
CARDINAL-Vanilla: Immune System Inspired Prioritisation and

Distribution of Security Information for Industrial Networks

Peter M. D. Scully

Department of Computer Science

Aberystwyth University

Wales

June

2016

This thesis is submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy of Aberystwyth University.

2

Declaration

This thesis has not previously been accepted in substance

for any degree and is not being concurrently submitted in candidature

for any degree.

Signed . (candidate)

Date .

Statement 1

This thesis is the result of my own investigations, except

where otherwise stated.

Other sources are acknowledged by footnotes giving explicit

references. A bibliography is appended.

Signed . (candidate)

Date .

Statement 2

I hereby give consent for my thesis, if accepted, to be made

available for photocopying and for inter-library loan, and for the

title and summary to be made available to outside organisations.

Signed . (candidate)

Date .

3

4

Acknowledgements

The opportunity to study at the level of philosophical doctorate, under such pleasant

study conditions leaves me sincerely in a debt of thanks. This is a debt that, truly, I hope

many many others will have the good fortune to carry. To have such freedom and time to

educate yourself and to learn the skills to critically evaluate what you see before you are so

vital and so absolutely needed by individuals from all walks of life.

To Tan, sharing these life experiences with you over each year has made them infinitely

better. And my wonderful growing family, for your unfaltering support, unquestioned con-

fidence and firm positive motivation, I thank you sincerely.

To Mark J. Neal, my PhD supervisor, I have much respect and thanks for you. Your in-

sight, lateral-thinking, criticisms and critiques have necessarily guided me into and through

many a tough academic and applied time over the past 4 years. With your clear vision and

expertise, your commonplace ahoy!-like jovial cheer, your patience and your commitment

throughout the trials-and-failures, you have made this experience all the more simpler and

enjoyable.

To Jules Ferdinand Pagna Disso, my industrial PhD supervisor, your direction, support,

prompting and prodding along the path has been so helpful. The technical training and

academic insight you have given has let us to bring these very different worlds of study

together.

To David E. Price, my technical PhD supervisor, I gratefully thank your critiques and

your thirst for and requests of added detail. Of course, the hours you have set aside and your

area-specific know-how in distributed and networked systems made problem identification

and development much much smoother.

Thanks Marek Ososinski for all you have done. Thanks to Tom Blanchard and Colin

Sauzé for our numerous insightful discussions through the possibilities of bio-metaphors, and

for your understanding. Thanks to Jingping Song and Viktoriya Degeler for our discussions

and collaborations.

There are many other friends and colleagues who have discussed and made contributions

to the decisions, priorities and approaches in this work, each have helped along the way,

you know who you are and I thank you kindly.

Of course this study would not have been possible without the financial sponsorship from

the EPSRC industrial CASE studentship and grant EP/J501785/1 and from the EADS

Innovation Works research program IW201339 grant.

