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Abstract 

The adaptive process can be considered as being driven by two fundamental forces: 

exploitation and exploration. While the explorative process may be deterministic, the 

resultant effect may be stochastic. Stochastic effects may also exist in the expoitative 

process. This thesis considers the effects of stochastic fluctuations inherent in the 

adaptive process on the behavioural dynamics of a population of interacting agents. It 

is hypothesied that in such systems, one or more attractors in the population space 

exist; and that transitions between these attractors can occur; either as a result of 

internal shocks (sampling fluctuations) or external shocks (environmental changes). It 

is further postulated that such transitions in the (microscopic) population space may 

be observable as phase transitions in the behaviour of macroscopic observables. 

A simple model of a stock market, driven by asexual reproduction (selection plus 

mutation) is put forward as a testbed. A statistical dynamics analysis of the behaviour 

of this market is then developed. Fixed points in the space of agent behaviours are 

located, and market dynamics are compared to the analytic predictions. Additionally, 

an analysis of the relative importance of internal shocks(sampling fluctuations) and ex­

ternal shocks( the stock dividend sequence) across varying population size is presented. 
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Chapter 1 

Background: The Evolution of 

Populations of Interacting Agents 

There is no such thing as society. There are only individuals.' Margaret 

Thatcher 

The above quote sums up a popular political ideology of the late twentieth century. 

It appears to reject notions of co-operative actions amongst groups in favour of action 

motivated only by individual gain. This thesis considers issues concerning individual vs. 

group actions in situations where individual agents adapt to the clianging environment 

they find themselves in. There may be no consideration by agents of the effects of their 

actions on other agents or the environment, but such effects do occur in the systems 

studied. Such a system is described as interactive, because the actions of agents affect 

other agents, and adaptive, because agents can change their response to adapt to the 

environment. 

The focus of this thesis is upon the behavioural dynamics of such systems: how the 

collective behaviour of the population changes as a result of adaptation driven by the 

results of interaction. In particular, questions of the stability of collective behaviours 
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are explored. Do collective behaviours remain constant, or are there sudden clianges, 

where the whole population seemingly 'clianges its mind' about how it will behave? 

This thesis explores the conditions under which collective behaviours change, and the 

roles played by the internal dynamics of the population, and by external, environmental 

forces acting on the population. 

1.0.1 Motivation and Justification 

The motivation for this work is the observation that many systems of adaptive inter­

active agents appear have a number of seemingly stable modes of collective operation. 

Such systems exhibit intermittent transitions between their modes. Systems that ex­

hibit this behaviour are described as meta-stable. 

The thesis proceeds from the underlying hypothesis that this common phenomenol­

ogy results from a common ontology. Examples of the phenomenon of meta-stability 

from a number of differing fields are presented and drawn together to give a coherent 

picture of the phenomenon of meta-stability. 

The purpose of this work is to explore this hypothesised common ontology of raeta-

stability in adaptive interacting agent populations. A mathematical model of raeta-

stability is put forwards, drawing heavily upon work on adaptation in various fields. 

This model posits that the cause of raetastability is stochastic, and explains why the 

stochasticities remain important even in relatively large populations. 

This work also explores the relationship between the internal fluctuations of the 

system, due to the interactions between agents, and the adaptation of individuals within 

the population, and the external forces such as environmental fluctuations. 

Existing models of interacting adaptive populations tend to have been heavily 

grounded in the social or biological sciences, concentrated mainly around economic-
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s, game theory and population biology. Due to the connplexity of interactions whicli 

taJce place between agents in these problem domains, these models have tended to be 

explanatory in nature, and they do not directly address meta-stability as sucli. 

The growth in computing power and connectivity in the past ten years has resulted 

in a vast increase in the number of systems organised in a bottom-up manner, wliere 

the control of the collective behaviour of the system is distributed between the elements 

of the system. Most notable in this field is the internet. However, other systems, sucli 

as air-traffic control systems can also be cast as collective or group behaviour problems. 

Not only have problems of group behaviour escaped from the social and biological 

spheres, but they have also begun to incorporate computational intelligence techniques. 

The manner in which 'intelligent systems' respond to what they perceive as fluctuations 

in their environment can have far-reaching consequences across wide areas. To follow 

the internet and air-traffic examples given above, the adaptations made in individual 

locations can affect the frequency and severity of network brownouts, or the speed and 

robustness of recovery of the USA's air-travel network after the closure of a major hub 

airport due to bad weather. 

Meta-stability is an important phenomenon to understand. Firstly, i t is a valid field 

of academic enquiry in its own right. But beyond that, an understanding of the causes 

of this phenomenon may allow the better design of systems of distributed adaptive 

agents, or distributed control systems. Given an understanding of the causes of metar 

stability, i t may be possible to predict and control the distribution of waiting times in 

particular modes, or the probable direction of transition between modes. 

This chapter provides an introduction to the field of adaptive systems of interacting 

agents. The evidence for meta-stability as a common phenomenology is reviewed here. 

The significance of the problem to evolutionary theorists and modellers is explained, 
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and recent research and theories are discussed. This cliapter does not seek to describe 

or explain mathematical models of evolutionary dynamics; these matters are covered in 

chapters 2 and 3. 

1.1 Fundamentfds of Adaptation 

Adaptation is the fundamental force that has driven life on Earth since its inception 

4500 million years ago. An adaptive drive underlies not only evolution, but also many 

forms of neural activity. At a higher level i t would not be inappropriate to describe 

the dynamics of many forms of group or group activities, such as corporations, market 

traders and other social or economic agents as being driven by adaptation. In Artificial 

Intelligence (AI) and Artificial Life (ALife) adaptation is recognised as central to the 

quest for more useful and intelligent agents. 

In broad terms, this thesis is concerned with the dynamics of populations of adap­

tive agents. In particular i t is concerned with populations whose adaptation is driven 

by interactive behaviours or social goals. The utility of an agent*s behaviour is defined 

either internally by that agent, or externally as the utili ty of the entire agent. Utili ty 

maximisation is the driving force behind adaptation at the individual or population lev­

el. A positive feedback process exists: adaptation informs behaviour, but the collective 

consequences of behaviours across the population in turn direct the adaptive process. 

1.1.1 A Definition of Adaptation 

The terra ^adaptation* has appeared in many contexts. In dictionary terms, i t has been 

defined as ^adjustment to environmental conditions'*. Here we consider adaptation as 

an active, rather than a passive process. Underlying the various definitions and contexts 

*Merriam-Webster (hhtp://www.m-w.com/dictionary.html). 
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are a number of important common themes: 

1. The agent must be situated within its environment. Agents cannot retreat from 

their world whilst the adaptive process takes place, but must continue to exist 

within i t . Adaptation therefore involves compromises globally optimal solutions 

may not have been discovered by an agent, therefore sub-optimal solutions must 

be used. Adaptive agents use the best solutions that they have to hand, whilst 

continuing to search for even better responses. 

2. Adaptation must in some way involve search. If an agent is to improve its re­

sponses to an environmental stimulus, i t must be free to explore novel responses 

to the stimulus, as well as to exploit existing solutions to the problem. 

3. Consequently, this search process must take place within the agent's environment. 

An agent is faced with the dilemma that on the one hand, its uti l i ty depends on 

correct responses to its environment, yet failure to risk trying novel responses 

may lead to ignorance of the best responses to the environment. This problem, 

referred to as the two armed bandit problem underlies all adaptive behaviours, 

and will be discussed further in Section 1.1.2. 

Henceforth, adaptation will be defined in terras of two fundamental forces, exploration 

and exploitation. A process will be considered to be adaptive i f i t can be shown that 

both these elements are present within in. 

1.1.2 The Statistics of Adaptive Behaviour 

Here the recognition of exploitative and exploratory tendencies will be considered, and 

a rationale for simplifying assumptions that will underlie the mathematical models of 

adaptation (chapters 2, 3 and 4) will be presented. 
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Choice and UncertEiinty: The n-armed Bandit 

Whether the agents exist in a noisy environment or not, they will all face a fundamental 

problem of adaptation, namely the problem of minimising their potential losses due to 

making poor decisions. Such a problem is known as an n-armed bandit In a fruit 

machine (the 1-armed bandit), the player faces a long term source of loss because the 

bandit is biased towards the operator. The n-armed bandit problem posits a machine 

with n arms. Eacli arm has its own bias, so there is a long terra source of loss associated 

with each arm. The problem is to provide a decision method to minimise one's losses, 

given only the history of your plays on the bandit. Note that each play one makes on 

the bandit gives further information about the bias of a particular arm or set of arms. 

This is a fundamental problem in adaptation, because with a limited number of 

historical precedents, associations between stimuli/responses and rewards may not be 

easily discernible, let alone correct. So the ability to minimise one's potential losses 

given an unknown situation, whilst gathering information, is important. 

The relationship between the forces of exploration and exploitation, has long been 

recognised as a two-armed-bandit problem, and underlies early theories of evolutionary 

search [42]. The usual presentation of the problem is in terms of a player betting on 

a coin-tossing game with a coin with an unknown weighting. The player can use the 

history of plays to inform his or her choice of play, but risks two possible sources of loss. 

On the one hand, by basing a decision on the game history (exploitation), there is a 

source of loss by assuming that the game history gives a fair representation of the coin's 

weighting. On the other hand, by ignoring the game's history (exploration), the player 

may lose because the game history does actually reflect the coin weighting. Both are 

possible sources of loss to the agent, although the sizes of the loss may vary. Any adap­

tive agent faces the problem of arranging its responses to the environment to minimise 
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its expected losses from these two forces. In practice, the adaptive techniques that are 

used by an agent may not make i t easy to separate the exploitative and exploratory 

modes, indeed both may be happening simultaneously. However i t is still possible to 

meaningfully discuss the kinds of behaviour that may be observed 

Exploitation 

The key to exploitation is the re-use of previously successfully responses to environmen­

tal stimuli. Depending on individual circumstances of the agent or system of agents, 

there may not be a necessity for an agent to re-use their own prior response; agents 

may instead chose to imitate successful strategies for dealing with particular situations 

that they have observed other agents using. This tends particularly to be the case when 

dealing with economic, social and ALife agents, and also underlies aspects of evolution. 

In evolutionary systems, agents with successful responses to their environment will pass 

on these responses, or the potential for these responses to their offspring. 

A distinction lies between global and local adaptation. Global adaptation is the 

response of an entire population to a changing environment. Individual agents do not 

adapt, but the composition of the entire population changes, so the response of members 

of the population to particular stimuli may change over time. Evolution systems are 

the prime exemplars of this category. In contrast, local adaptation is the adaptation 

of individual members of the population. Agents change their responses over their 

lifetime; the same agents may respond differently to the same environmental stimulus 

at different times. A population of learning agents exemplifies this type of adaptation. 

Exploration 

Exploration is the search for new, better, responses to environmental stimuli. As such i t 

has often been cast as a random, non-deterministic process. This is not necessarily the 
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case. AJcliian [1] points out that statistically, i t is quite possible that the set of actions 

of a community of exploring economic agents may appear to have been generated by a 

stochastic process, even i f this is not the case. He writes: 

"Where there is uncertainty, people's judgments and opinions, even when 

based upon the best available evidence, will differ; no one of them may be 

making his choice by tossing coins; yet the aggregate set of actions of the 

entire group of participants may be indistinguishable from a set of individual 

actions; each selected at random." 

This point is particularly important. On the one hand, the fact that there appears to 

be a stochastically driven exploration within a set of agents does not preclude agents 

from performing some form of intelligent or directed search. On the other hand, even 

i f agents are carrying out some form of intelligent or directed search, statistically i t 

may still be possible to model the exploration as a stochastic process. In the quest 

for mathematically tractable models of adaptation, this simplifying assumption is often 

made. 

Noise in the adaptive process 

Further to this point, there is also the question of information available to adaptive 

agents (for example, see Wi t t [84]). For instance, classical equilibrium economics makes 

strong assumptions about the information available to agents within the system; the 

usual assumption is that agents have access to perfect information immediately. In 

practice, information is not always instantly available, and even when i t is, i t is not 

always correct^. An assumption of a small amount of noise in the information that 

^The importance of immediate access to correct, relevant information is empirically confirmed by 

Reuters balance sheet. 
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agents are basing decisions upon, supports the notion of exploration as a stochastic 

process. Not only can agents with purely exploratory goals perform exploration, but 

agents attempting to exploit good situation-response pairs found by other agents may, as 

a result of imperfect information (either about the way that other agents have acted, or 

about the present state of the environment, or about the assumption of the environment 

in which a copied behaviour is favourable) perform exploration by mistake. 

1.2 Natural and Artificial Evolution 

In this section, the motivation behind using evolutionary models to describe the group 

dynamics of systems of interacting adaptive agents is considered. The basics of cur­

rent evolutionary theory, especially in terms of eirtificial evolution, and the relationship 

between current evolutionary theories and the computational models that they have 

engendered are also described. 

1.2,1 The Advantages of Evolutionary Models 

Evolution and evolutionary models are of particular interest in the study of the dynam­

ics of groups of interacting adaptive agents for three reasons. First, the study of the 

dynamics of evolutionary processes has a long and frui t ful history, and has been backed 

up by a number of well-tested and useful mathematical models. There has been a con­

tinual interplay between the biological and mathematical sciences, which means that 

the best mathematical models are well grounded in experimental fact. Mathematical 

models of evolution and evolutionary operators are reviewed in Chapter 2. 

Second, there is the more recent use of artificial evolution (genetic algorithms, ge­

netic programming, etc.) as an A I and Alife technique. Techniques such as genetic 

algorithms, genetic programming, morphogenic codings, and co-evolving population-
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s are regularly used in many domains. A I and ALife are not restricted to following 

strictly biological pathways, so the research that has been done on evolution and evolu­

tionary operators has allowed many useful simplifications to be made whilst retaining 

the essence of the evolutionary algorithm. 

Third, evolution is necessarily a group technique. Technically, asexual reproduction 

(including mutation) from a single parent, producing a single offspring which replaces 

the parent, is possible. However, this is identical to a random walk over the search space. 

The power of evolution comes from its parallelism. Different types of adaptive search 

place alternate emphases on the explorative and exploitative processes, and exploit the 

parallelism is differing ways. This point is discussed in detail by Holland [42], although 

there has been recent criticism of Holland's analysis of the working of a particular 

evolutionary algorithm, the canonical genetic algorithm [79, 29, 35, 36]. 

I f the evolutionary algorithm is set up correctly, i t can be used as a model of the 

dynamics of a group of adaptive agents (for instance, the Santa Fe Artificial Stock Mar­

ket, discussed in Section 1.3.1). In particular, i t may be possible to use an evolutionary 

algorithm as a link between a given adaptive group and a mathematical model. I f an 

evolutionary algorithm can be found that successfully models the characteristic features 

of the system of interest, it may be possible to write down the operator that governs 

the evolution of that system. Mathematical approaches, particularly diffusion equa­

tion, stochastic system, and thermodynamic approaches (as discussed in Chapter 2) 

may then be used to model the trajectory of such a system under a given evolutionary 

operator, and a given utility or fitness measure. In this manner, i t is possible to consid­

er the group dynamics without reference to the particular circumstances of individual 

adaptive agents within the system. 
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1.2.2 Basics of Evolutionary Theory 

Broadly speaking, modern evolutionary theory may be summed up as a neo-Darwinian 

synthesis; that is to say that i t is a synthesis of ideas derived from and inspired by 

the ideas of Darwin and Wallace [20, 82], and filtered through the theory of molecular 

biology [67]. The bare bones of the theory are sketched out below. However i t should 

be stressed that the devil is in the detail; a broad approach can only fail to do justice 

to the intricacies of evolution. 

Darwinian evolution starts from the distinction between an individual's genotype 

and phenotype. Every individual contains a blueprint detailing its own construction, 

coded within the DNA in the nucleus of every cell. From this blueprint the pheno­

type, or physical form of the individual, is produced in a raorphogenic process. The 

central dogma of molecular biology is that information can only pass in one direction, 

from genotype to phenotype. I t is this central dogma that distinguishes neo-Darwinian 

evolution from earlier proposals such as those made by Lamarck [53]. 

Onto a population of individuals a selection pressure is postulated. This is a differ­

ential mechanism, which discriminates between members of the population, and results 

in differences in the probability, frequency or success of mating between members of 

the population. Such a pressure may be very simple and overt, for example predation 

removing weaker and older members of the population; alternatively, i t may be more 

subtle. For example, females may discriminate between potential mates on account of 

differences in plumage or display ^. Theorists (e.g. Hamilton & Zuk [40]) explain such 

discriminations in terms of their demonstrating the strength of such individuals. This 

great deal of effort has been expended by evolutionary biologists in expltuning how seeming­

ly extravagant plumage (for example, a male peacock's fan) either directly improve an individual's 

probability of survival, or serve to demonstrate to a potential mate the strength of that individual. 
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selection pressure can be summed up with the clich^d phrase 'the survival of the fittest'. 

This means no more, and no less than that those individuals whicli are best able to 

survive in the environment in which they find themselves are most likely to breed. 

Those individuals that do survive and find mates will breed, and pass on parts of 

their genetic material to their offspring, who will inherit physical characteristics from 

their parents''. 

1.2.3 Foundations of Genetic Algorithms 

The field of genetic algorithms (OA's) stems from the work of John Holland from the 

1960s onwards (summed up in [42]). Whilst the mathematical explanations offered 

by Holland for the workings of the GA (and in general to the processes of Dar\vinian 

evolution) have been subject to much recent criticism and re-examination [79, 29, 35, 

36], the basic model (known now as the canonical-GA) has become the basis of an 

expanding field of study. 

The description of the GA that is offered at this point is purposefully a simple 

sketch, sufficient only to enable the discussion in following sections. I t is not a pre­

cise description of any particular algorithm. The theory and mathematics of genetic 

algorithms and other evolutionary models will be discussed in much greater detail in 

Chapter 2. Algorithmically, the genetic algorithm is based upon a gross simplification 

of the processes described by modern evolutionary theory. The process begins with a 

fixed population of randomly chosen strings, each of which is a coding of a potential 

solution to the problem under consideration. This string may be considered as an indi­

vidual's genotype. Each of these strings undergoes an evaluation process which assigns 

variety of other processes, collectively described as mutation may introduce variations into the 

genetic material of offspring, which are not traceable back to the genotypes of their parents. 
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a numerical measure (the fitness) of the success of the string as a solution. This eval­

uation process can range from the naively simplistic (e.g. the number of blocks of bits 

all taking a given value in the case of the Royal Road Genetic Algorithm [60, 79]) to 

the computationally complex (e.g. many engineering design problems [68]). The eval­

uation process is commonly referred to as the fitness function. In a biological context, 

the fitness of an individual is usually expressed in terms of the number of offspring i t 

has; here the process is reversed. What is usually described as the 'fitness function' in 

GA theory is a conflation of two distinct mappings: a genotype to phenotype mapping, 

and a phenotype to utility mapping. This conflated mapping determines both the in­

dividual's chances of survival through to the next epoch, and the number of offspring 

that the individual is likely to have. These differences are usually glossed over in GA 

theory. 

Once the members of the population of potential solutions have been evaluated 

via the fitness function, the population is ranked, and a certain portion of the weaker 

members of the population is discarded. The population is brought back up strength 

by creating new members via a process analogous to sexual reproduction. A pair of 

individuals are chosen as 'parents', and the 'child' is formed by creating a string which 

incorporates elements of the genotypes of both parents. The following two processes 

are usually (but not always involved): 

Mutation 

This is an analogue of the set of processes mentioned in the preceding section and 

referred to collectively as mutation. In the theory of natural systems, there may be 

valid explanations for sections of DNA not conforming to the DNA of either parent, 

which do not invoke any non-deterministic explanation such as damage to the DNA from 
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cosmic rays. In GA theory sucli explanations are usually discarded, and the mutation 

operator is considered as a stochastic process, which acts with a fixed probability on 

each site in the genome, changing the allele at that site to a random state (where there 

are more than two possible states of the allele), or to the opposite value of the one it 

presently holds (in the case that the allele can only take two possible values). Mutation 

is a purely exploratory operator; i t uses no information about the possible location of 

optima in the search space, but picks a random point in the space according to some 

distribution, and places an individual at that point. 

As will be demonstrated in the following chapter, the mutation of a population of 

individuals away from a given state can be considered as a diffusion process, capable of 

being modelled via partial differential operators. In the absence of any selective pressure 

or fitness function, mutation will cause a population to spread across the available space 

to a macroscopic entropy maximising state. 

Mutation can be considered to be the most fundamental genetic operator, and in 

natural terras i t is certainly the most ancient, having a role in the reproduction of all 

organisms in the history of life on earth. 

Crossover 

This is the process which combines the genomes of two parents to form a child. In the 

simplest version, 1-point crossover, a single cut point is picked at random; the child's 

genome consists of a copy of the first portion of one parent's genome, concatenated 

with the second portion of the other parent's genome. In more complex versions, n-

point crossover, the genome string is considered to be a loop, and a total of n cut points 

are chosen. The child's genome consists of alternate portions of the parents' genomes. 

Crossover operators have also been produced to fit specific types of genome used in 
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particular problems. The best known examples are the re-ordering crossover operators, 

used in evolutionary approaches to travelling salesman type problems. These alternate 

operators are tailored for problems where constraints on phenotypic structure have been 

resolved by imposing the constraints at a genotypic level. In the travelling salesman 

problem, the constraint of not visiting any city more than once is imposed at a genotypic 

level, by restricting each allele to appear once and once only. 

The theory of the canonical crossover operator is very controversial, and is generally 

held to be not fully understood at this time. Rival theories as to the operation of 

the crossover operator are discussed briefly in Section 6.3.3. Early theories [42] held 

crossover to build up larger areas of (potentially) favourable genes on the genome from 

smaller, favourable 'building blocks'. More recent work [79] indicates that crossover 

may act to spread the genes of the best individuals through the population quicker 

than would be possible than by a policy of replacement with mutation. 

Crossover is a combination operator, i t implements both exploration and exploita­

tion. The offspring of a pair of agents has a genome which lies between its parents. 

Whilst i t is assumed that both parents implement good solutions that have been found, 

there is no absolute guarantee that the offspring will , although i t can be shown [42] that 

if the landscape has sufficient exploitable regularities, the offspring will probably con­

tain beneficial aspects of its parents genetic makeup. Thus, there is both an exploitative 

and an exploratory aspect to crossover. 

Asexual Reproduction 

Asexual reproduction is the simplest possible reproductive scheme. Here there is only 

one parent, and its offspring inherit all the genetic material of that parent. Whilst 

this operator is only used in the simplest organisms in nature (the so called 'ancient 
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asexuals' group), i t has an important place in GA theory, particularly in the analysis of 

evolutionary search. This is because asexual reproduction implements pure exploitation: 

there is no opportunity to explore the genome space when this operator is used. 

By using a combination of asexual reproduction plus mutation, and replacing the 

entire population at each generation, a simple evolutionary search is implemented, in 

which the exploratory and exploitative operators are separated. Whilst this is not the 

most efficient evolutionary search algorithm, i t is the one which most easily submits to 

a mathematical treatment. The exploitative and exploratory operators can be consid­

ered separately, and written down. The resulting evolutionary operator is the result 

of an exploitative operator applied to the existing population, then modified by an 

exploratory operator. 

1.2.4 Selection Pressures from Within a Population 

Classical evolutionary theory conceives of abstract selection pressures. In the study 

of individual organisms, or of specific webs of organisms, some of these pressures may 

be identified and/or quantified. In cases where mating or breeding success appears 

dependent upon some interaction between members of the population (e.g. some form 

of courtship ritual), the purpose of the interaction is explained as a demonstration of 

that individuals fitness to face some external pressure. 

I t is not the case that all pressures may be directly externalised. Organisms that 

lie at the top of food chains tend not to have any predators, and their population 

is limited by their food sources; they are unable to sustain a population beyond the 

limits of their prey*s sustainability. In many cases this can lead to unstable populations 

following Lotka-Volterra dynamics [62]. In many cases the selection pressure is now not 

imposed externally by the predations of other species, but internally by members of the 
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population choosing mates^. 

Recent work with artificial evolution (GA theory) has also involved selection pres­

sures within a population. There exist a number of papers describing work in which 

populations of agents play various economic games (especially the Iterated Prisoner's 

Dilemma (IPD) game [10, 65, 11, 56, 77] and artificial stock markets [5]). 

The common feature of all these models is that the fitness of an individual is no 

longer solely a function of that individual's phenotype (and therefore genotype), but is 

rather determined by one or more interactions with another member or members of the 

population. I f members of the population cannot choose which other members of the 

population they interact with, and the behaviour of an agent during an interaction is 

under genetic control in some way, then the fitness of an individual is determined not 

only by its own genotype, but also by the distribution of the genotypes of the whole 

population. The result is that (in terms of GA theory) the fitness function is dependent 

upon the population distribution, and yet serves as the selection pressure which dictates 

the evolution of this same population. I t is by no means clear that the dynamics of the 

population will follow those in GA models without interactions. 

1.2.5 Co-evolution vs. Interaction Within a Population 

As stated previously, this thesis concerns populations of agents whose adaptation is 

determined by their utility in achieving interactive or social goals. Contrast this study 

with the field of co-evolutionary theory, which seeks to describe how species evolve under 

selection pressures imposed by each other. The difference lies in the adaptative sclieme. 

In an interacting population, mating takes place in the entire population, whereas in 

^In natural evolution, it is usual that all the females breed, but only the strongest males get to 

breed. 
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co-evolutionary models, the subpopulations represent different species, unable to mate 

across species boundaries. 

The siraplest raodel of co-evolution is of two species, for exaraple a predator and a 

prey. The species interact in a siraple raanner: the predators atterapt to kil l and eat the 

prey. I t is this interaction that drives the selection of individuals within both species. 

Fitter members of the prey are more likely to avoid the predators, and thus pass on 

their genes to the next generation. In a similar manner, fitter predators are more likely 

to catch the prey, and thus survive to pass on their genes, whereas the weaker predators 

die of starvation. 

The dynamics of such a co-evolutionary system are commonly described as the 

'Red Queen effect' [80] or as an 'evolutionary arms-race'. Both species are constantly 

seeking improveraents to counteract the new iraproveraents in their opponent; they are 

constantly running to stand still . 

Co-evolutionary phenoraena are an expanding and fast moving field of study at 

present. Much of the work is based around the Bak-Sneppen model (original paper 

[8], review paper [66]). This is a siraple mathematical model of co-evolution whicli 

displays self-organised criticality. A co-evolutionary system appears to evolve towards a 

critical state in which 'avalanches' of changes caused by changes at individual sites ripple 

across the entire system. These avalanches are of all scales. This raodel demonstrates 

the phenomena of punctuated evolution observed in the historical record [73, 74, 75]. 

Extinction events on all scales take place, the frequency of extinction events scaling with 

event size by a power law. The Bak-Sneppen model, and other work (e.g. Newman 

63]) detail models of extinction which duplicate the historical record, and which do not 

need to invoke external environmental shocks (e.g. meteor strike) in order to explain 

the fossil record. 
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Borgine & Snyers [14] produce a formulation of what they describe as a co-evolutionary 

model, based on Lokta-Volterra dynamics [62], using an Eigen-Fisher model. This 

model reduces to a Schrodinger wave equation. Whilst this model claims to be co-

evolutionary, the experimental results presented (based on Kaneko & Suzuki's bird 

model [44]) are based on a population of interacting agents; there being a single popu­

lation under an asexual reproduction plus mutation operator. Bourgine & Snyers claim 

that their study indicates that the co-evolutionary dynamics (hill climbing on a sinking 

landscape), which gives rise to punctuated equilibria is a general feature of exploitation 

plus exploration processes, rather than a consequence of the discreteness of mutations. 

Their analysis appears to conflate two separate effects. First, evolution on plateaued 

landscapes is punctuated due to entropic effects analogous to a first passage time in a 

random walk. This is discussed further in Section 2.2.4. Second, there is the Fisher 

Law, which posits species undertaking a hill-climbing evolution on a sinking landscape 

caused by co-evolution. They appear to rule out the possibility that a meta-stable 

symbiotic relationship between species occupying various niches can ensue: This has 

been observed in discrete phenotypic spaces (Section 1.3.2). I t is not clear that sucli a 

symbiotic relationship cannot occur in a continuous phenotypic space. 

In the following section, a number of models are reviewed which demonstrate meta-

stability. These are examples of interactive systems which would appear stable in the 

infinite population limit, but which display raeta-stability only in finite populations. 

The main difference between co-evolution of a number of species and interaction within 

a population is one of stability. Co-evolutionary systems tend to follow Lokta-Volterra 

dynamics, that is to say that the evolution of each species is regulated by the other. 

Whilst, as is discussed above, this can lead to interesting dynamics including punctuated 

equilibria, i t differs from an interactive system in that a co-evolutionary system generally 
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only has a one-way dependence (e.g. predator eats prey), whereas in an interactive 

population the dependencies run in both directions. Here the utility of each agent can 

be dependent on the actions of all agents**. 

A fundamental question, whose answer lies beyond the scope of this thesis, is whether 

co-evolutionary systems and interacting adaptive populations share the same dynamics, 

or belong to different classes of dynamical systems. On the one hand, an interacting 

adaptive system might be pictured as a co-evolutionary system with a large number 

of co-evolving species (mapping each individual in the interacting adaptive system to 

a species in the co-evolutionary system). This can be countered by an argument that 

there is still an essential difference in that co-evolutionary systems are not stable in the 

infinite population limit, but continue to evolve in a deterministic manner, based on 

the relative fitnesses of members of the mutational cloud of each separate species. In 

contrast, members of an interacting adaptive system may make mutational as well as 

selective moves across the landscape; the mutational moves are stochastic as opposed 

to deterministic. However; the dynamics of both types of system can be captured using 

statistical dynamics formulations, the Bak-Sneppen model [8, 66] in co-evolutionary 

systems, and various approaches in the case of interacting adaptive systems (see Sec­

tion 2.2). I t is an open question as to whether both types of system can be described 

by the same statistical dynamics formulation. 

1.3 Models of Interacting Populations 

There are a number of well established lines of research into the evolution of interact­

ing populations. Whilst the directions and aims of these models are varied, they all 

**This will vary with the system. In the system considered by this thesis, this is the case. In other 

systems reviewed in this thesis, the dependency is stochastic. 

31 



use evolutionary computing methods to optimise a population of agents whose utili ty 

depends on their effectiveness at performing some form of social interaction. Their 

purpose is either to draw conclusions about the optimaJ ways in which the population 

self-organises under the given fitness function, or to test theories about the nature of the 

interactive regimes. In short, these lines of researcli seek to use evolutionary methods 

on populations of interacting agents as a means of exploring the nature of the interac­

tions, or to find the types of populations that are engendered by using success at these 

particular interactions, not to investigate the more general issues of how populations of 

interacting agents evolve. 

1.3.1 Artificial Stock Markets 

The theory of stock markets is one of the primary examples of the adaptation of a 

population of interacting agents. Arthur [4] explains the problem succinctly: An a-

gent*s optimal strategy is dependent upon its expectation of the strategies of other 

agents. To quote Keynes [48], the problem of valuing stocks depends upon "what aver­

age opinion expects the average opinion to be". Clearly the payoff (or fitness) received 

by any particular agent is dependent not only on that agent, but upon the rest of the 

population. 

One very interesting strand of work that has been pursued over the past few years is 

the use of Alife techniques to produce an artificial stock market (ASM). The rationale 

for this work is that by creating an ASM, researchers have a laboratory in which they 

can test theories concerning the interaction of economic agents. The advantages of this 

approach over on using real stock market data to test economic theories are that: 

1. The rationality of the agents is known, that is to say the computational power of 

the agents is known. 
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2. The trading strategy of the agents is known. 

3. In a real stock market the markets in different stocks are not independent; the 

effect of one stock on other stocks (in unrelated industries) is well known. An 

artificial market can be created in a single stock. 

4. An artificial stock market is insulated from external factors that influence real 

markets and which add 'noise' to the market. The efficient market hypothesis 

asserts that there is no such thing as noise in a stock market, all changes in asset 

prices are due to new information entering the market, and being discounted by 

traders into the asset prices. Whilst the timing and effects of individual items 

of information entering the market may not be predictable, the resultant effects 

may have a well defined distribution. 

Not all ASM's use evolutionary techniques to modify the populations of agents, 

most of the recent ALife models are adaptive in that they allow agents to modify 

their strategies to improve their performance. Various adaptive processes have been 

used, including reinforcement learning and imitation of the strategies of more successful 

agents, as well as evolution under a GA. For example, Bak et al. [7] have allowed agents 

to modify their trading strategies to reflect current market conditions, and have also 

allowed agents to change their strategies to imitations of the strategies of more successful 

agents. Whilst this latter method is not strictly evolutionary, it is still adaptive; the 

composition of the population is under a pressure to mutate towards more successful 

areas of the space of traders. 

