A

C
C
T
C
A
G
A
T
A
A
C
A
C
A
A
G
A
G

C
G
G
G
G
T
G
T
T
T
C
T
T
C
C
T
C
A
-
G
A
C
T
T
G
A
A
T
A
T
G
A
A
G
C
C
A
T
G
G
A
A
C
A
C
A
G
A
C
A
T
T
C
A
T
G
C
T
A
G
C
T
-
C
A
T
T
A
C
C
A
C
C
T
G
A
-
G
A
T
C
A
C
C
A
G
T
G
T
A
T
T

G
A
C
T
A
A
C
A
C
A
-
G
T
C
A
G
C
A
T
G
A
A
C
A
T
A
G
A
A
A
A
G
G
C
T
G
A
A
C
T
C
T
G
T
G
A
T
A
A
A
A
G
T
A
A
A
A
G
-
G
C
C
-
T
G
G
T
T
T
A
G
C
A
A
G
G
A
G
C
C
A
G
C
A
G
A
T
A
A
G
T
C
A
G
-

-
G
A
T
A
A
T
-
A
G
T
A
A
G
G
A
A
A
A
A
T
G
T
A
G
-
T
G
C
T
-
G
G
G
A
A
G
A
C
C
T
C
A

T
A
T
G
C
A
G
A
—
G
G
T
G
C
C
G
C
A
T
-
G
A
G
C
T
G
A
A
C
C
C
C
C
A
T
C
A
T
C
T
G
T
A

T
G
A
G
A
G
G
C
A
A
G
A
A
C
T
A
G
A
G
G
A
A
C
A
G
C
C
A
G
A
G
T
G
C
C
C
C
A
A
G
T
A
C
C
-
C
C
A
G
A
G
G
A
A
A
-
T
C
C
T
C
A
A
A
A
C
T
G
C
T
T
G
T
C
T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
A
A
G
-
C
A

G
T
A
T
T
C

A
G
A
A
-
A
G
T
T
A
-
A
-
T
G
A
C
T
G
G
T
T
A
T

C
C
A
G
A
-
A
G
T
A
A
T
G
A
C
A
T
T

T
T
A
G
T
C
T
C
T
G
A
T
T
A
T
T
C
C
T
C
T
G
T
T
A
G
G
A
T
C
C
A
T
G

A
A
C
A
G
A
A
T
G
C
A
G
A
G
A
T
G
G
C
T
A
G
T
G
T
C
T
T
A
G
A
A
A
T
T
G
G
G
C
A
T
C
C
A
G
A
—
T
-
A
C
C
A
C
A
G
A
T
G
G
A
A
A
T
T
C
T
A
G
C
A
T
T
T
C
T
G
G
G
A

A
G
A
C
T
G
A
C
T
T
G

G
T
G
G
C
T
G
A
C
T
C
C
A
C
T
G
A
T
G
-
G
T
G
C
C
-
T
-
G
G
C
T
A
C
A
T
A
T
G
T
C
T
G
A
A

A
G
A
A
-
G
C
T
G
C
C
C

C
A
G
G
C
A
G
G
C
A
G
A
-
G
A
-
A
C
A
A
C
A
A
T
A
T
T
G
A
A
G

A
C
A
A
A
A
T
A
T
T
T
G
-
G
A
A
A
A
A
C
C
T
A
C
C
A
T
A
G
A
-
A
A
G
T
C
A
G
-
T
T
C
A
C
A
C
T
A
A
T
T
T
G
A
A
T
T
A
C
G
T
A
A
C
T
G
A
A
A
A
C
T
T
G
A
T
T
G
T
T
G
G
A
G
C
T
G
T
T
G
C
T
T
C
T

G
A
T
T
G
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

[8
]

G
T
G
G
A
G
-
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
-
G
C
T
C
A
T
T
A
-
C
T
G
C
-
C
T
G
A
C
-
A
-
T
C
A
C
C
A
G
T
G
T
A
T
T
G
C
C
T
A
A
C
A
C
A
G
A
C
A
G
C
A
T
G
A
A
-

T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
-
A
C
T
C
T
G
T
G
A
T
—
A
A
A
A
G
C
-
A
A
A
A
G
G
C
C
T
G
A
T
T
T
-
A
G
C
A
T
G
G
A
G
C
C
A
G
C
A
G
A
T
C
A
G
T
C
A
G
G
A
T
-
G
A
-
A
A
G
T
A
A
G
G
A
A
A
A
A

T
G
T
A
T
T
-
G
C
T
G
G
G
A
A
G
A
C
C
T
C
-
A
G
A
T
-
G
C
A
A
A
G
G
A
G
T
T
A
C
A
-
T
G
A

G
C
T
A
A
A
-
T
G
C
C
C
A
T
C
A
T
C
T
G
-
T
A
T
G
A
G
A
G
G
C
A
A
G
A
A
C
T
A
G
A
A
G
A
G

C
A
G
C
C
-
A
G
A
G
T
G
C
C
C
C
A
A
C
T
A
C
C
C
C
A
G
A
G
G
A
A
A
T
T
C
T
C
A
A
A
A
C
T
G
C
-
T
T
-
G
T
C
T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
-
A
A
-
G
T
A
T
-
T
C
A
G
A
A
A
G
T
T
A
-
A
T
G
A
C
-

T
G
G
T
T
A
-
T
C
C
A
A
-
A
A
G
—
T
A
A
T
G
A
C
A
T
-
T
T

T
A
G
T
C
T
C
T
G
A
-
T
T
A
C
T
C
C
T
C
T
G
G
T
A
G
G
A
T
C
C
A
T

G
A
A
C
A
G
A
A
T
G
C
A
G
A
G
A
T
G
G
A
T
A
G
T
G
T
C
T
T
A
G
A
A
G
A
-
T
G
G
G
C
A
T
C
C
A
G
A
T
G
T
T
A
C
A
G
A
-
T
G
G
A
A
A
T
T
-
C
T
A
G
C
A
T
T
-
T
C
T
G
-
G
G
A
-
A
G
A
-
C
-
T
G
A
C

T
T
G
G
-
T
G
G
C
T
G
A
C
T
C
C
A
C
C
G
A
T
G
G
T
G
C
C
T
G
G
C
T
A
C
A
T
A
T
G
-
T
C
T
G
A
-
A
A
G
-
A
A
G
C
T
G
C
T
-
C

C
A
G
G
A
A
G
G
C
A
-
G
A
G
A
-
G
C
A
A
C
A
A
T
A
T
T
G
A
A
G

A
C
A
A
A
A
T
C
-
-
T
T
C
G
G
C
A
A
G
A
C
C
T
A
C
C
A
T
A
G
A
-
A
A
A
T
C
A
G
-
T
T
C
A
C
A
T
T
A
A
T
T
T
G
A
A
T
T
A
T
G
T
G
A
C
T
G
A
A
A
A
C
T
T
G
A
T
T
G
T
T
G
G
A
G
C
T
G
T
T
G
A
T
T
C

T
G
A
T
T
C
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

[9
]

T
G
-
T
G
G
C
A
C
A
G
A
T
G
C
-
-
T
C
G
T
G
C
C
A
C
C
T
C
A
T
T
A
C
T
T
-
C
C
T
G
A
A
A
C
C
A
C
C
A
G
C
T
-
T
A
T
C
G
C
C

C
A
-
A
C
A
C
A
G
A
-
C
C
G
A
A
T
G
A
A
T
G

T
A
G
A
A
A
A
G
G
C
T
G
-
A
A
C
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
A
A
A
A
C
C
A
A
C
A
G
A
G
C
A
G
-
T
C
T
G
G
A
T
G
A
-
A
A
G
T
A
A
G
G
A
A
A
T
-
A
T
G
T
A
G

T
G
C
T
G
G
A
A
A
G
A
C
C
C
T
G
G
G
T
G
C
C
C
A
-
T
G
A
G
C
T
G
A
-
A
T
G
C
C
C
A
T
C
A
-
T

C
C
A
T
G
C
G
-
-
A
G
A
G
G
A
A
A
G
A
A
C
T
A
G
A
G
G
A
T
G
A
G
C
C
A
C
-
A
-
G
C
A

C
C
C
T
-
G
-
A
G
A
G
C
C
C
C
-
-
A
-
G
-
A
G
G
T
A
A
T
C
C
T
C
A
G
-
A
A
C
T
G
C
C
-
A
G
T
C
T
G
G
-
A
A
C
C
A
A
A
C
T
G
A
A
A
A
G
T
A
G
T
A
T
-
T
C
A
G
A
A
A
G
-
T
T
A
A
T
G
A
G
T
G
G
T
T

A
T
-
C
C
A
G
-
G
-
A
G
T
A
A
T
G
A
T
A
T
-
T
T
T
A
A
C
T
-
T
C
T
G
A
T
A
A
C
T
C
C
T
A
T

A
-
G
T
A
G
G
A
A
C
C
-
A
T
G
A
G
C
A
G
A
A
T
G
C
A
G
A
G

A
T
G
C
C
T
A
-
G
-
T
G
C
C
T
-
T
A
A
A
A
G
A
T
G
G
G
T
A
T
C
C
A
G
A
T
A
C
T
G
C
A
G
-
A
T
G
C
A
A
A
T
T
C
T
A
A
C
A
T
T
T
C
T
G
A
G
A
A
G
A
C
T
G
A
C
C
C
A
G
T
G
G
C
T
G
A
C
A
T
C
A
C
T
T

A
T
G
A
T
C
C
C
T
G
G
C
C
A
C
A
T
G
T
G
C
C
T
G
A
A
A
G
A
A
G
C
T
G
C
C
C
C
A
G
G
C
C
-
A
G
C
A
G
—
A
A
A
A
C
A
A
T
A
A
-
C
A
T
T
G
A
A
G
A
T
A
A
A
A
T
A
T
T
T
G
G
A
A
A
A
A
C
C
T
-
A
T
C

G
G
A
G
A
A
A
A
-
T
-
C
A
—
G
G
T
-
C
A
C
C
C
T
C
A
-
T
T
T
G
A
-
A
T
T
G
T
—
A
T
-
A
A
C
T
G
A
—
A
—
A
A
C
T
T
G
T
T
T
G
C
T
G
-
G
-
A
G
C
T
G
T
T
G
T
T
G
C
T
C
-
C
-
T
G
A
T
T
C
T

T
T
G
A
T
C
-
C
C

T
C
C
A
G
A
G

F
i
t
n
e
s
s
:

-
1
6
0
2
3
.
0

C
l
u
s
t
a
l
W

S
o
l
u
t
i
o
n

I
n
d
i
v
i
d
u
a
l
:

[1
]

C
A
G
A
G
T
A
T
T
T
C
T
A
T
T
T
C
A
A
A
T
G
T
G
T
G
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
C
T
G
A
G
A
C
C
A
G
C
A
G
T
T
T
A
T
T
G
C
T
C
A
T

T
G
A
A
G
A
C
A
G
A
A
T
G
A
A
T
G
C
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
G
C
A
T
A
G
C
A
G
T
G
A
G
C
C
A
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
C
A
A
G
T
A

A
A
G
G
A
A
C
A
T
G
T
A
A
C
G
A
C
A
G
G
C
A
G
G
T
T
C
C
C
A
G
C
A
C
T
G
G
G
G
A
A
A
A
G
G
T
A
G
G
T
C
C
A
A
A
C
G
C
T
G
A
C
T
C
C
C
T
T
A
G
T
G
A
T
A
G
A
G
A
G
A
A
G
T
G
G
A
C
T
C
A
C
C
C
G

C
A
A
A
G
T
C
T
G
T
G
C
C
C
T
G
A
G
A
A
T
T
C
T
G
G
A
G
C
T
A

C
C
A
C
C
G
A
T
G
T
T
-
C
C
T
T
G
G
A
T
A
A
C
A
C
T
A
A
A
T
A
G
C
A
G
C
G
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
A
C
T
G
G
T
G
A
A
A
T
G
T
T
A
A
C
T
T
C
T
G
A
C
A
G
C
G
C
A
T
C
T
G
C
C
A
G
G
A
G
G
C
A
C
G
A
G
T
C
A
A
A
T
G
C
T
G
A
A
G
C
A
G
C
T
G
T
T
G
T
G
T
T
G
G
A
A
G
T
T

