113 research outputs found

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    Proceedings of the 11th Workshop on Nonmonotonic Reasoning

    Get PDF
    These are the proceedings of the 11th Nonmonotonic Reasoning Workshop. The aim of this series is to bring together active researchers in the broad area of nonmonotonic reasoning, including belief revision, reasoning about actions, planning, logic programming, argumentation, causality, probabilistic and possibilistic approaches to KR, and other related topics. As part of the program of the 11th workshop, we have assessed the status of the field and discussed issues such as: Significant recent achievements in the theory and automation of NMR; Critical short and long term goals for NMR; Emerging new research directions in NMR; Practical applications of NMR; Significance of NMR to knowledge representation and AI in general

    Numerical and Evolutionary Optimization 2020

    Get PDF
    This book was established after the 8th International Workshop on Numerical and Evolutionary Optimization (NEO), representing a collection of papers on the intersection of the two research areas covered at this workshop: numerical optimization and evolutionary search techniques. While focusing on the design of fast and reliable methods lying across these two paradigms, the resulting techniques are strongly applicable to a broad class of real-world problems, such as pattern recognition, routing, energy, lines of production, prediction, and modeling, among others. This volume is intended to serve as a useful reference for mathematicians, engineers, and computer scientists to explore current issues and solutions emerging from these mathematical and computational methods and their applications

    Synergies between machine learning and reasoning - An introduction by the Kay R. Amel group

    Get PDF
    This paper proposes a tentative and original survey of meeting points between Knowledge Representation and Reasoning (KRR) and Machine Learning (ML), two areas which have been developed quite separately in the last four decades. First, some common concerns are identified and discussed such as the types of representation used, the roles of knowledge and data, the lack or the excess of information, or the need for explanations and causal understanding. Then, the survey is organised in seven sections covering most of the territory where KRR and ML meet. We start with a section dealing with prototypical approaches from the literature on learning and reasoning: Inductive Logic Programming, Statistical Relational Learning, and Neurosymbolic AI, where ideas from rule-based reasoning are combined with ML. Then we focus on the use of various forms of background knowledge in learning, ranging from additional regularisation terms in loss functions, to the problem of aligning symbolic and vector space representations, or the use of knowledge graphs for learning. Then, the next section describes how KRR notions may benefit to learning tasks. For instance, constraints can be used as in declarative data mining for influencing the learned patterns; or semantic features are exploited in low-shot learning to compensate for the lack of data; or yet we can take advantage of analogies for learning purposes. Conversely, another section investigates how ML methods may serve KRR goals. For instance, one may learn special kinds of rules such as default rules, fuzzy rules or threshold rules, or special types of information such as constraints, or preferences. The section also covers formal concept analysis and rough sets-based methods. Yet another section reviews various interactions between Automated Reasoning and ML, such as the use of ML methods in SAT solving to make reasoning faster. Then a section deals with works related to model accountability, including explainability and interpretability, fairness and robustness. Finally, a section covers works on handling imperfect or incomplete data, including the problem of learning from uncertain or coarse data, the use of belief functions for regression, a revision-based view of the EM algorithm, the use of possibility theory in statistics, or the learning of imprecise models. This paper thus aims at a better mutual understanding of research in KRR and ML, and how they can cooperate. The paper is completed by an abundant bibliography

    Explainable Artificial Intelligence (XAI) 2.0: a manifesto of open challenges and interdisciplinary research directions

    Get PDF
    Understanding black box models has become paramount as systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper highlights the advancements in XAI and its application in real-world scenarios and addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAI in practical applications. By fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAI forward, contributing to its continued success. We aim to develop a comprehensive proposal for advancing XAI. To achieve this goal, we present a manifesto of 28 open problems categorized into nine categories. These challenges encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of harnessing the collective intelligence of interested stakeholders

    Unmet goals of tracking: within-track heterogeneity of students' expectations for

    Get PDF
    Educational systems are often characterized by some form(s) of ability grouping, like tracking. Although substantial variation in the implementation of these practices exists, it is always the aim to improve teaching efficiency by creating homogeneous groups of students in terms of capabilities and performances as well as expected pathways. If students’ expected pathways (university, graduate school, or working) are in line with the goals of tracking, one might presume that these expectations are rather homogeneous within tracks and heterogeneous between tracks. In Flanders (the northern region of Belgium), the educational system consists of four tracks. Many students start out in the most prestigious, academic track. If they fail to gain the necessary credentials, they move to the less esteemed technical and vocational tracks. Therefore, the educational system has been called a 'cascade system'. We presume that this cascade system creates homogeneous expectations in the academic track, though heterogeneous expectations in the technical and vocational tracks. We use data from the International Study of City Youth (ISCY), gathered during the 2013-2014 school year from 2354 pupils of the tenth grade across 30 secondary schools in the city of Ghent, Flanders. Preliminary results suggest that the technical and vocational tracks show more heterogeneity in student’s expectations than the academic track. If tracking does not fulfill the desired goals in some tracks, tracking practices should be questioned as tracking occurs along social and ethnic lines, causing social inequality