FVora the standpoint of investigating the dynamics of evolution in populations of 

interacting agents, perhaps the most interesting model is the one that has been devel­

oped by Arthur and colleagues based at the Santa Fe Institute [4, 5]. In this model, a 

population of agents trade in a single asset. Whilst the details of asset pricing theory 
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are of limited interest here, the nature of the agent interactions requires some explana­

tion. All the agents have a choice between investing their assets in a stock which pays 

a randomly chosen dividend from a given distribution at each time period, or placing 

their assets in a risk free investment. Based upon price and dividend information, the 

agents each predict the next price of the stock. Classical economic theory predicts each 

agent*s optimal distribution of their assets between the stock and the investments, given 

a knowledge of each agent's degree of risk aversion and prediction of the next price. 

These demands are then passed to an independent market supervisor, or specialist who 

determines the price of the stock, given that the stock must all be taken up at eacli 

time period. The new price and the next dividend are then passed to all the agents, 

who can then update their demands. 

In the model used by Arthur et al. [4, 5], the market consists of a fixed number of 

agents, all of whom have a bank of possible strategies, each of which is a classifier (a 

decision rule coded as a binary string^). At regular intervals, each agent uses a GA to 

eliminate its weaker strategies and replace them with new, exploratory strategies based 

on its most successful current strategies. Whilst the thrust of this work is directed at 

explaining particular aspects of markets, there is a point which is particularly notewor­

thy in the present context. There appear to be two regimes available within the market, 

dependent upon the initial conditions of the model: 

A fundamental trading regime. The model is set up so that all investors start with 

a common set of expectations (i.e. strategies), and these expectations are that 

the stock will have its fundamental value, the value that classical economic theory 

predicts that the stock should have. 

" I f a large majority of investors believe the fundamentalist model, 

*̂ see Holland [42] and Goldberg [37] for details of classifier systems. 
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the resulting prices will validate i t , and deviant predictions that arise 

by mutation in the population of expectational models will be rendered 

inaccurate. Thus in our market, the homogeneous rational expectations 

equilibrium of the standard literature is evolutionarily stable: i t cannot 

be invaded by small numbers of deviating expectations."® 

Thus, i f the population of available strategies is clustered closely enough around 

a particular stationary point (predicted by the standard theory), then that point 

will lie in a deep attractor basin, i.e. members of the population will be unable 

to escape from the environs of that point. 

A technical trading regime. In an identical model, i f there is a wider distribution of 

initial strategies, then the fundamental regime will no longer be stable. I t is now 

possible that non-fundamental strategies can be successful. These strategies will 

spread through the market, forming a bubble, where the stock value deviates sys­

tematically from its fundamental value. Other strategies may now arise to exploit 

the bubble, and a crush will result, as the fundamental stock value is reasserted. 

This regime is known as a technical trading regime, and is characterised by agents 

making predictions of future prices based on the recent price history. 

The existence of these two regimes demonstrates that stationary points in the popu­

lation space do actually exist when adaptive agents interact, and that these stationary 

points are not Umited to fixed points, but include limit cycles, and possibly strange 

attractors as well. Arthur et al. have noted informally that once the technical regime 

(which they also describe as a complex regime) has been entered, then the market 

appears to be trapped in i t . 

^Arthur [5]. 
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Payoff 

pl/p2 C D 

p2 C R/R T/S 

D S/T P/P 

Table 1.1: Payoffs in the Prisoner's Dilemma Game. A Prisoner's Dilemma is any game 

in whicli T > R > P > S a.n6 2R > T-\-S. The plays C, D stand for Co-operate and 

Defect respectively. 

1.3.2 The Iterated Prisoner's Dilemma Game 

The Prisoner's Dilemma (PD) game is a well established game that has been used to 

model interactions between individuals within a number of fields. I t is a single shot 

non-zero sum game with payoff table given by Table 1.3.2. 

I t is well established that in the single shot game, the strategy of mutual defection 

DD is evolutionarily stable [77]. However, when the game is repeated indefinitely^ the 

dynamics become more complex. Axelrod [6] has shown that there is no optimal strategy 

independent of an opponent's strategy. In an adaptive population, the adaptation will 

be directed by the results of the games recently played, and hence by the composition 

of that population 

Evolutionary techniques have been widely used in studies of the iterated (IPD) game 

to establish which strategies are viable in evolutionary terms, and to investigate the 

way that various strategies interact with each other. A number of these studies are of 

particular interest, either because they demonstrate the raeta-stability of populations, 

or because they demonstrate other features of interest. These studies have used a variety 

of means of enumerating strategies in such a way that they may be encoded in a binary 

''Either played ad infinitum, or with a fixed (small) probability of halting after each play. 
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genome. The most common are to encode various forms of finite state automata [2, 28 

and game tree hierarchies or histories [54, 55, 56]. There have also been studies of both 

spatial cind non-spatial IPD games. Here attention will be restricted to non-spatial 

versions of the game. 

Lindgren [54] and Lindgren & Nordahl [55] coded the genome based on responses to 

possible recent game histories. The experimental set-up was designed to allow mutations 

which lengthened the genome, thus allowing for the evolution of memory by players. 

They note that the results of their simulations show the evolutionary dynamics of 

the system to consist of "a succession of stable periods separated by periods of rapid 

evolution ... reminiscent of punctuated equilibria" [55]. Moreover, their experiments 

show that i t is not just individual strategies that can dominate the population. There 

is evidence of 'species* of agent rising to prominence together, displaying apparently 

correlated evolutionary dynamics, and becoming extinct together^^. This indicates that 

the population is shifting between areas of the space of population distributions, first 

favouring one distribution of populations for a while, then moving to another area of 

this space where another distribution of agents between possible genotypes is favoured. 

The work of Lomborg [56, 57] is significant in this context. He demonstrates the 

results of a large evolutionary simulation, where the genome uses a similar technique 

(but different implementational details) to that of Lindgren [54] and Lindgren & Nor-

dalil [55] discussed above. In these experiments the history length is fixed, and Markov 

techniques are used to calculate the limit scores of agents within the population playing 

each other. In this way, he has managed to produce results for infinite game lengths 

without a major computational load. The results are very interesting: rather than any 

'°This can unfortunately only be inferred from the diagrams accompanying their text. There is 

no mention of this feature in the text, but examination of the diagrams shows these dynamics quite 

clearly. 
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one 'species' dominating the population, the system settles down in a meta-stable state 

comprising of a mixture of possible strategies in constant proportions. Lomborg*s anal­

ysis indicates that the populations consists of two elements, a nucleus of co-operative 

strategies which are easily exploitable, and a shield of unforgiving strategies (e.g. similar 

to TIT-FOR-TAT) which will respond to defection with mutual defection. The shield 

and nucleus remain in approximately fixed proportions, because the shield exploits the 

nucleus slightly, but not enough to become dominant. Lomborg discusses the evolu­

tionary stability of such a population: The population can initially easily be invaded 

by any strategy that defects against co-operators. The proportion of co-operators in 

the population declines, and is replaced by the invading strategy and shield strategies. 

The invader will however trigger the defection of the shield strategies, which in turn 

leads to its own downfall, and the re-emergence of the exploitable nucleus strategies. 

"the answer to Axelrod's question, of what is the most robust strategy in the 

IPD game, has never been a single strategy, but is instead a set of strategies 

internally partitioned between a highly co-operative nucleus and a diverse 

and cautious shield." 

Lomborg too notices the meta-stability of the population: an evolutionary stable 

mix of strategies will persist for a large number of generations. However, i t will not 

persist forever: catastrophic changes in the population occur occasionally, and one 

evolutionary stable mix is replaced by another one. His analysis of this is that in 

the period during which a meta-stable population is fighting off one intruder, another 

intruder may then exploit the combination i f i t arrives at the right moment. Lomborg 

points out that the most destabilising strategies are in fact the 'too nice' strategies 

which co-operate willingly. A population that is invaded by this form of mutant is far 

"Lomborg [57]. 
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more vulnerable than a population that is 'too harsh'. The gentle exploitation of the 

nucleus by the shield has the effect of keeping the *too nice' mutants at bay, but i t 

is occasionally exploitable, and it is here that the systemic meta-stable nature of the 

population becomes apparent. 

Batali & Kitcher [11] also note the meta-stability of populations of IPD playing 

agents in their simulations involving optional^^ and compulsory versions of the IPD. 

They note the long periods where the population appears trapped, with various s-

trategies maintaining approximately fixed percentages, and the sudden shifts between 

population compositions. As they point out, in any situation where no phenotypic dif­

ferences are observable, there is a possibility of genetic drif t (see Section 1.4.1); neutral 

sites on the genome can mutate causing the genotype to vary massively without any 

effect on the phenotype, and therefore the performance of individuals. In this case the 

phenotypic similarities are that agents play the same when (for example) faced with 

co-operating opponents. Here their potential responses to non co-operators may face 

extensive genetic dr if t over a period of time, so an exploitative mutant in fact faces a 

genetically diverse population which may seek a diflferent meta-stable configuration to 

its original one. They point out that, 

"The only way that a population playing the compulsory game can es­

cape from a state of high defection is for several favorable mutations to 

occur at once ... 

In thinking about the evolution of social behaviour i t is important to 

recognise that such behaviour occurs against a changing environment con­

sisting of the behaviours of other members of the populations. Thus such an 

*^In the optional version of the IPD game, there is a third possible play, 'N' which indicates that 

the player refuses to take part in that round. 
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evolutionary process is a feedback system, and the global properties should 

be expected to fluctuate, perhaps chaotically ... 

... In the long run, the evolutionary dynamical properties of strategies 

and their genetic representations may have the most significant effect on the 

careers of populations using those strategies." 

Similarly, in simulations using the n-player version of the IPD game (otherwise 

known as the public goods problem), both Bankes [10] and Glance & Hubermann [34] 

observed populations with high levels of co-operation, and with high levels of defection, 

with sudden intermittent shifts between these two types of population. They also note 

that a number of diff'ering levels of co-operation in the multi-player game are stable, 

which leads to what they describe as a 'terraced* mean score/play trajectory. This 

trajectory has a number of similarities to that observed in studies of the Royal Road 

GA [79]. Again, the notion of genetic drif t is invoked to explain these results. 

Hubermann & Glance [43] explored conditional co-operation in a public goods prob­

lem, where individual agents decide whether to co-operate or not stochastically, based 

on the percieved fraction of agents co-operating in a previous epoch, and their percep­

tion of the effect of their decisions on other agents future decisions. A mathematical 

formulation has been devised, based on earlier work by Ceccatto & Huberman [17]. 

They show that in such a system there may be more than one optima (corresponding 

to alternate Nash equilibria), although only one is global. They then consider transi­

tions between optima caused by agents misperceptions of the environment (the number 

of agents co-operating). This system is not truly adaptive, agents update their proba­

bility of co-operation to the optimal ratio based on the information they have. However, 

because this information may be erroneous, a degree of stochasticity is added to the 

^^Batali&Kitcher [11]. 
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system, because agents* perceptions of the optimal strategy may now differ. 

Based on the formulation from Ceccatto & Huberman [17], Huberraan & Glance 

[43] show that metarStability may be present. Furthermore, they consider the transi­

tion times between the local optima. They note that the utili ty barrier separating local 

optima may have differing heights on each side. This means that the transition prob­

ability between optima is asymmetric. In the system they consider, there are only two 

optima. The system finds i t fairly easy to jump from the local to the global optimum, 

and this is observed regularly. However, the transition time from the global to the local 

optima is a number of orders of magnitude larger, and this event is rarely observed. 

1.3.3 The E l Parol Problem and Other Co-ordination Prob­

lems 

The El Farol problem, put forwards by Arthur [3] is a co-ordination problem under the 

constraint of bounded rationality. This means that i t is a problem where agents must 

co-ordinate their responses, in a situation where they cannot make perfect predictions. 

Consider the original problem: 

There is a bar in downtown Santa Fe called the EI Farol. They have a fine salsa 

band playing on a Thursday night, and people go there to dance. Now obviously, i t is 

a better night out when i t is busy, but when i t gets too busy i t becomes less enjoyable. 

This is formalised as follows. There are a population of N agents, each of whom can 

make a choice A (go out), or B (stay in). There is a fixed small utility to staying in, 

and a greater utility to going out - i f there are k or fewer other agents at the bar. If 

there are more than k agents at the bar, then there is zero utili ty to going out. The 

only information that all agents have, is the historical record of numbers at the bar on 

previous occasions. There is no direct communication between agents. 
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This problem, and other similar problems such as the spatial minority game [19, 

88, 18] have profound consequences. The bounded rationality of agents limits their 

predictive powers; yet co-ordination emerges. Arthur [3] points out that whilst the 

number of agents in the bar (choice A) varies around / c , the set of agent strategies is 

continually altering: i f agents can find pattern in the collective behaviour, then they 

can exploit that pattern, causing i t disappear: 

"K several people expect many to go because many went three weeks 

ago, they will stay at home" '̂* 

This underlies the efficient market hypothesis mentioned in Section 1.3.1. Al l pertinent 

information about stock prices in a market is discounted immediately. I f agents can 

find a pattern in market prices which they can exploit, then that exploitation will 

tend to destroy the pattern. Markets are thus seen as moving under Gaussian noise, 

hypothesised (from experimental evidence) to approximate the distribution of changes 

in market prices due to new information being discounted. 

Despite the apparent near stasis that emerges, approximately k agents going to the 

bar on each occasion, there is a rich dynamical structure underlying the system: 

"After some initial learning time, the hypotheses or mental models are 

mutually co-adapted. Thus we can think of a consistent set of mental models 

as a set of hypotheses that work well with each other under some criterion 

- that they have a high degree of mutual adaptedness. Sometimes there is a 

unique such set... IVIore often there is a high, possibly very high, multiplicity 

of such sets. In this case we might expect... [such systems] to cycle through 

or temporarily lock into psychological patterns that may be non-recurrent. 

Arthur [3]. 
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path dependent and increasingly complicated »15 

In this type of system, the collective dynamics remain stable, whilst the population 

may undergo shifts between various distributions of agent hypotheses. This will not 

always be the case. In the IPD, changes in agent hypothesis set can change the collective 

response of the system, affecting not just the utility of individual agents or hypotheses, 

but the collective behaviour of the entire population. 

1.4 The Instability of Interacting Populations 

In the above section, i t has been established that the phenomenon of meta-stability in 

populations of interacting agents exists, and that i t has been noted across a variety of 

simulations on a number of differing games. In the ASM's that have been discussed, 

differing initial conditions can result in either technical or fundamental trading regimes 

becoming prevalent. In the case of the technical regime there appears to be a quasi-cyclic 

behaviour consisting of bubbles and crashes. Whether this is a true cyclic behaviour, 

or is the result of systemic properties of the ASM simulation is an open question. That 

is to say that i t is not known whether the quasi-cycle of bubbles and crashes should 

be considered as a cyclic behaviour with some stochasticity in the period, or whether 

they are two different regimes, with a stochastic process determining the transition 

between them. This question will be further discussed in section 6.1, in the light of 

experimental evidence. In the case of the IPD simulations the instabilities have been 

noted by a number of researcliers, and take the form of sudden catastrophic shifts in 

the way that members of the population play against each other. 

This section explores the idea of stochasticity within populations from a non tech­

nical angle. The first notion considered is genetic drift , wliich has been held by many 

'^Arthur [3]. 

43 



(e.g. [11, 10, 34, 43]) to be responsible for the instability in populations of IPD playing 

agents. This is followed by an exploration of the basics of statistical dynamics, whicli 

has been used very successfully in thermodynamics, and a consideration of how its 

techniques might be of practical use in explaining evolutionary dynamics. 

1.4.1 Genetic Drift: Mutation as a Diffusive Operator 

Consider a population of individuals all sharing the same genotype. The mutation 

operator wil l , over time, alter various sites on the genomes of particular individuals, so 

the population now forms a cloud around the original genotype in the genome space. 

I t will be shown in Section 2.1.1 that this is a Fokker-Planck process, i.e. the simple 

diffusion of the population around its original position. Obviously, whilst the genotypic 

cloud maintains the same phenotype, diffusion will continue unabated. However, i f the 

phenotype alters at some point then there may be a drif t towards the new phenotype (if 

i t is favourable). A mathematical treatment of the probability of a favourable mutant 

becoming fixed within the population is given in Section 2.1.6. 

Let us now further suppose that it is not possible to mutate from the original 

phenotype to a more favourable phenotype without first mutating to a less favourable 

phenotype. There is no path from the present genotype to one corresponding to a 

more favourable phenotype that does not first cross an area of lowered fitness. Now 

the diffusive mutation will spread the population until (in the l imit) the population 

tends towards an entropy maximising distribution across this area. Clearly then, if the 

original genotype was not in the centre of the iso-phenotypic area, then the diffusion 

of the population across that area can lead to a population with a high variance and a 

mean at some distance from the original genotype. 

This phenomenon is further discussed in Section 2.1.3. There are cases where rather 
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than gaining a maximal entropy distribution, fixation of neutral alleles may occur with­

in such a population. A neutral allele is one which confers neither an evolutionary 

advantage or disadvantage on its possessor. Biologists still argue about whether neu­

tral alleles actually exist, but in GA theory the existence of neutral sites on the genome 

is accepted. In this case, a neutral site on the genome will lead to a plateau, or neutral 

area, in the fitness landscape; the favourability of the phenotype is unaffected by the 

contents of this particular site. There is no constraint on the point in the neutral area 

around which the population becomes fixed. 

I t is this phenomenon that accounts for the so-called genetic drift . When there is a 

change in the environment, which leads to different aspects of the phenotype becoming 

selected for, the population can respond in unexpected ways, because the continued 

phenotypic invariance is not reflected at a genotypic level. The sites that are neutral 

in the original environment may not remain neutral in a changed environment. Over a 

period of time, a population can forget its optimal response to an environment, because 

the genes that code for that response are no longer selected for. I f the environment 

then returns to the original environment, the population may no longer respond in the 

original manner, and this can lead to events as extreme as extinctions. Even i f the 

new environment mirrors the environment out of which the original genotype emerged, 

there is no guarantee that the population will still be viable in this new environment, 

as the genome cloud is centred about a different point in the space, which may now 

have differing characteristics. In the case of an interacting population this effect may 

be more pronounced as the variance of the population cloud can have a profound effect 

on the performance of individuals within that cloud. 

Diffusive mutation can not only take place across neutral landscapes (i.e. areas 

of the genome space which are equi-fitness under currently obtaining environmental 
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conditions), but also takes place where there is a fitness gradient. The drift can occur 

either in parallel or normal to the direction of the gradient. Whilst the population raay 

be moving in a specific direction, the diffusion around the centre of that population 

will still occur, and can still be modelled using a Fokker-Planck process. The most 

interesting case detailed by Kauffraan [46], is where the population is initially centred 

about a local fitness-maxima. The rate at which the population spreads is determined 

by the local gradient of the fitness landscape and the mutation rate. 

Assume that the centre of the cloud remains static. The cloud now surrounds a 

peak within the fitness landscape. The population is attempting to diffuse across the 

landscape by a process of point mutations on individual sites on the genomes of each 

member of the population; each site on every genome having a small, finite chance of 

mutation. Against this pressure outwards away from the peak is the selection pressure, 

forcing the population to stay on the peak. Assume that the selection is deterministi-

cally based upon the fitness, which is in turn deterministic. Then only the k individuals 

closest to the fitness peak will survive each generation. There will be some turnover and 

movement within this population, caused by mutation of the population. This fairly 

static population will occupy the area closest to the fitness peak, and its area will be 

determined by the relative strengths of the selection and mutation pressures. Around 

this area is a second zone which also contains members of the population, which are the 

mutated offspring of the surviving population. Individuals within this population are 

very unlikely to survive to reproduce. In the case that none of the individuals within this 

zone survive to reproduce, the distribution of the portion of the population within this 

zone is dependent only upon the mutation rate. The stochastic process used to model 

mutation is capable of producing jumps across the landscape of arbitrary l e n g t h I t is 

Although this may not be true in every case. 
^^When measured using some appropriate metric, such as the Hamming metric. 
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thus possible for the population to become established on peaks in distant parts of the 

landscape, given a sufficient waiting time. This principal will be of prime importance 

in Chapter 3. 

1.4.2 Statistical and Thermodynamic Formulations 

In Section 1,3 a number of systems have been discussed as systems of interacting a-

gents. In some of these systems, a discrepancy can be observed between the collective 

behaviour of the system, and the behaviour of individuals. Most striking in this respect 

are the co-ordination problems, where a stable collective behaviour emerges despite the 

rich dynamics of the underlying population. This is analogous to thermodynamics and 

statistical physics, where order at a macroscopic or collective level can hide stochasticity 

or disorder at a lower, microscopic level. In this section, the approaches of statistical 

physics and thermodynamics are discussed at a non-technical level. The relationship 

between events at the micro- and macroscopic levels will be discussed, especially the 

influence of microscopic events on macroscopic behaviours. 

Statistical dynamics is based upon the premise that when dealing with a system 

containing a very large number of identical parts, it is possible to describe some aspects 

of the system (usually some functions of the lower order cumulants or moments of some 

property of individuals) without knowing the state of the entire system. For example, in 

thermodynamics, six real parameters (a six dimensional vector) are required to describe 

the state of an individual molecule (3 for position and 3 for momentum) at any point 

in time. In a gas with the order of 10̂ ** or so molecules it would require a massive state 

space to describe the state of the gas fully, and this would be far beyond conceptual 

or computational resources. The alternative is to try and describe the gas using, for 

example, statistical measures of the energy of the particles, to provide information 
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on temperature and pressure. The mathematics of this is rather involved (using the 

calculus of variations), but leads to models of the behaviour of gases which account 

very well for the observed behaviour of gases. 

The statistical techniques applied usually involve a reduction in the dimensionality 

of the problem by binning the elements of the system. The statistics of the ensemble 

can be considered by taking the statistics of the set of bins. Stochastic approaclies 

can be used to model the transition probabilities of individual elements between bins 

(the so-called master-equation approach, which will be used in Chapter 2), even when 

these elements behave deterministically. In very large populations, the accuracy of the 

approximations is usually good, because the affects of individual transitions wash each 

other out. Macroscopic stability can thus emerge, despite the rich dynamical behaviour 

at a microscopic level. 

There are two ways in which this separation between levels can break down, allowing 

microscopic events to determine macroscopic structure: 

Reduction in Population Size If the number of elements in the system is not suf­

ficiency large, the dynamics of groups of individual elements are no longer well 

approximated by a stochastic approach. The stochastic fluctuations in macro­

scopic structure are usually considered to be of order l / y / u j in a system of n 

elements. As n becomes small, the magnitude of these fluctuations can become 

significant; discrepancies between observed and predicted behaviour are observed 

within finite waiting times. This can lead to bifurcations in finite systems. This 

point will be returned to in Section 3.3. 

Breakdown of the Strong Law of Large Numbers There are majiy systems for 

which the stocliastic approach fails to accurately model the dynamics of the sys­

tem. This is because, even with increasing numbers of elements, the variance of 
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the approximating distribution fails to converge to zero. In this case, the micro­

scopic dynamics play a significant role in determining macroscopic behaviours, 

even in effectively infinite populations. This can lead to global co-ordination in 

systems without global transport or information mechanisms, for example many 

physio-chemicaJ systems such as the Beloutov-Zhabotinski reaction. Such sys­

tems are discussed in depth by Nicolis & Prigogine [64 , 

Similar techniques may be used with evolutionary dynamics. The idea here is that 

within a large population it is not necessary (or even feasible) to know the exact state 

of the genotype of every individual within that population. By defining suitable order 

parameters which characterise the infinite limit behaviour of the system, the descrip­

tion of the full system can be reduced to a description of the dynamics of the order 

parameters. In order for this to be possible, these order parameters must be closed in 

the infinite limit. This means that in this limit, the dynamics of the order parameters 

must be dependent upon those order parameters, and not upon the underlying popula­

tion distribution. The dynamics of the Royal Road GA have been analysed using this 

technique [79], and this work will be reviewed in Section 2,2.3. 

This technique is particularly applicable to an evolutionary model of a population 

of adaptive interactive agents. In general, interactions within the population take place 

between groups of randomly chosen individuals (ranging from a minimum of two, up 

to the whole population), that is to say that each individual has no control over which 

other individuals it may interact with. The evolution of the population is thus de­

pendent on the expected composition of such interacting groups. In Chapter 4 this 

approach will be developed for a particular model by a reduction of .the system to a set 

of behavioural groups. Stochastic approximations based upon a master equation ap­

proach are then used to model the transition probabilities between such groups under 
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particular evolutionary operators. 

1.5 Aims and Methods of this Thesis 

The aim of this thesis is to investigate the stability of populations of interacting agents. 

In this chapter a number of empirical studies of populations of interacting agents have 

been discussed. In all of these works, transitions between behavioural regimes have 

occurred, and in some cases the efficient or material causes of these transitions have 

been explored. This thesis will attempt a discussion of the formal causality of such 

transitions: it attempts to answer the question *why do such behavioural transitions 

occur?* with an explanation in terms of the underlying commonalties in the structure 

of all such systems. 

In the following chapters the problem of the stability of a population of interact­

ing agents is explored further. In Chapter 2, the mathematical preliminaries will be 

dealt with. Various approaches to mathematical population genetics will be discussed, 

together with their limitations. Specifically, the two main approaclies to this field will 

be discussed, the diffusion equation approach, and the statistical dynamics or ther­

modynamic approadi. These will be placed in the context of the theory of genetic 

algorithms, and of evolutionary search. Chapter 2 also contains a discussion of the 

behaviour of dynamical systems under the influence of noise. This will be shown to 

induce raeta-stability in otherwise stable systems. 

In Chapter 3, an approach to the dynamics and stability of populations of interacting 

agents will be developed, based upon the ideas discussed in Chapter 2. First, the 

evolution of a population of interacting agents under asexual reproduction and mutation 

is discussed from a diffusion equation approach. The additional non-linearities that are 

introduced are pointed out. At this point, the discussion will focus on the transition 
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from the infinite limit to an extremely large finite population, and thence downwards 

towards smaller finite populations. The stochastic deviations from the infinite limit 

dynamics will be discussed in detail; the dynamics of a finite system of interacting 

agents will be shown to correspond to the infinite limit dynamics with an additive noise 

term. Finally, Chapter 3 discusses how a statistical formulation of such a system might 

overcome some of the analytical problems discussed. 

Chapter 4 develops a simple model of a population of interacting adaptive agents. 

This is a highly simplified artificial stock market. The rationale and design criteria for 

this model are discussed, along with the detail of the model itself. Order parameters 

for the model, based on behavioural classes are put forward, and a mathematical treat­

ment of the dynamics of these behavioural classes in the infinite limit is put forward. 

The approach is from a statistical dynamics standpoint, heavily dependent upon the 

backdrop of Chapter 2. 

In Chapter 5, the empirical behaviour of the model is put forward. An information 

theoretic approach to the validation of the statistical formulation in the infinite limit is 

put forward; the predicted behaviour and the observed behaviour are shown to converge 

as population size increases. Fixed points of the statistical formulation are calculated 

by numerical methods, and the trajectory of various order parameters around their 

fixed point values are exhibited for various population sizes. Certain aspects of system 

dynamics are examined in detail; the dynamics of *boom and bust* events are analysed 

and shown to have a strong deterministic component, even in small populations. Finally, 

Chapter 5 considers the relative dependence of the system dynamics upon statistical 

and environment fluctuations. 

Chapter 6 attempts to integrate the underlying stochasticity of interacting adaptive 

systems presented in Chapter 3, with the details of the model in Chapter 4 and the 
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empirical observations in Chapter 5. An explanation is put forwards for the behaviour 

of the model; the observed behaviour is consistent with the system having at least two 

attracting regimes. One is a fixed point corresponding to the fundamental regime noted 

by Arthur et al. [5]. The other attractors correspond to risinig and falling returns; when 

the system enters the basin of such an attractor *boom and bust' dynamics are observed. 

The effects of population size on the dynamics of the system are also considered in 

Chapter 6. Three dynamical regimes are suggested for systems of interacting adaptive 

agents, although no sharp bifurcations in system behaviour are noted. This Chapter 

also contains a critique of the work presented in Chapters 3,4, and 5, and particularly 

of both the model chosen and the mathematical approach to that model. The thesis 

closes with a discussion of possible directions for future work. 

1.5.1 Contribution 

Meta-stability is an established phenomenon in the literature. This thesis demonstrates 

that a range of models and simulations of interacting groups of agents share a common 

phenomenology; periods of stability punctuated by sudden shifts in the make up of the 

group. This common phenomenology is characterised as meta-stability. The thesis pos­

tulates that the shared phenomenology is due to a shared ontology; the meta-stability 

is due to a common formal cause. This cause is identified as a dependency of the fun­

damental forces of exploration and exploitation (which underlie adaptation) on a social 

measure of utility. This acerbates the stochastic fluctuations inherent in the explorative 

and exploitative forces; these fluctuations remain a significant factor in determining a 

system's trajectory even in quite large populations. In particular, the thesis makes 

four contributions to the understanding of the dynamics of adaptation in interacting 

populations. 
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1. The thesis draws together mathematical models from various disciplines, all of 

which are in some way concerned with the dynamics of adaptation. Based upon 

these models, a mathematical approach to the dynamics of adaptive populations 

of interacting agents is formed. It is hypothesised that raetastability is caused by 

the fluctuations inherent in the adaptive process, magnified by the non-linearities 

in the system due to the interactions between agents. 

2. The thesis identifies the requirements of a computational model of metastability. 

(a) It must be simple enough to allow a degree of mathematical analysis of the 

model. 

(b) It must retain enough complexity to display meta-stable behaviour. 

3. The analysis of the computational model relies on its characterisation in terms 

of behavioural order parameters. Others, for example, Glance [33], have de­

scribed systems in terras of behaviour. However, this is a novel characterisation, 

recognising behaviours as order parameters of an underlying and more complex 

microscopic system. Such systems have previously been described using aspects 

of agent fitness as order parameters. 

4. The model demonstrates important features of adaptive interacting systems, in 

particular the relationship between stochastic and deterministic components of 

the system. This effect of population size on this relationship is examined. 

It is believed that the cross-entropic methods used to validate the correspondence 

between the computational model and its analytic formalisation may also be novel. 

53 



Chapter 2 

Mathematical PreUminaries 

In the previous chapter, the general field of the evolution of interacting agents has been 

reviewed. In this chapter, various mathematical approaches to the analysis of the evo­

lution of a population will be considered. These basically fall into two categories. First 

there are what might be termed the classical approaches to population genetics. These 

tend to be based on differential equations, and produce limiting results for limt_̂ oo-

There are also more recent approaches to the problem, which are based heavily on 

GA theory, and use statistical dynamics formulations borrowed from thermodynamics. 

These will be described as thermodynamic approaches to population genetics. This 

chapter also considers the evolution of continuous dynamical systems when they are 

subjected to additive or multiplicative noise terms. 

The comparative review conducted in this chapter will be used to inform the devel­

opment of both the mathematical models in Chapter 3, and the experimental model 

considered in Chapter 4. 
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2.0.2 Notation 

This chapter, and the chapters that follow it, contain much mathematical analysis. 

Whilst the notation is all standard, a number of common abbreviations used are noted 

below: 

p.d.e. partial differential equation 

l.h.s. left hand side 

r.h.s. right hand side 

p.d.f. probability density function 

2.1 Classical Approaches 

Here the term 'classical* is taken to imply that the approaches are based on differential 

and partial diflFerential equation formalisations of the problems of population genetics. 

Historically, these originate with the work of Wright [86, 87], extended by Kimura 

[50, 51]. These were further extended by Moran [61], Watterson [83] and Ewens [22, 23], 

who examined waiting time problems in population genetics and an assessment of the 

accuracy of diffusion equation approximations, although this work is not reviewed here. 

The following is based on the review article by Kimura [51], which is also summarised 

by van Nimwegen [78]. The original use of these approaches has been in the analysis 

of single genes, their probabilities of fixation, the evolution of the population under 

various conditions. However, there is no fundamental reason why such an approach 

might not be used in a multidimensional case, with a number of independent genes. 

2.1.1 The Diffusion Model 

This is a treatment similar to a p.d.e. approach to the motion of particles in a po­

tential field, where there is a significant diffusion. It is an approximation, a discrete 
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time stochastic process (mutation) is modelled as a continuous time diffusion process. 

However, where the analysis remains tractable, and the system falls within limitations 

discussed in Section 2.1.7, it yields precise predictions of system evolution. 

There are a number of diff'ering ways of gaining the diffusion model. This one is 

based upon the expansion of the Taylor Series around a point in the distribution of 

gene frequencies. Another approach (which is considered in Section 3.2) is based upon 

the idea of the flow of gene frequency across a point. Both approaches lead to the same 

equation, although the former is more rigorous, and the latter more intuitive. 

Consider a population of A'' diploid individuals (that is to say, eacli individual has 

two chromosomes at each locus on its genome). Each chromosome may take the form of 

one of two alleles Ai,A2. At time* the frequency of allele Ai is x, and of is 1—x. The 

original frequency of allele i4i at i = 0 is p. Assume that the population is large, so that 

the gene frequency distribution will effectively behave as a continuous variable. The 

process of gene frequency change will be modelled as a continuous stochastic process. A 

continuous stochastic process is one in which, given any positive value e, the probability 

that a change 5x in x will be greater than e in time period t+6t is o((Si), an infinitesimal 

of higher order than St. Less formally, this means that as the time periods considered 

are reduced towards zero, the amount of change in gene frequency, x also becomes zero. 