T
C

A
A
A
C
G
A
A
G
T
G
G
A
T
G
G
G
G
G
T
T
T
T
A
G
T
T
C
T
T
C
A
A
G
G
A
A
A
A
C
A
G
A
C
T
T
A
G
T
A
A
C
C
C
C
C
G
A
C
C
C
C
C
A
T
C
A
T
A
C
T
T
T
A
A
T
G
T
G
T
A
A
A
A
G
T
G
G
A
A
G
A
G
A
C
T

T
C
T
C
C
A
A
A
C
C
A
G
T
A
G
A
G
G

A
T
A
A
T
A
T
C
A
G
T
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
T
C
C
T
A
T
C
A
G
A
G
A
A
A
G
G
G
A
A
G
C
C
G
C
C
C
T
C
A
C
C
T
G
A
A
C
C
A
T
G
T
G
A
C
T

G
A
A

A
T
 T
 A
T
 A
G
G
C
A
C
A
T
 T
 T
 A

T
 T
 A
C
A
G
A
A
C
 C
 A
C
 A
G
A
T
 A
A
C
A
C
A
A
G
 A
G

C
C
G
C
G
T
A
T
T
T
C
T
G
T
T
G
C
A
A
A
C
G
T
G
C
A
C
G
T
G
G
A
G
C
C
G
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
G
T
G
G
G
A
C
C
C
G
C
A
G
T
T
T
A
T
T
G
T
T
C
A
C

T
G
A
G
G
A
C
A
G
A
C
T
G
G
A
T
G
C
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
G
A
T
A
G
A
A
G
C
A
A
A
C
A
G
T
C
T
G
G
C
G
C
A
G
C
A
G
T
G
A
G
C
C
A
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
A
C
A
G
T
A

A
A
G
A
A
A
C
A
T
G
T
A
A
T
G
G
C
A
G
G
C
C
G
G
T
T
C
C
C
C
G
C
A
C
T
G
A
G
G
G
A
A
A
G
G
C
A
G
A
T
C
C
A
A
A
T
G
T
G
G
A
T
T
C
C
C
T
C
T
G
T
G
G
T
A
G
A
A
A
G
C
A
G
T
G
G
A
A
T
C
A
T
C
C
G

A
A
A
A
G
C
C
T
G
T
G
C
C
C
T
G
A
G
A
A
T
T
C
T
G
G
A
G
C
T
A

C
C
A
C
T
G
A
C
G
T
T
-
C
C
T
T
G
G
A
T
A
A
C
A
C
T
G
A
A
T
A
G
C
A
G
C
A
T
T
C
A
G
A
A
A
G
T
G
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
A
C
T
G
G
T
G
A
A
A
T
G
T
T
A
A
C
T
T
C
T
G
A
C
A
A
T
G
C
A
T
C
T
G
A
C
A
G
G
A
G
G
C
C
T
G
C
G
T
C
A
A
A
T
G
C
A
G
A
A
G
C
T
G
C
T
G
T
T
G
T
G
T
T
A
G
A
A
G
T
T

T
C

A
A
A
T
G
A
A
G
T
G
G
A
T
G
G
A
T
G
T
T
T
C
A
G
T
T
C
T
T
C
A
A
A
G
A
A
A
A
T
A
G
A
C
T
T
A
G
T
T
G
C
C
C
C
T
G
A
T
C
C
C
G
A
T
A
A
T
G
C
T
G
T
A
A
T
G
T
G
T
A
C
A
A
G
T
G
G
A
A
G
A
G
A
C
T

T
C
T
C
C
A
A
G
C
C
A
G
T
A
G
A
G
A

A
T
A
T
T
A
T
C
A
A
C
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
A
G
A
G
A
A
A
G
G
G
A
A
G
C
C
G
C
C
C
T
C
A
C
T
T
G
A
A
C
C
A
T
G
T
G
A
C
T

G
A
A

A
T
 T
 A
T
 A
G
G
C
 A
C
 A
T
 T
 T
 A

C
 T
 A
C
 A
G
A
A
C
C
A
C
 A
G
A
T
 T
 A
T
 A
C
 A
A
G
A
G

C
A
G
G
G
T
A
T
T
T
C
T
G
T
T
T
C
A
A
A
C
T
T
G
C
A
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
A
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
A
T
G
A
G
A
A
C
A
G
C
A
G
T
T
T
A
T
T
A
C
T
C
A
C

T
A
A
A
C
A
C
A
G
A
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
A
T
C
T
G
T
A
A
T
A
A
C
A
G
C
A
A
A
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
G
G
A
G
C
C
A
A
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
A
A
A
G
T
A

A
G
G
A
A
A
C
A
T
G
T
A
A
T
G
A
T
A
G
G
C
A
G
A
T
T
C
C
C
A
G
C
A
C
A
G
A
G
A
A
A
A
A
G
G
T
A
G
T
T
G
T
G
A
A
T
G
C
T
G
A
T
C
T
C
C
T
G
T
G
T
G
G
G
A
G
A
A
A
A
G
A
A
C
T
G
A
A
T
A
A
A
C
A
G

A
A
A
C
C
T
C
C
A
C
A
C
T
C
T
G
A
T
A
G
T
C
C
T
A
G
A
G
A
T
T

C
C
C
A
A
G
A
T
G
T
T
-
C
C
T
T
G
G
A
T
A
A
C
A
C
T
G
A
A
T
A
G
T
A
G
C
A
T
A
C
G
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
A
G
T
G
A
C
G
A
A
A
T
A
T
T
A
A
C
T
T
C
T
G
A
T
G
A
T
T
C
A
C
A
T
G
A
C
A
G
A
G
G
A
T
C
T
G
A
A
T
T
G
A
A
T
A
C
T
G
A
A
G
T
A
G
G
T
G
G
T
G
C
A
G
T
A
G
A
A
G
T
T

C
C

A
A
A
T
G
A
A
G
T
G
G
G
T
G
A
A
T
A
T
T
C
T
G
G
T
T
C
T
T
C
T
G
A
G
A
A
A
A
T
A
G
A
C
T
T
A
A
T
G
G
C
C
A
G
T
G
A
T
C
C
T
C
A
G
G
A
T
G
C
T
T
T
C
A
T
A
T
G
T
G
A
A
A
G
T
G
A
A
A
G
A
G
T
C
C

A
C
A
C
C
A
A
G
C
C
A
G
T
A
G
G
A
G

G
T
A
A
T
A
T
C
G
A
A
G
A
T
A
A
A
A
T
A
T
T
T
G
G
A
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
A
A
G
G
C
A
A
G
C
C
T
C
C
C
T
A
A
G
G
T
G
A
G
C
C
A
C
A
C
A
A
C
T

G
A
A
G
T
T
C
T
A
A
C
T
A
T
A
G
G
A
G
C
G
T
G
T
G

C
T
A
T
A
G
A
A
C
C
T
C
A
G
A
C
A
A
T
G
C
A
A
A
C
C

T
T
T
T
C
A
A
C
T
T
G
C
A
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
A
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
T
T
T
A
C
A
T
T
A
T
G
A
G
C
A
C
A
G
C
A
G
T
T
T
A
T
T
A
C
T
C
A
C

T
G
A
A
G
A
C
A
G
A
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
G
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
G
G
A
G
C
C
A
A
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
A
A
A
G
T
A

A
G
G
A
A
A
C
A
T
G
T
A
A
T
G
A
T
A
G
G
C
A
G
A
C
T
C
C
C
A
G
C
A
C
A
G
A
G
G
A
A
A
A
T
G
T
A
G
T
T
C
T
G
A
A
T
A
C
T
G
A
T
C
C
C
C
T
G
A
A
T
G
G
G
A
G
A
A
A
A
G
A
A
C
T
G
A
A
T
A
A
G
C
A
G

A
A
A
C
C
T
C
C
A
T
G
C
T
C
T
G
A
C
A
G
T
C
C
T
A
G
G
G
A
T
T

C
C
C
A
A
G
T
T
G
T
T
-
G
C
A
T
G
G
A
T
A
A
C
A
C
A
G
A
A
T
A
G
T
A
G
C
A
T
A
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
C
G
T
G
A
T
G
A
A
A
T
A
T
T
A
A
C
T
T
C
T
C
A
T
A
G
C
T
C
A
T
G
T
T
A
T
G
G
G
A
G
A
G
C
T
G
A
A
T
C
A
A
A
T
A
C
A
G
A
A
G
T
A
T
C
T
G
G
T
G
C
A
G
T
A
G
A
A
G
T
T

C
C

A
C
T
T
G
A
A
G
T
A
G
A
T
G
G
A
T
T
T
T
C
T
G
G
C
T
C
T
A
C
A
G
A
G
A
A
A
A
T
A
A
C
C
T
T
A
A
T
G
A
C
C
A
G
T
G
A
T
C
C
T
C
A
T
G
A
T
G
C
T
G
T
A
A
T
A
T
G
T
G
A
A
A
G
T
G
G
A
A
G
A
G
T
C
C

A
C
T
C
C
A
A
A
C
C
A
T
T
G
G
A
A
A

G
T
A
C
T
A
T
T
G
A
A
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
A
A
G
G
C
A
A
G
C
C
T
C
C
C
T
A
A
C
T
T
C
A
G
C
C
A
C
A
C
A
A
C
T

G
A
A
A
A
C
A
T
A
A
T
T
A
T
A
G
G
A
G
C
A
T
C
T
G

C
T
G
T
A
G
A
A
C
C
T
C
A
G
A
T
A
A
C
A
C
A
A
G
A
G

C
A
G
G
G
T
A
G
T
T
C
T
G
T
T
T
C
A
A
A
C
T
T
G
C
A
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
A
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
A
T
G
A
G
A
A
C
A
G
C
A
G
T
T
T
A
T
T
A
C
T
C
A
C

T
A
A
A
G
A
C
A
G
A
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
G
A
A
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
G
G
A
G
C
C
A
A
C
A
T
A
A
C
A
G
A
T
G
G
G
C
T
G
G
A
A
G
T
A

A
G
G
A
A
A
C
A
T
G
T
A
A
T
G
A
T
A
G
G
C
G
G
A
C
T
C
C
C
A
G
C
A
C
A
G
A
A
A
A
A
A
A
G
G
T
A
G
A
T
C
T
G
A
A
T
G
C
T
G
A
T
C
C
C
C
T
G
T
G
T
G
A
G
A
G
A
A
A
A
G
A
A
T
G
G
A
A
T
A
A
G
C
A
G

A
A
A
C
T
G
C
C
A
T
G
C
T
C
A
G
A
G
A
A
T
C
C
T
A
G
A
G
A
T
A

C
T
G
A
A
G
A
T
G
T
T
-
C
C
T
T
G
G
A
T
A
A
C
A
C
T
A
A
A
T
A
G
C
A
G
C
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
A
G
T
G
A
T
G
A
A
C
T
G
T
T
A
G
G
T
T
C
T
G
A
T
G
A
C
T
C
A
C
A
T
G
A
T
G
G
G
G
G
G
T
C
T
G
A
A
T
C
A
A
A
T
G
C
C
A
A
A
G
T
A
G
C
T
G
A
T
G
T
A
T
T
G
G
A
C
G
T
T

C
T

A
A
A
T
G
A
G
G
T
A
G
A
T
G
A
A
T
A
T
T
C
T
G
G
T
T
C
T
T
C
A
A
A
G
A
A
A
A
T
A
G
A
C
T
T
A
C
T
G
G
C
C
A
G
C
G
A
T
C
C
T
C
A
T
G
A
G
G
C
T
T
T
A
A
T
A
T
G
T
A
A
A
A
G
T
G
A
A
A
G
A
G
T
T
C