Contents

1 Introduction 11

1.1 Motivations and Context . 11

1.2 SHAAM PhD Project . 12

1.3 Aims . 13

1.4 Objectives . 13

1.5 Hypothesis and Research Question . 14

1.6 Key Contributions . 14

1.7 Key Testing Areas in this Thesis . 15

1.7.1 Distribution of Security Modules and Benchmarking 15

1.7.2 Architecture Parameter Tuning . 15

1.8 Thesis Scope and Organisation . 16

2 Security in Industrial Networks 19

2.1 Introduction . 19

2.2 Standards . 20

2.3 Latest Vulnerabilities & Exploits . 20

2.4 Historical Issues in the Security of Industrial Networks 24

2.5 Attacker Opportunities and Evidence . 24

2.6 Academic Summaries of Automation Security Flaws . 26

2.7 The Case and Positioning for Automated Self-Healing Security Systems in Industrial

Networks . 26

2.8 Problems . 27

2.9 Main Challenges and Directed Focus . 28

3 Biological Self-Healing 29

3.1 Introduction . 29

3.2 The Innate Immune System . 30

3.2.1 Tissue Immune Defences . 30

3.2.2 Neutrophils Response . 31

3.2.3 Complement System Responses . 31

3.3 The Adaptive Immune System . 32

3.3.1 B-Cells and Adapting Antigenic Specificity . 32

3.3.2 T-Cells: Dealing with Viruses, Regulation and Homeostasis 33

3

3.3.3 Antigen Presenting Cells . 35

3.4 Further Homeostatic Behaviours . 36

3.4.1 Signalling . 36

3.4.2 Two Signal Theory: Co-stimulation, Co-receptors and Binding Thresholds 37

3.4.3 Evolving Self-Healing . 37

3.4.4 Cell Potency: Structural Adaptation and Organisation 38

3.5 Chapter Conclusions . 40

3.5.1 Mappings of Principles to Main Challenges . 40

4 Artificial Self-Healing 43

4.1 Introduction to Self-Healing Systems . 43

4.2 A Survey of Distributed Self-Healing Artificial Immune Systems for Network Security . 44

4.2.1 Early Distributed Intrusion Detection Systems (DIDS) 45

4.2.2 File Decoys and Negative Selection in DIDS . 45

4.2.3 File Decoys, Negative Selection and Grid Computing for Evaluation 46

4.2.4 Backup and Restore, Block Transmissions, Neuter Viruses 46

4.2.5 Negative Selection and Decentralised Lisys . 48

4.2.6 Toward an Holistic Self/Non-Self-inspired Defence System 48

4.2.7 Toward an Holistic Danger Theory-based Defence System 50

4.2.8 A Sting for Worms with Self-Hardening . 51

4.2.9 Danger Theory Modelled for DIDS . 53

4.2.10 Cytokine Communications in Decentralised Defense Systems 54

4.2.11 Intrusion Prevention and Multi-Agent Self-Healing 54

4.3 Chapter Conclusions . 55

4.3.1 Discussion . 56

4.4 The Road Ahead . 56

5 The CARDINAL-Vanilla Architecture 59

5.1 Introduction . 59

5.2 Clarifications and Differences . 60

5.3 Architecture Overview . 61

5.3.1 Engineered System Overview . 61

5.3.2 Immune System Inspiration Overview . 63

5.3.3 Agent Architecture Overview . 63

5.4 Processes of CARDINAL-Vanilla . 64

5.4.1 Process Differences . 66

5.5 Flow Control of CARDINAL-Vanilla . 67

5.5.1 Flow Control Differences . 67

5.6 Network Communications . 67

5.6.1 Network Connectivity & Decision Control . 69

5.6.2 Network Protocol . 69

5.7 Classification and Responses . 69

5.7.1 Primary Classifier . 70

5.7.2 Secondary Classifier . 71

5.7.3 Responses . 71

5.8 Module Creation & Validation . 71

5.8.1 Module Validation Process . 72

5.8.2 Module Migration to Tissue Process . 72

5.8.3 Choosing Thresholds and Cytokine Increase Values 73

5.9 Time Scale: Moving Time Window . 73

5.10 Module Dispatch Decisions . 74

5.10.1 Volume Selection Feedback Loop . 74

5.10.2 Destination Selection . 75

5.10.3 Module Selection for Transmission . 75

5.11 Priority Heuristic for Signature Module Distribution . 75