This process is also considered to be Markovian: there is a one-step dependence of the 

present state on the immediate past state, but no further historical dependencies. 

Let (̂ (p, x\ t) be the conditional probability density that at time t the gene frequency 

is X given that it was p at time t = Q. Then the probability that x lies within any range 

dx will be (̂ (p, x; t)dx. Given a population of a total of 2A^ genes at the locus, the gene 

frequency will be 

f{x,t) = 4>ip,x;t)^ ( 0 < x < l ) (2-1) 
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Note the limits for which this equation is valid. At the boundary points x = 0 and 

X = 1 this is no longer valid. 

Let g{5xjX,5t,t) be the probability that x changes from x to x + 6x in the time 

period {t,t-\-St). Then 

<l>(p,x;t-\-6t) = f g{Sx,x,6t,t)(l>{p,x\t)d{5x) 
J6X 

(2.2) 

Using the Taylor Series expansion 

f{a + h)= / (a) + hf'ia) + ^f"{a) + ... (2.3) 

and writing 0(p, x; <) as <̂  and g{Sx, x, (Ji, t) as g then the r.h.s. of 2.2 may be expanded 

as 

^ . - ^ 4 ( ^ , ) + M ^ ( 0 , ) + (2.4) 

hence 

(f>{p,x-t + 6t) = (f>j gd(6x) 

~Ix I ̂ ^^^^^^^ 
+\^,[l>l{6x)'gd{6x) 

(2.5) 

Now / gd{6x) = 1, so the first term on the r.h.s. evaluates to <j). Subtracting 0 from 

both sides and dividing through by 6t gives 

<l>{p,x;t + 6t)-<j>{{p,x;t) 
6t 

6_ 
Sx 

^ / 5xgdi6x) 
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2 6x^ 

(2.6) 

Recall that J{6x)gd{6x) = J{5x)g{6x,Xj6t,t)d{5x), it becomes clear that as V\m5t -4 0 

is approached, the r.h.s. becomes the sum of the moments of g w.r.t. 6x\ Let 

i/^o^/^*^^^^^^'^''^^^^'*)^^^'^) = M{x,t) (2.7) 

\\myj{6x)'g{6x,x,^ = V{x,t) (2.8) 

Here M and V are respectively the first ajid second order moments, the mean and 

variance of the distribution X of the allele Ai 

Then, assuming that all higher order terms in Sx tend to zero as limit ^ 0 is 

approached, 2.6 reduces to 

= \j^iV{x,t)<l>{p,x;t)) - l^{M{x,t)<i>[p,x;t)) (2.9) 

This is the basic diff'usion equation, known as the Fokker-Planck or Kolmagorov forward 

equation. On the assumption that M{x,t) and V{x,t) are time independent, and 

writing them as Msx and Vsx respectively gives 

This simplified version of the Fokker-Planck equation suflices for the particular cases 

that Kimura [51] considers. 
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2.1.2 The Kolmagorov Backwards Equation in Population Ge­

netics 

The derivation given above considers the evolution of a population where the initial gene 

frequency across the population is known and derives a differential equation that gives 

the probability that the gene frequency takes any particular value after a fixed period 

t. It is also possible to reverse the derivation, and obtain the probability distribution 

across initial gene frequencies at time t = 0 given that at time t, the frequency x takes 

a given value. This reverse form of the equation is known as the Kolmagorov Backward 

equation. Based upon the principle of the derivation of the Fokker-Planck equation, the 

Kolmagorov backward equation will be derived [51 . 

The derivation is very similar to that of the forward equation; the only additional 

assumption being one of time homogeneity. That is to say that it is assumed that the 

underlying processes are independent of the time at which they occur. The transfor­

mation from a distribution Xi at time U to x^ at time t-i (given ti < 2̂) is independent 

of ti and ^2, and is dependent only upon the intervening period t2 - h. 

<l>{p.x]t) = j g{5p,p\St)<i>{j) + 6p,x-t)d{5p) (2.11) 

Note that the time homogeneity condition now makes g independent of t. A similar 

derivation to that of 2.9 gains 

which can be written as 

^A-Y^^^MJ-^ (213) 
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The Kolraagorov backward equation can be used to derive two interesting results. 

X = 1 imphes that a gene is fixed within the population, i.e. all members of the 

population carry that gene. Denote the probability that the gene is fixed within the 

population at time t by u{p,t). Then 

5u{p,t) _Vs,SMp.t) 6u(p,t) 

which can be solved given V̂ p and M p̂, under the boundary conditions u(0, t) = 0 and 

u( l , i ) = 1, One might also be interested in 

u{j))=\imu{jp,t) (2.15) 
t-*00 

the limit probability of a gene being fixed. Here 5u/St = 0, and the equation reduces 

to 

under the boundary condition u{0) = 0,u(l) = 1. 

2.1.3 Random Drift in the Narrow Sense 

Suppose there exists an isolated population of diploid individuals, who all possess 

either allele Ai or A2 which have frequencies x, 1 —x within the population respectively. 

Mating between individuals is random between pairs of individuals taken from the 

population, taking 1 allele from each parent ^ Hence there are a total of 2A^ alleles 

in the population. There is no mutation, so once either allele has become fixed (either 

*Kimura's derivation is under the (biological) assumption that the population contains equal num­

bers of males and females, and that in each mating, one allele is taken from a male, and one from a 

female. Whilst this assumption is stated, it does not affect the form of the equations, which are equally 

valid in GA theory. 
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X = 0 or X = 1 ) it cannot become unfixed. Assume that there is no selection pressure 

towards either allele, and that the variance term can be approximated by the variance 

in a binomial population of 2A'' alleles, i.e. 

Mrfp = 0 (2.17) 

y,. = ' - ^ (2.18) 

Substituting into 2.10 

At time t = 0 the frequency of the gene within the population is p. The conditional 

probability density at this time takes the form of a Dirac delta function 

0(p,x;O)=5(x-p) (2.20) 

The solution method proceeds from assuming that the solution takes the form <t> = TX 

where T is a function of t alone, and X is a function of x alone. Substituting this into 

2.19, and dividing through by TX gives 

Note the form of this equation. The l.h.s. is a function of t alone, and the r.h.s is a 

function of x alone. For these two to be equal, they must both be equal to some constant, 

- A , say. Both sides may be solved independently to gain T and X. Separating gives 

(x(l - x)X) = - A (2.23) 
4NX (5x2 
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2.22 has a solution of the form 

T oc e"^' (2.24) 

while 2.23 can be expanded to 

i ( l - 1 ) ^ + 2(1 - 2 i ) ^ - (2 - 4N)XX = 0 (2.25) 
dx' Ox 

which is of the form of the hypergeometric equation 

i ( l - x)X" + [7 - (a + ^ + l)a;] X' - apX = 0 (2.26) 

where 

3 + 

"" —JZZ 
3 - N/1 + 16NX 

^ = 2 
7 = 2 

subject to the boundary condition that the solution must be finite at 2; = 0 and x = 1. 

The solution to 2.19 is complicated by the fact that there are an infinite number of 

possible values that A can take. The values of 01,^,7 imply that the set of values that 

A can take, known as the eigenvalues^ Aj is given by 

The solution to 2.25 can be expressed as the infinite weighted sura of a set of orthogonal 

functions. In this case we chose to use the Gegenbauer polynomials^ 

TIM = " - ^ ^ m + 2,1 - i , 2; i ^ ) (2.28) 
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where F is the hypergeometric function and z = 1 — 2x. The solution to 2.25 now 

becomes 

<i>ip,x;t) = '^CiTUz)e-'^ (2.29) 

The initial condition given in 2.20 can now be used to determine the weights Cj. The 

resulting weighted infinite sura of hypergeometric functions may be expressed as 

+30p(l -p)( l -2x)e -3^/C2yv) 

+ . . . (2.30) 

For t > 0 this series is uniformly convergent in both x and p, and the higher order 

terms are negligent. AsymptoticaJly the first term becomes dominant, and is a fairly 

good approximation to the solution. Now clearly 

# ( t ) = f'~ (l>(p,x;t)dx (2.31) 

gives the probability that aJleles Ai and A2 still co-exist in the population. Note the 

limits of the integral; the derivation is not valid at the absorbing boundaries. The 

exponential decay terms in 2.30 indicate that the probability 3>(t), 2.31, is constantly 

decreasing; as time goes on, the probability becomes greater and greater that either 

one of the alleles has become fixed within the population. In this case, the system 

could be thought of as having two attractors x = 0 and i = 1, either of which may be 

approached as t -¥ 00. I t is possible to show that if the original frequency of ai is p, 

then the asymptotic probability that Ai will become fixed is also p [78 . 
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2.1.4 Random Fluctuation of Selection Intensities 

Another interesting case which illustrates the power of the diffusion equation approacli, 

and whicli shows an interesting behaviour, is the case of random fluctuations in the 

selection intensity. 

Assume that the population is infinite (so the effects of random sampling may be 

ignored), and that the allele Ai is selectively neutral in the long run. That is to say 

that given a long enough time period, Ai will neither be selected for, nor against. 

Introduce fluctuations in the selective advantage of Ai over A2. Let the rate of change 

of frequency of >li be s x ( l - x ) , where s is the (varying) selection rate. Let the variance 

in the selection rate be a constant, Vg. Then 

Ms, = 0 

Substituting into 2.10 gives 

Sct> V, 
St 2^x^[^^(^-^)^^l ^'-''^ 

This equation may be solved by the substitution [51 

u = ^ e ^ ' ^ x t ( l - x ) i 

^ = log 
1 - x 

which reduces 2.32 to the heat diffusion equation over the range -oo < ^ < oo. 

6u V,6'u 2̂ 33) 
6t 2 5^--
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Figure 2.1: The process of change in the gene frequency distribution under a random 

fluctuation of selection intensities. There is no long term selection pressure towards 

either allele, there is no dominance, and initiaJly p = 0.5 and = 0.0483. Based on a 

figure in Kiraura [51] 

The solution to the heat diffusion equation is well known, and takes the form 

Substituting back for u and ^ gives a solution from any initial frequency distribution. 

Given a known initial frequency p the solution can be further reduced to become 

<i>[p,x\t) = exp< 2VA 
(2.35) 

A set of solutions to this equation, over a range of values or t with an initial fixed 

distribution is shown in Figure 2.1. The important point to note is that despite the 

initial fixed frequency, and in the absence of any long term selection pressure, one of 

the two alleles can become (almost) fixed. In fact, <l> takes on a value of 0 at both 

terminals, so this phenomenon is referred to as quasi-fixation [49]. 
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2.1.5 Gene Frequency Distribution at Equilibrium 

If ^ = 0 in 2.10 one may explicitly solve for the equilibrium gene frequency distribution. 

Simple manipulation reveals that 

(j){x) <x exp f iW, 

J K 

M^{x) 
dx (2.36) 

'dx(a:) 

Suppose the forwards and backwards mutation rates are q and v respectively. Then 

Mdx{x) -qx + v{l - x) and Vdx{x) = 2.36 becomes 

^ ( x ) a x 2 ^ ^ - ^ ( l - x ) 2 ^ ' - » (2.37) 

This is an important equation. I t states that the equilibrium gene frequency distri­

bution depends on the interplay between the population size M and the forward and 

backward mutation rates q and v. Assume (as is usually the case) that q = v. For large 

populations relative to the mutation rate {2Mq :$> 1) we find a binomial distribution 

about X = 0.5, which is what one might intuitively expect for a large or infinite popu­

lation. As the population drops we find that the population distribution changes. For 

2Mq = 1 we have a uniform distribution, and for 2Mq < 1 the population distribution 

is essentially U-shaped. Here the sampling fluctuations within a small population effec­

tively overwhelm the diffusive effects, and the population is likely to become quasi-fixed 

about one allele or the other. 

2.1.6 Fixation of Mutant Genes within a Population 

An important question to be considered is the probability that a favourable mutant gene 

will become fixed within a population. I t is not the case that every time a favourable 

mutant is introduced into a population i t will survive. I f the frequency of the favourable 

mutant is p at i = 0, then by using the Kolmagorov Backward equation, the limiting 
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probability 

^ ( p ) = l i m ^ ( p , i ) (2.38) 

t—^00 

can be obtained. Since 6<f>{p)/St = 0 at this limit, 2.13 reduces to the ordinary differ­

ential equation 

2 dp2 dp 2 + ^ ' P ^ = 0 (2-39) 

under the boundary conditions 0(0) = 0,(^(1) = 1. The general solution of this is 

/o G{x)dx 

where 

. G ( x ) = e x p ( - / ? ^ ) (2.41) 

Mrfx and are respectively the mean and variance of the expected change in gene 

frequency per generation. 

The simplest case, which is of most interest here, is that of genie selection, where 

a mutant gene with selective advantage 5 in a haploid population of size i.e. a 

population which has only one chromosome per locus on the genome^. The initial 

frequency of the mutant gene is simply 1/A .̂ Then Msx = sx{l - x) and Vsx = x{l -

x)/N. Hence 2.40 reduces to 
1 _ p-^iVap 

= (2.42) 

which, for I 5 I small, can be approximated by 

^This condition occurs in many lower organisms, and at certain stages of the life-cycle of higher 

organisms. 

67 



2.1.7 Limitations to the Diffusion Equation Approach 

Gillespie [32] discusses limitations of the diffusion equation approacli in population 

genetics. There axe two areas that these limitations fall into, problems involving unequal 

parameters, and problems involving fluctuating parameters. In general terms, these 

problems result in alternative differential equation formulations being more appropriate 

to particular problems than a diffusion equation. 

Unequal parameters 

Classical approaches to the population genetics approximate a discrete time stochastic 

process, selection under mutation, with continuous time processes that yield differential 

equations. This approach relies on various assumptions. Karlin & McGregor [45] point 

out that such a model relies on an implicit limiting argument concerning a rescaling of 

time, and the rates at which various parameters tend to zero. The resulting differential 

equation is dependent upon the relative rates at which these parameters approach zero. 

The following example (from [32]) is instructive. 

Consider a population of size n with a choice of two possible alleles, with forwards 

and backwards mutation rates u. The mean and variance of the change of frequency of 

one of the alleles is 

= 2 u ( i - x ) (2.44) 
z 

.2/A_^ a : ( l - x ) a'(Ax) 
n 

The standard approach assumes that u ajid l/n are small and of the same magnitude, 

and that time is measured in units of n generations. The limit n -> oo yields the 

diffusion 

E{dx) = 2u{l-x)dt (2.45) 
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E{dx^) ^ x{l-x)dt 

The terms E{dx) and E{dx^) are the first and second order moments of the result­

ing distribution, corresponding to the terms M and V respectively, in Section 2.1.1. 

Mathematically, 2.45 requires u = 0 ( l / n ) . I f this is not the case, then the resulting 

differential approximation may not be a diffusion, or i f it is, may lead to a different 

diffusion. For example, i f u = 0(1/y/n), then the resulting diffusion corresponds to the 

Omstein-Uhlenbeck process. The physical interpretation of this is a diffusion process 

corresponding to a set of particles under Brownian motion with an elastic force [25]. 

Given a constant mutation rate, the appropriate classical model of the system may vary 

as the population size changes, even when the population size is large enough that the 

stochastic fluctuations are negligible. Feller [24] derives a full equation showing the 

interdependence of gene frequency and population size. 

Similar arguments hold concerning the relationship between selection and rautar 

tion strengths, and selection and population size, which can yield quite different ap­

proximations to the standard diffusion approach. However, Gillespie points out that 

mathematical tractability to a large extent determines the choice of models: 

"The pre-eminent position of the neutral allele theory as an explanation 

for molecular evolution may be due more to the simplicity of its mathematics 

than to its biological underpinnings."^ 

Fluctuating parameters 

Recall the discussion of adaptation in Section 1.1.1. I t was noted that adaptive processes 

are situated in their environment. Here the effect of the environment in changing the 

relative values that parameters take is considered. For example, the binomial sampling 

^Gillespie [32]. 

69 



of selectively neutral alleles is held to account for genetic drift . In binomial sampling, 

the moments of order greater than two of the resulting distribution converge at a greater 

rate than the lower order moments. In an infinite l imit this implies convergence to a 

Gaussian distribution. However, there is no a-phon justification of such an assumption 

of the relative convergence rates of moments. Environmental fluctuations may have a 

bearing on sampling distributions; and thus alter population dynamics. In particular, 

Gillespie [32] considers that the power law distribution may be far more relevant in a 

variety of natural processes. Certainly the Bak-Sneppan [8, 66] model of co-evolution 

leads to phenomena distributed according to a power law (see Section 1.2.5 for discussion 

of the Bak-Sneppan model). 

2.2 Statistical Dynamics Approaches 

In this section, we will review approaches to the dynamics of populations of adaptive 

agents via an approach borrowed from statistical physics. In particular, approaches will 

be considered to the population dynamics of infinite and finite populations of agents 

under a genetic algorithm. In this approach a statistical view of the mutation, selection 

(and possibly also crossover) operators that are commonly used is taken. The actual 

genotypic state of any member of the population becomes a microscopic parameter, 

and the above operators act at a microscopic level. Statistical methods can be used to 

gauge the effects of these operators on macroscopic parameters, such as the low order 

cumulants of the fitness distribution. For certain problems, these methods have proved 

remarkably effective in explaining the evolutionary dynamics of the population. 
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2.2.1 Microscopic Dynamics of a Genetic Algorithm 

Vose and Liepens [81] put forwards a macroscopic description of the workings of a 

genetic algorithm, in terms of a pair of operators, a mixing operator M and a fitness 

operator !F, Whilst the detail of this paper lies beyond the mathematical competence 

of the author, an outline of the basic results will be given. 

The general approach of this paper is to model a genetic search process as a Markov 

process, in order to find the infinite population limit population distribution. The most 

interesting point raised by this paper is the reduction of the evolutionary operator to 

the combination of mixing and fitness operators: this allows the separation of the ex­

ploratory and exploitative aspects of evolutionary search. Moreover, the paper presents 

theorems which allow the selection of evolutionary operators in whicli these compo­

nents are separable. These theorems rely on properties of the mixing matrix, when 

transformed into a basis of Walsh functions, which have been shown [12, 35, 36] to have 

important applications in OA theory. They then go on to show that in the case where 

the fitness operator is linear, there is a single attracting fixed point to the system. 

Whilst this paper has a very interesting, and highly mathematical approach to the 

problem of genetic search, i t is not unproblematic in various respects: 

1. The approach taken is to consider a system with n possible genotypes as an n-

dimensional dynamical system under a combination of matrix operators, !F and 

M. In any realistic genetic search problem, this is analytically impractical, as the 

size of the problem scales as 0(2") , where n is the genome length. 

2. The Walsh-basis approach is very much founded upon the schemata-theory ap­

proach of Holland [42]. This has come in for recent criticism from Nimwegen et 

al. [78], who claim that rather than combine useful building blocks, crossover 

acts as a non-linear mixing operator on sites not fixed in the best member of the 
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population. This effectively increases the mutation rate. In short, doubt has been 

cast on the usefulness of the schemata approach. 

3. Whilst this paper does further the understanding of genetic searcli, i t is limited 

to cases where the fitness operator is linear. Where fitness is dependent upon 

agent interactions, the fitness operator is highly non-linear, thus limiting the 

applicability of this work in the present context. 

4. The Markov approach predicts the infinite limit population. I t is conjectured (see 

Section 3.2.6) that the finite population dynamics may show marked deviations 

from the dynamics in the infinite l imit , especially in populations of interacting 

agents, where there is a highly non-linear selective operator). 

2.2.2 Statistical Dynamics of Fitness Distributions 

Priigel-Bennett & Shapiro [69, 70] have produced an analysis of the dynamics of a 

genetic algorithm from a statistical mechanics viewpoint. The problem they chose as 

a testbed for their analysis of genetic search, is the distribution of spin-states in a 

simple Ising spin model. This is an interesting choice of problem as i t allows them to 

directly look at the role of crossover in making and breaking links between different 

parts of the genome. This leads (more generally) towards the study of representation 

within genetic algorithms. However, this paper is not discussed here primarily for those 

reasons; rather i t is the statistical mechanics approach to GA theory which is of interest 

within the present context. In their formulation, mutation plays a very small effect as an 

exploratory operator; their discussion is couched in terms of selection as an exploitative 

operator, and crossover as a mixing or explorative operator. 

Priigel-Bennett & Shapiro demonstrate a formulation of the dynamics of the genet­

ic algorithm in terms of the lower order cumulants of the fitness distribution. They 
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are able to formulate the dynamics of these cumulants in statistical mechanics terms. 

Alternately, the approach may be described as follows. The population distribution is 

transformed to a cumulant basis. Higher order terms are then discarded, and the sys­

tem is modelled as a low-order dynamical system within this new basis. This approach 

aids the analysis of the GA in two directions. 

First, as mentioned above, i t allows an analysis of the role of crossover in making 

and breaking links between interconnected parts of the genome. This analysis is based 

on the exact problem domain; the location of minimum energy states in an Ising spin 

glass system. However, the results of this analysis should be more generally applicable 

to a much wider domain. 

Second, this approach allows a comparison of the relative effects of selection and 

recombination. Prugel-Bennett k Shapiro consider the relative effects of selection and 

recombination. Where the 'interface energy' (the energy bound in the interface between 

the parental genomic elements combined to form a child)** is high, then strong selection 

is beneficial, as i t involves fewer crossovers. On the other hand, where the interface 

energy is low, then the mixing effects of crossover can be utilised in a stronger fashion 

to speed the search. 

One important aspect of this work is the adoption of a maximum-entropy approach 

(also discussed in [76]); where the order parameter does not give specific information 

about some aspect of the system needed for analysis, that aspect of the system is as­

sumed to be in a state that maximises its entropy. The close match between theoretical 

predictions and experimental results on the problem they cliose seems to indicate that 

this maximum-entropy assumption is justified in this case. 

•̂ In the general case, this term appears to be the difference between the fitness of the child and a 

Hnear estimation of the child's fitness in terms of the fitnesses of its parents. 
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"That this [maximum entropy] assumption works, suggests that there is 

'microscopic disorder', that is that the GA is sufficiently mixing so that all 

strings with the same fitness are equally likely. Whether i t is a property of 

the simple system we looked at, or of classes of problems is an important 

question."^ 

Later work by Rattray & Shapiro [72] and by Rattray [71] using this approach with 

alternate GA problems (perceptron weight allocation and subset sum, respectively) also 

produces good theoretical predictions of experimental results. This indicates that the 

maximum entropy assumption may be well founded in general within GA theory. 

This paper also considers differences between infinite l imit and finite population 

dynamics, concentrating on systematic errors in the cumulants that arise when a finite 

population is modelled using the infinite limit curaulants. In particular, Priigel-Bennett 

& Shapiro [70] note that the third cumulant (related to distribution skewness) scales 

inversely with population size, so whilst i t is zero in an infinite population, i t is non-zero 

in a finite population, and in small populations has a significant effect on the evolution 

of that population. Thus, there are qualitative differences between finite and infinite 

population behaviours. 

The effect of the third cumulant is to produce an under-populated high fitness 

tail to the population distribution. There is a long tail of low-fitness individuals, yet 

relatively few with greater than average fitness; the maximum fitness becomes closer 

to the average fitness. This reduces the effectiveness of the GA, because selection is 

picking average rather than above average individuals as parents of the next generation. 

^Prugel-Bennett & Shapiro [70]. 
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2.2.3 Statistical Dynamics of the Royal Road GA: Infinite 

Populations 

The Royal Road GA is a 'toy* problem that has been used extensively in the analysis 

of the behaviour of genetic algorithms [58, 59, 29]. The binary genotype consists of 

blocks, each consisting of K sites, and has a length of L = NK. The fitness function 

is simply the number of filled, or aligned, blocks: that is to say the number of blocks 

which have all sites containing a This GA therefore has a single peaked fitness 

function, and a plateau landscape. 

The analysis that is presented here is due to Erik van Nimwegen and colleagues at 

the Santa Fe Institute [78], and builds upon the work reviewed in Sections 2.2.1 and 

2.2.2. 

Consider a population of M agents under the Royal Road GA, with an initially 

random state. The population may be partitioned into + 1 fitness classes, as the 

fitness of any member of the population may be in the integer range (0,iV). The 

analysis develops by considering the fitness distribution between these A'' + 1 classes as 

a macroscopic parameter, and developing terras for the evolutionary operator G on the 

population. 

Informally, the evolutionary operator G performs the following actions. First i t 

evaluates the fitness of each string, then i t creates a new population of strings by 

picking strings in the old population with a probability proportional to the fitness of 

the string. Finally, i t mutates every site in each string in the population with a fixed 

low probability q. More formally, the evolutionary operator G can be represented as 

the product of two operators, the selection operator 5, and the mutation operator, M . 

Rather than consider the evolution of the population state vector p( i ) , consider 

instead the transitions between strings of different fitnesses. Initially this will be done 
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in the infinite population limit M —¥ oo, where the fundamental theorem of probability 

applies; later the dynamics of finite populations will be considered from the foundation 

of the infinite population model. 

The mutation operator M 

The dynamics^ of block alignment, A^ and disalignment, D, will be discussed sepa­

rately; the mutation operator will then be constructed out of their corabination. First 

consider the dynamics of block alignment. The probability that a block in state j will 

be transformed to state i can be found using a Markov chain analysis under the as­

sumption that bits in the block have random alignments: the entries in the Markov 

transition table will be given by 

k=0 1=0 

I \ 
j 

(?*+'(!-(7)'^-'=-' (2.46) 

where S is the Kronecker delta. We shall consider state / f to be an absorbing state 

(when the block is completely filled). The Markov chain analysis allows us to calculate 

the expected time for an initially randomly seeded block to become filled. This can be 

expressed as a weighted sura of eigenvalues of the non-absorbing sub-raatrix, and i t can 

be shown that the largest eigenvalue dominates this expression. 

The entries Fij of fundamental matrix of the Markov Chain, F = ( / — T ' ) " l give 

the expected number of times that that system, starting from state j wil l visit state i 

before reaching the absorbing state K. From this we can derive 

T{q,K)=Y:Fi^Sj (2.47) 

the expected tirae until block alignraent starting frora an initial configuration 5. For 

short block lengths, this can be done in closed form. From T{q,K), we raay go on to 
^The derivations of these operators are rather involved, so we shall not derive them fully, rather 

point out the general method. The full derivations can be found in the appendices to [79]. 
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estimate the probability of aligning a block as A = llT{q, K), For small q, i t is possible 

to derive an analytic first order approximation 

A{K) = 

where 

K 

1=1 

2 ^ 

I 

(2.48) 

i -1 

j=0 

K 
(2.49) 

At this point, the problem is that the unaligned blocks fall into two types, those 

that have never been aligned before (for which the expected alignment time has just 

been stated), and those blocks which have previously been aligned, and have become 

unaligned due to mutation. The ratio of these two types of blocks is unknown, and 

there is no expression for the realignment time for a previously aligned block. Upper 

and lower bounds can be placed on the alignment probability of any block; the lower 

bound will be by assuming the block has not previously been aligned, and uses the term 

given in 2.48. The upper bound is given by assuming that any blocks has previously 

been aligned, and is now unaligned in only one bit; i.e. that a suitable one bit mutation 

will restore the alignment in any block. This gives an upper bound on the alignment 

probability of 

A, = q{l - q f - ' (2.50) 

The alignment probability of any block will therefore lie in the range A{K) <A<Ar-

In fact, i t will turn out that the results are largely insensitive to block alignment times; 

so they will be assumed to lie at the lower bound. 

The destruction operator D is much simpler, the probability that an aligned block 

will be destroyed by mutation is D = 1 — (1 — q)^. 

A and D may now be used to generate an overall term Mij, the probability that 

a block containing j aligned sites will , after mutation with a constant mutation rate 
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q across sites, end up with i aligned sites. This can be written as the sum over all 

probabilities that k unaligned blocks will be aligned, and k -\- j — i blocks will be 

unaligned. This is 

N-j k 

k=0 1=0 
\ ^ / 

/ N 
j A''{1 - Af-^-^D^{l - ny-^ (2 .51) 

This operator is valid in the limit of an infinite population; that is to say where sampling 

fluctuations play no role in the model. Here the operator M will act upon a vector P 

of probabilities that the string has j blocks aligned, to form a new vector P"*, the 

probabilities that the string has i blocks aligned after mutation. 

The Selection Operator 5 

The selection operator is somewhat simpler than the mutation operator. Recall that 

the GA is a combination of mutation and fitness proportional selection. Therefore the 

expected probability of an individual with i blocks already aligned being selected is 

proportional to the number of individuals who have that number of blocks aligned, and 

the relative fitness of those individuals within the population. This matrix is a diagonal 

matrix, and takes the form 

Sii = Sijjj-^ (2.52) 

Note that this operator is non-linear, as it depends on the mean fitness of the population 

that it acts upon. 

The Generation Operator G 

By combining the mutation and selection operators the generation operator G is gained. 

Gij = '^2 MijS.j (2.53) 
A;=0 
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In order to analyse the dynamics of this operator, a linearised version of it is constructed. 

Noting that the only non-linearity is the normaJisation factor the normalisation 

factor is taken out of the matrix 

S = ^ 5 (2.54) 

G = M.S (2.55) 

Here (/) is the mean value of / . The operator G is an ordinary + 1 dimensional 

matrix operator. The time evolution of the population is governed by 

P{t + 1 ) = G'P(O) (2.56) 

which can be expanded to 

Pdt) = ECit,PmGlm (2.57) 
J 

The constant C , may be easily solved for, since P(*) must be normalised 

C ( i , P ( 0 ) ) = [G^P(O)]" ' (2.58) 

Now G may be explicitly solved to find the fixed points of the system. Diagonalising 

G gives its eigenvalues, gi and from here the eigenvectors R^...RN can be obtained. 

Define R to be the matrix of the eigenvectors of G. Note that as the eigenvectors are 

normalised, the columns of R all add to 1. The operator & , the application of G t 

times, may be written as 

G\j = E Rik9lR;l (2.59) 

Substitute this expression into 2.57 to gain an explicit expression for the evolution of 

the system 

P,{t) = C{t,P{0))Y:Rik9lR;fPM (2.60) 
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At this point, transfer to the eigenbasis of G. One may write both the fitness distribu­

tions in the eigenbasis 

= E ^kPf^it) (2-61) 

and the constant C in the eigenbasis 

AT 

c{t,pm = 

Hence one may express 2.57 as 

5: iUk9iR-,im 
-1 r AT 

Uk=0 

(2.62) 

(2.63) 

Now it can quite easily be shown that all the eigenvalues of G are the mean fitnesses 

of their respective eigenvectors, i.e. gk = (/) at the eigenvector Rk. Hence 

(2.64) 

This gives a direct expression for the mean fitness of an infinite population at time t in 

terms of the initial distribution of fitnesses, and the linearised generation operator G 

(2.65) 

It may appear from the above equation that there are up to + 1 stable distribu­

tions that the infinite population may take on. This is not the case; in order to be a 

probability distribution, a vector must be positive definite (i.e. all its entries must be 

greater than or equal to zero). Van Nimwegen et al. show that only the eigenvector cor­

responding to the largest eigenvalue is positive definite; all the other eigenvectors have 

at least one negative entry. This is quite intuitive really: the only stable state for the 

system is the one with maximal fitness. Given that the Royal Road GA has aplateaued 

Pujiama^ landscape, we should expect that the only stable population is one centred 
'A Fujiama landscape rises smoothly to a single peak, much in the manner of classical Japanese 

water-colours of Mount Fuji. 
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about the single peak in the landscape. Henceforth order the eigenvalues (and their 

corresponding eigenvectors) in a monotonically increasing order go < 9i < • • • < g^. 

The above derivation gives results which correspond very closely with the observed 

behaviour of the Rx)yal Road GA for large populations relative to the mutation rate 

{2Mq :§> 1)8. 

2.2.4 Statistical DynEimics of the Royal Road GA: Finite Pop­

ulations 

Van Nimwegen et al.(79] not only demonstrate the dynamics of the Royal Road GA 

in the infinite case, but also in the case of finite dynamics where epochal phenomena 

and meta-stability are commonly observed. Onto the system at the thermodynamic 

limit, a noise term is added, corresponding to the stochastic fluctuations of a finite 

population. The distribution of the noise is obtained by an analysis of the moments of 

the fluctuations, and leads to a Fokker-Planck formulation of the noise term: the noise 

is thus assumed to be Gaussian, with components inversely proportional to fitness of 

the dimensions. 

Van Nimwegen et al. assume that since the actual population is a multinomial 

sampling from the generation operator applied to the previous population, mapping 

P„ = M-^(no, . . . ,nAf) to P^n = M-^(7no,. . . , m A r ) : 

p[P„ P^] = M! n ^ 7 (2.66) 
i=o m\ 

which has mean G(P„), then the form of the noise will be a multinomial. 

Recall Section 2.1.7. The effect of both convergence rates of parameters in the 

infinite limit, and of fluctuating parameters was discussed in relation to classical ap­

proaches. In van Nimwegen et al.'s formulation 

Ŝee 2.1.5 for the derivation of this result. 
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1. Selection intensity is a non-linear function of the population distribution, being 

based upon mean population fitness. 