    Psychology, Learning, Technology

    Get PDF
    This open access book constitutes the refereed proceedings of 1st International Workshop on Psychology, Learning, Technology, PLT 2022, Foggia, Italy, during January 2022. The 8 full papers presented here were carefully reviewed and selected from 23 submissions. In addition, one invited paper is also included. Psychology, Learning, ad Technology Conference (PLT2022) aims to explore learning paths that incorporate digital technologies in innovative and transformative ways and the improvement of the psychological and relational life. The conference includes topics about the methodology of application of the ICT tools in psychology and education: from blended learning to the application of artificial intelligence in education; from the teaching, learning, and assessment strategies and practices to the new frontiers on Human-Computer Interaction

    Automated Reasoning

    Get PDF
    This volume, LNAI 13385, constitutes the refereed proceedings of the 11th International Joint Conference on Automated Reasoning, IJCAR 2022, held in Haifa, Israel, in August 2022. The 32 full research papers and 9 short papers presented together with two invited talks were carefully reviewed and selected from 85 submissions. The papers focus on the following topics: Satisfiability, SMT Solving,Arithmetic; Calculi and Orderings; Knowledge Representation and Jutsification; Choices, Invariance, Substitutions and Formalization; Modal Logics; Proofs System and Proofs Search; Evolution, Termination and Decision Prolems. This is an open access book

    GEAR-RT: Towards Exa-Scale Moment Based Radiative Transfer For Cosmological Simulations Using Task-Based Parallelism And Dynamic Sub-Cycling with SWIFT

    Full text link
    The development and implementation of GEAR-RT, a radiative transfer solver using the M1 closure in the open source code SWIFT, is presented, and validated using standard tests for radiative transfer. GEAR-RT is modeled after RAMSES-RT (Rosdahl et al. 2013) with some key differences. Firstly, while RAMSES-RT uses Finite Volume methods and an Adaptive Mesh Refinement (AMR) strategy, GEAR-RT employs particles as discretization elements and solves the equations using a Finite Volume Particle Method (FVPM). Secondly, GEAR-RT makes use of the task-based parallelization strategy of SWIFT, which allows for optimized load balancing, increased cache efficiency, asynchronous communications, and a domain decomposition based on work rather than on data. GEAR-RT is able to perform sub-cycles of radiative transfer steps w.r.t. a single hydrodynamics step. Radiation requires much smaller time step sizes than hydrodynamics, and sub-cycling permits calculations which are not strictly necessary to be skipped. Indeed, in a test case with gravity, hydrodynamics, and radiative transfer, the sub-cycling is able to reduce the runtime of a simulation by over 90%. Allowing only a part of the involved physics to be sub-cycled is a contrived matter when task-based parallelism is involved, and is an entirely novel feature in SWIFT. Since GEAR-RT uses a FVPM, a detailed introduction into Finite Volume methods and Finite Volume Particle Methods is presented. In astrophysical literature, two FVPM methods are written about: Hopkins (2015) have implemented one in their GIZMO code, while the one mentioned in Ivanova et al. (2013) isn't used to date. In this work, I test an implementation of the Ivanova et al. (2013) version, and conclude that in its current form, it is not suitable for use with particles which are co-moving with the fluid, which in turn is an essential feature for cosmological simulations.Comment: PhD Thesi

    Sustainability, Human Well-Being, and the Future of Education

    Get PDF
    This open access book explores the key dimensions of a future education system designed to enable individuals, schools, and communities to achieve the twin twenty-first century challenges of sustainability and human well-being. For much of the twentieth century, Western education systems prepared students to enter the workforce, contribute to society and succeed in relatively predictable contexts. Today, people are at the controls of the planet—making decisions that are dramatically reshaping social, economic, and environmental systems at a global scale. What is education’s purpose in this new reality? What and how must we learn now? The volatility and uncertainty caused by digitalization, globalization, and climate change weave a common backdrop through each chapter. Using case studies drawn from Finland and the US, chapter authors explore various aspects of learning and education system design through the lenses of sustainability and human well-being to evaluate how our understanding and practice of education must transform. Using their scholarly research and experience as practitioners, the authors propose new approaches to preparing learners for a new frontier of the human experience fraught with risks but full of opportunity
    corecore