A
C
T
C
C
A
A
A
T
C
A
G
T
A
G
A
G
A

G
T
A
A
T
A
C
T
G
A
A
G
A
C
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
A
A
G
G
C
A
A
G
C
C
T
C
C
C
C
A
A
C
T
T
A
A
G
C
C
A
T
G
T
A
A
C
T

G
A
A
A
A
T
C
T
A
A
T
T
A
T
A
G
G
A
G
C
A
T
T
T
G

T
T
A
C
T
G
A
G
C
C
A
C
A
G
A
T
A
A
T
A
C
A
A
G
A
G

C
A
G
G
G
T
A
T
T
T
C
T
G
T
T
T
C
A
G
A
C
T
T
T
C
A
C
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
A
T
G
A
G
A
A
C
A
G
C
A
G
T
T
T
A
T
T
G
C
T
C
A
C

T
G
A
A
A
A
C
A
G
A
C
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
T
C
T
T
A
G
T
A
A
A
G
A
G
C
C
A
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
A
A
A
G
T
A

A
G
G
G
C
A
C
A
r
G
T
A
A
G
G
A
T
A
G
G
C
A
G
A
T
T
C
C
C
A
G
C
A
C
T
G
A
G
A
A
A
A
A
G
A
T
A
G
T
T
C
T
G
A
A
T
A
C
T
G
A
T
C
C
C
C
T
G
T
A
C
A
G
A
A
G
A
A
A
A
G
A
A
C
T
G
C
G
T
A
A
G
C
A
G

A
A
A
C
C
T
G
C
A
T
G
C
C
C
T
G
A
C
A
G
T
C
C
T
G
G
A
G
A
T
T

C
C
C
A
A
G
A
T
G
T
T
-
C
C
T
T
G
G
G
T
A
A
C
C
C
T
G
A
A
T
A
A
T
A
G
C
A
T
A
C
A
G
A
A
A
G
T
T
A
A
T
G
A
C
T
G
G
T
T
T

T
C
C
A
G
A
A
G
r
G
A
T
G
A
A
A
T
A
T
T
A
A
C
T
T
C
T
G
A
T
G
A
C
T
C
G
T
G
C
G
A
T
G
G
G
G
G
G
T
C
T
G
A
A
T
C
A
A
A
T
A
A
T
G
A
A
G
T
A
G
C
T
G
G
T
G
C
A
G
T
G
G
A
A
A
T
T

C
C

A
A
A
T
A
A
A
G
r
A
G
A
T
G
G
A
T
A
T
T
C
A
G
G
T
T
C
T
T
C
A
G
A
G
A
A
A
A
T
C
A
A
C
T
T
A
A
T
G
G
C
C
A
G
T
G
A
T
C
C
T
C
A
T
G
G
T
A
C
T
T
T
A
A
T
A
C
A
C
G
A
A

A
G
A
G
T
C
C

A
C
T
C
C
A
A
A
C
C
C
G
T
A
G
A
G
A

G
T
A
A
T
A
T
T
G
A
A
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
A
A
G
T
C
A
A
G
T
C
T
C
C
C
T
A
A
C
T
T
C
A
G
C
C
A
C
A
T
A
G
C
T

G
A
A
G
A
T
C
T
A
A
T
T
C
T
A
G
G
C
G
C
A
T
T
T
A

C
T
G
T
A
G
A
A
C
C
T
C
A
G
A
T
A
A
C
A
C
A
A
G
A
G

G
G
G
G
T
G
T
T
r
C
T
T
C
C
T
C
A
G
A
C
T
T
G
A
A
T
A
T
G
A
A
G
C
C
A
T
G
G
A
A
C
A
C
A
G
A
C
A
T
T
C
A
T
G
C
T
A
G
C
T
C
A
T
T
A
C
C
A
C
C
T
G
A
G
A
T
C
A
C
C
A
G
T
G
T
A
T
T
G
A
C
T
A
A
C

A
C
A
G
T
C
A
G
C
A
T
G
A
A
C
A
T
A
G
A
A
A
A
G
G
C
T
G
A
A
C
T
C
T
G
T
G
A
T
A
A
A
A
G
T
A
A
A
A
G
G
C
C
T
G
G
T
T
T
A
G
C
A
A
G
G
A
G
C
C
A
G
C
A
G
A
T
A
A
G
T
C
A
G
G
A
T
A
A
T
A
G
T
A
A

G
G
A
A
A
A
A
T
G
T
A
G
T
G
C
T
G
G
G
A
A
G
A
C
C
T
C
A
T
A
T
G
C
A
G
A
G
G
T
G
C
C
G
C
A
T
G
A
G
C
T
G
A
A
C
C
C
C
C
A
T
C
A
T
C
T
G
T
A
T
G
A
G
A
G
G
C
A
A
G
A
A
C
T
A
G
A
G
G
A
A
C
A
G
C

C
A
G
A

G
r
G
C
C
C
C
A
A
G
T
A
C
C
C
C
A
G
A
G
G
A
A
A
T
C
C
T
C
A
A
A
A
C
T
G
C
T
T
G
T
C
T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
A
A
G
C
A
G
T
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
C
T
G
G
T
T
A

T
C
C
A
G
A
A
G
r
A
A
T
G
A
C
A
T
T
T
T
A
G
T
C
T
C
T
G
A
T
T
A
T
T
C
C
T
C
T
G
T
T
A
G
G
A
T
C
C
A
T
G
A
A
C
A
G
A
A
T
G
C
A
G
A
G
A
T
G
G
C
T
A
G
T
G
T
C
T
T
A
G
A
A
A
T
T
G
G
G
C
A
T
C
C

A
G
A
T
A
C
C
A
C
A
G
A
T
G
G
A
A
A
T
T
C
T
A
G
C
A
T
T
T
C
T
G
G
G
A
A
G
A
C
T
G
A
C
T
T
G
G
T
G
G
C
T
G
A
C
T
C
C
A
C
T
G
A
T
G
G
T
G
C
C
T
G
G
C
T
A
C
A
T
A
T
G
T
C
T
G
A
A
A
G
A
A
G
C
T

G
C
C
C
C
A
G
G
C
A
G
G
C
A
G
A
G
A
A
C
A
A
C
A
A
T
A
T
T
G
A
A
G
A
C
A
A
A
A
T
A
T
T
T
G
G
A
A
A
A
A
C
C
T
A
C
C
A
T
A
G
A
A
A
G
T
C
A
G
T
T
C
A
C
A
C
T
A
A
T
T
T
G
A
A
T
T
A
C
G
T
A
A
C
T

G
A
A
A
A
C
T
T
G
A
T
T
G
T
T
G
G
A
G
C
T
G
T
T
G

C
T
T
C
T
G
A
T
T
G
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
G
C
T
C
A
T
T
A
C
T
G
C
C
T
G
A
C
A
T
C
A
C
C
A
G
T
G
T
A
T
T
G
C
C
T
A
A
C

A
C
A
G
A
C
A
G
C
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
C
T
C
T
G
T
G
A
T
A
A
A
A
G
C
A
A
A
A
G
G
C
C
T
G
A
T
T
T
A
G
C
A
T
G
G
A
G
C
C
A
G
C
A
G
A
T
C
A
G
T
C
A
G
G
A
T
G
A
A
A
G
T
A
A

G
G
A
A
A
A
A
T
G
T
A
T
T
G
C
T
G
G
G
A
A
G
A
C
C
T
C
A
G
A
T
G
C
A
A
A
G
G
A
G
T
T
A
C
A
T
G
A
G
C
T
A
A
A
T
G
C
C
C
A
T
C
A
T
C
T
G
T
A
T
G
A
G
A
G
G
C
A
A
G
A
A
C
T
A
G
A
A
G
A
G
C
A
G
C

C
A
G
A

G
r
G
C
C
C
C
A
A
C
T
A
C
C
C
C
A
G
A
G
G
A
A
A
T
T
C
T
C
A
A
A
A
C
T
G
C
T
T
G
T
C
T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
A

A
G
T
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
C
T
G
G
T
T
A

T
C
C
A
A
A
A
G
T
A
A
T
G
A
C
A
T
T
T
T
A
G
T
C
T
C
T
G
A
T
T
A
C
T
C
C
T
C
T
G
G
T
A
G
G
A
T
C
C
A
T
G
A
A
C
A
G
A
A
T
G
C
A
G
A
G
A
T
G
G
A
T
A
G
T
G
T
C
T
T
A
G
A
A
G
A
T
G
G
G
C
A
T
C
C

A
G
A
T
G
T
T
A
C
A
G
A
T
G
G
A
A
A
T
T
C
T
A
G
C
A
T
T
T
C
T
G
G
G
A
A
G
A
C
T
G
A
C
T
T
G
G
T
G
G
C
T
G
A
C
T
C
C
A
C
C
G
A
T
G
G
T
G
C
C
T
G
G
C
T
A
C
A
T
A
T
G
T
C
T
G
A
A
A
G
A
A
G
C
T

G
C
T
C
C
A
G
G
A
A
G
G
C
A
G
A
G
A
G
C
A
A
C
A
A
T
A
T
T
G
A
A
G
A
C
A
A
A
A
T
C
T
T
C
G
G
C
A
A
G
A
C
C
T
A
C
C
A
T
A
G
A
A
A
A
T
C
A
G
T
T
C
A
C
A
T
T
A
A
T
T
T
G
A
A
T
T
A
T
G
T
G
A
C
T

G
A
A
A
A
C
T
T
G
A
T
T
G
T
T
G
G
A
G
C
T
G
T
T
G

A
T
T
C
T
G
A
T
T
C
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
C
C
T
C
A
T
T
A
C
T
T
C
C
T
G
A
A
A
C
C
A
C
C
A
G
C
T
T
A
T
C
G
C
C
C
A
A

C
A
C
A
G
A
C
C
G
A
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
C
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
A
A
A
A
C
C
A
A
C
A
G
A
G
C
A
G
T
C
T
G
G
A
T
G
A
A
A
G
T
A

A
G
G
A
A
A
T
A
T
G
T
A
G
T
G
C
T
G
G
A
A
A
G
A
C
C
C
T
G
G
G
T
G
C
C

C
A
T
G
A
G
C
T
G
A
A
T
G
C
C
C
A
T
C
A
T
C
C
A
T
G
C
G
A
G
A
G
G
A
A
A
G
A
A
C
T
A
G
A
G
G
A
T
G
A
G

C
C
A
C
A

G
C
A
C
C
C
T
G
A
G
A
G
C
C
C
C
A
G
A
G
G
T
A
A
T
C
C
T
C
A
G
A
A
C
T
G
C
C
A
G
T
C
T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
A
A
G
T
A
G
T
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T

A
T
C
C
A
G
G
A
G
T
A
A
T
G
A
T
A
T
T
T
T
A
A
C
T
T
C
T
G
A
T
A
A
C
T
C
C
T
A
T
A
G
T
A
G
G
A
A
C
C
A
T
G
A
G
C
A
G
A
A
T
G
C
A
G
A
G
A
T
G
C
C
T
A
G
T
G
C
C
T
T
A
A
A
A
G
A
T
G
G
G
T
A
T
C

C
A
G
A
T
A
C
T
G
C
A
G
A
T
G
C
A
A
A
T
T
C
T
A
A
C
A
T
T
T
C
T
G
A
G
A
A
G
A
C
T
G
A
C
C
C
A
G
T
G
G
C
T
G
A
C
A
T
C
A
C
T
T
A
T
G
A
T
C
C
C
T
G
G
C
C
A
C
A
T
G
T
G
C
C
T
G
A
A
A
G
A
A
G
C

T
G
C
C
C
C
A
G
G
C
C
A
G
C
A
G
A
A
A
A
C
A
A
T
A
A
C
A
T
T
G
A
A
G
A
T
A
A
A
A
T
A
T
T
T
G
G
A
A
A
A
A
C
C
T
A
T
C
G
G
A
G
A
A
A
A
T
C
A
G
G
T
C
A
C
C
C
T
C
A
T
T
T
G
A
A
T
T
G
T
A
T
A
A
C

T
G
A
A
A
A
C
T
T
G
T
T
T
G
C
T
G
G
A
G
C
T
G
T
T
G
T
T
G
C
T
C
C
T
G
A
T
T
C
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

F
i
t
n
e
s
s
:

9
3
5
4
.
0

S
t
a
t
i
s
t
i
c
s
:

T
i
m
e

E
l
a
p
s
e
d

(
H
H
:
m
m
:
s
s
:
S
S
)
 :
 0
0
:
0
4
:
3
6
:
7
2
6

P
o
p
u
l
a
t
i
o
n

S
i
z
e
:

4
 0
0

N
u
m
b
e
r

o
f

U
n
c
h
a
n
g
e
d

R
o
u
n
d
s
:

5
0

N
u
m
b
e
r

o
f

T
o
t
a
l

R
o
u
n
d
s
:

2
 0
0

G
o
o
d
b
y
e
,

a
n
d

t
h
a
n
k

y
o
u

f
o
r

f
l
y
i
n
g

G
A
M
S
A
.