2. Their formulation is an attempt to explain the observed behaviour of the Royal 

Road GA over a range of population sizes. It is not clear that the assumption 

that the mutation rate is of the same order of magnitude as 1/M, (the reciprocal 

of the population size) is valid over the range of population sizes that they wish 

to consider. 

To summarise, van Nimwegen et al. use multinomial sampling from an infinite pop­

ulation distribution to justify an assumption that sampling fluctuations are Gaussian. 

They derive the sampling fluctuations by a classical approach, deriving the magnitude 

of the first two moments of the distribution from the properties of the generation op­

erator G. However, the arguments given by Gillespie [32] cast doubt on whether these 

assumptions are justified. I t is not clear that the sampling fluctuations can be modelled 

as a diffusion, and even if they can, it is not clear that the Fokker-Planck formulation 

is justified. Feller [24] derives a diffusion equation in two variables, gene frequency and 

population size, whidi may be more appropriate. 

From this approximation, various properties of the Royal Road GA are examined. 

First the observed intermittency in cases where there are many fixed points is explained, 

and related to the error threshold in the theory of molecular evolution. The better 

adapted to the environment a phenotype is, the more it is dependent on all the sites 

in its genotype. Although the mutational pressure remains constant; the probability of 

a single mutation having a deleterious effect on an individual's fitness increases as its 

fitness becomes more dependant upon all sites in the genome. A point described as the 

error threshold is reached, where selection is no longer able to maintain the genome close 

to the optimum due to the increasingly deleterious effects of single mutations. This is 
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observed in the RoyaA Road GA, and is successfully explained by van Nimwegen et al. In 

systems with large numbers of local optima, they claim that the error-threshold causes 

the system to lose the higher fitness optima, and successfully predict the timescales 

over which this occurs. 

Second, the approximation of sampling fluctuations is used to predict the length of 

time that the system spends in each epoch. This is less successful. The system spends 

longer in each of the epochs than is predicted by the model, although the model does 

predict the position of the epoclis, and the fluctuation widths correctly. The reason 

given is that there is a spontaneous symmetry breaking when the system moves from 

one epoch to another. A new epoch is almost always founded by a single individual 

discovering a new aligned block, which is then spread rapidly through the population. 

Therefore the assumption that the sites in the block are randomly distributed between 

alleles (equation 2.46) no longer holds. Van Nimwegen (personal correspondence) 

claims that an alternative formulation of the mutation operator, assuming that the 

population diverges from an initially converged population by a random walk process, 

improves prediction accuracy. He also notes that the population never fully diverges, 

because the sampling of the population tends to keep the population somewhat con­

verged [21]. No successful analytic formulation of this latter effect has yet been found. 

Finally, van Nimwegen et al. contrast the mechanism behind metarStability in the 

Royal Road GA with the view that they are transits between local optima induced 

by stochastic fluctuations. They note that there are no fitness barriers between local 

optima within the Royal Road GA, yet meta-stable behaviour still occurs. They posit an 

entropic cause to raeta-stable behaviour: the time taken to find a better local optima 

is the time to explore the plateau of the present optima, to find an edge which is 

contiguous with a higher-fitness plateau. 

83 



2.3 Noise in Non-Linear Dynamical Systems 

In this section, the effect of both additive and multiplicative noise on a discrete dynam­

ical system is considered. Such noise will allow the system to escape from attractors, 

thus rendering all attractors meta-stable, 

"The long time behaviour of a noisy dissipative system is thus intermit­

tent, consisting of motion near the various attractors of the system alter­

nating with transitions between the attractors. In the limit of small noise 

the time spent on the attractors becomes longer, and the transitions rarer" ̂  

The approach of Knobloch & Weiss [52] is to consider the trajectory of a continuous 

non-linear system perturbed by a small noise term. This is then related to an iterative 

map under noise. The eflfect of the noise on this map is then considered. Whether the 

noise is additive or multiplicative depends on the formulation of the problem that is 

adopted. Additive noise in a time-T map (a map of the positions of a T-periodic system 

at intervals of T) becomes multaplicative noise in a return map. This is because the 

return time to any point depends on noisy parameters. 

Whilst the thrust of the Knobloch & Weiss [52] paper is to consider the effect of 

noise in iterative maps containing phase-locking phenomena, and in a simple map with 

multiple attracts (the cubic map), there are important general points made concerning 

noise in maps with multiple attractors. First, Knobloch & Weiss consider the effect 

of additive noise in directions with differing stability. They point out that in stable 

directions (negative eigenvalues) the effect of noise is oppose the contraction of a dissi­

pative system onto the attractors, forcing meta-stability. In the case of neutrally stable 

directions (zero eigenvalues) the resulting effects are similar to an unbiased random 

walk, and result in diffusion processes. In unstable directions (positive eigenvalues) the 
^Knobloch & Weiss [52]. 
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noise may slow the escape of the system. They point out that in the case of a small 

noise term, escapes usually take place across saddle nodes. Here the energetic barrier 

that has to be overcome is lowest, so the system can most easily escape. Recalling van 

Nimwegen et al.'s [79] discussion of transitions between states in the Royal Road GA, 

(Section 2.2.4) where there is no energetic barrier to be overcome, there still exists an 

entropic barrier. Whilst the system can easily escape from what is effectively a saddle 

node; it has first to find the appropriate boundary to escape over. This search time 

constrains the evolution of the system. Generalising from this, it is clear that in the 

case of a transition across a saddle node between attractors, there may be an entropic 

as well as an energetic barrier to overcome. This will be returned to later in this section. 

Second, Knobloch & Weiss discuss the nature of transitions between attractors under 

the influence of noise. Their analysis of a system containing a period map concludes 

that if the phase basins (i.e. the basins of attraction of each point in the cycle) have 

unequal size, then most escapes occur from the narrowest phase basin, regardless of the 

initial point of the system. 

Third, there is a discussion of the manner in which escapes from an attractor basin 

are conducted. For a cubic map, Knobloch & Weiss construct a conditional proba­

bility distribution based upon an escape in the future, which they then compare to 

the assumed raetarstable distribution. This shows that most escape processes have a 

relatively short tiraescale. Escape events do not occur as a result of diffusion process­

es; there is a sharp transition between motion inside the meta-stable attractor, and 

motion outside the basin of attraction. This indicates that the escape comes about 

from individual stochastic events, not the combination of events. This suggests that 

the entropic barrier to finding the saddle node to escape over may be more significant 

than the energetic barrier. 
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Fourth, there is the question of motion outside the attractor basin. For the cubic 

map, motion outside the immediate basin of attraction takes the form of a chaotic 

transient [38, 39]. It is hard to predict the basin that the system will fall into, because 

the area immediately outside the local basins of attraction consists of finely interwoven 

attractors. However, the mean time in the transient between attractors is insensitive 

to the magnitude of the noise term. 

2.4 Conclusions 

In this chapter a number of approaches to the problem of modelling the trajectory of 

an evolutionary system have been considered. Four basic approaches have been consid­

ered. First there is the classical approach, based on the use of continuous time models 

of discrete time processes. As has been discussed, this involves assumptions on relative 

convergence rates of processes as the limit of an infinite population approaches. Sec­

ond, there is the statistical dynamics approach of van Nimwegen et al., who model the 

system in terms of a few order parameters. This approach is successful for large popula­

tions. They then model the sampling fluctuations inherent in the evolutionary operator 

for finite populations using a classical approach, based on calculating the lower order 

moments of the distribution of fluctuations from the form of the evolutionary operator. 

Assuming that the higher order curaulants are negligible, this gives a Fokker-Planck 

diffusion for the fluctuation distribution. Third, there is the microscopic approach 

adopted by Vose, which proves unwieldy in practice. Fourth, there is the approach of 

Priigel-Bennet, Rattray and Shapiro. They calculate the average distribution of the 

first few cumulants of the fitness distribution. This approach does not allow examina­

tion of the detailed structure of the trajectory of the system, which is of prime interest 

here. However, this approach does consider the problems of moving from infinite limit 
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approximations to the dynamics of finite populations. 

The underlying diflriculty that must be faced is that the sampling fiuctuations add 

noise to the system at each time step, which can have a major effect on system trajecto­

ry, especially in relatively small populations. It is apparent from the review conducted 

above, that the modelling of such fluctuations in a non-linear system is not well un­

derstood at present. There are many relevant parameters in an evolutionary system: 

changing any of these parameters can alter the distribution of the noise induced by 

sampling fluctuations. 

There are two aspects to this problem: a formal, theoretical one, and a practical one. 

Formally, questions about the distribution of noise induced by sampling fluctuations in 

an evolutionary system are of great interest. But they are also not well understood at 

all. In more practical terms, the question is what distribution of noise seems to fit the 

observed facts well, and gives models of evolutionary systems predictive power. Van 

Nimwegen (personal correspondence) observes: 

"So generally, there is not a good mathematical justification for applying 

a diff"usion equation method. Note that this is also the case for the models 

that Kimura introduced. It turns out though that the results predict simu­

lation results very well. This is why I decided to use the diffusion equation 

method; it allows you to actually calculate something, and the results seem 

to hold up well against the simulation data. So although one can make all 

kinds of formal arguments for why it should work, in the end the comparison 

with the simulations is what mainly justifies the approach," 

The relevance of this chapter is twofold. First, it prepares then way for an analytic 

exploration of populations of interacting adaptive agents that is put forward in the 

next chapter. Second, the discussion of the dependence of both the analytic model, 
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and the system's behaviour on the interdependence of a number of factors, especially 

population size, informs the experimentation presented in Chapters 4 and 5. Small, toy 

systems may not serve as adequate models of full size systems of interacting adaptive 

agents because their behaviour is not consistent over changes of scale. This is an 

important practical point. Planning of large systems of (adaptive) agents, sucli as large 

computing and telecommunications networks, may be difficult, because such systems 

may not maintain consistent behaviours across scale. The planning of sucli systems 

may face twin problems: Firstly, the systems are at the limit of analytic tractability, 

if they succumb to analysis at all. Secondly, small scale models may be limited as a 

planning tool because there is no guarantee of consistent behavioural patterns across 

changing system size. 
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Chapter 3 

Sampling Fluctuations in Finite 

Populations of Interacting Agents 

In the previous chapter the dynamics of a simple population of adaptive agents has 

been considered from a variety of standpoints. In this chapter, attention will be turned 

to the analytic formulation of an interacting population of adaptive agents. In particu­

lar, the effects of sampling fluctuations within the adaptive process on the evolutionary 

dynamics of the entire system will be examined. It is required that any derived for­

mulation be informative not only in the case of an infinite, or very large population, 

but also through a range of finite population sizes, so that the effects of the sampling 

fluctuations may be examined. 

3.1 Formalisation of an Interacting Adaptive Agent 

Population 

The immediate problem that must be considered is how the population should be 

represented within such an analytic formulation. In the previous chapter, three possible 
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approaches have been examined. 

First, there is the approach of Vose et al. [81], in which every possible population 

distribution is considered. The dynamics of the system are considered as the dynamics 

of a probability density function over the space of all possible populations, via a Markov 

system approach. This has been ruled out as computationally impractical, because the 

space of all possible populations is huge. 

Second, there is the classical population biology approaches, exemplified by Kimura 

[51], in which the frequency of an allele at a given site on the genome is considered. 

This approach is also problematic, for two reasons. First, there are likely to be a large 

number of sites on the genome, which may or may not be independent, and second, the 

fitness contributions cannot be independently assessed. This combination means that 

the resulting formulation will have a large number of variables, with many probably 

unknown interdependencies. 

Third, there are the fitness based approaches adopted by Shapiro and co-workers 

[69, 70, 76, 72, 71], and by van Nirawegen et al. [79]. Such measures are generally 

unsatisfactory in a population of interacting adaptive agents. The fitness of an agent 

is dependent upon its interaction with other agents. It is hard to see how macroscopic 

measures of the fitness of agents could be used to predict the values of those macroscopic 

parameters. This forraalisation loses the essential detail of the system; the system 

dynamics are determined by the interactions that take place. 

None of the formalisations of an adaptive agent population that have been considered 

so far appear suitable in the case of a population of interacting adaptive agents. It 

should be noted, however, that all these approaches are based around probability density 

functions. In the case of Vose, the probability that the population is in a particular 

state, in the case of Kimura, the probability that an agent possesses a given allele, and 
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in the case of Shapiro and co-workers, and van Nimwegen, the probability that an agent 

has a given fitness. The fundamental question is whether there is another parameter 

that can be used to characterise the dynamics of a population of interacting adaptive 

agents? 

3.1.1 Order Parameters for Interacting Adaptive Systems 

Essentially, we seek an order parameter for an interacting adaptive agent population. 

This is a macroscopic parameter that may be used to describe the behaviour of the 

system, without the need for knowledge of the microscopic states of the elements that 

make up the system. This type of measure originates in statistical physics, where 

macroscopic order parameters such as the energy of a system can be used instead of 

the states of every particle in the system to make predictions about system behaviour. 

In a similar fashion, statistical models of genetic systems have used measures of agent 

fitness as order parameters. It is not necessary to know the precise genotype of every 

individual in the population, merely the distribution of fitnesses, and the transition 

probabilities between fitnesses. 

The proposal at the centre of this thesis, is that agent behaviour may form an 

appropriate order parameter for an interacting adaptive agent system. In such a system, 

an agent's utility is determined by the behaviour it exhibits; agents that successfully 

interact with other agents have higher utility than those that do not. The essence of 

interaction lies in the behaviours exhibited by the interactees. 

Agent behaviour lies at an intermediate level in possible characterisations of such a 

system. It is certainly at a higher level than the detail of the precise state of the agent. 

Whether the adaptive schema is at an individual or a population level is immaterial; it is 

sufficient to be able to calculate the transition probabilities between possible behaviours 

91 



based on the iraplementational details of the adaptive schema. Behaviour might be 

seen to lie at a lower level than agent fitness; the behaviours that an agent exhibits will 

determine its fitness within the population. However, it must be noted that the fitness 

of an agent is based upon its interactions with other agents, and which will therefore be 

dependent upon the distribution of agent behaviours within the population. In some 

sense then, the distribution of agent behaviours is the highest level parameter that it is 

possible to find within a system of interacting adaptive agents: it is abstracted from the 

implementational details, and also determines the shape of the landscape upon whicli 

adaptation takes place. 

3.1.2 Properties of the Mapping from Microscopic Population 

to Behavioural Order Parameters 

The characterisation of a system in terms of a set of macroscopic order parameters 

entails a reduction in the dimensionality of the system space; therefore a many-one 

relationship between points in the microscopic space and points in the macroscopic 

order parameter space will ensue. In this case, we are considering an adaptive system 

where the set of order parameters (behaviours) directly feeds the fitness function. This 

is noteworthy: all individuals with the same behaviour will be selected for or against 

at the same rate. Therefore, all such points are selectively neutral with respect to one 

another. A sub-population of agents sharing any given behaviour will be free to spread 

across the set of states that give rise to any particular behaviour without any selective 

advantage or disadvantage. 

Now clearly the discussions of selective neutrality and genetic drift (Sections 2.1.3, 

2.1.4 and 2.2.4) still apply. The spread across microstates giving the same behaviour 

may be limited by selection (random genetic drift), fluctuation of selection intensities 
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(probably important in an interacting population where the speed of environmental 

changes is high compared to the evolution rate), and the existence of entropic barriers 

to the spread of a population through selectively neutral mutations. On the other 

hand, under certeiin environmental conditions, the spread of a population through a 

selectively neutral set of microstates whilst maintaining a given behaviour may prove to 

be important in keeping the system poised to be able to exploit changing environmental 

conditions. 

Recall Section 2.2.4. Van Nimwegen et al. [78] characterise the noise term in­

troduced by the reduction from an infinite population to a finite population as being 

multinomial in form; this noise is caused by taking a finite number of samples from 

an infinite distribution. This formulation of the noise will be followed here. In Section 

3.2.4 the evolutionary operator, was considered as a conflation of the exploratory 

and exploitative operators, M. and «S, respectively. In the finite case, we shall consider 

S to consist of the sum two components, Su^ a deterministic component corresponding 

to the conflation of M and <S, as discussed in Section 3.2.4 (although the formulation 

will not be in terms of differential equations, but in terms of difference equations), and 

a stochastic component f^, an additive noise term following a multinomial distribution. 

In large populations, the effect of Es will be negligible; the evolution of the system 

will tend towards the deterministic formulation Ej), As the population size is reduced, 

the stochastic component, f^, will have a relatively greater and greater effect, until a 

point is reached \vith a small population where the effect of the deterministic operators 

M and 5, acting in concert as Eo, cannot be discerned. 
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3,1.3 Observables: a Further Level of Description 

At this point, the dynamics of the system have been discussed on two levels. First, 

there is the microscopic dynamics of the system. A formulation of the microscopic 

dynamics of the system will give a complete description of the trajectory of the system. 

In practice, such a forraalisation lies far beyond the realms of analytic tractability. To 

overcome this problem, an abstraction of the system is used. In Sections 2.1 and 2.2 

various possible abstractions have been discussed. Such an abstraction must preserve 

the essential features of the microscopic dynamics. 

A third level of description of the system will now be introduced, the observable 

dynamics of the system. The aim of this thesis is to examine the dynamics of systems of 

interacting adaptive systems. Whilst a behavioural analysis of the system is postulated 

to successfully capture the dynamics of a model system, a behavioural analysis may 

not be possible in a real world system. In many real-world systems (e.g. economic 

systems) the behaviours exhibited by individual agents may not be observable, either 

by agents within the system, or by an outside observer. Define the collective properties 

of the system that are open to view, either by agents within the system, or by outside 

observers, as the observables of the system. In some cases, where there are no individual 

interactions in the system, only collective interactions, the observables will guide the 

actions of individuaJ agents. In other cases, agents may respond to the individual 

behaviours of other agents, but these will be hidden from other agents and outside 

observers. I t is important to consider the observable dynamics of the system in order to 

relate observed phenomena to the underlying behavioural and microscopic dynamics, 

which may be hidden from view. 
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3.1.4 Approaches to Behavioural Dynamics 

I f the agent behaviours exhibited within a population of interacting adaptive agents are 

to form the basis of a formalisation of such a system, the next consideration must be the 

approach used. In the previous chapter, we have observed three differing approaches, 

based on whether the system has a discrete set of possible parametric states, or a 

continuous range of states. Before considering these possible approaches, let us first 

consider whether behaviour should lie within a discrete or continuous range. 

Certainly, there are instances where the range of agent behaviours has been con­

sidered to be continuous (or, at least lying within a high precision floating point range 

in a computational model). For example, within simple economic games such as the 

IPD, the behaviour of an agent might be characterised as the probability of defection 

on any given play. However, there is a powerful case that such a real domain is not 

realistic. The set of agent behaviours does not in fact have an infinite cardinality, for 

any real world set of agents. Animal or human behaviours follow a small number of 

patterns; computer agents are limited by the precision of their arithmetic. This may be 

due to a limitation in the responses of the agents, or alternatively from a limitation in 

the sensory abilities of agents. Agents are constrained to behave in a limited number 

of ways, because they are incapable of sensing more than a limited number of differing 

states in their environment. Hence we will consider, in the abstract, both continuous 

and discrete behavioural sets, and decide upon the appropriate approach in each case. 

In the discrete case, there is only one approach: the Markov system approach, as 

used by Vose [81], and by van Nimwegen et al. [79]. In the continuous case, two 

formulations are possible, the diffusion equation type approach as used by Kiraura [51] 

and the cumulant approach used by Shapiro and co-workers [69, 70, 76, 72, 71]. 

In the continuous case, there are two possible approaches, both of which have limi-
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tations. The approach of Shapiro and co-workers [69, 70, 76, 72, 71] (detailed in Section 

2.2.2) characterises the system by the lower order curaulants of the behavioural distri­

bution. However, there may be problems inherent in such an approach. The dynamics 

of the system can be successfully reduced to the dynamics of the lower order cumu-

laiits only i f i t can be shown that the higher order cumulants have a negligible effect 

on the dynamics of the lower order curaulants. In the type of non-interacting system 

studied so far with this approach, the population distributions have always been, if not 

Gaussian or binomial, then at least uniraodal. In a population of interacting adaptive 

agents there is no guarantee that a continuously pararaeterised population may have 

a unimodal probability density function in such a parameter space. I f this is not the 

case, then the higher order cumulants may have strong effects on the dynamics of the 

lower order curaulants, breaking the premise on which the model is founded. 

There is also the diffusion equation approach of Kiraura, which may be characterised 

as an expansion of a Taylor series about a sraall increment in time, on the probability 

density function of agent behaviours (detailed in Section 2.1.1). This appears initially 

to be an attractive approach, but i t is in fact very problematic, so i t will be consid­

ered in further detail Here an alternative derivation (also presented by Kimura [51]) is 

used, which leads to the sarae result (Equation 2.10) in the context of population biol­

ogy. Unfortunately, i t would appear that the Taylor series approacli, whilst attractive, 

presents difficulties in the context of an interacting agent population. The problem will 

be further discussed in the following section. 
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3.2 The Diffusion Equation for a Population of In­

teracting Agents 

3.2.1 Notation 

In this section, a number of mathematical concepts are discussed. To aid the under­

standing of these concepts, the following typeface notations are adopted. 

Real variable e.g. time x lower-case roman 

Real space e.g (0,1) X upper case roman 

Real function / lower-case roraan 

Density function <f> lower-case greek 

Space of density functions * upper-case greek 

Adaptive Operator M upper-case calligraphic 

Random variable R bold upper-case roraan 

Other variable y lower-case san-serif 

Other space Y upper-case san-serif 

The convention adopted is that the space corresponding to a lower case variable, 

wil l , i f possible, be notated by the upper-case version of the same symbol. 

Other important conventions that are adopted within this chapter are the use of 

angled brackets, (), to denote an expectation, and the use of the symbol p to denote a 

probability. 

Consider an infinite population of interacting adaptive agents, An infinite population 

may be thought of as an infinite set; in this discussion the biological terminology will 

be followed. The term 'interacting adaptive agent' will be defined more closely below. 

At this point, the intuitive definition that this terra refers to an agent whose adaptation 

is soraehow driven by upon its interaction with other raembers of the population, will 
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suffice. This infinite population has a pair of operators acting upon i t , an exploratory 

operator M and an exploitative operator S. These correspond (in genetic terms) to 

simple rautation applied to the entire population, and fitness proportional selection 

respectively. This pair of operators will be composed to forra the evolutionary operator, 

£. 

The operator £ that will be derived below corresponds to rautation and selective 

asexual reproduction acting independently and siraultajieously. In the discrete case, 

selective asexual reproduction followed by rautation forms a first order approximation 

to the diffusion approach. The derivation of a set of diffusion equations for the case 

of an interacting adaptive population is, of course, dependent upon the relative values 

that certain parameters take, as discussed in Section 2.1.7. 

The notion of agenthood is not necessarily within the proper scope of a raathematicfd 

definition. However, a mathematical treatment of the evolution of a population of 

adaptive interactive agents requires sorae well defined definition of agenthood. Without 

any closer definition, consider an agent a which lies within a space of possible agents A. 

These terras are deliberately vague, and will be replaced by much more closely defined 

terras at the earliest opportunity. 

Definition 3.2.1 An agent, a will be characterised by its quantifiable properties. In 

particular, abstract the behaviour of an agent in the presence of other agents to a single 

real parameter, x € X, where X is the continuous range (a, 6). X will be described as 

the space of possible agents or agent space. There exists a mapping 5 : A X. 

I t is assumed that the timescale over which the interaction between agents takes 

place is sufficiently sraall with respect to the timescale over which the evolution takes 

place that the behaviour, x, of an agent can be considered constant during any inter­

action. 

98 



For example, consider a population of agents playing the 'matcliing pennies' geime^ 

Whatever the internal structure or decision making process which an agent goes through, 

we choose to characterise an agent by the probability with which i t plays H(eads). In 

this case an agent would be described by a single real variable x (= p{H)). 

The definition given above (Definition 3.2.1) is in a single dimension. Of course, 

there raay be more than one dimension to agent behaviour. However, care should be 

exercised to ensure that if more than one dimension of agent behaviour exists, that all 

dimensions are orthogonal. This may be difficult to prove analytically, but i t is possible 

that techniques such as principle components or curves analysis raay be able to extract 

orthogonal behavioural diraensions. This would lead to a multidimensional analogue of 

the case presented here. 

This derivation is in many ways analogous to one presented by Kimura [51]. Indeed, 

a similar derivation is presented by Kimura as an alternative to the derivation presented 

in Section 2.1.1. The difference is that Kimura is examining the time evolution of the 

probability that an individual will possess a particular gene at a given site; here we wish 

to examine the probability that an agent has a property, expressible as a single real 

parameter. By contrast, Kimura's derivation would lead to a set of n equations, for a 

population of agents with an 7i-bit binary genome. However, even i f there are no direct 

dependencies between sites on the genome, the interactive nature of the population 

will cause dependencies between site on the genome, and hence lead to a set of n 

simultaneous partial differential equations. Whilst this may have an analytic solution 

in a case where n is very sraall, in general i t is assuraed that analytic solutions to this 

problem may be hard to find. Numerical raethods raay be employed, but they raay only 

find fixed points, rather than cyclic or more complex solutions. 

^ Players simultaneously reveal a coin that they placed with one side or the other upwards. One 

player (pre-chosen) wins if they match, the other if they do not. 
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Definition 3.2.2 The population density function of an infinite population of agents, 

with respect to a single real agent-defining parameter x is defined as 

^(x) = lim lim ^ ° ( 3 € A „ : g ( a ) 6 ( x , x + Ax)) 

where n is the population size, and the subspaces An are chosen to ensure that liran_^oo 

exists 

The notion of a population density function is analogous to that of a probability 

density function found in probability theory. Indeed, in Section 3.2.6, the notion of 

a probability density function will be introduced (see Definition 3.13). As regards 

the interactive behaviour of agents, the population density function, <̂  is a complete 

description of the population. 

Definition 3.2.3 A fitness function, / , is a mapping from an agent a to a real value, 

usually in the range (0,1). The range of values of f will be defined as F. Distinguish 

between f^ and f , by their domain 

A F 

f:x^F 

In the derivation that follows, the selective operator, 5, will be shown to have a depen­

dency upon the derivative Therefore constrain / to be smooth^ i.e. that | ^ is finite 

across the entire range X. 

In biology, the fitness of an individual with a given genotype is usually defined as 

its expected number of offspring. The biological definition gives a measure of fitness 

relative to other members of the population; i t is usual (but not universal) in GA theory 

to construct / as an absolute measure of agent fitness. The latter convention will be 

adopted here. 
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At this point, Definition 3.2.1 may be revisited, x may be redefined more closely as 

a single real parameter that encapsulates those aspects of an agent that are relevant to 

determining its fitness. 

At this point a mathematical definition of interaction may be given. 

D e f i n i t i o n 3.2.4 An interacting agent is one whose fitness is dependent no only upon 

its own characteristics, but also upon the characteristics of the other agents it interacts 

with. The payoff to an agent a from its interaction with another agent b will be notated 

/p(a> b), or alternatively /p(x,y) , where x = 5(a) and y = g{b). 

Generally, individual agents may not be able to choose which other agents they 

interact with; indeed no definition has been offered of the number of agents involved in 

each interaction, or the nature of the interaction. The expected payoff will be used as 

a measure of agent fitness in the absence of specific knowledge concerning the precise 

interactions that take place within the population. 

D e f i n i t i o n 3.2.5 Redefine the fitness of an interacting agent, a as its expected payoff 

{/^(a,b)) from an interaction with some other member of the population b. The fitness 

of a particular agent is now no longer f{x), but f {x,<j)); the fitness of any member of 

the population is dependent upon the composition of the entire population. 

f {X, <!>)=[ f,{x,y)c/>{y)dy (3.2) 

The controlling equation for the evolution of the population density function over 

an evolutionary time scale may now be derived. At time i , the population density 

function 0(x) will be written as <i){x,t) as necessary to avoid any danger of ambiguity. 

In a similar fashion, / (x , (^ ) will be written as / (x,<^,i). The derivation leads to a 

Fokker-Planck type equation, similar to that presented in Section 2.1.1. 

101 



Parameter size effects on the form of diffusion equations have already been noted 

in Section 2.1.7. Following that discussion, the exploration rate m will be assumed to 

be of the order 0 ( l / n ) , where n is the population size. The resulting operator will be 

valid when m is of this order. 

Consider now the change in <j) over a small discrete time period 6tj due to the action 

of 8, i.e. <t>{x,t + 6t) = S<f>(x,t). Over this small period there will be two sources of 

change to <^(x), one due to the other due to S. At this point in time, consider both 

these operators to act siraultaneously and independently on <j). This is the simplest 

combination of the exploration and exploitation operators possible; i t corresponds to 

asexual reproduction with rautation. The effects of genetic operators have already been 

discussed in Section 1.2.3. 

The derivation provided below is not valid at the endpoints of the range. Consider, 

therefore, a situation where the endpoints of the domain (o, b) are periodic from the 

perspective of agent behaviour. 

/ ( x , 0) may be thought of as imposing an energy surface which controls the trajec­

tory of the population. Exploitative processes will tend to shift the population towards 

areas of higher fitness (analogous to sorae forra of hill clirabing), whereas exploitative 

processes will tend to spread the population across the domain. The evolution of the 

system will be modelled as a diffusive process across this energy surface. The behaviour 

of the population over time will be derived from the following constraints: 

1. The population will flow towards areas of higher fitness at a rate proportional to 

the rate of change of fitness with respect to behaviour. Define the constant of 

proportionality as k. 

2. The rate at which the population flows away from any point will be proportional 

to the exploration (or rautation) rate, m. 
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3, The rate at which the population flows away from any point is proportional the 

population density function at that point. 

Between them, these constraints describe the actions of the explorative and exploita­

tive operators discussed in Section 1.1.2. Constraints 1 and 3 above, when expressed 

formally (see below) control the exploration operator, whilst constraints 2 and 3 control 

the exploitation operator. 

3.2.2 The Effect of the Exploitative Operator S 

Consider the time evolution of the probability of an individual lying in the range [x -

AxjX-h Ax] . Constraint 1 is taken to imply a dependence upon k and Constraint 3 

is expressed by considering the flow of population density at two points x - A x , x - f Ax, a 

small distance 2Ax apart. This provides an expression for the net flow into a rhomboid 

of width 2Ax in time A t 

2Ax<^(x, i + At) - Ax(^(x, t) 

'df{x-Ax,<l>,t) 
= | A t 

dx 
a/(x-hAx,(^, t) 

dx 

4>{x - A x , t ) 

(^(x-h A x , t ) (3.3) 

where A:/2 is a rate constant. Dividing through by A t Ax, and taking the limit A t -> 0 

gives 

df{x-Ax,<j>,t) 
dx 

dfix + Ax,t) 
dx 

<j){x - Ax,t) 

(l>{x + Ax,(l>,t) (3.4) 

Adding and subtracting a term on the r.h.s gives 
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2Ki \ di - dx + j (̂ -̂ ^ 

which raay be rearranged as 

^^a/(x + Ax, t) ^(x + Ax, 0 - .^(x - Ax , t) 
dx 2Ax ^ ' 

Taking the limit Ax —> 0, and simplifying the notation (since the point in time and 

space is now unambiguous) gives the differential equation 

This may be simplified to 

^ = - k l . (^.^ (3.8) 
dt dx \dx J 

This is the simplest possible equation that might govern the time evolution of a pop­

ulation across a fitness landscape, and is the controlling equation of the operator S. 

The population will migrate towards local maxiraa via a gradient ascent algorithra, as 

required by the given constraints. 

3.2.3 The Effect of the Exploratory Operator M 

In the sarae way as the above discussion has considered the action of the exploitative 

operator 5, consider now the action of the exploratory operator M. This operator has 

a very siraple action: it will act to increase the entropy of the population by dispersing 
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the population across the space. This can be considered as occurring via a diffusive 

pressure in each cell of width Ax, proportional to the population in that cell. There 

will therefore be a flow across the left and right boundaries of each cell, proportional to 

the gradient of the population density function at that boundary. Note the difference 

from the derivation of the exploitative operator, 5; constraint 2 is now expressed as a 

partial derivative, and constraint 3 appears as a constant of proportionality, m. Over 

time At this will be 

AxHx,t + At) = Ax^{x,t) + ̂  _ ^ ( - . 0 ^ ) (3-9) 

This states that the change in population within any cell is the sura of the gains across 

each boundary. This may rearranged by moving the first term on the r.h.s. to the l.h.s., 

and dividing through by A t Ax to give 

,p{x,t + At)-<t>{x,t) _ m (<t>{x,tr-^i^-<l>{x,ty-^\ 

I f one now lets A x —> 0 and At —> 0 simultaneously (and simplifying the notation since 

points in time and space are now unambiguous) the action of M becomes 

This is the controlling equation of the exploratory operator M. I t corresponds to a 

Fokker-Planck diffusion in the absence of a potential field. This is unsurprising: one 

would not expect the dynamics of exploration to be altered by the interaction between 

population members. 

3.2.4 The Evolutionary Operator £ 

From a practical perspective, both the above derivations are idealistically simplistic. 

