106 research outputs found

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Performance Analysis on Cache-Enabled FR2 IAB Networks

    Get PDF

    Smart antenna system management utilising multi-agent systems

    Get PDF
    Abstract : Cellular communication networks are large and distributed systems that provide billions of people around the world with means of communication. Antennas as used currently in cellular communication networks do not provide efficient resource management given the growth in the current communication network scenario. Most of the problems are related to the number of devices that can connect to an antenna, the coverage map of an antenna, and frequency management. A smart antenna grid can cover the same area as traditional cellular system towers with some enhancements. Smart antenna grids can include a device in an area that requires connectivity rather than covering of the entire area. Frequencies are handled per antenna base, with more focus on providing stable communication. The objective of the dissertation is to improve resource management of smart antenna grids by making use of a multi-agent system. The dissertation uses a simulation environment that illustrates a smart antenna grid that operates with a multi-agent system that is responsible for resource management. The simulation environment is used to execute ten scenarios that intends to place large amounts of strain on the resources of the smart antenna grid to determine the effectiveness of using a multi-agent system. The ten scenarios show that when resources deplete, the multi-agent system intervenes, and that when there are too many devices connected to one smart antenna, the devices are managed. At the same time, when there are antennas that have frequency problems, the frequencies are reassigned. One of the scenarios simulated the shutdown of antennas forcing devices to disconnect from the antenna and connect to a different antenna. The multi-agent system shows that the different agents can manage the resources in a smart grid that is related to frequencies, antennas and devices.M.Sc. (Computer Science

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Doctor of Philosophy

    Get PDF
    dissertationWe develop a novel framework for friend-to-friend (f2f) distributed services (F3DS) by which applications can easily offer peer-to-peer (p2p) services among social peers with resource sharing governed by approximated levels of social altruism. Our frame- work differs significantly from typical p2p collaboration in that it provides a founda- tion for distributed applications to cooperate based on pre-existing trust and altruism among social peers. With the goal of facilitating the approximation of relative levels of altruism among social peers within F3DS, we introduce a new metric: SocialDistance. SocialDistance is a synthetic metric that combines direct levels of altruism between peers with an altruism decay for each hop to approximate indirect levels of altruism. The resulting multihop altruism levels are used by F3DS applications to proportion and prioritize the sharing of resources with other social peers. We use SocialDistance to implement a novel flash file/patch distribution method, SocialSwarm. SocialSwarm uses the SocialDistance metric as part of its resource allocation to overcome the neces- sity of (and inefficiency created by) resource bartering among friends participating in a BitTorrent swarm. We find that SocialSwarm achieves an average file download time reduction of 25% to 35% in comparison with standard BitTorrent under a variety of configurations and conditions, including file sizes, maximum SocialDistance, as well as leech and seed counts. The most socially connected peers yield up to a 47% decrease in download completion time in comparison with average nonsocial BitTorrent swarms. We also use the F3DS framework to implement novel malware detection application- F3DS Antivirus (F3AV)-and evaluate it on the Amazon cloud. We show that with f2f sharing of resources, F3AV achieves a 65% increase in the detection rate of 0- to 1-day-old malware among social peers as compared to the average of individual scanners. Furthermore, we show that F3AV provides the greatest diversity of mal- ware scanners (and thus malware protection) to social hubs-those nodes that are positioned to provide strategic defense against socially aware malware

    Edge AI for Internet of Energy: Challenges and Perspectives

    Full text link
    The digital landscape of the Internet of Energy (IoE) is on the brink of a revolutionary transformation with the integration of edge Artificial Intelligence (AI). This comprehensive review elucidates the promise and potential that edge AI holds for reshaping the IoE ecosystem. Commencing with a meticulously curated research methodology, the article delves into the myriad of edge AI techniques specifically tailored for IoE. The myriad benefits, spanning from reduced latency and real-time analytics to the pivotal aspects of information security, scalability, and cost-efficiency, underscore the indispensability of edge AI in modern IoE frameworks. As the narrative progresses, readers are acquainted with pragmatic applications and techniques, highlighting on-device computation, secure private inference methods, and the avant-garde paradigms of AI training on the edge. A critical analysis follows, offering a deep dive into the present challenges including security concerns, computational hurdles, and standardization issues. However, as the horizon of technology ever expands, the review culminates in a forward-looking perspective, envisaging the future symbiosis of 5G networks, federated edge AI, deep reinforcement learning, and more, painting a vibrant panorama of what the future beholds. For anyone vested in the domains of IoE and AI, this review offers both a foundation and a visionary lens, bridging the present realities with future possibilities