•k
-k

-k
-k

k-
k

GO

o

D
N

A
 B

R
C

A
1

S
eq

ue
nc

es
 -

N
o

M
ax

im
um

 N
um

be
r

of
 R

ou
nd

s
C

on
st

ra
in

t

G
A
M
S
A

B
e
s
t

I
n
d
i
v
i
d
u
a
l
:

[1
]

C
A
G
A
G
T
A
T
T
T
C
T
A
T
T
-
T
C
A
A
A
T
G
T
G
T
G
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
C
T
G
A
G
A
C
C
A
G
C
A
G
T
T
T
A
T
T
G
C
T
C
A

T
T
G
A
A
G
A
C
A
G
A

A
T
G
A
A
T
G
C
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
-
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
G
C
A
T
A
G
C
A
G
T
G
A
G
C
C
A
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T

G
C
A
A
G
T
A
A
A
G
G
A
A
C
A
T
G
T
A
A
C
G
A
C
A
G
G
C
A
G
G
T
T
C
C
C
A
G
C
A
C
T
G
G
G
G
A
A
A
A
G
G
T
A
G
G
T
C
C
A
A
A
C
-
G
C
T
G
-
A
C
T
C
C
C
T
T
A
-
G

T
G
A
T
A
G
A
G

A
G
A
A
G
T
G
G
A
C
T
C
A
C
C
C
G
C
A
-
A
A
G
T
C
T
G
-
T
G
C
C
C
T
-
G
A
G
A
A
T
T
C
T
G
G
A
G
C
-
T
A
C
C
A
C
C
G
A
T
G
T
T
C
C
T
T
G
G
A
T
A
A
C
A
C
T
A
A
A
T
A
G
C
A
-
G
C
G
T
T
C
A
G
A

-
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T
T
C
C
A
G
A
A
C
T
G
G
T
G
A
A
A
T
G
T
T
-
A
A
C
T
T
C
T
G
A
C
A
G
C
G
C
A
T
C
T
G
C
C
A
G
G
A
G
G
C
A
C
G
A
G
T
C
A
A
A
T
G
C
T
G
A
A
G
-
C
A
G
C
T
G
T
T

G
T
G
T
T
G
G
A
A
G
T
T
T
C
A
A
A
C
G
-
A
A
G
T
G
G
A
T
G
G
G
G
G
T
T
T
T
A
G
T
T
C
T
T
C
A
A
G
G
A
A
A
-
A
C
A
G
A
C
-
T
T
A
G
T
A
A
C
C
C
C
C
G
A
C
C
C
C
C
A
T
C
-
A
T
A
C
T
T
T
-
A
A
T
G

T
G
T
A
A
A
A
G
T
G
G
A
A
G
A
G
A
C
T
T
C
T
C
-
C
A
A
A
C
C
A
G

T
A
G
A
G
G
A
T
A
A
T
A
T
C
A
G
-
T
G
A
T
A
-
A
A
A
—
T
A
T
T
T
G
-
G
-
G
A
A
A
T
C
C
T
A
T
C
A
G
A
G
A
A
-
A
G
G
-

G
A
A
G
C
C

G
C
C
C
T
C
A
C
C
T
G
A
A
C
C
A
T
G
T
G
A
C
T
G
A
A
A
T
T
-
A

T
A
G
G
C
A
C
A
T
T
T
A
T
T
A
C
A
G
A
A
C
C
A
C
A
G
A
T
A
A
C
A
C
A
A
G
A
G

[2
]

C
C
G
C
G
T
A
T
T
T
C
T
G
-
T
-
T
G
C
A
A
A
C
G
T
G
C
A
C
G
T
G
G
A
G
C
C
G
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
G
T
G
G
G
A
C
C
C
G
C
A
G
T
T
T
A
T
T
G
T
T
C

A
C
T
G
A
G
G
A
C
A
G
A
C
T
G
G
A
T
G
C
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
G
A
T
-
A
G
A
-
A
G
C
A
A
A
C
A
G
T
C
T
G
G
C
G
C
A
G
C
A
G
T
G
A
G
C
C
A
-
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
A

C
A
G
T
A
A
-
A
G
-
A
A
-
A
C
A
T
G
T
A
A
T
G
G
C
A
G
G
C
C
G
G
T
T
C
C
C
C
G
C

A
C
T
G
A
G
G
G
A
A
A

G
G
C
A
G
A
T
-
O
C
A
A
A
T
G
T
G
G

A
T
T
C
C
C
T
C
T
G
T
G
-
G
T
A

-
G
-
A
A
A
-
G
-
C
A
G
T
G
G
A
A
T
C
A
T
C
C
G
A
A
A
A
G
C
C
T
G
T
G
C
C
C
T
G
—
A
G
A
A
T
T
C
T
G
G
A
G
C
T
A
C
C
A
C
T
G
A
C
G
T
T
C
C
-
T
T
G

G
A
T
A
A
C
A
C
T
G
A
A
-
T
A
G
C

-
A
G
C
A
-
-
T
T
C
A
G
A
A
A
G
T
G
A
A
T
G
A
G
T
G
G
T
T
T
-
T
C
C
A
G
A
A
C
-
T
G
G
T
G
A
A
A
T
G
T
T
A
A
C
T
T
C
T
G
A
C
A
A
T
G
C
A
T
C
T
G
A
C
A
G
G
A
G
G
C
C
T
-
G
C
G
T
C
A
A
A
T
G
C

A
G
A
A
G
C
T
G
C
T
G
T
T
G
T
G
T
T
A
G
-
A
A
G
T
T
T
C
A
A
A
T
G
-
A
A
G
T
G
G
A
T
G
-
G
A
T
G
T
T
T
C
A
G
T
T
C
T
T
C
A
-
A
A
G
A
A
A
A
T
A
G
A
C
T
T
A
G
T
T
G
C
C

C
C
T
G
A
T
C
C
C

-
G
A
T
A
A
T
G
C
T
G
T
A
A
T
G
T
G
T
A
C
A
A
G
T
G
G
A
A
G
A
G
A
C
T
T
C
T
C
C
A
A
G
C
C
A
G
T
A
G
A
G
A
A
T
A
T
T
A
-
T
C
A
-
A
C
G
A
T

A
A
A
A
T
A
T
T
T
G
-
G
-
G
A
A
A
A
C
C
T
A

T
C
A
G
A
G
A
A

A
G
G
G
A
A
G
C
C
G
C
C
C
-
T
C
A
C
T
T
G
A
A
C
C
A
T
G
T
G
A
C
T
G
A
A
A
T
T

A
T
-
A
G
-
G
C
-
A
C
A
T
T
T
A
C
T
A
C
A
G
A
A
C
C
A
C
A
G
A
T
T
A
T
A
C
A
A
G
A

G

[3
]

C
A

G
G

G
T

A
T

T
T

C
T

G
T

T
-T

C
A

A
A

C
T

T
G

C
A

T
G

T
G

G
A

G
C

C
A

T
G

T
G

G
C

A
C

A
A

A
T

A
C

T
C

A
T

G
C

C
A

G
C

T
C

A
T

T
A

C
A

G
C

A
T

G
A

G
A

A
C

A
G

C
A

G
T

T
T

A
T

T
A

C
T

C
A

C

T
A

A
A

C
A

C
A

G

A
A

T
G

A
A

T
G

T
A

G
A

A
A

A
G

G
C

T
G

A
A

A
T

C
T

G
T

A
A

-T
A

A
C

A
G

C
A

A
A

C
A

G
C

C
T

G
G

C
T

T
A

G
C

A
A

G
G

A
G

C
C

A
A

C
A

G
A

G
C

A
G

A
T

G
G

G
C

T

G
A

A
A

G
T

A
A

G
G

A
A

A
C

A
T

G
T

A
A

T
G

A
T

A
G

G
C

A
G

A
T

T
C

C
C

A
G

C
A

C
A

G
A

G

A
-A

A
A

A
G

G
T

A
G

T
T

G
T

G
A

A
T

G
C

T
G

A
T

C
T

C

C
T

G
T

G
-T

G
G

G
A

G

A
A

A
A

-G
A

A
C

T
G

A
A

T
A

A
-A

C
-A

G
A

A
A

C
C

T
C

C
A

C
A

C
T

C
T

G
A

T
A

G
T

C
—

C
—

T
A

G
A

G
A

T
T

C
C

-C
A

A
G

A
T

G
T

T
C

C
T

T

G
G

A
T

A
A

-C
A

C
T

G
A

A
T

A
G

T

A
G

C
A

T
A

C
G

G
A

A
A

-G
T

T
A

—
A

T
G

A
G

T
G

G
T

T
-T

T
C

C
A

G
A

-A
G

T
G

A
C

G
A

A
A

T
A

T
T

A
A

C
T

T
C

T
G

A
T

G
A

T
T

C
A

C
A

-T
G

A
C

A
G

A
G

-G
A

T
C

T
G

A
A

T
T

G
A

A
T

A

C
T

G
A

A
G

T
A

G
G

T
G

G
T

G
C

A
G

-T
A

G
A

A
G

T
T

C
C

A
A

A
T

G
A

A
G

T
G

G
G

T
G

A
A

T
A

T
T

C
T

G
G

T
T

C
T

T
C

T
G

A
G

A
A

A
A

T
A

G
A

C
T

T
A

A
T

G
G

—
C

C
-A

G
T

G
A

T
C

-C
T

C

A
G

G
A

T
G

C
T

T
-T

-C
A

T
A

T
G

T
G

A
A

A
G

T
G

A
A

A
G

—
A

-G
T

C
C

A
C

A
-C

C
A

A
G

C
C

A
G

T
A

G
G

A
G

G
T

A
A

T
A

T
-C

G
A

A
-G

A
T

A
A

A
A

T
A

T
T

T
G

G
A

A
A

A
A

C
C

T
A

T

C
G

G
A

G
-G

—
A

-A
G

G
C

A
A

G
C

C
T

C
C

C
T

A
-A

G
G

T
G

A
G

C
C

A
C

A
C

A
A

C
T

G
A

A
G

T
T

C
T

A
A

C
T

A
T

A
G

G
A

G
C

G
T

G
T

G
C

T
A

T
A

G
A

A
C

C
T

C
A

G
A

C
A

A
T

G
C

A
A

A
C

C

[4
]