There are several important points that should be made here: 
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1. In the derivation of the exploitative operator 5, there is an assumption that the 

exploitative process is one of local hillclimbing. Agents with behaviour x will 

adopt behaviour x - |-Ax i f i t leads to higher fitness. Agents with behaviour x will 

not adopt a behaviour y if x and y are not adjacent in the space. The local nature 

of the hillclirabing precludes the exploitation of non-adjacent points in the space. 

This is a serious limitation; globally optimal behaviours cannot be reached by all 

members of the population, even if they are present within that population. 

In Section 3.1.1 the divergence between the two alternate versions of the Fokker-

Pianck equation (Equation 2.10) derived in Section 2.1.1 is alluded to. In the 

interactive case, (Equation 3.12), the selective operator (see Section 3.2.2 is 

problematic. Recall the basis of Kimura's [51] use of a diffusion equation ap­

proach. FVora an initial condition of an allele with a given frequency within the 

population, Kiraura used a diffusion equation approach to calculate the proba­

bility that the allele had a given frequency within the population at some later 

time. The underlying assumption is that the population remains in a unimodal 

distribution; the Taylor series approach associates terms in the Taylor series with 

moraents of the distribution. In the interactive case under consideration here, no 

such assumption of uniraodality exists. Of course, any distribution can be defined 

to arbitrary accuracy by means of an appropriate series of moments, so strictly a 

Taylor series approach will work. The problem lies in interpreting these moments 

in terms of the derivatives of the fitness function. In addition, a large number of 

terras may be required to obtain the required level of modelling accuracy, whicli 

tends to defeat the purpose of obtaining an analytically tractable model of the 

population dynamics^. 
^If this sort of approach were to be considered, the moment based approach of Shapiro and co-
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2. In both derivations there is an implicit assumption that i t is possible for an agent 

to traverse the behavioural range (a, b) in a smooth fashion. This is not always the 

case. For example, in an evolutionary system, a genotype-phenotype distinction 

must be made. The behaviour of an agent is dependent upon its phenotype. This 

in turn is dependent upon the genotype. Adaptation (both the exploratory and 

exploitative operators) act on the genotype. There is no guarantee that a small 

smooth change in the population density function over the genotype space will 

lead to a continuous change in the population density function over phenotype 

space or behaviour space. 

The evolution of the population is controlled by the evolutionary operator, £ , a com­

bination of the exploratory operator, My and the exploitative operator, S. In reality, 

these operators are not independent; exploration can occur during the exploitative pro­

cess. Consider two common adaptive schemes: the canonical genetic algorithm (CGA) 

as described by Holland [42], and the backpropogation algorithm within a multilayer 

perceptron (MLP) network [41]. In the former, exploration and exploitation are pro­

vided separately by the mutation and crossover operators, working at the level of the 

entire population. Here the higher order terras are brought in because the crossover 

operator is not purely selective, i t finds a point in the genotype space between two 

known good points. This is partially exploitative in that the fitness of the new point 

selected is not known a priori In the MLP, the backpropogation algorithm performs 

an iterative gradient descent on an error surface in a weight space. However, to re­

duce computational expense, this descent takes place in finite steps across the weight 

space. Exploitation and exploration are inseparable because the finite steps sample 

workers might well provide an ideal starting point. This approach has been discussed already, in 

Sections 2.2.2 and 3.1. 
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points of unknown error, although on a smooth surface, the error at the next point in 

the iteration can be estimated with a high degree of accuracy. 

Hence, in most practical adaptive schemae, a degree of interdependence between 

the explorative and exploitative operators raay exist, which gives rise to higher order 

terras. These will not be considered here. The approxiraation adopted is to consider 

these two operators as acting independently and siraultaneously upon the population. 

The controlling equation of the evolutionary operator Z will thus be the sum of the 

effects of its two constituent parts 

i = -'rx[ixV^2d^^ (^-^2) 

Note the correspondence with the Fokker-Planck equation (2.10). The first terra on 

the r.h.s. corresponds to the first order moment term; only here the rate is dependent 

upon a local fitness field. The second term is identical to that in the Fokker-Planck 

equation. The constants k,m control the respective strengths of the exploratory and 

exploitative operators in the system. As has already been mentioned, this equation is 

only valid for a population size/ exploration rate ratio of 0{l/N). Other ratios will lead 

to different diffusion formulations. This equation governs the evolution of an infinite, 

continuous time, continuous space population of interacting agents. 

3.2.5 Behavioural dynamics of an Infinite Population 

Equation 3.12 describes the time evolution of an infinite population of interacting a-

gents. There is already some indication of the expected behaviour of such a population: 

the conditions given in Section 3.2 will constrain the evolution of the system described 

by Equation 3.12. I t is well known that in the infinite time limit the behaviour of a 

system described by Equation 3.12 will tend towards an attractor of that system, be 

it a simple fixed point, a limit cycle, or some more complex type of attractor such as 
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a strange attractor. Such a system can be described by means of an 'energy* surface: 

the attractors are local minima on such a surface. Note that such an energy surface is 

different from the fitness landscape; fitness is a function of an agent*s behaviour, and 

of the rest of the population (see Definition 3.2.5). In contrast, the energy surface lies 

over the space of all possible population distribution functions. 

Ideally, one would hope that an analytic solution to Equation 3.12 could be found, or 

failing that numerical methods could be used to identify fixed points within the state 

space However, before embarking on such a computationally expensive exercise, 

dependent upon the exact circumstances (i.e. fitness function / ) , i t would be wise to 

consider the likely topology of the underlying energy surface. 

In this section, related work, principally that of Kauffman and co-workers, and of 

Priston and others will be used to try and more fully understand the likely characteristics 

of the energy surface corresponding to Equation 3.12. 

Kauffman [46] and co-workers have studied a class of models known as NK models. 

An NK model consists of A'' binary sites, each linked to K other sites. Each site 

contributes to the fitness of the entire system, based on its own state, and the state of 

the K loci i t is connected to. Therefore each locus can contribute one of 2^+^ possible 

fitnesses. As these are unknown, they are taken at random from a uniform distribution. 

The fitness of the whole system is the mean of the fitness of its constituent parts. 

These systems have been extensively studied, and their properties are well known. 

Such a system is in many respects well defined by these two parameters N and K. 

In particular, as K, the number of other sites that the fitness of a particular site 

is dependent upon, increase, the resulting fitness landscape becomes more and more 

rugged and multipeaked. Moreover, by altering K for any given A'', i t is possible to 

tune the resulting fitness landscape. 
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Sucli systems have also been used as models of co-evolutionary systems. KaufEraan 

and Miller (reported in [46]) have re-interpreted the NK model as a co-evolutionary 

model. In this case each of the sites is considered as an agent playing some co-

evolutionary game. At each time step, every agent re-assesses their current state, and 

chooses for its next play the state that will maximise its fitness under the (myopic) 

assumption that all other agents will not change their plays. In this way every agent 

simultaneously makes an adaptive step towards what they conceive of as a local optima. 

Describe this as a NK Boolean game. Equilibria in a NK network mirror pure strategy 

Nash equilibria in the NK Boolean game. At such a point every agent has a fitness 

maximising play, given that no other connected agent changes its play. 

How does a NK Boolean game or a NK system relate to a population of interacting 

adaptive agents, be it finite or infinite? In a NK Boolean game, each agent plays against 

a given number of other agents, whereas in the systems under consideration in this 

thesis, the interaction may or may not be dependent upon a set of specific interactions, 

or it may be dependent upon a more generalised group interaction. However, it is noted 

that as K, the number of interactions that the fitness of a specific site is dependent 

upon, is increased, the resulting fitness landscape becomes less and less correlated. 

Therefore, one should expect that the energy landscape underlying an infinite pop­

ulation of adaptive interacting agents may well contain a large number of local minima. 

From any particular initial population distribution, the population will flow across the 

landscape, until it asymptotically reaches a stable distribution, a minima of the energy 

surface. 

Now consider also the views expressed by Priston [31]. His concern is the dynamics 

of a neural architecture made up of a number of groups of highly connected neurons, 

with sparse connections between groups. The system is not adaptive; the individual 
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neuronal groups are set up to exhibit chaotic dynamics, and the connectivity between 

groups is under experimental control. 

Alteration of a control parameter (the mean connection strength between neurons in 

different groups) has the effect of changing the dynamics of the system through a variety 

of behaviours, ranging from stable incoherence (when the inter-group connections are 

scant), through to stable coherence and behaviours such as phase locking when the 

connections are strong. Between these two lies a set of states that Friston (following 

Kelso [47]) characterises as dynamically stable or metarstable. This is a completely 

different phenomenon to the meta-stability that is under discussion in this thesis. The 

phenomenon referred to by Priston and Kelso is the change in the dynamics of an 

attractor as some control parameter is altered, such as a Rayleigh-B6nard convection cell 

moving from a rest state to a macroraotion convective rolling state as the temperature 

of the liquid (the control parameter) is varied. In this case, the changes in the attractor 

are revealed as transient neuronal dynamics. 

Transients in dynamical systems are usually associated with the relaxation of a 

system from some initial state to an attractor. Friston suggests that whilst the system 

will remain at a single attractor, there being no adaptive or stochastic elements to the 

system; the attractor manifold has a complex form. The system can become trapped 

in a sub-manifold, in which it remains until it can escape via overcoming the entropic 

barrier that holds it there. Upon escape it will then enter another sub-manifold; the 

system will exhibit a transient associated with the entry into the new sub-manifold 

which dies off as the system relaxes into this area of the attractor. 

How does this relate to other descriptions of the dynamics of an interacting adaptive 

population? If one considered the neuronal subpopulations as individual agents, then 

he is describing a system of weakly interacting non-adaptive agents. In this case, the 
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collective behaviours that the system exhibits might well change over time in the absence 

of an adaptive force. The system would not leave an attractor, but the clianges would 

be associated with various sub-manifolds of that attractor. 

In the case of an adaptive population such entropic barriers may well also exist, but 

there will also be energetic barriers between attractors, that can only be surmounted 

by exploratory forces within the adaptive process. Behavioural clianges may well be 

induced by transitions between sub-manifolds of one attractor, as well as via the adap-

tively or stochastically induced transitions between attracators. It is questionable as 

to whether collective behavioural changes of the system caused by transitions between 

sub-raanifolds of an attractor can exist in such a way so as not to change the selective 

advantage of individual behaviours. If they can, then the complex attractor dynamics 

described by Priston are a possibility. If not, the attractor dynamics must necessarily 

be more simple; sub-manifolds of a complex attractor may become separate attractors 

in an adaptive system. 

3.2.6 Reconciling Finite and Infinite Population Approaches 

In this section a diffusion equation approach to the dynamics of a finite population of 

interacting agents will be considered. The exploratory and exploitative operators were 

discussed in Section 1.1. It was noted that both these operators could be considered as 

stochastic operators. In the limit of an infinite population, the frequency with whicli 

a given interactive behaviour, x, is observed within the population converges to the 

population density function, ^(x), of that behaviour. Not only that, but the frequency 

with which a particular adaptive change, be it caused by the explorative or exploitative 

operator, will also converge to a well defined value in the infinite limit. This allows 

the derivation of the time-evolution of a population of interacting adaptive agents, as 
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discussed in the preceding section. 

The approach taken will be based on the discussion in the preceding section. A finite 

population will be considered to adapt at discrete time intervals, At (here, At = I). The 

discrete time dynamics of an infinite population will form a Poincarr^ section through 

the continuous time trajectory. The approach taken will be to consider the population 

at time i as a population density function, expressing the present state of the system. 

For a system of n agents this population density function will be written (/>„(i). The 

evolutionary operator, € will be applied to this population density function ^(i) to form 

a probability density function <^oo(^-l-l)- This represents the population density function 

that would have resulted under ^, if an infinite population with an identical density 

function to 0„(t). The actual population at time t + 1, < „̂(t + 1) is gained by taking n 

samples from a random variable R with probability density function <j>oo{t + 1). 

By considering how the approach taken for an infinite population may be adapted 

to a finite population, problems with the infinite population approach will become 

apparent. First, consider how the population density of a finite population of agents 

may be defined, in such a way that its extension to an infinite population will correspond 

functionally to that given in Definition 3.2.2. 

Definition 3.2.6 For a population of n agents, the population density function , (t>n 

will be given by 

-E^(5(aO) (3-13) 

where 6{x) is a Dirac delta function centred about x.^ It is here that the problems 

become apparent: In order that 3.13 should converge to 3.1 it is necessary that the 

population not only become infinite, but become uncountably infinite. A" is a real 

^The Dirac delta function can be considered as Iim̂ a_̂ o N(a:,a^), where TV is a Gaussian mean a;, 

variance CT^. By this means one can ensure that |^ remains finite at all points. 
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domain, hence it contains an uncountably infinite number of points. 

Recall the constraints put forwards at the end of Section 3.2.1. The population is 

constrained to flow towards areas of increased fitness. The combination of this con­

straint, and the third constraint (population flow away from each point at a rate de­

pendent upon the population size at that point) describe the action of the exploitative 

operator. This makes the assumption that the fitness of every point in the domain X 

is known a priori. This is simply not the case: the fitness of a point x G X can only be 

known if there is an agent with behaviour x at that time. If no such agent exists, then 

the fitness of that point is unknown, and so there is no knowledge to be exploited. 

In the uncountably infinite case, there is no problem. The exploratory operator 

produces a diffusive pressure on the population, causing the population to flow from 

regions of X with high density towards regions of X with low density. This is checked 

by the exploitative operator which forces the population towards regions of high fitness. 

The presence of the explorative operator will force <t>(x) to be strictly non zero (although 

quite possibly approaching zero) everywhere. In this sense the population will have 

knowledge of the fitness function / across the entire domain X. 

In the case of a finite, or even countably infinite population, an inconsistency be­

comes apparent. Clearly the distribution <^Ar will be zero almost everywhere. Either 

the assumption that keeps |^ finite is retained (taking the Dirac delta function as the 

limit of a Gaussian curve as the variance tends to zero), or it is not. In the former 

case, the result is an assumption that (j> must be strictly non zero everywhere along 

the range, which is known to be false, but allows the exploitation operator to transport 

the population towards local peaks in the fitness landscape. On the other hand, if this 

assumption is not made, then <f> remains strictly zero for every behaviour in X which is 

not applied by an agent. This prevents the exploitative operator from exploiting points 
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whose fitnesses are not known. 

This is a serious problem. The diffusion approadi appears tractable in the finite 

case only if an assumption is made that will give a finite case behaviour, breaking the 

premise on which the model was founded. 

The second problem is how to formulate the population density of a finite population 

of interacting agents. It might appear odd to have a population density function that 

is zero almost everywhere. However, (^Ar(<) is used only to calculate <f>oo{t + 1), whicli 

provides a probability density function to the random variable, which is then sampled 

from to give a population at the next time step, t + 1. 

There is also a third problem in producing an analytic formulation of the behaviour 

of a system of a finite number of interacting adaptive agents. Recall Section 2.1.7. In 

this section the underlying assumptions about convergence rates implicit in the deriva­

tion of the dynamics of an infinite population evolutionary system were considered. 

This section was briefly alluded to again in Section 3.2. To recap, it has been shown 

that the form of the diffusion obtained is not independent of the size of various pa­

rameters (e.g. the mutation rate) relative to the population size (although of course 

the resulting model is strictly an infinite population model applied to a very large fi­

nite population). In dealing with a finite population, one must be aware that as the 

population size changes, then the relative magnitude of the mutation rate and other 

significant parameters will also change. This means that the controlling diffusion equa­

tion will not remain constant as the population size alters. This is problematic: the aim 

of this thesis is to study meta-stability in populations of interacting adaptive agents. 

It is hypothesised that the cause of this meta-stability is stochasticities inherent in the 

adaptive process in a finite population. It is difficult to conceive how the effect of such 

stochasticities (which are assumed to be due to sampling fluctuations) can adequate-
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ly be studied when the underlying infinite population baseline is itself shifting as the 

population size is varied. 

For these three reasons it is necessary to abandon the diffusion equation approach 

as a tool for understanding the finite population behaviour of systems of interacting 

adaptive agents. Henceforth, we shall adopt a Markov approach, considering a popula­

tion whose behaviours can be described as lying in a number of discrete categories or 

bins. Eadi agent will be characterised by the behaviour that it exhibits, and the set 

of possible behaviours will be small. The system can now be described as a frequency 

vector: each component of the vector giving the frequency of agents within the popula­

tion that lie within the respective behavioural class. The exploratory and exploitative 

operators, M and 5, can now be described by matrix transformations. This approach 

has already been detailed in Section 2.2.3. Moreover, in this section the stochastic 

fluctuations within the adaptive operators in finite populations have been explored to 

some degree, and can provide a model of the fluctuations in an interacting population. 

The key difi'erences are that first, the population is now split into behavioural classes, 

and second, the interactive nature of the fitness function will add further non-linearities 

to the exploratory operator. 

In following chapters, the modelling of a particular population of adaptive interactive 

agents via a Markov system approach will be considered in detail. Further discussion 

of the approach will therefore be confined to these chapters. 

In Section 3.1.2, the stochasticieties in the adaptive process caused by sampling 

fluctuations within a finite population were alluded to. Let us therefore consider how 

these fluctuations might affect the behaviour of an interacting adaptive population. 
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3.3 Meta-stability in Finite Populations 

Consider a finite population of interacting adaptive agents. Two points have already 

been established regarding such a population. 

1. In general, the evolution of an infinite population of interacting agents can be 

formulated as a highly non-linear differential operator. The general form of this 

operator is analogous to an equation for diffusion across a potential field. 

2. In the case of a finite population, the evolution of the system can be thought of 

as having two components. 

(a) A deterministic coraponent,f corresponding to a Poincarr^ section through 

the differential operator. The image of a population distribution under this 

operator specifies the mean of the stochastic component. 

(b) A stochastic component, ^5 , sampled from a random variable with well de­

fined mean. The form of this distribution is unknown, but it may well be 

binomial in form. The variance of this distribution is bounded from above 

and below, and asymptotically converges to zero with increasing population 

size. 

Note the following two points: 

i. The form of the noise distribution has not been specified. As discussed 

in Sections 2.1.7 and 2.2.2, the relative size of system parameters and 

the reduction of the system to a finite population can both affect the 

expected distribution. 

ii. Additionally, the relationship between the deterministic and stocliastic 

components has not been specified. Whilst it might well be convenient 

to assume an additive noise, this may not be the case. 
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This combination is an alternative formulation to the following (which is a more realistic 

physical description of the operation of the system). The deterministic operator maps 

a population density function to a probability density function, which is then sampled 

from an appropriate number of times to give a new population. The advantage of the 

formulation is that it explicitly separates the system into deterministic and stochastic 

elements, where there is only one sample taken. Moreover, this formulation explicitly 

demonstrates the reduced effect of the stochastic operator as population size increases. 

Consider how this combination of deterministic and stochastic operators will affect 

the evolution of a finite population of adaptive interacting agents which has a number 

of attractors in the solution space, and consider the expected behaviour of the system. 

Before considering the behavioural patterns that result, one point needs to be made 

absolutely clear: The behaviours that are observed are dependent upon the timescale 

that they are observed over. In the case of a finite population of n agents there is a 

finite probability that the stochastic operator could result in a population far removed 

from the expected population. Whilst this probability may be very small for large 

populations, given a sufficient observational window, the probability of it occurring 

becomes significant. Indeed, given a (longer) observational period, the probability of not 

observing such an event becomes insignificant. Three behavioural phases are postulated: 

Stable Dynamics Where the population is large enough, relative to the observational 

timescale, a stable behaviour would be expected. The system will evolve from its 

initial population towards the attractor whose basin it is in. The trajectory of 

the system will be close to that expected of an infinite population. 

Meta-Stable Dynamics In a finite population, with a long enough observational 

window, the probability that the stochastic operator will move the population 

from one basin of attraction to another basin of attraction, becomes significant. 
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In this case one would expect to see stable periods of behaviour, separated by 

sudden behavioural transitions as the population moves from one basin of attrac­

tion to another. These may be observable as phase transitions in the macroscopic 

system variables. If the observational period is short, stable dynamics may be 

observed instead, if no transition occurs. On the other hand, if the observational 

period is long, but the observations are infrequent (i.e. not every evolutionary 

epoch of the system is observed), then the population may appear to demon­

strate unstable dynamics. Meta-stability is a phenomenon dependent upon the 

observation window and schedule. 

Unstable Dynamics When the population is very small, the lattice size can become 

significant in comparison the attractor basin size. Here the probability that the 

system may move from one attractor basin to another becomes overwhelming. In 

conjunction with this, it becomes hard to distinguish the boundaries of attractor 

basins; there may be few lattice points in each basin. The dynamics of the system 

are mainly stochastic here. It may not be appropriate to talk of the population 

lying within an attractor basin, as the timescales it lies in any basin may be 

minimal, and observationally it may become hard, if not impossible, to discern 

which basin the system is lying in. 

3.3.1 Finite Population Dynamics under Internal and External 

Shocks 

The finite population dynamics that have been discussed above, are driven by the 

intemal dynamics of the population, under the influence of the stochastic evolutionary 

operator, £3- many cases there is also a second force that drives the trajectory of 

the population: namely the environmental dynamic. It is this external dynamic that 
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is under consideration here, together with the interplay between internal and external 

forces, and the resultant effects on the evolution of the population. 

Populations of agents do not exist in isolation. They exist within a context. A 

network of adaptive routers exists in the context of network loadings. A market of 

adaptive traders exists in the context of stock returns. A population of situated adaptive 

robots exists in the context of a physical environment, with changing lighting, humidity, 

friction, and even changing environmental layout. This context is described as the 

environment in which agents exist. Changes in this environment will be described as 

external shocks, in contrast to internal shocks due to £s-

External shocks will directly affect the ability of agents to perform their allotted 

tasks, and thus directly affect the fitness of agents. In some systems the external 

shocks may affect all agents equally, in other systems they may affect some agents but 

not others. Even seemingly well adapted agents may be removed from the population 

if they encounter large enough environmental changes. 

External shocks will clearly have no effect on the exploratory operator, M] this 

operator acts only on surviving members of the population. External shocks will act 

only upon the exploitative operator, <S. These external shocks may have one of two 

effects, depending upon whether they operate upon the entire population uniformly, 

or whether the effect of the environment affects members of the population in a non­

uniform manner. 

In the first case, the effect of external shocks is to directly modulate the exploitative 

operator, £ . The resultant effect will be to modulate the deterministic component, 

Soi of the evolutionajy operator. This will have a global effect on the evolution at 

all population sizes. One might characterise this as not affecting the convergence of 

the population towards fit phenotypes, but altering the relative fitness of phenotypes 
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within that population. This relates directly to the discussion of evolutionary dynamics 

under varying selection pressure discussed in Section 2.1.4. Classical theory predicts 

that in the case where individual genes are selectively neutral in the long run, but 

varying randomly in the short term, fixation will eventually almost certainly occur. 

This is referred to as quasi-fixation. However, this analysis does not include any linkage 

between gene fitness and gene expression within the population, let alone the highly 

non-linear linkage postulated to exist in populations of interacting adaptive agents. It 

will therefore be interesting to observe whether quasi-fixation does actually occur in 

experimentation. 

On the other hand, if the external shocks do not affect the population in a uni­

form manner, identical members of the population may be affected differently by the 

environment. This means that identical individuals may end up with widely varying 

fitnesses. Again, this may affect the exploitative operator S, but in a very different 

manner to the above case. In this case, the exploitative operator might be thought of 

as being 'blurred*: identical phenotypes may have widely varying fitnesses. This will 

result in the selection operator being weakened as it becomes harder to discriminate 

between strong and weak phenotypes, and thus to pick the strongest genetic material 

for the next generation. In this case, one would expect the population to be driven more 

by the mutation operator than might otherwise be the case: the population will find it 

hard to hold fitness peaks'* against the mutational pressure towards a maximum-entropy 

formulation. 

'̂ Obviously, in this case, a 'fitness peak' may be a heterogeneous population. 
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Chapter 4 

A Simple Stock Market Model 

In this chapter, a simple model of a population of interacting adaptive agents is de­

scribed. A mathematical treatment of this model is developed, based upon the statisti­

cal behavioural dynamics approach put forward in Section 3.1.1. Differences between 

the expected behaviour of the Simple Stock Market Model (SSMM) and the behaviour 

of the Santa Fe Artificial Stock Market (SFASM), upon which it is based, are considered. 

4.1 The Simple Stock Market Model (SSMM) 

In this section, a simple model of an artificial stock market is presented. At the outset, 

let it be clear that the purpose of this model is to explore the dynamics of a population 

of interacting adaptive agents. Whilst it is grounded in an economic context, it is not 

designed as an economic model, and the results should not be taken as indicative of 

any real-life economic behaviour. 

4.1,1 Design Issues 

This design of this model is subject to a number of constraints, which serve to ground 

the model in a number of areas. The purpose of this model is to explore and analyse 
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the stability of attractors in the population space of a system of interacting adaptive 

agents, and phase transitions associated with shifts between attractors, due to internal 

and external shocks to the system. To this end, various constraints are imposed upon 

the model to aid this analysis. The restrictions on the model are as follows: 

Analytical Tractability For the purposes of this study, an analytically tractable 

model is necessary. As has been discussed in Chapter 3, a number of analytic 

approaches are possible. However, there are no simple solutions. As has been 

indicated, the preferred analysis is in terras of behavioural order parameters (see 

Section 3.1.1). For analytical ease, a system is sought with a finite number of 

easily distinguishable finite agent behaviours, 

A Well Understood Problem It is important that the model should implement an 

example of a well studied problem. This ensures that it is possible to back-check 

the behaviour of the model against other simulations and models within the same 

field. One would expect that any model should exhibit the same basic behavioural 

characteristics as other models within the field. A new model is implemented 

rather than use an existing model for the reason of analytical tractability discussed 

above. 

Simple Dynamics The purpose of the model is to explore and analyse the stability of 

populations of interacting agents, and various phenomena associated with transi­

tions between attractor basins in the population space. To that end a model with 

the simplest possible dynamics that may exhibit meta-stability is sought. Two 

constraints may immediately be stated: 

Adaptive Processes In Section 1.1.1 adaptation has been described as the com­

bination of an exploratory and an exploitative force. It is desired that these 
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two forces be ajialytically separable in a mathematical treatment of the mod­

el. For this reason, the adaptive process implemented will be a genetic al­

gorithm implementing asexual reproduction with mutation. Many selective 

schemata are possible, a roulette wheel selection method will be used because 

it is analytically tractable. 

Temporal dependencies For analytical ease it is important that the model is 

stationary^ i.e. that the statistics of its behaviour are independent of any 

time shift. Beyond this, it is desirable that the model behaviour should be 

restricted to a one-step temporal dependency: the behaviour of the model in 

the immediate future is dependent only upon its present state, and not on 

any previous state. This combination of properties restricts the behavioural 

dynamics of the system to be a Markov process, which is well understood. 

For the above reasons the model chosen is a simple stock market, based heavily upon 

the Santa Fe Stock Market Model (SFASM) [5], but with a number of simplifications 

incorporated to aid the analytical tractability, and to simplify the dynamics of the 

system. The dynamics of the SFASM, and their relation to the dynamics of the SSMM 

will be considered in Chapter 6. 

4.1.2 The Nature of the Market 

The market is based around the simple neo-classical two asset model, consisting of a 

single bond and a single stock. The bond is a money equivalent. Holding the bond will 

guarantee a fixed return r at the end of each given period. The stock is a holding with 

a variable return: at the end of each trading period the stock will deliver a return, dt 

drawn from a random variable. In this case, the random variable has a normal form, 

with mean r, variance a and first order linear persistence (i.e. the returns from the 
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stock form an AR(1) stochastic process, described in Equation 4.1. e is a Gaussian 

random variable with mean 0 and variance <T̂ , the mean value of the A R l process, 

3 = r, and p is the regression parameter, whicli controls the speed at whicli the series 

returns towards the mean, 5 ) . 

dt = d-Vp{dt.,-d)^€t (4.1) 

Each agent has a fixed capital, whicli can be held either in the bond, the stock, or a 

combination of both. The price of the bonds is fixed, and there is assumed to be no 

limit on the supply available to the traders. On the other hand, the stock is in limited 

supply {N units available), and the exchange rate between the stock and the bond will 

depend on the demand for the bond. This exchange rate will be referred to as the price 

of the stock, Pf 

In general terms, the dividend sequence forms an environment in which the system 

of agents is situated. The modelling of the dividend sequence as an AR(1) process is 

well grounded within economic literature [15]. In other systems, the environmental fluc­

tuation may be grounded on other distributions, in particular power law distributions, 

as discussed in Section 2.1.7. 

The market operates as follows. At the beginning of each time period the dividend 

from the stock and the price of the stock are posted, so that all agents can view them. 

Each agent then calculates their desired holding of the stock relative to the bond^ 

(The detail of this is explained in Sections 4.1.3 and 4.1.4). Agents then submit the 

difference between their actual holding and their desired holding (i.e. a buy/sell order) 

to a market authority, known as the market maker, who fixes a price that reconciles the 

demand with the supply. Each agent then trades an appropriate proportion of their bid, 

^ Econonuc theory gives an equation for calculating the desired holding as a function of the expected 

value of price plus dividend in the next time period. 
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effectively determined by the market maker. The agent then receives a payoff consisting 

of the return on each bond the agent holds plus the new dividend on each unit of stock 

the agent holds. 

While agents have access to the present dividend and price of the stock, an external 

observer (e.g. the market maker) also has access to the volume of the stock traded in 

any particular period. The system observables (as discussed in Section 3.1.3) are the 

stock price and trading volume; these are macroscopic parameters dependent upon the 

state of the population, which give some (incomplete) information about the state of 

the population. 

4.1.3 Market Clearing 

There are many ways that a market can operate. The most common model is described 

as a double auction market; agents can submit bids (offers to buy) and asks (offers 

to sell). The sequences of bids and asks are raonotonically increasing and decreasing 

respectively, and a transaction takes place when the most recent bid and ask coincide. 

There are various forms of double auction market in the literature (see [30] for a review), 

in which the detail of how the bid and ask sequence are established and related, and 

the amount of information available to traders, vary. 

This is not the only way that a market can operate. An alternate system requires 

that all trading is conducted through a specialised agent called a market maker. This 

agent has privileged information not available to other agents, and acts to establish 

a price at which demand matches supply. At this point, the market is described as 

cleared] the market maker holds no stock itself. This system has been adopted for two 

reasons: first i t simplifies the implementation of the model, and second, i t is analytically 

tractable. 
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I t is well known that under conditions of constant absolute risk aversion (CARA) 

utility (that is to say that the risk utility function takes a negative exponential form 

with rate A) and Gaussian distributions for forecasts, an agent's demand Xt for the 

stock is of the form 

Here E(p-\- d) is the return that an agent expects the stock to produce (i.e. the price 

plus dividend forecast for the next time period), as a^^^i i f the variance in an agent's 

predictions of that expectation. 

The market maJcer can calculate the clearing price of the market at each time step. 

In a market with n agents, write each agent's expectation of the next price plus dividend 

as (the expectation), and the denominator of 4.2 as Ri. The numerator in 4.2 gives 

the difference between the expected total capitaJ value of the stock plus its dividend, and 

the equivalent value of the bond plus their returns. The denominator then effectively 

gives a risk terra, placing this difference in the context of a normally distributed set 

of agent expectations, and the agent's own risk utility^. The agent's risk function is 

assumed to be constant through time in this model. 

Clearing demands that 

t x i = N (4.3) 

into which we can substitute 4.2: 

t M ± d = ^' (4.4) 

The mean expectation of the next price plus dividend, Et is defined by 

El = 5 ^ (4.5) 

^As with many similar situations, this is a 2-armed bandit problem: the sources of loss being holding 

too much stock, and holding too much bond. Here the penalty function is symmetric, and the risk 

function quantifies the agents perception of the relative utilities of loss from each source. 
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In the markets we are considering, aJl agents have identical risk functions, Ri\ the uni­

form risk function will henceforth be written as R. Moreover, the total stock available 

will be set at 1 unit of stock per agent within the market. This means that the dy­

namics of the market will be independent of the availability of stock, across a range of 

population sizes, i.e. N/n = 1. Rearranging Equation 4.5 and substituting it into 4.4 

gives 

The above equation is used by the market maker to calculate the price that will clear 

the market, given the individual agent*s expectations £|,t+i, and their risk functions 

Ri. From the price i t is then possible for the trading volume to be calculated using 

Equation 4.2 to gain the individual demands for stock from each agent. Note the as­

sumption that at the beginning of each trading period the stock is uniformly distributed 

amongst the agents. The nature of the agents, and of the adaptive process (discussed 

in Section 4.1.4) maJces i t impossible to assume any continuity of agenthood. However, 

i t ensures that the market has a uniform weighting during its evolution: the dynamics 

of the market cannot become biased towards a dependency on the actions of particular 

agents, because they control most of the stock. Whilst this gives the market a degree of 

unreality, the trading volume observable used proves very useful in separating different 

regimes existing in the market dynamics. Arthur et al. [5] relate periods of high trading 

volume to over- and under-pricing regimes, and periods of low trading volume to the 

fundamental pricing regime. The volume observable takes the form 

1=1 
Xi,t 

n 
(4.7) 

Now, by definition (see Equation 4.3) ^ is the mean of the demand distribution. Vt can 

128 



be rewritten as 

(".8) 

This is bounded from below by the standard deviation of the demand for stock 

Thus, one might expect to observe the trading volume in the market being correlated 

with the standard deviation of the demand for stock. 