5.11.1 Module Prioritisation & De-Prioritisation . 76

5.11.2 More Prioritisation: Through Regulation . 77

5.11.3 More Prioritisation: Dendritic Cells and Decay Rates 78

5.12 Parameters of CARDINAL-Vanilla . 79

5.12.1 Choosing the Key Parameters . 80

5.12.2 Under Attack Volume Percentage Parameter (P0) 80

5.12.3 Initial Priority Value Multiplier Parameter (P1) 81

5.12.4 Priority Value Suppression Parameter (P2) . 81

5.12.5 Static Moving Window Size Parameter (P3) . 81

5.12.6 Dendritic Cell Lifespan Parameter (P4) . 82

5.13 Chapter Conclusions . 82

5.13.1 Next Steps . 83

6 How to Evaluate and Validate Distributed Self-Healing Security Systems 87

6.1 Introduction . 87

6.2 Measurements and Metrics . 87

6.2.1 Measures to Metrics . 88

6.2.2 Detector Distribution Quantity Measurement (M1) 88

6.2.3 Detector Distribution Time Measurement (M2) 89

6.2.4 Detector Distribution Data Sent Measurement (M3) 90

6.2.5 Sources of Noise affecting Measurements . 90

6.3 Experiment Phases . 91

6.4 Experiment Procedure . 92

6.4.2 Experiment Procedure Development . 92

6.4.1 Experiment Procedure J . 93

6.5 Experiment Constants . 94

6.6 Distributed System User Behavioural Model . 95

6.6.1 Three Parameter User Model . 95

6.6.2 Static & Runtime Model Definition . 95

6.6.3 Distinguishing User Learning Experiences from User Behaviour 97

6.6.4 Model’s Use of Random Number Generators . 98

6.7 Datasets . 101

6.7.1 CSIC HTTP 2010 Dataset Versions and Sampling 101

6.8 Real-time vs Post Processing . 104

6.9 Multi-Objective Evaluation Metrics . 104

6.10 Combined System Performance Measures . 105

6.10.1 Approach . 105

6.10.2 Rodriguez & Weisbin’s Equations . 106

6.10.3 Ratio of Distances . 106

6.10.4 Conclusion for Combined System Performance Measures 109

6.11 Chapter Conclusion . 110

6.11.1 Future Work upon the User Model . 110

6.11.2 Next Steps . 110

7 Self-Healing Benchmark 111

7.1 Introduction . 111

7.2 Comparison on Virtual Networks . 112

7.2.1 Objectives . 112

7.2.2 Algorithm Comparisons . 112

7.2.3 Experiment Design . 114

7.2.4 Configuration . 116

7.3 Results . 118

7.3.1 Metric Performance . 118

7.3.2 Immunisation Rate System Performance . 120

7.3.3 Further Discussion . 124

7.3.4 Conclusions . 126

7.3.5 Next Steps . 127

7.4 Comparison on Enterprise Networks . 128

7.4.1 Objectives . 128

7.4.2 Experiment Design . 128

7.4.3 Configuration . 129

7.5 Results . 131

7.5.1 Metric Performance . 131

7.5.2 Immunisation Rate System Performance . 137

7.5.3 Conclusions . 138

7.5.4 Next Steps . 140

7.5.5 Future Work . 140

7.6 Further Analysis of Network Testing . 141

7.6.1 Objectives . 141

7.6.2 Observations of Time Synch/ Desynch in Network Virtualisation 142

7.6.3 Effects of Time Desynchronisation . 145

7.6.4 Metric Differences with Time Desynchronisation 145

7.6.5 Detector Delivery Time Differences with Time Desynchronisation 148

7.6.6 Discussion . 151

7.6.7 Conclusion . 152

7.6.8 Future Work . 152

7.7 Chapter Conclusion . 153

7.7.1 Next Steps . 153

7.7.2 Future Work . 153

8 Parameter Tuning 155

8.1 Introduction . 155

8.2 Range Testing on Virtual Networks . 156

8.2.1 Objectives . 156

8.2.2 Experiment Design . 156

8.3 Results . 158

8.3.1 Part 1: Parameter Effects . 158

8.3.2 Discussion of Results - Part 1: Parameter Effects 163

8.3.3 Part 2: Best Immunisation Rate Performance . 164

8.3.4 Discussion of Results - Part 2: Best Immunisation Rate 166

8.3.5 Conclusions . 168

8.3.6 Next Steps . 168

8.4 Parameter Tuning on Virtual Networks . 169

8.4.1 Objectives . 169

8.4.2 Experiment Design . 169

8.4.3 Search Method . 169