T
-T

T
T

C
A

A
C

T
T

G
C

A
T

G
T

G
G

A
G

C
C

A
T

G
T

G
G

C
A

C
A

A
A

T
A

C
T

C
A

T
G

C
C

A
G

C
T

C
T

T
T

A
C

A
T

T
A

T
G

A
G

C
A

C
A

G
C

A
G

T
T

T
A

T
T

A
C

T
C

A
C

T
-

—

G
-A

A
G

A
C

A
G

A
A

-T
G

A
A

T
G

T
A

G
A

A
A

A
G

G
C

T
G

A
A

T
T

C
T

G
T

A
A

-T
A

A
A

A
G

C
A

A
G

C
A

G
C

C
T

G
G

C
T

T
A

G
C

A
A

G
G

A
G

C
C

A
A

C
A

G
A

G
C

A
G

A
T

G
G

G
C

T
G

A
A

A
G
T
A
A
G
G
A
A
A
C
A
T
G
T
A
A
T
G
A
T
A
G
G
C
A
G
A
C
T
C
C
C
A
G
C
A
C
A
G

A
G
G
A
A
A
A
T
-
G
T
A
G
T
-
T
C
T
G
A
A
T
A
C
T
G

A
T
C
C
C
C
T
G
A
A
T
G
G
G
-
A
G
A

A
A
A
G
A
A
C
T
G
A
—
A
T
A
A
G
C
A
G
A
A
A
C
C
T
C
C
A
T
G
C
T
C
T
G
A
C
A
G
T
C
C
T
A
G
G
G
-
A
T
—
T
-
C
C
-
C
A
A
G
T
T
G
-
T
T
G
C
-
A
-
T
-
G
G
A
T
A
A
C
-
A
C
A
G
A
A
T
A
G
T
A
G

C
A
T
A
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
-
T
T
T
T
C
C
A
G
A
C
G
-
T
G
A
T
G
A
A
A
T
A
-
T
T
A
-
A
C
T
T
C
T
C
A
T
A
G
C
T
C
A
T
G
T
T
A
T
G
G
G
A
G
A
G
C
T
G
A
A
T
C
A
A
A
T
A
C
A
G
A
A

G
T
A
T
C
T
G
G
T
G
C
A
G
T
A
G
-
A
A
G
T
T
C
C
A
C
T
T
G
A
A
G
T
-
A
G
A
T
G
G
A
T
T
T
T
C
T
G
G
C
T
C
T
A
C
A
G
A
G
A
A
A
A
T
A
A
C
C
T
T
A
A

T
G
—
A
C
C
A
G
T
G
A
T
C
C
T
C
-
A
T

G
A
T
G
C
T
G
T
A
A
T
A
—
T
G
T
G
A
A
A
G
T
G
G
A
A
G
A
G
T
C
C
A
C
—
T
C
-
C
A
A
A
C
C
A
T
T
G
G
A
A
-
A
-
G
T
A
C
T
A
T
T
G
A
A
-
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
G
G

A
G
-
G
-
-
A
-
A
G
G
C
A
A
G
C
C
T
C
C
C
T
A
-
A
C
T
T
C
A
G
C
C
A
C
A
C
A
A
C
T
G
A
A
A
A
C
A
T
A
A
T
T
A
T
A
G
G
A
G
C
A
T
C
T
G
C
T
G
T
A
G
A
A
C
C
T
C
A
G
A
T
A
A
C
A
C
A
A
G
A
G

C
A
G
G
G
T
A
G
T
T
C
T
G
T
T
-
T
C
A
A
A
C
T
T
G
C
A
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
A
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
A
T
G
A
G
A
A
C
A
G
C
A
G
T
T
T
A
T
T
A
C
T
C
A

C
T
A
A
A
G
A
C
A
G
A

A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
-
T
A
A
A
A
G
C
G
A
A
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
G
G
A
G
C
C
A
A
C
A
T
A
A
C
A
G
A
T
G
G
G
C
T

G
G
A
A
G
T
A
A
G
G
A
A
A
C
A
T
G
T
A
A
T
G
A
T
A
G
G
C
G
G
A
C
T
C
C
C
A
G
C
A
—
C
A
G
A
A
—
A
A
A
A
-
A
G
G
T
A
-
G

A
T
C
T
G
A
A
-
T
G
C
T

G
A
T
C
C
C
C
T
G
T
G
T
G
A
-
-

-
G
A
G
A
A
A
A
G
A
A
T
G
G
A
A
T
A
A
G
C
A
G
A
A
A
C
T
G
C
C
A
T
G
C
T
C
A
G
A
G
-
A
A
-
T
C
C
T
A
G
A
G
A
T
A
C
T
G
A
A
G
A
T
G
T
T
C
C
T
T
G
G
A

T
A
-
A
C
A
C
T
A
A
A
T
A
G
C
A

G
C
A
T
T
-
-
C
A
G
A
A
A
G
-
T
T
A
A
T
G
A
G
T
G
G
T
-
T
T
T
C
C
A
G
A
A
G
-
T
G
A
T
G
A
A
C
T
G
T
T
A
G
G
T
T
C
T
G
A
T
G
A
C
T
C
A
C
A
T
G
A
T
G
G
G
G
G
G
T
C
T
G
A
A
T
-
C
A
A
A
T
G
C
C

A
A
A
G
T
A
G
C
T
G
A
T
G
T
A
T
T
G
G
-
A
C
G
T
T
C
T
A
A
A
T
G

A
G
G
T
A
G
A
T
G
A
A
T
A
T
T
C
T
G
G
T
T
C
T
T
C
A
A
A
G
A
A
A
A
T
A
G
A
C
T
T
A
C
T
G
G
C
C
A
G
C
G
A
T
C
—
C
-
T
C

A
T
G
A
G
-
G
C
T
T
T
A
A
T
A
T
G
T
A
A
A
A
G
T
G
A
A
A
G
A
G
T
T
C
A
C
T
C
C
A
A
A
T
C
A
G
T
A
G
—
A
G
A
G
T
A
A
—
T
A
C
T
G
A
A
-
G
A
C
-
A
A
A
A
T
A
T
T
T
G
G
G
-
A
A
A
A
C
C
T
A
T
C

G
G
A
G
G
A

A
G
G
C
A
A
G
C
C
T
C
C
C
C
A
-
A
C
T
T
A
A
G
C
C
A
T
G
T
A
A
C
T
G
A
A
A
A
T
C
T
A
A
T
T
A
T
A
G
G
A
G
C
A
T
T
T
G
T
T
A
C
T
G
A
G
C
C
A
C
A
G
A
T
A
A
T
A
C
A
A
G
A
G

A
G
G
G
T
A
T
T
T
C
T
G
T
T
T
C
A
G
A
C
T
T
T
C
A
C
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
-
T
A
C
-
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
A
T
G
A
G
A
A
C
A
G
C
A
G
T
T
T
A
T
-
T
G
-
C
T

C
A
C
T
-
G
A
A
A
A
C
A
-
G
A
C
T
G
A
A
-
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
-
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
T
C
T
T
A
G
T
A
A
A
G
A
G
C
C
A
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T

G
A
A
A
G
T
A
A
G
G
G
C
A
C
A
T
G
T
A
A
G
G
A
T
A
G
G
C
A
G
A
T
T
C
C
C
A
G
C
A
C
T
G
A
G
A
A
A
A
A
G
A

T
A
G
T
T
C
-
T
-
G
A
A
T
A
C
T
G
A
T

C
C
C
C
T
G
T
A
C
A
G
A
A
-

G
A
A
A
A
G
A
A
C
T
G
C
G
T
A
A
G
C
A
G
A
A
—
A
-
C
C
T
G
C
A
T
G
C
C
C
T
G
A
C
A
G
-
T
-
C
C
T
G
G
A
G
—
A
T
T
-
C
C
C
A
A
G
A
T
G
T
T
C
C
T

T
-
G
G
G
T
A
A
C
C
C
T
G
A
A
T
A

A
T
A
G
C
A
T
A
C
A
G
A
A
A
G
T
T
A
A
T
G
A
C
T
G
G
T
-
T
T
T
C
C
A
G
A
A
G
T
G
A
-
T
G
A
A
A
T
A
T
T
A
A
C
T
T
C
T
G
A
T
G
A
C
T
C
G
T
G
C
G
A
T
G
G
G
G
G
G
T
C
T
G
A
A
T
C
A
A
A
-
T
A
A
T

G
A
A
G
T
A
G
C
T
G
G
T
G
C
A
G
T
G
G
-
A
A
A
T
T
C
C
A
A
A
T
A
A
A
G
T
-
A
G
A
T
G
G
A
T
A
—
T
T
C
A
G
G
T
T
C
T
T
C
A
G
A
G
A
A
A
A
T
C
A
A
C
T
T
A
A
T
G
G
C
C
A
G
T
G
A
T
C
C
T
C
A
T
-

G
G
T
A
C

T
T
T
A
-
A
T
A
C
A
C
G
A
A
A
G
A
G
T
C
-
-
C
A
—
C
T
C
-
C
A
A
A
-
C
C
C
G
T
A
G
A
G
A
G
T
A
A
T
A
T
T
-
G
A
A
-
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T

C
G
G
A
G
-
G
—
A
-
A
G
T
C
A
A
G
T
C
T
C
C
C
T
A
-
A
C
T
T
C
A
G
C
C
A
C
A
T
A
G
C
T
G
A
A
G
A
T
C
T
A
A
T
T
C
T
A
G
G
C
G
C
A
T
T
T
A
C
T
G
T
A
G
A
A
C
C
T
C
A
G
A
T
A
A
C
A
C
A
A
G
A
G

G
G
G
G
T
G
-
T
-
T
T
C
T
T
C
C
T
C
A
G
A
C
T
T
G
A
A
T
A
T
G
A
A
G
C
C
A
T
G
G
A
A
C
A
C
A
G
A
C
A
T
T
C
A
T
G
C
T
A
G
C
T
C
A
T
T
A
C
C
A
C
C
T
G
A
G
A
T
C
A
C
C
A
G
T
G
T
A
T
T
G
A
C
T
A

A
C
A
C
A
G
T
C
A
G
C
A
T
G
A
A
C
A
T
A
G
A
A
A
A
G
G
C
T
G
A
A
C
T
C
T
G
T
G
A
T
A
A
A
A
G
T
A
A
A
A
G
G
C
—
C
T
G
G
T
T
T
A
G
C
A
A
G
G
A
G
C
C
A
-
G
C
A
G
A
T
A
A
G
-
-
T
C
A
-
G
G
A
T

A
A
T
A
G
T
A
A
-
G
G
-
A
-
A
A
A
A
-
T
G
T
A
G
T
G
C
T
G
G
G
A
A
G
A
C
C
T
C
A
—
T
A
T
G
C
A
G
A
G
G
T
G
C
C
G
C
A
T
G
A
G
—
C
T
G
A
A
C
C
C

C

C
A
T
C
A
T
C
T
G
T
A
-

T
G
A
G
A
G
G
-
C
A
A
G
A
A
C
T
A
G
A
G
G
A
A
C
A
G
C
C
A
G
A
G
T
G
C
C
C
C
A
A
G
T
A
C
C
C
C
A
G
-
A
G
G
A
A
A
T
C
C
T
C
A
A
A
A
C
T
G
C
T
T
G
T
C

T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
A
A

G
C
A
G
T
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
C
T
G
G
T
-
T
A
T
C
C
A
G
A
A
G
-
T
A
A
T
G
A
C
A
T
T
T
T
A
G
T
C
T
C
T
G
A
T
T
A
T
T
C
C
T
C
T
G
T
T
A
G
G
A
T
C
C
A
T
G
A
A
C
A
G
A
A
T
G
C
A
G

A
G
A
T
G
G
C
T
A
G
T
G
T
-
C
T
T
A
G
A
-
A
A
T
T
G
G
G
C
A
T
C
C
A
G
A
T
A
C
C
A
C
A
G
A
T
G
-
G
A
A
A
T
T
C
T
A
G
C
A
T
T
T
C
T
G
G
G
A
A
G
A
C
T
G
A
C
T
T
G
G
T
G
G
C
T
G
A
C
T
C
C
A
C
T

G
A
T
G
G
T
G
C
C
T
G
G
C
T
A
C
A
T
A
T
G
T
C
T
G
A
A
A
G
A
A
G
C
T
G
C
C
C
C
A
G
G
-
C
A
G
G
C
A
G
A
-
G
-
A
A
C
A
A
C
A
A
T
A
T
-
T
G
A
A
-
G
A
C
A
A
A
A
T
A
T
T
T
G
G
A
A
A
A
A
C
C
T
A
C