I t is also interesting to consider the residual^ the difference between the expected 

return predicted by a rational agent, and the return that agents actually receive. The 

magnitude of the residual has been used by Arthur et al. [5] to gives an indication 

of how much the market is deviating from a rational expectations regime. When the 

market deviates from a rational expectations regime, i t is being driven by the collective 

will of the traders towards a position which is theoretically untenable. The homogeneous 

rational endogenous expectations, or h.r.e.e. price is the price that one would expect 

to be paid for the stock by a market of identical rational traders. This may be easily 

calculated. 

In such a regime, all traders are identical, and their rationality implies that they will 

all have the same demand for stock. Therefore the stock will be split equally between 

all agents. The expectation can be easily calculated from Equation 4.2, and is given by 

E,rce=p{l+r) + R (4.10) 

The residual is simply the difference between this estimate and the actual return p4-d. 

4.1.4 The Nature of the Traders 

The system consists of a number of identical agents; eacli trader is a simple rule based 

agent, which can respond to aspects of its environment to produce an action. Here the 
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environment that the agents are responding to is the collective behaviour of the market, 

and the response is a prediction of the next expected return from the stock, Ei^f This 

in turn motivates each agents demand for stock, which is met by the market maker 

imposing a clearing condition as described in the previous section (Section 4.1.3). 

Each trader has a set of sensors, represented by a Boolean string. These sensors 

indicate whether certain conditions have been fulfilled. In this simplified case we restrict 

the sensors to giving information about the present state of the market (i.e. no historical 

information, or averaging information). This greatly restricts the dynamics, and (in a 

stable population) will prevent technical or noise trading from taking place[5]. In this 

model a set of four sensor bits are used, each of which has the form 

5, = ' (4.11) 
1 otherwise 

> 

for levels Lj associated with each of the n traders. Each sensor is switched on (S,- = 1) 

only when the price-earnings ratio of the stock, expressed relative to that of the bond, 

exceeds a certain value. The implementational detail of the model is discussed in 

Section 5.2.1. 

Each trader then has a set of k rules whicli act on the sensors. Each rule acts as 

a predictive mechanism for a trader; upon certain environmental conditions being met 

(the market being in a particular state), the rule will make a prediction about the future 

state of the market, which is then used in calculating an agent's demand for the stock. 

Each rule takes the form of a trinary string, composed from the alphabet { 0 , 1 , # } . The 

symbol # is a wild card, interpreted as 'don*t care*. A rule is activated if i t corresponds 

to the sensor string, so a rule *10##' would be activated by sensor strings '1010* and 

lOir but not by *00ir. 

Each rule also has an extra pair of bits (the response bits), which determine the 
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response of the agent when the rule is activated. This response takes the form of a 

prediction of the return that the agent expects from the stock in the next trading 

period. The two response bits mediate the values of the relative and absolute change 

in the expected price plus dividend, i.e. 

Eipt^i + dt+i) = coipt + dt) + ci (4.12) 

The two response bits modify the relative and absolute predictor parameters, CQ and 

ci , respectively, according to the mapping shown in Table 4.1. 

Bit Value i CQ Ci 

0 I 1 - Co - C , 

# 1 0 

1 1+Co Ci 

Table 4.1: Mapping from response bit values to predictor parameter values. For 

example, a response bit pair 01 would give rise to a prediction E{pt+i + dt+i) = 

(1 - Co)(pt 4- dt) + C i , as per Equation 4.12. 

In the case where no rule is triggered, i.e. the sensor string does not match the 

sensory bits of any rule that a given trader possesses, that a trader will predict an 

unchanged return at the next time step, E{pt^i + dt+i) =pt + dt. 

In the simulations presented a minimal rule set is implemented; each trader consists 

of precisely k = 1 rule. Furthermore, in this market, a condition of heterogeneity is 

placed upon the traders; eacli trader has identical parameters Lj and Cj . This implies 

that in every trader Cj can take one of three values; there are a total of nine possible 

predictions (which will be described as behaviours) available to traders in the market. 

The parameters Co ,Ci are dependent upon the rules activated, which in turn are 

dependent upon the current state of the market. In this way the agents interact, because 
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their present behaviour is always dependent upon the prior collective behaviour of the 

entire population, as well as external environmental shocks. 

Each agent can therefore be represented as a trinary bit string, consisting of a list of 

the rules that i t contains. Suppose this list has / bits. As all the traders are identical in 

design, they are interchangeable. Describe the state of the system 0 as a 3' dimensional 

normal vector. Each element in the vector is the proportion of the population that has 

a particular set of rules. Such a formalisation rapidly becomes unwieldy as I increases. 

In Section 4,3 a low dimension approximation to this formalisation will be described, 

4.1.5 Comparison with the Implementation of Santa Fe Arti­

ficial Stock Market 

The Santa Fe Artificial Stock Market (SFASM) has already been introduced in Sec­

tion 1.3.1, as an example of meta-stable behaviour. The Simple Stock Market Model 

(SSMM) developed in this chapter is derived from the SFASM. Here, the quantitive 

and qualitive differences between these two models will be discussed. 

In most respects the SFASM and the SSMM are identical, certainly they both rely on 

identical market clearing and pricing mechanisms. The differences lie in the construction 

of the agents and the evolutionary algorithm: the SFASM agents are far more complex, 

and the evolution is carried out in a slightly different fashion. 

SFASM agents are classifier systems, as described by Holland [42]. Each agent has 

a set of rules, similar to those of the SSMM. Each trinary rule has a sensory string, 

similar to that of the SSMM. A rule is implemented if the sensory string matches current 

conditions, exactly as described in Section 4.1.4. However, the set of sensors used by 

agents in the SFASM is more extensive than those in the SSMM, agents are able to 

detect short term trends in the price of the stock (e.g. rising or falling price). This 
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enables technical trading to take place, where agents use the short-term market history 

to predict the next return from the stock. 

The responses that are possible from the rules are also more sophisticated than 

those in the SSMM. Each rule has response parameters that enable a prediction of the 

next return to be made, based on absolute and relative return changes, exactly as per 

the SSMM. However, the simple restriction of these parameters to nine possible values 

does not occur; in the SFASM these parameters are reals lying within a given range. 

Each rule within a SFASM agent is therefore a more sophisticated version of the rules 

implemented in the SSMM, 

The SFASM agents act as classifiers: each rule has an associated strength or fitness 

parameter. Each agent forms an expectation of the next return from the stock by 

taking a weighted average of the expectation of all rules that are activated by the 

current market conditions. The weights used are the fitnesses of the activated rules; 

rules with better predictive histories will have higher fitness. The expected next return 

of eacli agent is then passed to the marketraaker, exactly as per the SSMM. However, a 

single difference arises here: in the SSMM all agents are constrained to an identical risk 

function. This is not the case in the SFASM; each agent also passes a risk parameter 

to the marketmaker. This parameter is based on the variance of the set of predictions 

that its rules have made at that time step. 

After the market maker has imposed clearing,the dividend is revealed, as per the 

SSMM. The fitnesses of the individual rules is now updated, based on a least-squares 

error function. At regular intervals agents update their rule set by applying a genetic 

algorithm, using a fitness based selection to remove the weakest members of the rule 

set, and replace them with the offspring of stronger rules via a combination of crossover 

and mutation. 
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The evolutionary algorithm is different in several respects: 

1. In the SFASM, evolution takes place at a much slower rate than in the SSMM. 

In the SSMM the population is updated after every time-step, whereas in the 

SFASM the evolutionary algorithm is only applied every 250 or 1000 time steps, 

and asynchronously across agents. 

2. In the SFASM it is not possible for agents to learn by copying the successful 

strategies of other agents. The rule-set in each agent is an isolated population; 

mixing between agents never takes place. Whilst agents can develop identical 

strategies, they must do so in isolation. In the SSMM, the copying of successful 

strategies between agents constitutes a major part of the evolutionary algorithm. 

3. The SFASM implements a sexual reproductive algorithm, using the crossover op­

erator, whereas the SSMM only uses an asexual reproductive operator. However, 

mutation is implemented in both models. 

To conclude, the SFASM is a much more complex model. The implementation of 

the agents allows a much wider and more sophisticated range of agent responses to 

prevailing meirket conditions. The evolutionary algorithm is also quite different, and 

much more sophisticated. I t does, however, appear odd that no facility to allow mixing 

between the rule-sets evolved in separate agents. This means that agents cannot choose 

to copy the behaviours of other agents, all behaviours must be evolved separately in 

independent agents. 

The purpose of the models is however quite different. The SFASM was designed as an 

economic testbed, whereas the SSMM was designed to address issues of meta-stability. 

However, the grounding of the SSMM on the SFASM should lead to behavioural simi­

larities between the two models. These will be discussed in Section 6.3.2. 
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4.2 Dynamics of the SSMM: General Issues 

There are, however, a number of features of the expected behaviour of the SSMM that 

may be discussed before a detailed model of the behavioural dynamics of the market 

is built- The discussion of these more general features will inform the more detailed 

analysis presented in Section 4.3. 

4.2.1 Fixed Points and Attractor Basins 

Consider an evolutionary operator on the population consisting of fitness proportional 

selection plus mutation. In this case fitness will be assessed as the accuracy of an 

agent's prediction of the next price, using a mean-squared error measure (discussed 

further in Section 4.3.2). The fitness of an individual agent will then be some function 

of the composition of the entire population. How this might be formalised is discussed 

in detail in Section 4.3. 

I t is possible to write down the fitness of any particular agent at time t as a function 

of the vector <f>, i.e. as a function of the composition of the entire market^. This would 

enable one to write down a matrix operator for the evolution of the market, and solve 

for the eigenvectors, i.e. the fixed points of the markef*. 

This system is a Markov system, albeit a very complex one. The sensor string 

contains no historical information, so it does not appear possible for any technical 

trading based on trend analysis to take place. Arthur et al. [5] note that under this 

condition, the SFASM remains in a fundamental (h.r.e.e) trading regime. An initial 

expectation might therefore be that similar conditions would hold in the SSMM, the 

system is expected to remain in a fundamental trading regime, where the price of the 

^Although in practice this would be a complex and time consuming operation. 
^In this case the state of the system can be written as a finite dimensional vector. In the infinite 

case one could write down a differential equation. 
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stock reflects its true or fundamental value. 

I f the time evolution of the system is followed, under any sequence of stock dividends, 

one might expect that the market would converge towards the h.r.e.e. price, the price 

that classical economic theory predicts that the market should adopt. Even if this is the 

case, and for example, the system exhibits rational (h.r.e.e) behaviour between periods 

of over or under-pricing, one should be wary of positing a single underlying causality 

to this behaviour. I t is quite feasible that a single observed behaviour (such as an 

h.r.e.e regime) might result from more than one attractor in the space of population 

distributions, in a similar fashion to the multiple nucleus-shield combinations which 

Lomborg [56] observed in the iterated prisoners dilemma game^. 

This does not imply that there is necessarily a single attractor within the space 

of population distributions. There may be multiple stable population distributions, 

each of which gives rise to a fundamental trading regime. Meta-stability may still be 

present, in the form of transitions between these population distributions, caused by 

stochastic!ties inherent within the adaptive process. 

Suppose there are a number of possible attractors, ( />i , . . . <f>mi eacli of which is a pop­

ulation distribution across the N possible trading agents; each attractor will correspond 

to a particular distribution of the infinite population of traders between the possible 

rules**. Given a particular initial population distribution (^(0), and a given sequence 

of dividends the system will evolve towards one of the attracting states. Assume 

Ŝee Section 1.3.2. 

*'There may appear to be a discrepancy here because it has previously been stated that there are a 

limited number of units of the stock available. As long as the ratio of stock units to trader numbers 

remains finite in the infinite limit, then the description of the system remains vcilid. If the market has 

a large enough population of traders compared to the mutation rate of traders, then it should behave 

as an infinite system would, i.e. sampling fluctuations in mutation and selection should have no effect 

on the evolution of the population. 
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that, as per a Hopfield net, that there is a time ta corresponding to the maximal time 

for the system to reach a state from which its limit attractor is independent of the 

sequence D , i.e. the time after which the system will be so deeply within the basin of 

some attractor that escape is impossible, whatever the sequence of dividends from that 

time onwards. To affirm the existence of such a time ta is merely to say that selection 

pressure is sufficiently strong that the system will enter an attractor basin, and once it 

is close enough to the attractor, it will be unable to escape, because i t is close enough 

to an h.r.e.e. state, and will (in the limit) converge to the attractor. 

One must be clear as to what i t means for the system to be at, or close to an 

attracting point. One would not expect the agents to be identical, a stable market may 

consist of agents predicting in differing ways, and who (by the nature of their rule sets) 

are prepared to accept differing amounts of risk. Neither would one expect each agent 

to converge to a fixed holding in the stock, dependent upon the risk they are prepared 

to accept. Rather, one would expect trading to occur, albeit at low volumes, as traders 

update their optimal holdings of the stock under the influence of the run of dividends. 

Effectively, the stochastic sequence of dividends provides noise in the optimal holding 

algorithm for each agent, which is then reflected in low volumes of trading as agents 

update their positions. 

4.2.2 Observable Dynamics with a Non-Evolving Population 

Consider a population of n agents selected at random. In the absence of any initial 

bias towards any particular area of the genome space, the population will be uniformly 

distributed across the genome space. Given such a population, how will the price and 

trading volume of stock vary under the dividend series? 

For the purpose of the analysis, place a partial ordering on the levels at whicli the 
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various bits in the sensor string are triggered, i.e. Li < L2 < L;^ < The population 

can now be divided into three segments. 

1. There will be a subset of the population, X whose rule is never activated. In 

order to be activated a rule must matcli the sensor string. Any rule whicli has, as 

part of the match string, one or more O's followed by one or more I's will never 

be activated, since under partial ordering of the sensor bit trigger levels, such a 

sensor string will never occur. This portion of the population can be estimated 

using standard probability theory; in the general case for a string of I sensor bits 

p[x e X ) = 5 ^ p ( V j < i : 5j ^ 0).p(5i = 0).p(/c > i : 3A:.Sfc = 1) (4.13) 
i=l 

Assuming that there is no differential expression of alleles across sites, i.e. Vz, jvi^i = 

k) = p{Sj = A;), this can be rewritten as 

p{x &x) = Y,p{Si ^ oy.p(Si = 0). 'J'PIŜ  ^ oy .p(5,- = 1) (4.i4) 
1=1 j=0 

In the present case, where all alleles are equiprobable at every site, and where 

/ = 4, p{xeX) = 11/27. 

This proportion of the population will never match the sensor string, and will 

thus always return E{pt^i -\- dt+i) =Pt + dt 

2. There will be a second subset of the population, Y whose rules can be activated, 

but which does not respond to the particular sensor string presented. I t is a simple 

task to estimate the subset of the population which will respond to a sensor string 

with k bits set. 

p(fc) = p(5i ^ 0)'=.p(5i ^ 1)'-* (4.15) 

^This ordering makes no difference to the result gained, but eases the effort needed to develop the 

analysis. 
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Under the current assumptions, the size of the subset of the population whicli is 

triggered is independent of the number of bits in the sensor string that is activated. 

One cannot easily estimate the probability that a trader is in K, because not all 

traders have equal generality, e.g. 0000 will only respond to one signal, whereas 

will respond to any signal. We shall estimate Y as the subset of the 

population not in any other subset. 

3. Finally there is a segment of the population, Z which is triggered by the sensor 

string that is presented. Equation 4.15 gives the probability of this happening 

given a sensor with the first k bits set. Note that the probability of a trader being 

activated is independent of the sensor string presented to the population. 

P{x eZ) = (4.16) 

Wi th / = 4, p{x £Z) = 16/81. This leads to an estimate of p(x € K) = 32/81 in 

the present case. 

Note that the majority of the population will not have a rule activated at any 

particular time, the probability that a member of the population will not have a rule 

activated is 1 — ( | ) ' , which is a monotonically increasing function of /, so the larger / 

becomes, the smaller the proportion of active rules within the population. 

Amongst the subset of rules that have been activated, one may easily show that 

there is a uniform distribution of expectations E{pt^i + dt+i) across the 9 different 

possible response strings. From this, one can calculate the moments of the distribution 

of responses to any price and dividend combination in the subset of the population 

whose rules are active, by consideration of all the possible cases, and making a maximal 

entropy assumption of a uniform distribution between possible responses. 

E:,^z(pM'^dt+i) = c^iPt+dt)+cI (4.17) 
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4 . , . = {l)'l^t{oo{pt + d,) + c,-E{p, + d,))' (4.18) 
/ 1 n 

I 
t=0 

The design of the traders has already been discussed in Section 4.1.4. By definition, 

Co = 1 and = 0. This leads to the following expression for the expected next return: 

E{pt+i+dt+i)=pt-\-dt (4.19) 

To gain an expression for a | , recall that the active rules fall into 9 (equiprobable in 

the infinite l imit) categories. By considering all the possibilities and simplifying, the 

following expression is gained. 

<Tl = {l)'^'{Cl{p, + dt) + Cl) (4.20) 

This is an interesting result, because i t deals with the expected behaviour of a 

large population of randomly selected agents. Whilst the agents' expectations of the 

return from the stock will vary, some predicting a higher return, and some predicting 

a lower return, the mean expectation (given in Equation 4.19) will be of an unclianged 

next return. This can be substituted back into Equation 4.6. In the absence of an 

evolutionary algorithm, the population distribution will remain unchanged. Here the 

price of the stock will fluctuate about a constant level, mediated by fluctuations in the 

dividend sequence. The long-term average of the actual return and the expected return 

will converge, because the dividend sequence has a well defined mean. Hence (following 

Arthur et al. [5]), the agents expectations are rational, and on average will be upheld 

by the market. The resulting price sequence will therefore be in rational expectations 

equilibrium: the resulting price is the h.r.e.e price. 

The particular interest in this result is that i t also corresponds to what one would 

expect from an efficient market where all available information about future returns is 

immediately incorporated into the price of the stock; the best prediction of tomorrow's 

price is today's price. Here a similar phenomenon is noted, not because the agents are 
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capable of making good predictions which will be reflected in the price, but because of 

their absolute lack of predictive ability. This is because the lack of adaptation means 

that agents are unable to copy successful strategies. 

Note also that the volume observable will be bounded from below by a%. In this case, 

a higher volume than the h.r.e.e, volume should be observed, because the population 

is not homogeneous, but has a distribution across expectations, 

4.2.3 Existence of Multiple Fixed Points in the Population 

Space 

In the above section, the collective dynamics of a non-evolving population have been 

explored. Here the population dynamics of the system under an evolutionary pressure 

will be considered, according to the simple asexual schema presented in Section 1.2.3. 

Whilst one might expect to find one or more fixed points in the population space 

corresponding to the fundamental regime in the observers, no proof to this effect will 

be presented, although it is a reasonable suggestion. If the combination of mutation 

rate, selection pressure and dividend persistence is appropriately balanced, then the 

mean reverting behaviour will be sustained, and the (large) portion of the population 

that (for whatever reason) predicts that the return will remain constant will have high 

fitness. 

In the following argument, one particular possible scenario is used as an example. 

This does not affect the generality of the argument; substitution of appropriate terms in 

other examples will lead to identical results. This particular example is chosen because 

it is easily comprehensible. 

Consider a homogeneous population, whose response bits are all set, so that the 

population only responds if all sensory bits are set, i.e. pt > L3. Consider also that the 
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price is such that the traders' rules \vill be activated. The argument will be developed 

as follows. First i t will be shown that in the absence of mutation there may exist stable 

prices. FVom here it will be shown that a heterogeneous population may be stable under 

both selection and mutation. 

Lemma 4.2.1 For a homogeneous population of agentSj there exist expected price levels 

corresponding to each possible set of rule bits, provided that the sensory bits of the 

population are appropriate to the expected price level. 

Proof. 

The proof proceeds by solution for expected price levels. The appropriate sensory bit 

sets for a particular level will then be stated. 

Consider a homogeneous population whose sensory bits are sucli that the rule fires. 

The expected next price plus dividend will be today*s price plus dividend when 

E{pt^i + dt+i) = coipt + dt) + ci (4,21) 

Where Co,Ci represent the appropriate adjustment constants for the relative and abso­

lute price change under the sensory bits of whatever the population's response bits are. 

Now, all agents will respond identically. Recall Equation 4.6 

P t + i = P t = ^ 1 T — (4.22) 
V R ;1+r 

Where the homogeneous risk term is R, Substituting 4.21 into 4.22 

At equilibrium, pt+i = pt\ there is no temporal ambiguity, write the expected dividend 

as 5, and the expected equilibrium price at this dividend level as p 

_ cop + cod + ci - i2 
p = ^^'^^^ 
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Rearranging this equation gives a solution of p 

P = t ^ r i ^ (4.25) 1 + r - Co 

Now this price is the expected price of the stock in a market of homogeneous agents 

whose sensors are active. This demonstrates the behaviour of the population in the 

fundamental regime; i f the expectation is that the return will remain constant, the 

price will be dependent upon the dividend sequence. 

The mean stock price levels, poo, • - • • . . ,pir for homogeneous populations with 

appropriate sensor bits, and the relevant response bits may now be established. For 

each of the possible price equilibria,p5S,... . . • ,Pu, i t is a simple matter to work 

out the set of possible sensor bits within the genotype which will activate the rule, and 

therefore the possible genotypes within a converged population. 

Corollary 4.2,2 There exist fitness neutral areas within the genotype space. 

Proof. 

This follows from the fact that any 1 or 0 may be replaced by a # within the sensor 

bits, without altering the activation of a rule, i f the dividend remains within a limited 

range®. Hence some of the fixed points in the population space do not correspond to 

unique sensor bit strings, but rather to connected® regions of the genotype space. 

4.3 Formalisation of the Artificial Stock Market 

Here a formalisation of the expected dynamics of the simple stock market model that 

has been put forwards in Section 4.1 is presented. The fundamentaJ properties of the 
î.e. small enough that the sensor string presented to the agents does not vary over time. 

^Under 1-site mutation. 
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behaviour of the market, and of market observables (price, p^, and trading volume, Vt) 

are considered from a statistical dynamics perspective in a large (i.e. effectively infinite) 

population, implementing the behavioural dynamics approach detailed in Section 3.1.1. 

Prom there, an argument is developed as to the expected finite population dynamics of 

the population, and of the observables of that population. 

The population can be completely characterised by a 3*̂  = 729 dimensional vector 

of the frequencies of each possible genotype. However, as this is unwieldy to work 

with, a behavioural formalisation will be adopted, as put forward in Section 3.1.1. The 

formalisation described here could be generalisable to a more complex system. In this 

case, there are 9 possible behaviours that an agent can adopt. However, the system 

will be characterised by a 10, rather than 9 dimensional vector, in order to ease the 

forraalisation of the mutation operator. The entries in the vector give the frequencies 

of each of the response classes within the population. Alternatively, the entries in the 

vector may be thought of as the probabilities of a trader lying in each of the response 

classes. Split the response of no price chajige into two, the first entry reflects the 

probability of a trader having a sensory string that does not match (describe this state 

as unresponsive), and the second being the probability that an agent has a sensory 

string that matches, and then predicts an unchanged next return. This formalisation 

is adopted to ease analytic tractability, otherwise i t becomes difficult to estimate the 

transition probabilities in the mutation operator. 

4.3.1 The Mutation Operator, M 

Assume that within each response there is a uniform probability of any genotype being 

found. Define the operator ^ as the probability of a trader remaining in a responsive 

^°i.e. in any of the states apait fi-om unresponsive. 

10 
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return state, and the operator v as the probability of moving from aji unresponsive 

return state to a responsive state, under the action of the mutational operator. The 

underlying assumption used here is the 'mixing assumption* of Prugel-Bennett and 

Shapiro [70], which is discussed in Section 2.2.2. Under certain conditions, especially 

where the population size is small and the selection pressure is high, this assumption 

may be unwarranted; the population within any behavioural class may be clustered 

around some particular genotype. This point has already been raised in Section 3.1.2. 

There are four possible transitions that maintain correctness: 0 -> {0, # } , 

1 { ! , # } , # { # , ! } , # { # , 0 } . Given a # i t is unknown a priori whicli of 

the two possible responsiveness maintaining mutational trzinsitions is appropriate, but 

i t does not affect the formulation, as all correctness maintaining mutations have the 

same probability, 2/3, of maintaining correctness. Hence a simple binomial gives the 

probability of responsiveness being maintained. 

. = | a - » . ) - ' m ' ( ! ) E 
x=0 

where / is the number of bits in the response string. The derivation of i / is a little more 

involved. In a similar manner to ^, each transition that transforms an incorrect allele 

to a correct one for the system to respond, has a probability of 2/3 of occurring during 

a mutation. For a mutation to turn an unresponsive genome to a responsive genome, 

two things must happen: 

1. Al l incorrect alleles must be transformed to correct alleles. 

2. Al l correct alleles must remain correct. 

Given that there is at least one incorrect allele, the probability of i correct alleles is 
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matrix operator 

1 - 1 / I//9 . . . 

P fiaQ ^ai fiai fiai /xaa /xaa /J.ai fia2 

fiai fia2 ii(X2 

lia2 

f^0£2 

fJ'0i2 

fxa2 

Iia2 iia2 

^2 ^2 

^ 2 fJ'OCl 

(4.32) 

4.3.2 The Selection operator, S 

The fitness of an agent in with response i is given by 

/ ( i ) =1 Eiipt+i + dt+i) - (Pt+i + dt+i) (4.33) 

where a lower value of f{i) indicates higher fitness. 

Whilst the dividend at the next time step, dt^i comes from a stochastic process, the 

price at the next time step, pt+i does not; i t is due to the interaction of the agents, in 

the form of their demand for the stock. This in turn is dependent upon the composition 

of the population, and their predictions of the next return. Recall the pricing equation. 

4.6: 

(4.34) 

The expected return Et^i may be written in terms of the composition of predictions in 

the population 

N 

1=1 
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Figure 4.1: Roulette wheel selection scheme. The classes are ordered by descending 

fitness, and placed on the x-axis. The probability of selection of a given class is given 

by the corresponding portion of the area under a negative exponential function with 

selection gradient o. These areas must then be normalised to sum to 1. 

»=i 

(4.35) 

Substituting this term in 4.34 gives 

P, = (5(5=11^!^ - , ] - f (4.36) 

which explicitly shows the dependence of the next price upon the constants Co.i and ci,j 

as well as the distribution of the population between the response classes i. 

The selection method used is a variant on the Boltzmann selection method, as used 

by Prugel-Bennett & Shapiro [69]. In the Boltzraann selection method, an exponential 

weighting is given to agent fitnesses; this exponential weighting gives the relative area 

of partitions in a roulette wheel which is used to select agents. 

Here a variant on the Boltzmann selection scheme is used. Rather than directly 

use exponentially weighted agent fitnesses to construct a roulette wheel, the ordering 
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of agent fitnesses is used to construct a roulette wheel. This might be described as 

Boltzraann selection on rank. The procedure is implemented as follows. 

The population distribution Pt may be considered as a vector of the 10 response 

classes, with components Pt,i, where the response classes are in an order i , the ordering 

described in Section 4.3.1. Given that an agent may only respond in a limited number 

of ways (the 10 possible response classes), Equation 4.33 can be used to give the fitness 

of the response classes at any point in time. Because the fitness of eacli class is known, 

an ordering i* can be constructed, arranging the response classes from lowest fitness 

(most fit) to highest fitness (least fit). 

Figure 4.1 shows the nature of a roulette wheel selection scheme. The ordering 

of the classes by fitness determines the order in which they are assigned divisions in 

the roulette wheel, and the width of the roulette wheel division is determined by the 

position in the ordering and the frequency of that class within the present population. 

This is expressed mathematically in the following equation: 

Here the integral term gives the relative size of division i* of the roulette wheel, 

and the initial term before the integral is a scaling term to ensure that the divisions 

in the wheel sura to 1 (see Figure 4.1). I f two or more fitness classes share the same 

fitness, the selection probability of these classes is determined by allocating them a 

single division in the roulette wheel, with a width determined by their joint probability, 

and then splitting this division according to their relative sizes. 

Whilst this selection method is undoubtedly more complex to implement than 

the Boltzmann selection method, i t has a single advantage: The Boltzmann selection 

method is directly dependent upon agent fitness; changing the fitness of an agent (or, 
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as would be the case here, all agents in a particular response class) will change the 

fitness of every agent. This is not the case here, the selection operator is insensitive to 

small variations in the fitnesses of response classes, due, for example, to small changes 

in the dividend paid by the stock. What is of importance here, is the ordering of the 

fitness classes, from lowest to highest fitness. Given the values that CQ and Ci take, i t 

is possible to enumerate all the possible orderings z*, under various conditions of price 

and changing return. 

4.3.3 The Evolutionary Operator 

Finally, one can combine the effects of the mutation and selection operator. At a fixed 

point 

P = MS{P) (4,38) 

This equation is beyond reasonable analytic tractability. However, by making assump­

tions about the range in which p lies, one can fix the ordering i* of the equivalence 

classes for fitness (given a matrix C of values Cij which determines the response of eacli 

class). As stated above in Section 4.3.2, i t is possible to calculate the ordering of the 

response classes for any price and next return. 

Of particular interest are solutions which give stable price levels, i.e. population 

distributions for which the expected price lies within the range for which the ordering 

of the response classes is valid. This is because the SFASM [5] shows sustained over-

and under-pricing regimes edongside a fundamental regime. Whilst one might expect 

to locate a fixed point in behaviour-space corresponding to a fundamental regime, the 

behaviour of the SFASM gives rise to the possibility that other fixed points in the 

behaviour space, corresponding to over and under-pricing regimes may in fact exist. 

In practical terms, the procedure is to assume that the next return will be identical 
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to the present return. This is an assumption that the effect of the dividend sequence is 

negligible^^ Under this assumption, i t is possible to calculate all the possible orderings 

of the response classes, and the price ranges across which they are valid. I f a numerical 

solution for a fixed point in behaviour space can be found, its corresponding expected 

price can be calculated. This can then be checked to see if i t lies within the price range 

for which that fitness ordering is valid. 

At a fixed point in the behaviour, the population distribution P is fixed, hence 

the expected return will be fixed also. The ordering of the response classes z*, may be 

written down: the fittest response classes will be those that predict no change; the other 

response classes will be arranged in equal fitness pairs, predicting equal but opposite 

price movements. The ordering of these pairs will , however, be dependent upon the 

expected price level of the fixed point. The selection pressure. A, the mutation rate 

m, and the parameters of the agent coding (Co,Ci,i2) and of the market ( r) are all 

fixed. Hence one can reduce Equation 4.38 down to ten simultaneous equations in ten 

unknowns, which we may be able to solve numerically using specialist software. 

I f the dividend is clamped at its mean value, then the numerical solution will give 

the stock price and trading volume at that dividend mean. This may then be compared 

to the trajectory of the system through the price-volume space. 

4.4 Finite Population Dynamics 

The system dynamics in the effectively infinite limit has been considered above. The 

population, whilst not infinite, is large enough that sampling fluctuations can be ig­

nored. One can consider that under any given time series of dividends, the population 

^^Occasionally, the dividend sequence may be capable of changing the fitness ordering i* of the 

response classes, and triggering metarstability. 
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will be undergoing deterministic transitions between consecutive states. I t would in­

deed even be possible to rearrange the system in a continuous time form: the difference 

vector operator governing the evolution of the system would become a differential ma­

trix operator. The difference system that is under consideration at present would be a 

Poincarr6 section of the differential form. 

The move from an infinite to a finite population may have many effects. In Sec­

tion 2,2.2 i t was noted [69, 70] that a finite population can induce clianges in higher 

order cumulants of order parameter distributions. This can alter the fixed points of 

the system (consider, for instance, Equation 2.37). Small finite populations can make 

sampling fluctuations important in determining the fixation of alleles within the popu­

lation. 

In a Markov system such as the SSMM, where the trajectory of the system is de­

scribed by an operator with a one-step temporal dependence, acting on the population 

distribution, the differences between the finite and infinite population versions of the 

system are twofold. First, a stochastic element is introduced into the evolution of the 

system, and second, the system is constrained to a subset of all the possible states 

available to an infinite population. In this particular case, the formalisation of the 

system has no dependence upon population size; here the finite population case will be 

modeled as an infinite population with an additive noise term. 

The stochasticity enters the system because for a finite system, especially a finite 

system with a small number of elements, the fundamental axiom of probability no 

longer applies. This means that i t is no longer possible to derive (using the evolutionary 

operator) an expected population distribution for time < + l given the population at time 

t, and assume that the population will take on this distribution. Rather, the expected 

population distribution at time t -f-1 must be treated as a probability distribution: in 

152 



order to gain the population at time t + 1 this distribution must be sampled from. The 

population distribution of the sample thus obtained becomes the population distribution 

for time t+l. 