    Energy Harvesting and Sensor Based Hardware Security Primitives for Cyber-Physical Systems

    Get PDF
    The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. Although cyber-physical systems can offer numerous advantages to society, their large scale adoption does not come without risks. Internet of Things (IoT) devices can be considered a significant component within cyber-physical systems. They can provide network communication in addition to controlling the various sensors and actuators that exist within the larger cyber-physical system. The adoption of IoT features can also provide attackers with new potential avenues to access and exploit a system\u27s vulnerabilities. Previously, existing systems could more or less be considered a closed system with few potential points of access for attackers. Security was thus not typically a core consideration when these systems were originally designed. The cumulative effect is that these systems are now vulnerable to new security risks without having native security countermeasures that can easily address these vulnerabilities. Even just adding standard security features to these systems is itself not a simple task. The devices that make up these systems tend to have strict resource constraints in the form of power consumption and processing power. In this dissertation, we explore how security devices known as Physically Unclonable Functions (PUFs) could be used to address these concerns. PUFs are a class of circuits that are unique and unclonable due to inherent variations caused by the device manufacturing process. We can take advantage of these PUF properties by using the outputs of PUFs to generate secret keys or pseudonyms that are similarly unique and unclonable. Existing PUF designs are commonly based around transistor level variations in a special purpose integrated circuit (IC). Integrating these designs within a system would still require additional hardware along with system modification to interact with the device. We address these concerns by proposing a novel PUF design methodology for the creation of PUFs whose integration within these systems would minimize the cost of redesigning the system by reducing the need to add additional hardware. This goal is achieved by creating PUF designs from components that may already exist within these systems. A PUF designed from existing components creates the possibility of adding a PUF (and thus security features) to the system without actually adding any additional hardware. This could allow PUFs to become a more attractive security option for integration with resource constrained devices. Our proposed approach specifically targets sensors and energy harvesting devices since they can provide core functions within cyber-physical systems such as power generation and sensing capabilities. These components are known to exhibit variations due to the manufacturing process and could thus be utilized to design a PUF. Our first contribution is the proposal of a novel PUF design methodology based on using components which are already commonly found within cyber-physical systems. The proposed methodology uses eight sensors or energy harvesting devices along with a microcontroller. It is unlikely that single type of sensor or energy harvester will exist in all possible cyber-physical systems. Therefore, it is important to create a range of designs in order to reach a greater portion of cyber-physical systems. The second contribution of this work is the design of a PUF based on piezo sensors. Our third contribution is the design of a PUF that utilizes thermistor temperature sensors. The fourth contribution of this work is a proposed solar cell based PUF design. Furthermore, as a fifth contribution of this dissertation we evaluate a selection of common solar cell materials to establish which type of solar cell would be best suited to the creation of a PUF based on the operating conditions. The viability of the proposed designs is evaluated through testing in terms of reliability and uniformity. In addition, Monte Carlo simulations are performed to evaluate the uniqueness property of the designs. For our final contribution we illustrate the security benefits that can be achieved through the adoption of PUFs by cyber-physical systems. For this purpose we chose to highlight vehicles since they are a very popular example of a cyber-physical system and they face unique security challenges which are not readily solvable by standard solutions. Our contribution is the proposal of a novel controller area network (CAN) security framework that is based on PUFs. The framework does not require any changes to the underlying CAN protocol and also minimizes the amount of additional message passing overhead needed for its operation. The proposed framework is a good example of how the cost associated with implementing such a framework could be further reduced through the adoption of our proposed PUF designs. The end result is a method which could introduce security to an inherently insecure system while also making its integration as seamless as possible by attempting to minimize the need for additional hardware
    • …
    corecore