C
A
T
-
A
G
A
—
A
-
A
G
T
C
A
G
T
T
C
A
C
A
C
-
T
A
A
T
T
T
G
A
A
T
T
A
C
G
T
A
A
C
T
G
A
A
A
A
C
T
T
G
A
T
T
G
T
T
G
G
A
G
C
T
G
T
T
G
C
T
T
C
T
G
A
T
T
G
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
G
C
T
C
A
T
T
A
C
T
G
C
C
T
G
A
C
A
-
T
C
A
C
C
A
G
T
G
T
A
T
T
G
C
C
T
A
A
C
A
C
A
G
A
C
A
G
C
A
T
G
A
A
T
G
T
A
G
A
A

A
A
G
G
C
T
G
A
A
-
C
T
C
T
G
T
G
A
T
A
A
A
A
G
C
-
A
A
A
A
G
G
C
C
T
G
A
T
T
T
A
G
C
A
T
G
G
A
G
C
C
A
G
C
A
G
-
A
T
C
A
G
T
C
A
G
G
A
T
G
A
A
A
G
T
A
A
G
G
A
A
A
A
A
—
T
G
T
A
T
-
T
G
C

T
G

G
G

A
A

G
A

C
C

T
C

-A
G

A
T

G
C

-A
A

A
G

G
A

G
T

T
A

C
A

T
G

A

G
C

T
-A

A
A

T
G

C
C

C
A

T
C

A
T

C
T

G
T

A
T

G
A

G
-A

G
G

C
A

A
G

A
A

C

TA
G

A
A

G
A

G
C

A
G

-C

C
A

G
A

G
T

G
C

C
C

C
A

A
—

C
T

A
-C

C
C

C
A

G
A

G
G

A
A

A
T

T
C

T
C

A
A

A
A

C
T

G
C

T
T

G
T

C
T

G
G

A
A

C
C

A
A

A
C

T
G

A
A

A
A

G
T

A
T

T

C
A

G
A

A

A
G

T
T

A
A

T

G
A

C
T

G
G

T
T

A
T

C
C

A
A

A
A

G
T

A
A

T
G

A
C

A
T

T
T

T
A

G
T

C
T

C
T

G
A

T
-T

A
C

T
C

C
T

C
T

G
G

T
A

G
G

A
-T

C
C

A
T

G
A

A
C

A
G

A
A

T
G

C
A

G
-A

G
—

A
T

G
G

A

T
A

G
T

G
T

C

T
T

-A
G

A
A

G
A

T
G

G
G

C
—

A
T

C
C

-A
-G

A
T

G
T

T
A

C
A

G
A

T
G

G
A

A
A

T
T

C
T

A
G

C
A

T
T

T
C

T
G

G
G

A
A

G
A

C
T

G
A

C
T

T
G

G
T

G
G

-C
T

G
A

C
-T

C
C

—
A

C
-C

G
A

T
G

G
T

G

C
C

T
G

G

C
-T

A
C

A
—

T
A

T
G

T
C

T
G

A
A

A
G

A
A

G
C

T
G

C
T

C
C

A
G

G
A

A
G

G
C

A
-G

A
G

A
G

C
A

A
C

A
A

T
A

T
-T

G
—

A
A

-G
A

C
A

A
A

A
T

C
T

T
C

G
G

C
A

A
G

A
C

C
T

A

C
C

A
T

A
G

A
A

A

A
T

C
A

G
T

T
C

A
C

-A
T

T
A

A
T

T
T

G
A

A
T

T
A

T
G

T
G

A
C

T
G

A
A

A
A

C
T

T
G

A
T

T
G

T
T

G
G

A
G

C
T

G
T

T
G

A
T

T
C

T
G

A
T

T
C

T
T

T
G

A
T

C
C

C
T

C
C

A
G

A

G

[9
]

T
G

T
G

G
C

A
C

A
G

A
T

G

C
T

C
G

T
G

C
C

A
C

C
T

C
A

T
T

A
C

T
T

C
C

T
G

A
A

A
C

C
A

C
C

A
G

C
T

T
-A

T
C

G
C

C
C

A
A

C
A

C
A

G
A

C
C

G
A

A
T

G
A

A

-T
G

T
A

G
A

A
A

A
G

G

C
T

G
A

A
C

T
C

T
G

T

A
A

T
A

A
A

A
G

C
A

A
A

C
A

G
C

C
T

G
G

C
T

T
A

G
C

A
A

A
A

A
A

C
C

A
A

C
A

G
A

G
C

A
G

T
C

T
G

G
-A

-T
G

A
A

A
G

T
A

A
G

G
A

A
-A

T
A

T
-G

-T
A

G
T

G
C

T

G
G

A
A

A
G

A
C

C
C

T
G

G
G

T
G

C
C

C
A

T
G

A
G

C
T

G
A

A
T

G
C

—
C

C
A

T
C

A
T

C
C

A
T

G
C

G
A

G
A

G
G

A
A

A
G

-A
A

C
T

A
-G

-A
G

G
A

T
G

A
G

C
C

A

C
A

G
C

-A
C

C
C

-T

G
A

G
A

G
C

C
C

C
A

G
A

G
G

T
-A

A
T

C
C

T
C

A
G

A
A

C
T

G
C

C
A

G
T

C
T

G
G

A
A

C
C

A
A

A
C

T
-G

A
A

A
A

G
T

A
G

T
A

T
T

C
A

G
A

A
A

G
T

T
A

A

T
G

A
G

T
G

-G
T

T
A

T
C

C
A

-G

G
A

G
T

A
A

T
—

G
A

T
A

T
T

—
T

T
A

A
C

T
T

C
T

G
A

T
A

A
C

T
C

C

T
A

-T
A

G
T

A
G

G
-A

A
C

C
A

T
G

A
G

C
A

G
A

A
T

-G
-C

A
G

A
—

G
A

T
G

C
C

T
A

G
T

G
C

C
T

T
A

-A
A

A

G
A

T
G

G
G

T
A

T
C

C
A

G
A

-T
A

C
T

-G
C

A
-G

A
T

G
C

A
A

A
T

T
C

T
A

A
C

A
T

T

T
C

T
G

A
G

A
A

G
A

C
T

G
A

C
-C

C
A

G
T

G
-G

C
T

G
A

C
A

T
C

-A
C

T

T
A

T
G

A
T

C
C

C

T
G

G
C

C
A

C

A
T

G
T

G
C

C
—

T
G

A
A

A
G

-A
A

G
C

T
G

C
C

C
C

A
G

G
C

C
A

G
C

A
G

A

A
A

A
C

A
A

T
A

A
C

A
T

T
G

A
A

G
A

T
-A

A
A

A
T

A
-T

T
T

-G
G

A
A

A
A

A
C

C
T

A

T
C

G
G

A
G

A
A

A
A

T
C

A
G

G
T

C
A

C
C

C
T

C
A

T
T

T
G

A
A

T
T

G
T

A
T

A
A

C
T

G
A

A
A

A
C

T
T

G
T

T
T

-G
C

T
G

G
-A

G
C

T
G

T
T

G
T

T
G

C
T

C
C

T
G

A
T

T
C

T
T

T
G

A
T

C
C

C
T

C
C

A
G

A

G

F
it

n
e

s
s

:
-6

9
8

6
.0

C
l
u
s
t
a
l
W

S
o
l
u
t
i
o
n

I
n
d
i
v
i
d
u
a
l
:

[
1
]

C
A
G
A
G
T
A
T
T
T
C
T
A
T
T
T
C
A
A
A
T
G
T
G
T
G
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
C
T
G
A
G
A
C
C
A
G
C
A
G
T
T
T
A
T
T
G
C
T
C
A
T

T
G
A
A
G
A
C
A
G
A
A
T
G
A
A
T
G
C
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
G
C
A
T
A
G
C
A
G
T
G
A
G
C
C
A
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
C
A
A
G
T
A

A
A
G
G
A
A
C
A
T
G
T
A
A
C
G
A
C
A
G
G
C
A
G
G
T
T
C
C
C
A
G
C
A
C
T
G
G
G
G
A
A
A
A
G
G
T
A
G
G
T
C
C
A
A
A
C
G
C
T
G
A
C
T
C
C
C
T
T
A
G
T
G
A
T
A
G
A
G
A
G
A
A
G
T
G
G
A
C
T
C
A
C
C
C
G

C
A
A
A
G
T
C
T
G
T
G
C
C
C
T
G
A
G
A
A
T
T
C
T
G
G
A
G
C
T
A

C
C
A
C
C
G
A
T
G
T
T
-
C
C
T
T
G
G
A
T
A
A
C
A
C
T
A
A
A
T
A
G
C
A
G
C
G
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
A
C
T
G
G
T
G
A
A
A
T
G
T
T
A
A
C
T
T
C
T
G
A
C
A
G
C
G
C
A
T
C
T
G
C
C
A
G
G
A
G
G
C
A
C
G
A
G
T
C
A
A
A
T
G
C
T
G
A
A
G
C
A
G
C
T
G
T
T
G
T
G
T
T
G
G
A
A
G
T
T

T
C

A
A
A
C
G
A
A
G
T
G
G
A
T
G
G
G
G
G
T
T
T
T
A
G
T
T
C
T
T
C
A
A
G
G
A
A
A
A
C
A
G
A
C
T
T
A
G
T
A
A
C
C
C
C
C
G
A
C
C
C
C
C
A
T
C
A
T
A
C
T
T
T
A
A
T
G
T
G
T
A
A
A
A
G
T
G
G
A
A
G
A
G
A
C
T

T
C
T
C
C
A
A
A
C
C
A
G
T
A
G
A
G
G

A
T
A
A
T
A
T
C
A
G
T
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
T
C
C
T
A
T
C
A
G
A
G
A
A
A
G
G
G
A
A
G
C
C
G
C
C
C
T
C
A
C
C
T
G
A
A
C
C
A
T
G
T
G
A
C
T

G
A
A

A
T
 T
 A
T
 A
G
G
C
A
C
 A
T
 T
 T
 A

T
 T
 A
C
A
G
A
A
C
C
A
C
 A
G
A
T
 A
A
C
A
C
 A
A
G
A
G

[
2
]

C
C
G
C
G
T
A
T
T
T
C
T
G
T
T
G
C
A
A
A
C
G
T
G
C
A
C
G
T
G
G
A
G
C
C
G
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
G
T
G
G
G
A
C
C
C
G
C
A
G
T
T
T
A
T
T
G
T
T
C
A
C

T
G
A
G
G
A
C
A
G
A
C
T
G
G
A
T
G
C
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
G
A
T
A
G
A
A
G
C
A
A
A
C
A
G
T
C
T
G
G
C
G
C
A
G
C
A
G
T
G
A
G
C
C
A
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
A
C
A
G
T
A

A
A
G
A
A
A
C
A
T
G
T
A
A
T
G
G
C
A
G
G
C
C
G
G
T
T
C
C
C
C
G
C
A
C
T
G
A
G
G
G
A
A
A
G
G
C
A
G
A
T
C
C
A
A
A
T
G
T
G
G
A
T
T
C
C
C
T
C
T
G
T
G
G
T
A
G
A
A
A
G
C
A
G
T
G
G
A
A
T
C
A
T
C
C
G

A
A
A
A
G
C
C
T
G
T
G
C
C
C
T
G
A
G
A
A
T
T
C
T
G
G
A
G
C
T
A

C
C
A
C
T
G
A
C
G
T
T
-
C
C
T
T
G
G
A
T
A
A
C
A
C
T
G
A
A
T
A
G
C
A
G
C
A
T
T
C
A
G
A
A
A
G
T
G
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
A
C
T
G
G
T
G
A
A
A
T
G
T
T
A
A
C
T
T
C
T
G
A
C
A
A
T
G
C
A
T
C
T
G
A
C
A
G
G
A
G
G
C
C
T
G
C
G
T
C
A
A
A
T
G
C
A
G
A
A
G
C
T
G
C
T
G
T
T
G
T
G
T
T
A
G
A
A
G
T
T