The main effect of this is the reduction of the stability of the system. To recap 

Section 3.3: Whilst the attractors of the system still are attracting, and the infinite 

l imit dynamics are unchanged, there is now a finite probability that from any given 

point in the system, the next point obtained (via the evolutionary operator acting on 

the present population of traders, followed by the sampling process described above 

being applied) will not lie in the same attractor basin. In other words, one can no-

longer talk of stability, only meta-stability. I t is now only a question of time until the 

population shifts between attractor basins. We would thus expect to see the population 

of traders undergo catastrophic shifts between particular population profiles. Of course, 

one would not expect the population to retain any particular profile even during the 

meta-stable epochs, rather to retain a profile close to (and within the attractor basin 

of) the particular attractor. 

This reduction in the stability of the system is augmented by positive feedback 

effects that are possible, due to the interactive nature of the population. Eacli trader 

determines their optimal holding based on a combination of private factors (such as 

the willingness to take risks) and a number of publicly available indicators (the last 

dividend posted and the current stock price). In turn, the stock price is governed by 

the supply and demand for the stock. Changes in the stock price can alter the response 

of traders, because the conditions that trigger their rules may alter. This in turn affects 

the demand for stock by agents, which influences the price. The positive feedback here 

may in some circumstances trigger avalanches of market and evolutionary activity. 

I f the population of traders is restricted to some finite number, S say, then each 
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element of <l> is restricted to a value i / 5 , z G { 0 , . . . , 5 } , and still subject to the normality 

condition. The sampling process described above will guarantee that the population will 

always lie on the lattice. However, there is no such restriction on any of the attracting 

fixed points within the system. I t may not be possible for the population to ever gain 

the attractor, because the attractor does not lie on the lattice. 

To conclude, the finite population dynamics of the simple neo-classical market de­

scribed above are expected to show meta-stable periods where the population lies close 

to*^ one of the infinite l imit attractor profiles. These meta-sfcable periods will be sepa­

rated by catastrophic changes, where the population rapidly shifts between raeta-stable 

profiles. Note that in the system described above, one would expect all the attractors 

to produce similar market behaviour; a tracking of the fundamental value of the stock 

by the market. In the finite case there may be fluctuations of the price around the 

fundamental value associated with the failure of the system to actually reach, and stay 

at the attractor. There may also be transient fluctuations in stock price and trading 

volume associated with the catastrophic transitions between meta-stable epochs. 

Under some convenient metric. 
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Chapter 5 

Simulation Results 

5.1 Introduction 

In the previous chapter, a simple model of an artificial stock market has been put 

forward. The model is a simplified version of the Santa Fe Artificial Stock Market, 

which has been cut down to try to aid analytic tractability. This has involved retaining 

only those agent sensors that track the present price of the stock, removing any historical 

dependencies from the model. The adaptive process within the agents has also been 

altered, individual trading strategies now compete with each other across the entire 

population. The replacement strategy has also been altered to asexual cloning plus 

mutation. This (in the limit of an infinite population) is equivalent to a diffusion 

process across a potential field. In the previous chapter, an analysis of this simplified 

stock market model has been put forward and statistical dynamics approximations 

based upon behavioural order parameters have been used reduce the dynamics of the 

system to a tractable number of dimensions. 

In this chapter, the results of a computational implementation of this model will be 

presented, in order to allow an evaluation of the analytic approach put forward. This 
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chapter is organised as follows. First there is a qualitative discussion of the behaviours 

observed in the model. Next there is an examination of the dynamics of the model; 

comparisons are made between the observed dynamics of the model, and the dynamics 

predicted under the analytic formalisation given in Chapter 4. In this discussion the 

effects of population size upon the dynamics of the model are discussed. 

5.2 Overview of the Qualitative Features of the Sim­

ple Stock Market Model 

Recall the basic premise of this study, put forward in Chapter 1: various studies of 

systems involving the interaction of adaptive agents appear to show sudden transitions 

between behavioural regimes. These transitions appear to be the result of sampling 

fluctuations in a finite population under an adaptive pressure. The stochasticies implicit 

in the exploratory element of adaptation are compounded by the positive feedbacks 

implicit in the exploitative element; these two combine to magnify the instability of 

the system, so that sampling fluctuations remain significant in quite large populations. 

In a stock market model, such as the SFASM [5], three basic behavioural regimes are 

observed: a fundamental regime where the price of the stock agrees with that predicted 

by classical economic theory; an over-pricing regime; and an under-pricing regime. The 

transitions between these regimes appear to be sudden, and without obvious cause. 

I t is posited that the transitions between these basic regimes are caused by sampling 

fluctuations within a finite population, compounded by external shocks to the system 

in the form of an AR(1) process dividend sequence. A simple model of an artificial 

stock market has been constructed to try to further examine and understand these 

phenomena. 
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5.2.1 Implementation Details 

The market consists of a population of N adaptive agents trading against each oth­

er. At time t they produce demands for stock at time i -h 1, given knowledge of the 

current market conditions, expressed in terms of four binary sensors (see Section 4.1.4 

for details). The activation levels of these sensors 5 i , . . . , 5 4 are set at 0.5,0.7,0.9 

and 1.1 respectively, unless stated otherwise. Al l agents have a uniform risk aversion 

R set at i? = 1.3, unless stated otherwise. The agents* predictions are based upon 

the two response bits of their genome, response parameters to bits 0, # , 1 are set at 

Co = 0.9,1.0,1.1 and Ci = -0.5,0,0.5 respectively. The dividend dt is based upon an 

AR(1) process, with mean d = 10, and autoregressive constant p = 0.95 , the driving 

random variable being Gaussian, i.i.d. (all samples taken from independent identical­

ly distributed random variables) with zero mean and variance = 0.074. The bond 

has a price of 1.0 and pays an interest of 0.1. The selection process operates every 

ts = I time period, replacing the entire population with a new population drawn from 

a random sample of the old population under a roulette wheel selection scheme, where 

individuals within the population are ranked by mean squared prediction error, and 

assigned selection probabilities according to a negative exponential distribution, with 

selection constant A = -0 .01. The new population is then subjected to mutation, with 

an independent mutational probability at every site in each member of the population, 

m = 0-03. 

Simulations were conducted at a variety of population sizes, with 10, 20, 50, 100, 

200, 500 and 1000 agents in the market. At all population sizes a total of 20 replications 

of each simulation were performed. 

The results shown in this section are selected to give the reader a feel for the be­

havioural dynamics of the system, and to point out in a qualitative fashion the salient 
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features which will be analysed in a quantitative fashion in later sections. Unless specif­

ically stated otherwise, the results shown are typical of the dynamics of a population 

of the described size. 

5.2.2 Market Dynamics in Small and Large Populations 

Consider first Figure 5.1. This shows the dynamics of a population without a driving 

adaptive force. In this, and all other references to a non-adaptive population, the 

population size is 1000 agents; a larger population should have a behaviour closer to 

the infinite l imit dynamics (especially in the non-adaptive case). In all other cases the 

population is adaptive. Because the population remains constant, the dynamics here 

are driven only by changes in the dividend series. The distribution of the threshold 

levels on the sensors is sufficiently wide that changes in the dividend series do not cause 

the active sub-population of adaptive agents to vary. 

Now consider the behaviours of adaptive populations across a range of population 

sizes. Whilst simulations have been carried out at a number of differing population 

sizes, here time series are shown for large (A^ = 1000), medium {N = 100) and small 

TV = 10 populations, in order to illustrate the behaviour of the SSMM across a range 

of magnitudes of populations. Figures 5.2, 5.3, 5.4 and 5.5 show these times series. 

First consider system behaviour for a large population (Figure 5.2). As population 

size increases, the behaviour of the system approaches the expected behaviour in the 

infinite l imit. As the population size increases the dynamics of the price-time series more 

closely match the dynamics of the dividend time series. Within an infinite population, 

one would expect the price of the stock to reflect the dividend at any point in time, and 

thus the price series to follow the dividend series (Section 4.3.3). This is not completely 

the case here, although major shocks in the dividend series are reflected in the price 
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Price Volume 

Dividend Residual 

Figure 5.1: Time Series for the SSMM, with a population of 1000 agents. There is no 

adaptive pressure in this case, the population remains unchanged throughout the run. 

The four series shovirn are all taken from a single run of the model. Clockwise from Top 

Left, they show Stock Price, Trading Volume, Residual and Stock Dividend. 
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Figure 5.2: Time Series for the SSMM, with an adaptive population of 1000 agents. 
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Price Volume 

Dividend Residual 

Figure 5.3: Time Series for the SSMM, with an adaptive population of 100 agents. 
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Price Volume 

Dividend Residual 

Figure 5.4: Time Series for the SSMM, with an adaptive population of 10 agents. Here 

repeated bubble and crash events, in both upward and downward directions can be seen. 

These bubble and crash events are taken as separate regimes from the fundamental 

regime, and their existence provides evidence of metarstable behaviour. 
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Price Volume 

Dividend Residual 

Figure 5.5: Time series for the SSMM, with an adaptive population of 10 agents. In 

contrast to F i p r e 5.4, no bubble and crash events are observed here. The stock price 

approximates the dividend sequence, albeit with more noise than is observed in a larger 

population, such as in Figures 5.2 and 5.3. 
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series. 

In the case of a small population, a very different picture (Figures 5.4 and 5.5) 

is seen. Here the population has been reduced to 10 individuals. In Figure 5.5 the 

price sequence follows the dividend sequence in an approximate manner. Sampling 

fluctuations in the population distribution obscure the dependency of the price sequence 

on the dividend sequence. In contrast, in Figure 5.4 bubble and crash events are seen, 

where the price sequence accelerates away from the fundamental regime, either in an 

upwards (over-pricing) or downwards (under-pricing) direction. This is followed by a 

crash where the price of the stock suddenly reverts back to the fundamental regime. 

The cause of such events will be studied further in Section 5.3.4. These events have 

been observed in a number of runs of the SSMM at small population sizes. Whilst 

they are most clearly visible and occur most often in the smallest population size (4 

occurrences in 20 runs at population size 10), they have also been seen at population 

sizes 20 (2/20 runs) and 50 (1/20 runs). 

These are interesting phenomena because there is no historical information included 

within the sensory information available to agents. Arthur et al. [5] claim that in the 

absence of such historical information, technical trading phenomena such as over- and 

under-pricing regimes are not possible. These claims will be evaluated in Section 6.3.2, 

in the light of the results presented here. 

The interpretation that will be placed upon these phenomena is that they are driv­

en by stochastic fluctuations within the population. Such a fluctuation can move the 

system out of a fundamental regime into an over- or under-pricing regime. This mis-

pricing regime will persist until either a second fluctuation shifts the population into 

another regime, or the price of the stock readies a level at whicli demand is limited by 

the agent's risk function. At this point any agents predicting an unchanged price will 
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suddenly be favoured, and the demand will slacken, precipitating a price crash. This 

phenomenon can be seen in the price boom centred around t 170. Note also the 

apparent linkage between price and volume. Informally, the volume appears low when 

the price is at a median level; increases in trading volume correspond to price trends 

away from this level. These linkages will be interpreted in terms of fundamental, over-

and under-pricing regimes in a following section (5.3.3). 

Within a medium sized population (Figure 5.3), a combination of both effects are 

seen. The price sequence follows the dividend sequence for much of the experimental 

run, but there are periods when this dividend following behaviour is not seen. For 

instance, in the period t = 100.. . 230 an over-pricing regime is observed. This appears 

to be an example of the meta-stable phenomenon that is postulated. 

A comparison between the market's behaviour with large and small population 

reveals several major differences. First, the range of variation of the time series appears 

to be inversely correlated with population size: the price range and volume range is 

much greater in a small population (Figure 5.10) than in a large population (Figure 

5.2). Second, the small population appears to exhibit far greater behavioural changes 

than the large population: i.e. the rate of change of all the time series is greater in 

the small population than the large population. Again, these issues will be explored in 

greater depth in a later section. 

5.3 The Market as a Dynamical System 

In a previous section (4.3), a statistical dynamics formulation of the dynamics of the 

SSMM has been put forwards, and the component parts of the evolutionary process 

implemented (asexual reproduction with mutation) have been examined. This formu­

lation enables the market to be considered as a dynamical system in a 10 dimensional 
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space of population distributions; the components in each dimension representing the 

proportion of the population exhibiting each of the 10 (mutually exclusive, and there­

fore orthogonal) possible behaviours. This presents the possibility of using numerical 

methods to solve for the simple fixed points of the system. 

P* - MS{P*) = 0 (5.1) 

Before attempting such a solution, the statistical dynamics formulation was validat­

ed, using information theoretic methods. 

5.3.1 Cross-Entropy validation 

I t is important to confirm the accuracy of any proposed formalisation before a com­

putationally intensive numerical solution is proposed. In this case, a simple method is 

available. The cross-entropy (sometimes known as the I-divergence or Kullback-Lieber 

distortion) provides an error measure^ for estimates of probability distributions. I t is 

given by 

D c . = £ p ( x ) l n ^ d x (5.2) 

where p is the true probability distribution, and q is the estimated probability dis­

tribution. In the discrete case, over partitions, this reduces to 

DcE=EPii^)^^^ (5-3) 

The cross-entropy is positive definite if p ^ ^, and zero i f and only \ f p = q. 

* As the cross-entropy is not symmetric it cannot be a metric. 
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In pure information-theoretic terms, the cross-entropy can be interpreted as the 

additional information rate needed to transmit a signal whose symbols have probability 

distribution p, i f only an estimate q of their distribution is available. 

Given a sequence of behavioural class population distributions from the simulations, 

the theoretical formalisation of the system can be validated by comparing the formali-

sation*s prediction for the population distribution at the next time step, with, the actual 

population distribution, using the cross-entropy measure. The hypothesis underlying 

this thesis is that sampling fluctuations in finite populations modulate the dynamics of 

populations of interacting adaptive agents: as the population size increases, one would 

expect the mean cross-entropy to tend to zero, because the sampling fluctuations will 

decrease, becoming zero at the infinite population limit. 

The existence of this convergence can be used to validate the mathematical and 

computational formalisation of the system. If the mean cross-entropy does not converge 

to zero as population size increases, then there is a divergence between the model 

behaviour and the prediction of that behaviour. This indicates either a problem with 

the mathematical formalisation of the system, or in the computational implementation 

of that formalisation to be used in finding a numerical solution. 

Here the distribution of the population between the response classes in the prediction 

is used as p and the actual distribution is used as 7 in the equation for the discrete case 

(Equation 5.3). The mean cross entropy based on every step (500 steps implies 499 

predictions) of a single run has been used to produce the results shown in Figure 5.6. 

By contrast, in Figure 5.7, the results are taken across a set of 5 runs at each population 

size. 

I t should be noted that the convergence of the model's behaviour and the analytic 

forraalisation is no guarantee of the accuracy of the analytic formalisation: i t is possible 

167 



Figure 5.6: Cross-entropy vs. Population size in a previous (incorrect) formalisation of 

the SSMM. Two data-sets are shown, for the mutation operator alone, and for selection 

plus mutation. The non-convergence of the latter indicates that the selection operator 

is incorrectly formulated. 

that the formalisation is incorrect, but fails to make predictions which are contradicted 

by the model. 

Figure 5.6 shows the cross-entropy convergence in a previous (incorrect) formalisa­

tion of the SSMM, Clearly, under mutation and selection the cross-entropy does not 

converge to zero as population size increases. Further checking, by examining the cross-

entropy of the mutation operator alone, reveals that the mutation operator converges to 

zero with increasing population size, and therefore is most likely correct. The assump­

tion was made that the error lay in the selection operator, either in the formalisation, 

or in the coding of the formalisation for use in a numerical solution. Further detailed 

checking revealed an error in the coding. 

Figure 5.7 shows the cross-entropy convergence of the coded forraalisation used in 

finding numerical solutions to Equation 5.3. The convergence to zero indicates that the 

formalisation and coding is probably correct. 
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Figure 5.7: Cross-entropy vs. Population size in the thermodynamic formaJisation of 

the SSMM. 

5.3.2 Fixed points of the Thermodynamic Formalisation of the 

SSMM 

Using a multidimensional simplex method within the GNU Octave computational pack­

age, numerical solutions to Equation 5.3 were found. Despite many attempts from var­

ious starting points within the population distribution space, only a single fixed point 

could be found. This point, corresponds to the fundamental value of the stock. In 

order to better understand the nature of this fixed point, an examination of the fixed 

points of operators M and S may be helpful. 

Fixed points of M 

M is a simple matrix operator, which transforms one probability distribution into 

another probability distribution. There is no temporal or historical dependencies in 

M, thus the system Pj+i = MPt forms a Markov system within any sensory regime, 

ajid can be solved by standard methods. There is only one fixed point for this system, 
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which is approached asymptotically. 

Fixed points o f <S 

The operator S at first glance appears to be much more complex in nature than M. I t 

has a highly non-linear dependency upon the probability distribution that i t acts upon. 

In this case, however, the initial appearance is deceiving: S has easily found fixed 

points. In Section 4.3.2 i t is shown that there is a stable price for any population; the 

price at which the demand will match the supply, and the price will remain constant. 

A fixed point of S necessarily corresponds to a stable price level. At this stable price 

level, a partial ordering will exist on the behavioural classes; as one might intuitively 

expect, the two behavioural classes UR and # # , which predict an unchanged price plus 

dividend, will have the highest fitness: The system will converge to some combination 

of these two classes. 

Under a pure selective force, this system is in essence very similar to a Polya Urn^ 

scheme [26], although i t differs in that the population is fixed. Intuitively, this is likely to 

lead to the extinction of one of the two high fitness classes, due to stochastic fluctuations 

within a small population. However, this effect is likely to become less important as 

the population size grows. 

There are thus an infinite number of fixed points to 5; ajiy point which lies on the 

line P(/ji -h = 1 is a fixed point. 

^In a Polya Um scheme, an urn filled with red and black balls has balls repeatedly drawn out, and 

replaced with two balls of the same colour. It can be shown that the ratio of red/black balls always 

converges, but that the convergence ratio follows a ^^-distribution. 
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Behaviour pS pM pMS 

UR 0.91940 0.835031 0.855626 

00 0.00000 0.018330 0.015868 

o# 0.00000 0.018330 0.018659 

01 0.00000 0.018330 0-015884 

#0 0.00000 0.018330 0.015488 

## 0.08060 0.018330 0.016903 

#1 0.00000 0.018330 0.015214 

10 0.00000 0.018330 0.015085 

1# 0.00000 0.018330 0.016281 

11 0.00000 0.018330 0.014993 

Table 5.1: Fixed points of the thermodynamic approximation of the SSMM, under 

selection (P*^), mutation ( P ^ ) , and selection followed by mutation ( P ^ ^ ) . Note that 

the fixed point of the selection operator is the closest point of approach of the solution 

line of S to P-^^ under a Euclidean metric. 
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Fixed points of MS 

Table 5.1 shows the closest fixed point (under a Euclidean Metric) of the set of fixed 

points of S to the fixed point of MS found using a simplex method, as detailed above. 

Inspection of the solutions in Table 5.1 suggests the possibility that the fixed point 

of MS might be a linear combination of the fixed point of S given above and the 

single fixed point of M , that is to say that i t might lie on the normal connecting the 

line describing the set of fixed points of S to the fixed point ol M. A simple search 

locates the closest point on the normal to P ^ ^ , and indeed this point is close (distance 

0.013771 under a Euclidean metric) to P^^. 

From this, and the fact that the simplex process used to find P-^^ terminates due 

to limitations of machine arithmetic^, one might assume that the difference is due to 

the termination of the simplex process. 

In fact, this turns out not to be the case: a simplex method, starting from the 

closest point on the normal from S to also converges towards solution p-^^. Hence 

the fixed point does not lie on the normal between the fixed point of the mutation 

operator, and the fixed point of the selection operator. This may be due to the extreme 

non-linearity of the selection operator. 

Given the population distribution P^-^, the stock price and volume traded at this 

fixed point may now be calculated. Substitution into Equation 4.6 gives the equilib­

rium price, and hence through Equations 4.2 and 4.7 for volume may now be made. 

Tables 5.2, 5.3 and 5.4 show the basic statistics of the price and volume distributions 

observed across five repetitions of the market simulation at each adaptive population 

^The simplex method used in involves the calculation of a normal to a high dimensional plane. 

When the points that define the plane become very close (as the simplex converges), limitations in the 

accuracy of the machine arithmetic become significant. 
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Pop. Size Mean Std. Dev. 

10 93.205 22.009 

20 83.760 7.053 

50 87,414 12.961 

100 85.604 6.677 

200 83.104 4.834 

500 84.071 4.303 

1000 83.013 3.151 

unadaptive 86.609 0.035 

analytic 86.600 

Table 5.2: Statistics of the stock price distribution. 

size (a total of 2500 samples), in a non-adaptive population of 1000 individuals, and 

the values at the fixed point P*. 

I t might initially appear that given the above tables of statistics (Tables 5.2, 5.3 and 

5.4), a t-test could be applied to check the hypothesis {HQ) that a population shares 

the same underlying observables (price, volume, residual) as the analytic population. 

However, such a test is only valid for a set of independently dra\vn samples. This is not 

the case presented here; the observables at adjacent time steps are not independent of 

each other, the dependencies are examined in the previous chapter. The t-test statistic 

is given by 

a/y/n 

where or are respectively the mean and standard distribution of the parent distribu­

tion, X is the mean of the sample and n is the sample size. 

Due to the dependence between samples taken, i t is problematic to estimate t. Al l 
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Pop. Size Mean Std. Dev. 

10 0.958 2.233 

20 0.860 1.134 

50 1.603 1.139 

100 1.714 0.890 

200 1.118 0.619 

500 1.177 0.324 

1000 1.295 0.275 

unadaptive 1.451 0.065 

analytic 1.301 

Table 5.3: Statistics of the trading volume distribution. 

Pop. Size Mean Std, Dev. 

10 -0.667 3.198 

20 0.380 1.222 

50 -0.095 1.530 

100 0.156 0.913 

200 0.443 0.722 

500 0.279 0.568 

1000 0.431 0.371 

unadaptive 0.049 0.121 

analytic 0** 

Table 5.4: Statistics of the residual distribution. 
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the above statistics are based on 5 runs of the simulation under each condition, with 

a run length of 500. Therefore, one can certainly place bounds of 5 < n < 2500. This 

is of limited value, effectively constraining t to a range of 2 orders of magnitude. At 

the lower limit (n = 5), the null hypothesis (the simulation observable is drawn from 

the same distribution as a population with the analytic value) is confirmed in every 

case. At the upper limit, the alternative hypothesis (the simulation observable is drawn 

from a different population) is confirmed in every case except that of a non-evolving 

population. 

Note however, that across all runs under all conditions, an identical sampling sclied-

ule is followed, namely to sample at each time step. Clearly there is a correlation 

between the statistics at adjacent time steps, but an assumption of consistent bias is 

made: it is assumed that the identical sampling schedule on each run implies that all 

runs are equally biased. Therefore, the approach taken will be to consider the trend of 

the t-scores across population size under an adaptive condition. The hypothesis of this 

thesis is that sampling fluctuations cause raeta-stability, and thus transitions between 

the fundamental regime, and various raetarstable regimes (describable as over- and 

under-pricing regimes). In the system examined here, these metarstable regimes can 

be shown to lie in pairs equally spaced above and below the fundamental regime. One 

might therefore expect that over a statistically significant time period, the statistics of 

the observables might tend towards those of the fundamental regime as population size 

increases, because the stochastic fluctuations become smaller as population size increas­

es. Therefore, the t-scores will be examined for evidence of a downward trend which 

might indicate that the statistics of the observables are converging towards those of the 

fundamental regime as population size increases. This is shown in Figure 5.8. It would 

be difficult to claim any clear trends in the t-scores across population size; if anything, 

175 



a claim of an upward trend in the t-scores in the price and residual observables might 

be more defensible. 

Prto 
VCUna — 

9mAM 

/ -

Figure 5.8: Normalised t-scores of the observable series across the range of population 

sizes for the price, volume and residual series. Here the t-scores have been normalised 

for a sample size of 1, at any estimated independent sample size, they will be a constant 

multiple of the value shown. 

What interpretation should be placed upon theses statistics? There is no clear evi­

dence to support the hypothesis that the statistics of any adaptive population studied 

are consistent with those of an infinite population at the analytic fixed point V* condi­

tion (which corresponds to the fundamental regime). The evidence is equivocal, but if 

anything tends to support the alternate hypothesis. 

This conclusion leads to an interesting disparity: in Section 5.3.1 it was shown that 

as population size increases the one-step analytic prediction of the next population 

distribution converges towards the simulation value. Yet in this section, evidence has 

been presented that the system does not converge to the one analytic point that has 

been found using numerical methods. It is certainly possible that other attractors 

in the system exist apart from a fundamental regime attractor. The system may be 
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converged about some other attractor, which most likely has a more complex structure 

than a simple fixed point. This point will be discussed further in the next chapter 

(Section 6.1.2). 

5.3.3 Phase Portraits of the SSMM 

In Section 4,3, the correspondence between population distributions at the fixed points, 

and the stock price and trading volume has been explored. Following from this, an ex­

amination of the system's trajectories in price-volume space are presented in Figure 5.9. 

Inspection of the phase portraits in Figure 5.9 quite clearly shows that as the popula­

tion size increases, the volume of the phase space swept out by the trajectory is reduced. 

This is because the fluctuations in the population caused by the stochasticities inherent 

in the adaptive process become smaller as the population size increases. Because the 

underlying fitness landscape is itself a function of the population distribution, smaller 

variations in the population distribution are unlikely to move the population out of the 

fundamental basin of attraction and into one of the other basins, corresponding to a 

meta-stable regime. 

Note also the *V' shape to the phase portraits, especially with intermediate pop­

ulation sizes (n = 20.. .n = 200). The lowest point in the corresponds to the 

theoretical fixed point. Physically, this corresponds to low volume trading around the 

fundamental value (the fixed point) with higher volume trading being associated with 

movements away from that fixed point. 

The ' V shape in the phase portraits is explained by the formalisation presented in 

Section 4.3. A fixed point in the population distribution space necessarily corresponds to 

a fixed point in the stock price: the population will be converged onto some combination 

of the unresponsive class and the unchanged return predicting class, with all other 



Figure 5.9: Phase portraits in price-volume for the SSMM. Population sizes axe given 

in the individual graphs. All phase portraits are to the same scale. 
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classes having low frequencies, maintained by the mutational operator. 

This is predicted by the analytic forraalisation. In Section 4.1.3 it was noted that the 

volume of stock traded (Equation 4.7) is bounded from below by the standard deviation 

of agent demands for stock. As the population moves away from the fundamental price, 

the variance in demands for stock is likely to increase. If agents expect an increased or 

decreased next return, then the unresponsive segment of the population will settle for 

a respectively decreased or increased demand, because of the price change. This will 

increase the variance of the population, as the mean demand is fixed (and indeed sets 

the clearing price). Hence one would expect an increased trading volume away from 

the fundamental price, leading to a *V' shaped phase portrait. 

This corresponds to the phenomenon observed by Arthur et aJ. [5]: 

"We find that if our agents adapt their forecasts very slowly to new obser­

vations of the market's behaviour, the market converges to a rational expec­

tations regime. Here 'mutant' expectations cannot get a profitable footing; 

and technical trading, bubbles, crashes and auto-correlative behaviour do 

not emerge. The efficient market theory prevails. 

If on the other hand we allow the traders to adapt to new market obser­

vations at a more realistic rate, heterogeneous beliefs persist, and the mar­

ket self-organises into a complex regime. A rich "market psychology" -a 

ricli set of expectations-become observable. Technical trading emerges as 

a profitable activity, and temporary bubbles and crashes emerge from time 

to time. Trading volume is high, with times of quiescence alternating with 

times of intense market activity. over the period of our experiments, at 

least, individual behaviour evolves continually and does not settle down. In 

this regime the traders' view is upheld." 
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5.3.4 Analysis of a 'Bubble and Crash' phenomenon 

The SSMM is a highly simplified version of the artificial market whose features are 

described in the above quote, but important common features are present. In large 

populations within the SSMM technical trading is not possible because the stochastic 

sampling in selection and mutation becomes less important. The dominant force be­

comes stability, the agents tend to predict that the price will remain constant, and the 

price fluctuations are dependent upon the dividend fluctuations. On the other hand, as 

the population size becomes smaller, stochastic fluctuations have greater and greater 

effects within the population. Small numbers of mutant agents can effect the predictive 

trend of the population towards an upward or downward prediction. This can become 

strong enough that these mutant agents are rewarded, and can take hold within the 

population^. 

If this mutant takes hold, then the price will continue to rise until it reaches a 

maximal level sustainable by a homogeneous population of the fit mutants. At this 

point the price will no longer rise, and the mutant population becomes vulnerable to 

invasion by another mutant. A self-reinforcing crash follows, as the price returns towards 

the rational-expectations regime. This can be seen most clearly with a population of 

10 (see Figures 5.10 and 5.11, where a pronounced bubble appears in time interval 

t = 350... 400, with a corresponding peak in trading volume accompanying it. Analysis 

of the actual population in this period shows this (Figures 5.13 and 5.11). Before t = 360 

the price is stable at approximately the rational expectations price of p = 87. In the 

period t = 360 to t = 380, the population balance shifts rapidly towards a population 

that predicts an upward price trend (Figure 5.13). Correspondingly, the stock price 

rises (Figure 5.11). Att = 380 the price peaks. 
^Although this will not always happen. Section 2.1.C discusses the mathematics of this process. 
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Figure 5.10: Time series for the SSMM, with an adaptive population of 10 agents. Here 

a single bubble and crash event is seen, centred about time t = 400. 
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Figure 5.11: Stock price in the bubble described in the text. The population dynamics 

during this bubble are shown in Figure 5.13. This figure is an enlargement of the price 

time series in Figure 5.10. 

Figure 5.12 shows the situation clearly, with a further expansion of scale on the 

X-axis. Two price time series are shown, the actual pricey i.e. the price that the mar-

ketmaker fixes, given the demand functions of the population of agents, and the stable 

price, the price that, given the population distribution and the dividend, is sustainable 

by the population (Equation 4.36. Whilst the actual price is lower than this price, the 

stock price will rise because demand exceeds supply. Once this price is reached, the de­

mand matches supply, and the portion of the population that predicts an upwards trend 

loses its fitness advantage. Agents that predict a stable price or a downward trend can 

now gain a foothold in the population, and their presence reduces the demand, and thus 

the stable price. The price falls, increasing the fitness of agents predicting a downwards 

trend. The balance of the population now shifts; the downwards predicting agents take 

over the population from t ~ 378 onwards. Once the price has dropped sufficiently, they 

in turn lose their selective advantage to agents predicting a stable price; this occurs at 

t ~ 400. 
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Figure 5.12: Actual and stable stock price series in the range 360 < t < 380. The 

actual price is always moving towards the stable price (which is dependent upon the 

composition of the population). 

The population dynamics underlying this bubble and crash can be observed in Fig­

ure 5.13. Immediately prior to the appearance of the t = 350-400 bubble, the popula­

tion distribution is stable, dominated by agents predicting an unchanged next return. 

The onset of the bubble corresponds to a shift in the population distribution: agents 

predicting a rising return from the stock dominate the market. This shift in population 

is interpreted as a meta-stable shift between attractors in the population space. This 

new population remains stable itself for approximately 20 trading epochs, until the a-

gents' demand for stock is limited by their risk functions. At this point supply matclies 

demand and the price stabilizes. The population is now invaded by agents predicting a 

stable or lower return. The system shifts attractor once more, and the price drops. It 

is debatable as to whether this regime change should be characterised as a meta-stable 

event. Certainly its existence can be predicted, and for a given population distribution, 

the price at which it will occur can be predicted. However, the population distribution 

is always influenced by the stochasticities inherent in the adaptive process. Finally, as 
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the price returns to the fundamental price another transition between attractor basins 

occurs; agents predicting an unchanged return dominate the population once more. 

There is a second interesting phenomenon here. Note that during the crash phase, 

as the price drops, the population is dominated by agents predicting a falling return. 

However, these agents predict an absolute fall in price only, as can be deduced from 

comparing the bottom pair of figures in Figure 5.13. Given the rate of decrease of the 

return from the stock, one would expect that the fittest class of agents would be those 

predicting large drops in stock return; in these simulations the relative response bit has 

a much greater influence on the prediction than the absolute response bit. However, 

during the crash phase, the population is dominated by agents whose response bits are 

#0. Agents with a falling return predicting relative response bit (classes 00, 0#, 01) 

do enter the population, but are unable to become established within it. 

Another interesting feature that should be noted is the fact that the stock price 

moves smoothly to the peak price, and then back down again. During this 'bubble and 

crash' event the active subset of the population changes, because the set of activated 

sensors changes, both as the price rises and then again as it falls. Yet this change 

in the active population has no effect on the progress of this transient event. This 

indicates that the population is well mixed: the distribution of response bits in the 

newly activated and de-activated segments of the population is similar. If it were not, 

one might expect to see a loss of momentum in the upwards price, because an unmixed 

population would be expected to have a maximal entropy distribution, which would no 

support such a high stock price. 