T
C

A
A

A
T

G
A

A
G

T
G

G
A

T
G

G
A

T
G

T
T

T
C

A
G

T
T

C
T

T
C

A
A

A
G

A
A

A
A

T
A

G
A

C
T

T
A

G
T

T
G

C
C

C
C

T
G

A
T

C
C

C
G

A
T

A
A

T
G

C
T

G
T

A
A

T
G

T
G

T
A

C
A

A
G

T
G

G
A

A
G

A
G

A
C

T

T
C

T
C

C
A

A
G

C
C

A
G

T
A

G
A

G
A

A

T
A

T
T

A
T

C
A

A
C

G
A

T
A

A
A

A
T

A
T

T
T

G
G

G
A

A
A

A
C

C
T

A
T

C
A

G
A

G
A

A
A

G
G

G
A

A
G

C
C

G
C

C
C

T
C

A
C

T
T

G
A

A
C

C
A

T
G

T
G

A
C

T

G
A

A

A
T

T
 A

T
 A

G
G

C
 A

C
 A

T
 T

 T
 A

C

 T
 A

C
 A

G
A

A
C

 C
 A

C
 A

G
A

T
 T

 A
T

 A
C

A
A

G
A

G

C
A

G
G

G
T

A
T

T
T

C
T

G
T

T
T

C
A

A
A

C
T

T
G

C
A

T
G

T
G

G
A

G
C

C
A

T
G

T
G

G
C

A
C

A
A

A
T

A
C

T
C

A
T

G
C

C
A

G
C

T
C

A
T

T
A

C
A

G
C

A
T

G
A

G
A

A
C

A
G

C
A

G
T

T
T

A
T

T
A

C
T

C
A

C

T
A

A
A

C
A

C
A

G
A

A
T

G
A

A
T

G
T

A
G

A
A

A
A

G
G

C
T

G
A

A
A

T
C

T
G

T
A

A
T

A
A

C
A

G
C

A
A

A
C

A
G

C
C

T
G

G
C

T
T

A
G

C
A

A
G

G
A

G
C

C
A

A
C

A
G

A
G

C
A

G
A

T
G

G
G

C
T

G
A

A
A

G
T

A

A
G

G
A

A
A

C
A

T
G

T
A

A
T

G
A

T
A

G
G

C
A

G
A

T
T

C
C

C
A

G
C

A
C

A
G

A
G

A
A

A
A

A
G

G
T

A
G

T
T

G
T

G
A

A
T

G
C

T
G

A
T

C
T

C
C

T
G

T
G

T
G

G
G

A
G

A
A

A
A

G
A

A
C

T
G

A
A

T
A

A
A

C
A

G

A
A

A
C

C
T

C
C

A
C

A
C

T
C

T
G

A
T

A
G

T
C

C
T

A
G

A
G

A
T

T

C
C

C
A

A
G

A
T

G
T

T
 —

C

C
T

T
G

G
A

T
A

A
C

A
C

T
G

A
A

T
A

G
T

A
G

C
A

T
A

C
G

G
A

A
A

G
T

T
A

A
T

G
A

G
T

G
G

T
T

T
T

C
C

A
G

A
A

G
T

G
A

C
G

A
A

A
T

A
T

T
A

A
C

T
T

C
T

G
A

T
G

A
T

T
C

A
C

A
T

G
A

C
A

G
A

G
G

A

T
C

T
G

A
A

T
T

G
A

A
T

A
C

T
G

A
A

G
T

A
G

G
T

G
G

T
G

C
A

G
T

A
G

A
A

G
T

T

C
C

A
A

A
T

G
A

A
G

T
G

G
G

T
G

A
A

T
A

T
T

C
T

G
G

T
T

C
T

T
C

T
G

A
G

A
A

A
A

T
A

G
A

C
T

T
A

A

T
G

G
C

C
A

G
T

G
A

T
C

C
T

C
A

G
G

A
T

G
C

T
T

T
C

A
T

A
T

G
T

G
A

A
A

G
T

G
A

A
A

G
A

G
T

C
C

A
C

A
C

C
A

A
G

C
C

A
G

T
A

G
G

A
G

G

T
A

A
T

A
T

C
G

A
A

G
A

T
A

A
A

A
T

A
T

T
T

G
G

A

A
A

A
A

C
C

T
A

T
C

G
G

A
G

G
A

A
G

G
C

A
A

G
C

C
T

C
C

C
T

A
A

G
G

T
G

A
G

C
C

A
C

A
C

A
A

C
T

G
A

A
G

T
T

C
T

A
A

C
T

A
T

A
G

G
A

G
C

G
T

G
T

G

C
T

A
T

A
G

A
A

C
C

T
C

A
G

A
C

A
A

T

G
C

A
A

A
C

C

T
T
T
T
C
A
A
C
T
T
G
C
A
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
A
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
T
T
T
A
C
A
T
T
A
T
G
A
G
C
A
C
A
G
C
A
G
T
T
T
A
T
T
A
C
T
C
A
C

T
G
A
A
G
A
C
A
G
A
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
G
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
G
G
A
G
C
C
A
A
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
A
A
A
G
T
A

A
G
G
A
A
A
C
A
T
G
T
A
A
T
G
A
T
A
G
G
C
A
G
A
C
T
C
C
C
A
G
C
A
C
A
G
A
G
G
A
A
A
A
T
G
T
A
G
T
T
C
T
G
A
A
T
A
C
T
G
A
T
C
C
C
C
T
G
A
A
T
G
G
G
A
G
A
A
A
A
G
A
A
C
T
G
A
A
T
A
A
G
C
A
G

A
A
A
C
C
T
C
C
A
T
G
C
T
C
T
G
A
C
A
G
T
C
C
T
A
G
G
G
A
T
T

C
C
C
A
A
G
T
T
G
T
T
-
G
C
A
T
G
G
A
T
A
A
C
A
C
A
G
A
A
T
A
G
T
A
G
C
A
T
A
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
C
G
T
G
A
T
G
A
A
A
T
A
T
T
A
A
C
T
T
C
T
C
A
T
A
G
C
T
C
A
T
G
T
T
A
T
G
G
G
A
G
A
G
C
T
G
A
A
T
C
A
A
A
T
A
C
A
G
A
A
G
T
A
T
C
T
G
G
T
G
C
A
G
T
A
G
A
A
G
T
T

C
C

A
C
T
T
G
A
A
G
T
A
G
A
T
G
G
A
T
T
T
T
C
T
G
G
C
T
C
T
A
C
A
G
A
G
A
A
A
A
T
A
A
C
C
T
T
A
A
T
G
A
C
C
A
G
T
G
A
T
C
C
T
C
A
T
G
A
T
G
C
T
G
T
A
A
T
A
T
G
T
G
A
A
A
G
T
G
G
A
A
G
A
G
T
C
C

A
C
T
C
C
A
A
A
C
C
A
T
T
G
G
A
A
A

G
T
A
C
T
A
T
T
G
A
A
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
A
A
G
G
C
A
A
G
C
C
T
C
C
C
T
A
A
C
T
T
C
A
G
C
C
A
C
A
C
A
A
C
T

G
A
A
A
A
C
 A
T
 A
A
T
T
 A
T
 A
G
G
A
G
C
A
T
 C
 T
 G

C
 T
 G
T
 A
G
A
A
C
 C
 T
 C
 A
G
A
T
 A
A
C
 A
C
A
A
G
A
G

C
A
G
G
G
T
A
G
T
T
C
T
G
T
T
T
C
A
A
A
C
T
T
G
C
A
T
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
A
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
A
T
G
A
G
A
A
C
A
G
C
A
G
T
T
T
A
T
T
A
C
T
C
A
C

T
A
A
A
G
A
C
A
G
A
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
G
A
A
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
G
G
A
G
C
C
A
A
C
A
T
A
A
C
A
G
A
T
G
G
G
C
T
G
G
A
A
G
T
A

A
G
G
A
A
A
C
A
T
G
T
A
A
T
G
A
T
A
G
G
C
G
G
A
C
T
C
C
C
A
G
C
A
C
A
G
A
A
A
A
A
A
A
G
G
T
A
G
A
T
C
T
G
A
A
T
G
C
T
G
A
T
C
C
C
C
T
G
T
G
T
G
A
G
A
G
A
A
A
A
G
A
A
T
G
G
A
A
T
A
A
G
C
A
G

A
A
A
C
T
G
C
C
A
T
G
C
T
C
A
G
A
G
A
A
T
C
C
T
A
G
A
G
A
T
A

C
T
G
A
A
G
A
T
G
T
T
-
C
C
T
T
G
G
A
T
A
A
C
A
C
T
A
A
A
T
A
G
C
A
G
C
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T
T

T
C
C
A
G
A
A
G
T
G
A
T
G
A
A
C
T
G
T
T
A
G
G
T
T
C
T
G
A
T
G
A
C
T
C
A
C
A
T
G
A
T
G
G
G
G
G
G
T
C
T
G
A
A
T
C
A
A
A
T
G
C
C
A
A
A
G
T
A
G
C
T
G
A
T
G
T
A
T
T
G
G
A
C
G
T
T

C
T

A
A
A
T
G
A
G
G
T
A
G
A
T
G
A
A
T
A
T
T
C
T
G
G
T
T
C
T
T
C
A
A
A
G
A
A
A
A
T
A
G
A
C
T
T
A
C
T
G
G
C
C
A
G
C
G
A
T
C
C
T
C
A
T
G
A
G
G
C
T
T
T
A
A
T
A
T
G
T
A
A
A
A
G
T
G
A
A
A
G
A
G
T
T
C

A
C
T
C
C
A
A
A
T
C
A
G
T
A
G
A
G
A

G
T
A
A
T
A
C
T
G
A
A
G
A
C
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
A
A
G
G
C
A
A
G
C
C
T
C
C
C
C
A
A
C
T
T
A
A
G
C
C
A
T
G
T
A
A
C
T

G
A
A
A
A
T
C
T
A
A
T
T
A
T
A
G
G
A
G
C
A
T
T
T
G

T
T
A
C
T
G
A
G
C
C
A
C
A
G
A
T
A
A
T
A
C
A
A
G
A
G

C
A
G
G
G
T
A
T
T
T
C
T
G
T
T
T
C
A
G
A
C
T
T
T
C
A
C
G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
A
C
T
C
A
T
G
C
C
A
G
C
T
C
A
T
T
A
C
A
G
C
A
T
G
A
G
A
A
C
A
G
C
A
G
T
T
T
A
T
T
G
C
T
C
A
C

T
G
A
A
A
A
C
A
G
A
C
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
T
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
T
C
T
T
A
G
T
A
A
A
G
A
G
C
C
A
G
C
A
G
A
G
C
A
G
A
T
G
G
G
C
T
G
A
A
A
G
T
A

A
G
G
G
C
A
C
A
T
G
T
A
A
G
G
A
T
A
G
G
C
A
G
A
T
T
C
C
C
A
G
C
A
C
T
G
A
G
A
A
A
A
A
G
A
T
A
G
T
T
C
T
G
A
A
T
A
C
T
G
A
T
C
C
C
C
T
G
T
A
C
A
G
A
A
G
A
A
A
A
G
A
A
C
T
G
C
G
T
A
A
G
C
A
G

A
A
A
C
C
T
G
C
A
T
G
C
C
C
T
G
A
C
A
G
T
C
C
T
G
G
A
G
A
T
T

C
C
C
A
A
G
A
T
G
T
T
-
C
C
T
T
G
G
G
T
A
A
C
C
C
T
G
A
A
T
A
A
T
A
G
C
A
T
A
C
A
G
A
A
A
G
T
T
A
A
T
G
A
C
T
G
G
T
T
T

T
C
C
A
G
A
A
G
T
G
A
T
G
A
A
A
T
A
T
T
A
A
C
T
T
C
T
G
A
T
G
A
C
T
C
G
T
G
C
G
A
T
G
G
G
G
G
G
T
C
T
G
A
A
T
C
A
A
A
T
A
A
T
G
A
A
G
T
A
G
C
T
G
G
T
G
C
A
G
T
G
G
A
A
A
T
T

C
C

A
A
A
T
A
A
A
G
T
A
G
A
T
G
G
A
T
A
T
T
C
A
G
G
T
T
C
T
T
C
A
G
A
G
A
A
A
A
T
C
A
A
C
T
T
A
A
T
G
G
C
C
A
G
T
G
A
T
C
C
T
C
A
T
G
G
T
A
C
T
T
T
A
A
T
A
C
A
C
G
A
A

A
G
A
G
T
C
C

A
C
T
C
C
A
A
A
C
C
C
G
T
A
G
A
G
A

G
T
A
A
T
A
T
T
G
A
A
G
A
T
A
A
A
A
T
A
T
T
T
G
G
G
A
A
A
A
C
C
T
A
T
C
G
G
A
G
G
A
A
G
T
C
A
A
G
T
C
T
C
C
C
T
A
A
C
T
T
C
A
G
C
C
A
C
A
T
A
G
C
T

G
A
A
G
A
T
C
T
A
A
T
T
C
T
A
G
G
C
G
C
A
T
T
T
A

C
T
G
T
A
G
A
A
C
C
T
C
A
G
A
T
A
A
C
A
C
A
A
G
A
G

C
G
G
G
G
T
G
T
T
T
C
T
T
C
C
T
C
A
G
A
C
T
T
G
A
A
T
A
T
G
A
A
G
C
C
A
T
G
G
A
A
C
A
C
A
G
A
C
A
T
T
C
A
T
G
C
T
A
G
C
T
C
A
T
T
A
C
C
A
C
C
T
G
A
G
A
T
C
A
C
C
A
G
T
G
T
A
T
T
G
A
C
T
A
A

C
A
C
A
G
T
C
A
G
C
A
T
G
A
A
C
A
T
A
G
A
A
A
A
G
G
C
T
G
A
A
C
T
C
T
G
T
G
A
T
A
A
A
A
G
T
A
A
A
A
G
G
C
C
T
G
G
T
T
T
A
G
C
A
A
G
G
A
G
C
C
A
G
C
A
G
A
T
A
A
G
T
C
A
G
G
A
T
A
A
T
A
G
T
A

A
G
G
A
A
A
A
A
T
G
T
A
G
T
G
C
T
G
G
G
A
A
G
A
C
C
T
C
A
T
A
T
G
C
A
G
A
G
G
T
G
C
C
G
C
A
T
G
A
G
C
T
G
A
A
C
C
C
C
C
A
T
C
A
T
C
T
G
T
A
T
G
A
G
A
G
G
C
A
A
G
A
A
C
T
A
G
A
G
G
A
A
C
A
G

C
C
A
G
A

G
T
G
C
C
C
C
A
A
G
T
A
C
C
C
C
A
G
A
G
G
A
A
A
T
C
C
T
C
A
A
A
A
C
T
G
C
T
T
G
T
C
T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
A
A
G
C
A
G
T
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
C
T
G
G
T
T

A
T
C
C
A
G
A
A
G
T
A
A
T
G
A
C
A
T
T
T
T
A
G
T
C
T
C
T
G
A
T
T
A
T
T
C
C
T
C
T
G
T
T
A
G
G
A
T
C
C
A
T
G
A
A
C
A
G
A
A
T
G
C
A
G
A
G
A
T
G
G
C
T
A
G
T
G
T
C
T
T
A
G
A
A
A
T
T
G
G
G
C
A
T
C

C
A
G
A
T
A
C
C
A
C
A
G
A
T
G
G
A
A
A
T
T
C
T
A
G
C
A
T
T
T
C
T
G
G
G
A
A
G
A
C
T
G
A
C
T
T
G
G
T
G
G
C
T
G
A
C
T
C
C
A
C
T
G
A
T
G
G
T
G
C
C
T
G
G
C
T
A
C
A
T
A
T
G
T
C
T
G
A
A
A
G
A
A
G
C

T
G
C
C
C
C
A
G
G
C
A
G
G
C
A
G
A
G
A
A
C
A
A
C
A
A
T
A
T
T
G
A
A
G
A
C
A
A
A
A
T
A
T
T
T
G
G
A
A
A
A
A
C
C
T
A
C
C
A
T
A
G
A
A
A
G
T
C
A
G
T
T
C
A
C
A
C
T
A
A
T
T
T
G
A
A
T
T
A
C
G
T
A
A
C

T
G
A
A
A
A
C
T
T
G
A
T
T
G
T
T
G
G
A
G
C
T
G
T
T
G

C
T
T
C
T
G
A
T
T
G
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

G
T
G
G
A
G
C
C
A
T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
G
C
T
C
A
T
T
A
C
T
G
C
C
T
G
A
C
A
T
C
A
C
C
A
G
T
G
T
A
T
T
G
C
C
T
A
A

C
A
C
A
G
A
C
A
G
C
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
C
T
C
T
G
T
G
A
T
A
A
A
A
G
C
A
A
A
A
G
G
C
C
T
G
A
T
T
T
A
G
C
A
T
G
G
A
G
C
C
A
G
C
A
G
A
T
C
A
G
T
C
A
G
G
A
T
G
A
A
A
G
T
A

A
G
G
A
A
A
A
A
T
G
T
A
T
T
G
C
T
G
G
G
A
A
G
A
C
C
T
C
A
G
A
T
G
C
A
A
A
G
G
A
G
T
T
A
C
A
T
G
A
G
C
T
A
A
A
T
G
C
C
C
A
T
C
A
T
C
T
G
T
A
T
G
A
G
A
G
G
C
A
A
G
A
A
C
T
A
G
A
A
G
A
G
C
A
G

C
C
A
G
A

G
T
G
C
C
C
C
A
A
C
T
A
C
C
C
C
A
G
A
G
G
A
A
A
T
T
C
T
C
A
A
A
A
C
T
G
C
T
T
G
T
C
T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
A

A
G
T
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
C
T
G
G
T
T

A
T
C
C
A
A
A
A
G
T
A
A
T
G
A
C
A
T
T
T
T
A
G
T
C
T
C
T
G
A
T
T
A
C
T
C
C
T
C
T
G
G
T
A
G
G
A
T
C
C
A
T
G
A
A
C
A
G
A
A
T
G
C
A
G
A
G
A
T
G
G
A
T
A
G
T
G
T
C
T
T
A
G
A
A
G
A
T
G
G
G
C
A
T
C

C
A
G
A
T
G
T
T
A
C
A
G
A
T
G
G
A
A
A
T
T
C
T
A
G
C
A
T
T
T
C
T
G
G
G
A
A
G
A
C
T
G
A
C
T
T
G
G
T
G
G
C
T
G
A
C
T
C
C
A
C
C
G
A
T
G
G
T
G
C
C
T
G
G
C
T
A
C
A
T
A
T
G
T
C
T
G
A
A
A
G
A
A
G
C

T
G
C
T
C
C
A
G
G
A
A
G
G
C
A
G
A
G
A
G
C
A
A
C
A
A
T
A
T
T
G
A
A
G
A
C
A
A
A
A
T
C
T
T
C
G
G
C
A
A
G
A
C
C
T
A
C
C
A
T
A
G
A
A
A
A
T
C
A
G
T
T
C
A
C
A
T
T
A
A
T
T
T
G
A
A
T
T
A
T
G
T
G
A
C

T
G
A
A
A
A
C
T
T
G
A
T
T
G
T
T
G
G
A
G
C
T
G
T
T
G

A
T
T
C
T
G
A
T
T
C
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

T
G
T
G
G
C
A
C
A
G
A
T
G
C
T
C
G
T
G
C
C
A
C
C
T
C
A
T
T
A
C
T
T
C
C
T
G
A
A
A
C
C
A
C
C
A
G
C
T
T
A
T
C
G
C
C
C
A
A

C
A
C
A
G
A
C
C
G
A
A
T
G
A
A
T
G
T
A
G
A
A
A
A
G
G
C
T
G
A
A
C
T
C
T
G
T
A
A
T
A
A
A
A
G
C
A
A
A
C
A
G
C
C
T
G
G
C
T
T
A
G
C
A
A
A
A
A
A
C
C
A
A
C
A
G
A
G
C
A
G
T
C
T
G
G
A
T
G
A
A
A
G
T
A

A
G
G
A
A
A
T
A
T
G
T
A
G
T
G
C
T
G
G
A
A
A
G
A
C
C
C
T
G
G
G
T
G
C
C

C
A
T
G
A
G
C
T
G
A
A
T
G
C
C
C
A
T
C
A
T
C
C
A
T
G
C
G
A
G
A
G
G
A
A
A
G
A
A
C
T
A
G
A
G
G
A
T
G
A
G

C
C
A
C
A

G
C
A
C
C
C
T
G
A
G
A
G
C
C
C
C
A
G
A
G
G
T
A
A
T
C
C
T
C
A
G
A
A
C
T
G
C
C
A
G
T
C
T
G
G
A
A
C
C
A
A
A
C
T
G
A
A
A
A
G
T
A
G
T
A
T
T
C
A
G
A
A
A
G
T
T
A
A
T
G
A
G
T
G
G
T
T

A
T
C
C
A
G
G
A
G
T
A
A
T
G
A
T
A
T
T
T
T
A
A
C
T
T
C
T
G
A
T
A
A
C
T
C
C
T
A
T
A
G
T
A
G
G
A
A
C
C
A
T
G
A
G
C
A
G
A
A
T
G
C
A
G
A
G
A
T
G
C
C
T
A
G
T
G
C
C
T
T
A
A
A
A
G
A
T
G
G
G
T
A
T
C

C
A
G
A
T
A
C
T
G
C
A
G
A
T
G
C
A
A
A
T
T
C
T
A
A
C
A
T
T
T
C
T
G
A
G
A
A
G
A
C
T
G
A
C
C
C
A
G
T
G
G
C
T
G
A
C
A
T
C
A
C
T
T
A
T
G
A
T
C
C
C
T
G
G
C
C
A
C
A
T
G
T
G
C
C
T
G
A
A
A
G
A
A
G
C

T
G
C
C
C
C
A
G
G
C
C
A
G
C
A
G
A
A
A
A
C
A
A
T
A
A
C
A
T
T
G
A
A
G
A
T
A
A
A
A
T
A
T
T
T
G
G
A
A
A
A
A
C
C
T
A
T
C
G
G
A
G
A
A
A
A
T
C
A
G
G
T
C
A
C
C
C
T
C
A
T
T
T
G
A
A
T
T
G
T
A
T
A
A
C

T
G
A
A
A
A
C
T
T
G
T
T
T
G
C
T
G
G
A
G
C
T
G
T
T
G
T
T
G
C
T
C
C
T
G
A
T
T
C
T
T
T
G
A
T
C
C
C
T
C
C
A
G
A
G

s
s
:

9
3
5
4
.
0

S
t
a
t
i
s
t
i
c
s
:

T
i
m
e

E
l
a
p
s
e
d

(
H
H
:
m
m
:
s
s
:
S
S
)
:
 0
1
:
1
0
:
4
3
:
9
9
2

P
o
p
u
l
a
t
i
o
n

S
i
z
e
:

4
0
0

N
u
m
b
e
r

o
f

U
n
c
h
a
n
g
e
d

R
o
u
n
d
s
:

5
0

N
u
m
b
e
r

o
f

T
o
t
a
l

R
o
u
n
d
s
:

2
7
8
5

G
o
o
d
b
y
e
,

a
n
d

t
h
a
n
k

y
o
u

f
o
r

f
l
y
i
n
g

G
A
M
S
A
.

a>

	San Jose State University
	SJSU ScholarWorks
	2008

	Applications of genetic algorithms in bioinformatics
	Amie Judith Radenbaugh
	Recommended Citation

	ProQuest Dissertations