To summarise, technical trading is observed in the SSMM, in the form of self-

reinforcing predictions of price increases or decreases. Due to the intense selection 

pressures, fit mutants spread quickly through the population; in small populations 
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Figure 5.13: Composition of the population during the bubble in the population: 10 

run discussed in the text. The 10 behavioural classes have been further reduced to 3 

classes, corresponding to upwards, stable and downwards price pressures, to aid clarity. 

The left hand set of figures conflate fitness classes based on the relative price change 

response bit, the right hand set based on both bits. From top to bottom, upwards, 

unchanged and downwards return predicting segments of the population are shown. 

See also Figure 5.10. 
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these have a marked effect on the system dynamics. However, these self-reinforcing 

trends sow the seeds of their own downfall; even those agents predicting an upward 

trend have a limit on the price they are prepared to pay. When the price rises too 

high, demand drops off, the trend no longer continues and selective advantage is lost. 

A self-reinforcing crash follows. 

5.4 Internal and External Shocks to the System 

In Section 5.3 the dynamics of the SSMM have been considered. The movement of the 

market in response to a fluctuating population has been examined, and the resulting 

bubbles and crashes have been explained. In Lemma 4.2.1, the dependence of the 

market dynamics upon the dividend sequence has been laid bare. In this section, 

the relationship between the population dynamics and the dividend sequence will be 

considered, and the relative importance of the stochasticity in the dividend sequence 

and the stochasticity of the finite population will be examined. In simple terras, here 

the relative importance of internal and external shocks to the system will be considered. 

In order to perform this analysis, the cross-entropy validation method described in 

Section 5.3.1 will be employed. This method allows the magnitude of internal shocks to 

the system to be measured; comparison of the cross-entropy time series and the price 

time series; and of the dividend time series to the price time series, using a correlation 

analysis. This should allow conclusions to be drawn about the relative importance of 

internal and external shocks in determining the dynamics of the system. 

Clearly, a correlation may easily be taken between stock price and dividend, estab­

lishing the relationship between the price time series and the dividend time series. To 

establish a correlation between price movement and cross-entropy is more tricky, as 

cross-entropy is a measure of the internal sampling fluctuations within the population, 
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Figure 5.14: Correlation coefficients between price and dividend, and between the ab­

solute price first difference and cross-entropy. 

and is always positive. By taking the first difference of the price series, we have a mear 

sure of the change in stock price. The absolute value of this first difference can then be 

correlated against the cross-entropy series. The results of such a comparison are shown 

in Figure 5.14. 

This figure shows that for small populations, internal sampling fluctuations are more 

highly correlated with the movements in the price series than the dividend sequence is. 

As the population size grows, not only does the mean cross-entropy fall, as discussed in 

Section 5.3.1, but also the correlation between cross-entropy and price fluctuations de­

creases. As this happens the correlation between the dividend and price series increases. 

The conclusion is that for small populations, the driving force in the population dynam­

ics is internal: sampling fluctuations inherent in the adaptive process play an important 

role in determining system dynamics. In larger populations this is no longer the case; 

the system is driven by external forces (in this case the dividend sequence); internal 

fluctuations are insignificant in comparison. There lies an intermediate zone where the 

dynamics of the system are dependent upon both interna! and external fluctuations. 
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Figure 5.15: Distribution of cross-entropic shocks in small, medium and large popula­

tions. 

Given that in small populations a correlation between cross-entropy and system 

dynamics does exist, what distribution do such shocks take? In Figure 5.15 the distri­

bution of cross-entropic shocks is given for small, medium and large populations. Note 

that the more 'spiky* distribution in the small {n = 10) population is an artifact. In a 

smaller population, the range of possible population distribution is more limited; this 

constrains the cross-entropy to a more limited range of values, resulting in a 'spiky' 

distribution. From the distributions shown in Figure 5.15, it is clear that the cross-

entropy follows a distribution which, if not Gaussian, is at least single-peaked with a 

well-defined mean. That is to say, it is not a negative exponential distribution, which 

would correspond to power-law dynamics of internal shocks. Whilst the shocks obey a 

distribution, there is certainly a cliaracteristic scale to shock events. This is much as 

one would expect: the internal shocks to the system are caused by sampling fluctuations 

within the adaptive process. There is no opportunity for such stochastic fluctuations 

to be affected by the dynamics of the system; hence one would one expect to find the 

internal shocks obeying a power law distribution. 
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In a similar fashion, one would not expect to find the magnitudes of external shocks 

to obey a power law distribution, as the experimental design constrains the dividend 

sequence to an AR(1) process, driven by a Gaussian random variable. 

5.4.1 Dynamics of Populations of Agents with Unequal Influ­

ence 

At this point it should be stressed that the populations described consist of agents with 

equal influence: all agents have the same resources, and the same effect on supply and 

demand for the stock. In a real stock market, traders vary in their resources, as well 

as their risk functions, and the sensory information they have access to, or choose to 

utilise to help their decision making. If agents have heterogeneous effects on the market 

dynamics, then a large market may be effectively dominated by the actions of a few 

powerful traders. In these cases, even if the market contains a very large number of 

traders, then the stochastic fluctuations in the adaptive processes governing the actions 

of the few more powerful agents can have a large effect on the dynamics of the market. 

A powerful example of this can be seen in the effect of George Soros and his Quantum 

Fund in bringing about the exit of Sterling from the European Exchange rate mechanism 

on 'Black Wednesday' in 1992. Here a single powerful agent was able to force a run on 

a currency despite the intervention of central banks (also powerful agents). This is in 

no sense a claim about the decision methods used by any particular player in the world 

stock markets. Instead it is merely an observation that a few extremely powerful players 

can exert a strong influence on the market, even when the total number of players is 

extremely large. 
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Chapter 6 

Discussion and Conclusions 

In this chapter the results obtained in Chapter 5 will be discussed in the light of 

the general points put forwards in Chapter 3, and the theoretical predictions made in 

Chapter 4. 

6.1 The Analytic Formalisation of the SSMM 

The work presented has consisted of two elements, an experimental method, consisting 

of a computational implementation of a system of interacting adaptive agents (the SSM-

M), and an analytical component, which attempts to model and explain the behaviour 

of the experimental system. In this section the success of the model will be examined. 

To recap, the computational implementation consists of a population of interacting 

adaptive agents. Each agent consists of a single classifier rule having a six site trinary 

genome. Thus there are 729 different possible genomes. The implementation adapts via 

selection followed by mutation on the population (asexual reproduction). The popula­

tion can thus strictly be seen as a discrete time, discrete space dynamical system in 729 

dimensions. The analytical model of the system has only 10 dimensions, correspond­

ing to the nine possible behavioural responses of an agent to the current macroscopic 
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system state, with one response ( # # ) split between two response classes to facilitate 

analytic tractability. 

There are two aspects to the modeling of the SSMM that need to be considered. 

1. Does the specific statistical dynamics formalisation that has been adapted as an 

analytical model adequately capture the dynamics of the SSMM? 

2. Are the methods used to examine the analytic model sufficient? If not, in which 

areas are they inadequate? 

6.1.1 Adequacy of the Analytic Formalisation 

Consider first, whether the analytic model does capture the dynamics of the SSMM. 

In Section 5.3.1 a cross-entropic approach was used to validate the analytic model 

developed in Chapter 4. The validation demonstrated conclusively that, as an infinite 

population was approached, the one step prediction of the population at the next time 

step, and the actual population converged. It was pointed out that this is no conclusive 

guarantee that the analytic formalisation was correct, but it is highly unlikely that this 

might be so. One must therefore conclude that the analytic formalisation does capture 

the dynamics of the SSMM, at least as population size increases. The equation 

Pe+i = MSpt (6.1) 

adequately expresses the dynamics of the system. 

Furthermore, analysis of the individual events within particular simulation runs, 

such as the *bubble and crash' regime discussed in Section 5.3.4 is possible. In this 

instance, it was possible to explain the timing of the transition from the upwards 

^bubble' to the downwards 'crash' in terms of the clianging demand caused by the 

adapting population. The population converged on a distribution of agents predicting 
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increased stock prices. This led to a price increase, which was ultimately halted because 

the population was unable to sustain such price rises. This led to a change in the 

adaptive dynamics, and a corresponding crash. 

Overall, it would be fair to describe the analytic formalisation as having good short-

term predictive power, in that it can accurately predict the population distribution at 

the next time step, provided the population size is lajge enough. The forraalisation also 

possesses good explanatory power, in that it can be used to explain the dynamics of 

major events within the time series, once they have occurred. 

6.1.2 Adequacy of the Analysis of the Analytic Formalisation 

In Section 5.3.2, an analysis of the formalisation put forwards in Chapter 4 was present­

ed. It had been hoped to find the attractors of this system. Unfortunately, the system 

proved not to be amenable to an analytic solution, therefore numerical solutions were 

sought using a multidimensional simplex method. 

Only one solution was found. The stable price of this solution corresponds to the 

fundamental, or rational expectations regime. It was unsurprising that such a solution 

was found: Blume & Easeley [13] prove analytically that in a simple adaptive investment 

model, the fundamental regime is an attractor. Arthur et al. [5] also claim that a 

rational expectations regime in an attractor in the SFASM, which the SSMM is based 

upon. 

There is, however, no evidence to support the hypothesis that an adaptive popu­

lation in the SSMM lies within this rational regime. Across the statistics of all ob-

servables, there is no evidence that as population size increases, the system converges 

towards a fundamental regime. The only condition under which the system converges 

to such a regime is a non-adaptive one. Here it is possible to show analytically that the 
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population will remain in a rational expectations regime. This is confirmed empirically. 

Why does an adaptive population not converge on the fundamental regime? Arthur 

et al. [5] discuss the existence of a complex regime where rational expectations are not 

upheld. In this case, the dynamics of the population may be self-reinforcing, giving 

rise to persistent variation from the fundamental regime, described as over- and under-

pricing regimes. The population here is driven by its own internal feedbacks, possibly 

triggered by stochastic fluctuations. This will be discussed in Section 6.2. 

This is not an adequate explanation; the numerical methods used predicted the 

existence of a fixed point corresponding to a fundamental regime. Sucli a fundamental 

regime was indeed observed, although only in a non-adaptive condition. In the previous 

section (Section 6.1.1) the adequacy of the model has been discussed, and it has been 

concluded that it is sound. The salient question, therefore, is why the analysis of the 

formalisation fails to predict the existence of the attractors that the system falls into? 

The analytic method used to locate attractors is the simplex method (Section 5.3.2), 

which is used to find solutions of an equation of the form 

X - f i x ) = 0 (6.2) 

by a gradient descent method across the vertices of a simplex. This should be expected 

to find any fixed points of the system. It cannot, however, be expected to find lim­

it cycles or strange attractors, which take more complex forms, having a periodicity 

strictly greater than one. If the attractors of the system are not simple fixed points, 

then a numerical method will not find them. One could, of course attempt a numerical 

solution for a period k map 

x - / * ( x ) = 0 (6.3) 

but, given the computational load, and the fact that k is unknown, this approach 

was rejected. Also, if more complex attractors, such as strange attractors exist, such 
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an approach will still fail. In Section 3.2.5, the work of Friston [31] in describing the 

attractors of complex interacting systems was discussed. Following this, it is considered 

likely that a system of interacting adaptive agents such as the SSMM may possess sucli 

complex attractors. 

Certainly, over short time periods, interesting dynamical phenomena are observed, 

sucli as the 'bubble and crash' phenomenon discussed in Section 5.3.4. The Friston 

model [31] (following Kelso [47]), which describes a complex interactive system possess­

ing attractors with complex form, where the system can move between sub-manifolds 

of the attractor surface. Such a description may be relevant here, in Section 5.3.4 this 

phenomenon was explained by the model in terras of the population moving towards a 

price attractor that itself moved in response to the population distribution. 

To conclude, the analysis of the dynamics of the SSMM appears inadequate. This 

is primarily due to the complexities inherent in the formalisation. The system is mul­

tidimensional and highly non-linear, which limits the feasibility of an analytic solution 

for the attractors of the system. Not only that, but it appears to possess attractors 

with a complex structure which are unlikely to be discovered by a numerical method. 

6.2 Dynamical Regime and Population Size 

In Section 3.3 it was argued that three dynamical regimes exist, which were labelled 

stable, metarstable and unstable. To recap, the stable regime would exist in the limit 

of large populations: here, external shocks (in this case the dividend sequence) should 

provide the driving force for the population. The second regime was described as 

meta-stable. The conditions under which this regime was postulated to exist were 

dependent upon the population size, observational timescale and schedule, and the 

strength of the exploitative and explorative operators. Finally, a third regime, described 
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as unstable, was postulated to exist. Such a regime would be characterised by extremely 

small populations where the stocliasticities inherent in the exploitative and exploratory 

operators (internal shocks) become the driving force for the dynamics of the population. 

Here the evidence for such a characterisation, based on the SSMM presented in 

Chapters 3 and 4 will be reviewed. Such evidence as exists has two components: a 

qualitative component based upon the observation of the market evolution presented 

in Section 5.2, and a quantitative component based upon the cross-entropy approach 

detailed in Section 5.4. 

In Section 6.1.2 the adequacy of the analysis of the formalisation produced in Chap­

ter 4 was discussed. There appear to be multiple regimes within the system, whilst 

the fundamental, or rational expectations regime is an attractor, the system appears 

not to converge towards it under with an adaptive population of any size. This implies 

that other attractors may well exist. One might also consider the 'bubble' phenomenon 

discussed in Section 5.3.4. This may be the result of the system switching between 

attractors, or alternatively it may result from the type of complex dynamics discussed 

by Priston [31] and Kelso [47], where a system remains within a single attractor, but 

varies it position within that attractor, because the control parameter is modulated by 

the system itself. 

Ultimately, it is unclear as to whether the dynamics of the system are best described 

as transitions between a number of separate attractors, or as the switching of the system 

between sub-manifolds of a single attractor. Indeed, both descriptions may be correct, 

depending upon the level at which the system is viewed. In the former case, one might 

wish to describe the system as meta-stable, following the convention of Kelso [47] and 

Priston [31]. In the latter case, further evidence is provided by the discussion of the 

role of shocks to the system put forwards in Section 5.4. 
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Figure 5.14 shows that the system is dominated by the effect of internal shocks 

(i.e. stochastic fluctuations) in small populations, and that the effect of these internal 

shocks decreases with increasing population size. Simultaneously, as population size 

increases, there is an increasing dependence upon external shocks to the system; in this 

case a direct correlation between stock price and dividend. One would expect this, the 

variance of the population distribution due to sampling fluctuations to scale as y/n. 

As population size increases, the population takes longer and longer to switcli between 

alternate attractor basins, because the smaller stochastic fluctuations make it more and 

more difficult for it to stray from the attractor. 

Arthur et al. [5] associate low volume trading with a rational expectations regime, 

and higher volume trading with a complex regime. Rapid switching between these 

conditions is certainly observed in small populations, for example, in Figure 5.10. This 

may be interpreted as evidence of regime switching within the system. On the other 

hand, such behaviour is observed more rarely, if at all in larger population systems. 

This is seen is Figures 5.3 and 5.2. 

Clearly, if the population size is sufficient, and one does not wait a sufficient amount 

of time, the system will not have undergone a stochastic jump across the population 

space sufficient to move it between attractors. In this case, the population will tend to be 

practically classified as behaviourally stable. Conversely, if the population is sufficiently 

small, the population will be completely driven by internal shocks (i.e. stocliastic 

fluctuations). Here the population may be unable to remain in any attractor basin for 

a significant length of time, and the behaviour will be classed as unstable. 

In the case of the SSMM, this latter behavioural pattern has not been observed. 

However, meta-stability is certainly observed in small and medium sized populations, 

and stability in large populations. It is predicted that for a larger population, meta-
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stability would be observed in a sufficiently long observational window. 

To conclude, stability, meta-stability and instability are generic properties of systems 

of interacting adaptive agents. The dynamics of the system, and the cases in whicli 

these three regimes are observed in, appear to have a high dependence upon both the 

adaptive regime and the nature of the interaction. In the system studied, there is a 

smooth transition between instability, meta-stability and stability as population size 

increases. This may not be the case for all systems, as there may exist systems which 

demonstrate sharp bifurcations between these regimes. 

6.3 Critique: Plausibility vs. Analytic Tractability 

In this section, wider issues concerning the study of populations of interacting adaptive 

agents will be discussed. In particular the success of the SSMM will be examined, both 

as a model of a stock market, and as a model of a population of interacting adaptive 

agents. 

6.3.1 The success of the Simple Stock Market Model 

Recall Section 4.1.1. The SSMM was motivated by three core design issues: analytic 

tractability, simple dynamics, and a well understood problem. At this point the success 

of the model in terras of these three design criteria will be reviewed. Other design issues 

have been easily implemented on the model, and will not be discussed further here. 

First, consider the analytic tractability of the SSMM. A statistical dynamics for­

malisation of this system has been constructed, and this has led to the identification 

of a fixed point. However, as has been discussed in a previous section (Section 6.1.2), 

there is no clear evidence that the system converges on this fixed point in any adaptive 

condition. On the other hand, the analytic formalisation adopted successfully predicts 
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the short term behaviour of the system. The root of the discrepancy has been identified 

as the inadequacy of analytic methods available. 

As discussed in Chapters 2 and 3, there are strong links between the analysis of 

this system, and other dynamical and evolutionary systems. In particular, the analysis 

is based on the statistical dynamics analysis of the Royal Road GA [78]. The raeta-

stability analysis that followed has links to the analysis of noise in non-linear dynamical 

systems, particularly the work of Knobloch & Weiss [52]. Despite this, it cannot be said 

that the dynamics of this system are completely understood either from an experimental 

or an analytic viewpoint. Despite the dimensional reduction, the reduced system still 

has a relatively high number of dimensions (11, including time), and this is one of the 

main problems in analysis. At present there appears little hope of finding improved 

analytical techniques which would allow a deeper analysis of the system. In particular, 

the following questions remain unanswered: 

1. What is the nature of the complex regime that an adaptive population appears 

to reside in? 

2. Are the 'bubble and crash' phenomena, discussed in Section 5.3.4 best charac­

terised as an alternate attractor (or attractors), or as the sub-manifold of a single 

attractor, 

3. However one might wish to characterise the regimes existing within the sys­

tem, what is the distribution of waiting times between transitions between these 

regimes? How is this distribution dependent upon population size, exploitation 

and exploration rates? 

Given that these questions remain unanswered as yet, the SSMM cannot be judged as 

an overwhelming success from the point of view of analytical tractability. The SSMM 
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has good explanatory and predictive power on a short term basis, but fails to fulfill 

expectations with regard to the larger and more general issues. 

Second, consider the criterion of simple dynamics. The rationale guiding the experi­

mental design within this thesis was to try and identify a system with a limited number 

of identifiable dynamical regimes. A stock market model was chosen, because the evi­

dence in existing work, for example Arthur et al. [5] showed the existence of over- and 

under-pricing regimes accompanying the fundamental regime. It was anticipated that 

the reduced complexity of the SSMM, as compared to the SFASM would lead to a com­

bination of simple dynamics, and a more easily analysable system. These beliefs have 

proved to be only partially upheld. Certainly, a number of easily identifiable regimes 

exist; it has been possible to distinguish between a fundamental regime and a complex 

regime. 'Bubble and crash* events have also been identified which only occur in the 

complex regime, and may or may not form a third regime. The problem of analytic 

tractability is again paramount. Whilst the fundamental regime is understood to be 

an attracting fixed point of the forraalisation, no analysis of the complex regime has 

been possible, and its nature is not understood at all. Similarly, it has been possible to 

perform an analysis of the behaviour of the system during a 'bubble and crash' event. 

However, it is unclear what the relation of this type of event is to the complex regime, 

because the complex regime is not understood. 

Third, a model of a well understood problem was desired. The SSMM is a gross 

simplification of the Santa Fe Institute artificial stock market (SFASM), and is governed 

by the same market structure, clearing method and timing sequence. However, the 

simplifications occur in agent structure: the agents are heavily simplified, incapable 

of the sophistication of decision making that they have in the SFASM. There is also 

a difference in that the SFASM does not allow agents to copy each other's strategies 
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directly, whereas this occurs in the SSMM. The SSMM is far more reactive than the 

SFASM; in practice the evolutionary pace is far quicker. This aids the observation of the 

meta-stable phenomena that have been sought. With a large population, the SSMM 

displays similar behaviour to the SFASM without historical information, converging 

towards the fundamental pricing regime. This is confirmation of the correct operation 

of the SSMM. However, the existence of over- and under-pricing regimes for small 

populations is not predicted by Arthur et al. [5]. This is due to the difference in 

adaptive structure between the two models: In the SFASM, the evolutionary pace is 

much slower, and more importantly, agents choose the predictive rules that they use 

based upon their past performance. In the SSMM, each agent has a single rule, and 

these are all implemented. This makes the SSMM much more responsive to stocliastic 

variations; the slow evolutionary pace ensures that agents are likely to already possess 

good predictors; new predictors are only likely to affect agent's demand once they have 

proved their predictive ability 'off-line*, or if novel conditions prevail. This latter option 

is made less likely by the former; the appearance of novel conditions is damped by the 

predilection of agents to choose tested predictors. The suggestion is that the structure 

of the SFASM without historical information damps the stochasticity inherent in the 

system, making the system appear stable. 

6.3.2 Meta-stabilty in the SSMM and SFASM 

In an earlier discussion (Section 5.2.2) it was noted that Arthur et al. [5] claim, on 

the basis of theoretical considerations and the results that they present, that technical 

trading is not possible unless the agents are able to respond to historical informa­

tion. Therefore the system should remain in a fundamental regime if the agents have 

no historical sensory information available to them. Is this claim consistent with the 
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behaviour of the SSMM presented here? 

Initially, it would appear that the observed meta-stable behaviour in the SSMM, 

consisting of a fundamental behaviour regime punctuated by bubble and crash events 

in both upwards (over-pricing) and downwards (under-pricing) directions, invalidates 

the claim made by Arthur et a). On closer inspection, this may not actually be the 

case. As has been discussed above (Section 6.3.1), the fact that meta-stable events 

are not observed in the SFASM in the absence of historical sensory information may 

be due to the different evolutionary algorithm and slower pace of adaptation in the 

SFASM. This does not, however, explain how metarstable phenomena which appear to 

be technical trading, can arise in a system where agents do not have direct access to 

historical infonnation. 

Arthur et al. [5] explain how bubble and crash regimes can arise via a mutually 

reinforcing subset of the population. Their reasoning is mirrored in the explanation 

of bubble and crash regimes in the SSMM discussed in Section 5.3.4. However, their 

experimentation shows that in the SSMM, what they describe as a 'complex' regime, 

where bubbles and crashes can occur, cannot arise without the existence of teclmical 

trading bits in the agents* sensors, which give short term historical information about 

market behaviour. 

A possible explanation for the apparent inconsistency between the claims of Arthur 

et al. [5] and the behaviour of the SSMM is that information on the short term history 

of market behaviour is actually available to the agents in the SSMM. The evolutionary 

pace of this model is high, the population quickly responds to clianging trends in the 

market. Moreover, every agent has but a single rule, and the evolutionary algorithm 

allows agents to imitate the successful strategies of other agents. In some sense, the 

distribution of the population between the response classes gives historical information 
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about recent market behaviour. Responses that are widespread within the population 

are associated with successful prediction, and therefore give information about recent 

trends in stock pricing. Hence technical trading is possible in the SSMM, and is observed 

as bubble and crash regimes. The manner in which these regimes are dependent upon 

the evolutionary algorithm has zdready been discussed in Section 5,3.4. 

6.3.3 The Big Issue: Modelling Systems of Interacting Adap­

tive Agents 

The SSMM has proved to be a valuable testbed for ideas concerning the evolution of 

interacting adaptive systems. It has demonstrated the feasibility of statistical dynamic 

approaches to the problem, despite the substantial non-linearities involved at a very 

basic level. It has illustrated the existence of meta-stability as an important dynami­

cal regime in finite populations, and has enabled the examination of a basic adaptive 

system, namely asexual reproduction followed by mutation, which encapsulates ex­

ploitation with global choice, plus random exploration. This is one of the simplest, and 

most analytically tractable adaptive schemata. 

The demonstrated meta-stability can be applied back into many of the systems 

discussed in Section 1.3, There is now a good case for describing the regime clianges 

observed in these systems as a result of meta-stability due to the stochastic nature of 

adaptation in finite populations. The generic nature of meta-stability in finite pop­

ulations can be used to inform the design of interacting systems of adaptive agents, 

especially distributed adaptive control systems. Further work is necessary in order to 

further understand these systems, especially the waiting times in particular states, and 

the probability of transition from any given state to any of the other states. The ques­

tion is, where on the continuum between analytic tractability and implementational 
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plausibility should future work be pitclied? 

The discussion above (especially Sections 6.1 and 6.3.1) has shown the great practical 

difficulties in analysing even highly simplified versions of real-world systems. The SSMM 

is a simplified model of an artificial stock market, which in turn is restricted to a single 

stock, with no external fluctuations save the stock dividend. Even so, analysis has 

proved difficult; the practically important questions of waiting times have remained 

unanswered, and are likely to remain so. 

The approach that has been taken in this thesis has been to try and build a model 

of an entire system. Whilst the model rests on some basic assumptions, most notably 

the maximal entropy assumption of Prugel-Bennett and Shapiro [69], the approacli has 

been holistic in that it attempts to integrate all aspects of the system into the model. 

The central question that must be addressed is whether such an approach is worthwhile. 

Certainly it is a valid approach; it has enabled predictions to be made whicli have been 

tested against the empirical system in computational simulations. The problem is that 

this is a very labour-intensive approach: the computational simulations are fairly large, 

and they are time-consuming to write and debug^ The analytic formalisation that has 

been developed is £in extension of the method adopted by van Nirawegen et al. [79], and 

is certainly applicable to other systems. The devil, as always, is in the detail, although 

it is hard to see how the operators M and 5 could be easily used in another system, 

as they are tailored to the detail of the operation of this system. 

The system that has been studied in this thesis is essentially a 'toy' system; in 

many respects it is an oversimplification of a real stock market. It still does maintain 

important aspects of the behaviour of a real stock market though. However diflficult it 

^To be fair, the writing of the computational simulation was treated as a learning exercise in a new 

language (Java), and this slowed up progress. However, once the model was written, the Java GUI 

allowed the system behaviour to be easily find quickly explored over a wide range of parameters. 
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may have proved, the analysis of the working of this system has been made possible 

by the complete access to information that is a feature of computational models. In 

the computational simulations there is complete access to every aspect of the system: 

there are no unknowns. This is not the case with a real-world system as it is very 

rare that the dynamics of the system are completely understood and in many cases 

the agents themselves do not understand the causes of their actions. As has been 

discussed in Section 1.1.2, the combination of a number of agents all acting in goal-

directed manners, although with differing beliefs and goals, can underlie the exploratory 

operator. 

Do 'big' models, such as the SSMM fulfill any useful role? Do they have 'added 

value' above smaller models which only claim to model specific aspects of complex 

systems. In many cases they do, because they allow the range of dynamics of a system 

to be explored. Should they be used as the basis of analytic models? Probably not: the 

eflfort that goes into the model of a specific system may yield results about that system, 

but is likely not to be easily generalisable to other systems. Smaller, more restricted 

models may have a more canonical nature, and be more easily applied to a wider range 

of systems. 

This is not a rejection of the work presented in this thesis. The model (both analytic 

and computational) was built with a specific purpose: to examine and further under­

stand the phenomenon of meta-stability in finite populations of interacting adaptive 

agents, and its relationship with the stochastic fluctuations inherent in such processes 

due to the adaptive operators. It has succeeded in that it has contributed to the under­

standing of such systems. Based on that knowledge, new directions for research in this 

area may be proposed, and the current model, having served its purpose, is abandoned. 

It is suggested that future work should be directed very much more towards simpler 
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systems which are likely to be more analytically tractable. If anything, the SSMM is 

too complex. Further levels of system abstraction would aid tractability, and allow 

additional approaches to be taken, including symbolic dynamics, spin glass approaclies, 

and improved thermodynamic approaches. A second advantage of simpler systems is 

that they will allow easier comparison of different adaptive approaches. There is very 

little understanding of the interaction of exploration and exploitation, and the interplay 

between these fundamental forces in many adaptive algorithms. The use of simple 

systems will make this task easier. Questions along this track that remain unanswered 

(some of these are extremely fundamental questions within adaptive theory) include 

1. What is the role of the crossover operator in GA theory? Nimwegen et al. [78] 

speculate that in the Royal Road GA, crossover allows good genotypes to spread 

through the population faster than would be the case under asexual reproduction. 

Priigel-Bennett and Shapiro [69] claim that the effect of crossover is problem de­

pendent, as the representation used will determine the amount of mixing that is 

inherent in the crossover operator. What is the action of crossover in an interact­

ing population? What level of stocliasticity is inherent in crossover, and how will 

it effect the metarstability of the population's behaviour? 

2. More generally, how do different adaptive scliemata affect the behavioural meta-

stability of the population? 

3. Is it possible to alter the strength of the explorative and interactive components of 

adaptation in order to manipulate the stability of the system, and its reaction to 

clianging environmental conditions? In the case of a distributed adaptive control 

system, is it possible to optimise the system's response to a range of environmental 

conditions given constraints on required stability and reaction speed? 
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Additionally, there is a strong case for studying interacting adaptive systems with 

a spatial component: either those set within a spatial environment, sucli as problems 

in situated robotics, or those in which an interaction topology exists, such as network 

problems. These are two very important class of system from a practical standpoint. 

The latter system may also have additional behavioural complications, sucli as the pres­

ence of spatial co-ordination effects, similar to those noted in physio-chemical complex 

systems sucli as the Belousov-Zhabotinski reaction [27]. Here, local stochastic fluctu­

ations give rise to globally co-ordinated behaviour. It is important to examine such 

systems in adaptive agents. Can global co-ordination of agent behaviour result when 

local interactions are influenced by local adaptation, which in turn feeds back from local 

agent performance? 

In addition, it is expected that power-law dynamics [8] will result from the imposition 

of a topography on agent interactions. This type of dynamics is very common in such 

systems, ranging from avalanches in sandpiles [9] through to extinction events in food 

webs [63]. An understanding of the likely global impact of local events is essential for 

the successful implementation of such systems. 

6.3,4 Further Work: The Spatial Minority Game 

In the light of the above discussion, a spatial minority game is presented. This is a 

co-ordination problem between adaptive agents, based upon the work of Arthur [3] 

and Zhang [88, 18], as discussed in Section 1,3.3. The spatial co-ordination is played 

between agent on a one-dimensional torus. This allows easy control of the locality of 

interaction and exploitation. As yet, there is little work on this game, but it is hoped 

that it possesses a sufficient level of abstraction to allow a deep analysis of its workings. 

This game has a number of advantages over an artificial stock market for the anal-
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ysis of the dynamics of interacting adaptive systems. First, the interaction is mucli 

simpler, and therefore much easier to model. Second, the interaction is more explicit: 

precise control can be exerted over the interactive radius, plus the length and specificity 

of the game history that agents have access to. This is in contrast to the SSMM where, 

although the agents directly have only access to the previous price, this has a deter­

ministic relationship to the previous price and population. The model of the system as 

a Markov process is effective, but it is difficult to conceptualise. 

Third, finer control over the evolutionary process in a spatial minority game is 

possible. As in the SSMM, it is possible to alter the evolutionary algorithm, not only in 

terms of mutation and selection rates, but also the nature of the evolutionary operators. 

In addition, in a spatial game it is possible to alter the spatial factors in the evolutionary 

process, such as the radius within which the exploitative process takes place. 

Fourth, a spatial minority game has strong conceptual links to spin-glass systems 

(a well studied class of physical systems which explain the low temperature behaviour 

of paramagnetic materials). The language of spin-glass systems includes concepts such 

as frustration (the inability of all peirticles to reach their desired state), and makes 

full use of entropic and thermodynamic concepts. There is the opportunity to use the 

analyses developed for such systems to explain the dynamics of adaptive systems in 

spatial networks. 

6,4 Conclusion 

The SSMM has proved to be an interesting testbed for interacting adaptive systems. 

However, the study has suffered from the excessive complexity of the system, which has 

limited the depth of the analysis which has been possible. 

The existence of stable, raeta-stable and unstable regimes within adaptive systems 
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has been demonstrated. Even within large populations, the stochasticity inherent in 

the exploratory and exploitative processes has been shown to have a significant effect 

on the evolution of the system. In addition, the system has been shown to undergo 

a transition from being driven by internal shocks (stochastic fluctuations) to external 

shocks (environmental fluctuations) as population size increases. 

In modelling terms, the success of a statistical dynamics approach based on reducing 

the system to a manageable number of behavioural states, in conjunction with a master 

equation approach to state transitions, has been confirmed, although the SSMM lies 

at the upper limit of tractability. Whilst the limited analysis possible has precluded 

a full understanding of this system, and many of the interesting questions have been 

left unanswered, it has provided a foundation from which further work on interacting 

adaptive system may proceed. 

"Er muss sozusagen die Leiter wegwerfen, nachdem er auf ihr hinaufgestiegen 

ist.2" [85] 

^He must so to speak, throw away the ladder after he has climbed up on it. 
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