8.4.4 Parameter Tuning Ranges . 170

8.5 Results . 170

8.5.1 Part 1: Search Results by Generation . 171

8.5.2 Discussion - Part 1: Search Results by Generation 173

8.5.3 Part 2: Best Search States . 173

8.5.4 Discussion - Part 2: Best Search States . 175

8.5.5 Conclusions . 175

8.5.6 Next Steps . 177

8.6 Parameter Tuning on Enterprise Networks . 178

8.6.1 Experiment Design . 178

8.6.2 Parameter Tuning Ranges . 178

8.6.3 Search Method . 178

8.7 Results . 180

8.7.1 Reasoning through the Noise . 181

8.7.2 Best Configuration Set Results . 182

8.7.3 Discussion . 186

8.7.4 Conclusion . 187

8.8 Chapter Conclusions . 188

8.8.1 Peripheral Discoveries . 188

8.8.2 Future Work . 189

9 Towards a Decentralised Self-Healing Security System for Industrial Networks 191

9.1 Design Principles . 191

9.2 Self-Healing Component . 192

9.2.1 Role Separation . 193

9.2.2 Additional Hardware . 193

9.2.3 Performance Indicators . 194

9.2.4 Belief and Objective Weightings . 195

9.2.5 Periodic Indicator Updates . 195

9.2.6 Current Trust and Self-Centric View . 196

9.2.7 Fitness Function of Performance . 196

9.2.8 Data Transmission . 197

9.2.9 Detection Modelling . 197

9.2.10 Extracting Recovery State Models . 198

9.3 Self-Management Component . 199

9.3.1 Social Sensing and Collective Awareness – “the guards themselves become the

threat” . 199

9.3.2 Moving Target Strategies – “who will guard the guards themselves” 201

9.4 Strategy Generation and Evaluation: Static vs. Dynamic 201

9.5 Application Focus . 202

9.6 Challenges . 202

9.7 Chapter Conclusions . 203

10 Conclusions 205

10.1 Contributions for Industrial Network Security . 206

10.2 Contributions for Artificial Immune Systems . 207

10.3 Summaries and Conclusions . 207

A Security in Industrial Networks 211

A.1 Industrial Security Standards . 211

A.1.1 Organisations with Released Industrial Security Standards 211

A.1.2 Released Industrial Security Standards . 211

A.2 Vulnerabilities Reported on OSVDB 2007–2015 . 212

A.2.1 SCADA and Web Vulnerabilities Reported on OSVDB 212

A.2.2 Vulnerabilities per PLC Manufacturer Reported on OSVDB 214

A.3 SNAP7 - Open Source S7 Communications API . 215

A.4 Extract of ICS Attack - Water.arff Dataset . 216

B Biological Immune System 217

C CARDINAL-Vanilla Architecture 219

C.1 Implementation Specific Responses . 219

C.2 Use of Random Number Generators . 220

D Configurations 223

D.1 Virtual Machine Environment Configuration . 223

D.2 Enterprise Machine Environment Configuration . 223

D.3 Virtual Machine Environment and Execution Script . 224

D.4 Enterprise Network Environment Parameter Search Execution Script 224

D.4.1 Time Evaluations of Other Datasets . 226

E Further Results and Analysis 227

E.1 Self-Healing Benchmark - Inferential Statistics . 227

E.1.1 Difference from AIS to Engineered . 227

E.2 Self-Healing Benchmark - Virtual Network Plot Results 229

E.3 Self-Healing Benchmark - Enterprise Plot Results . 232

E.4 Time Delay: Bash Background Process Execution Order 235

F Parameter Range Evaluations 237

F.1 Combined System Performance Measures: Part 2 . 237

F.1.1 Failed Route: Log Ratio with Inverse . 237

F.2 Descriptive Statistics of Each Parameter Value Range 240

F.3 Box Plots of Each Parameter Value Range . 240

F.4 Ordinal Correlation from Parameter Value to Metric Results 240

F.5 Descriptive Statistics of Immunisation Rates . 247

F.6 Box Plots of Immunisation Rates . 247

F.7 Best of Search States from Virtual Network Environment Tests 247

F.8 Enterprise Network Environment Parameter Tuning Tests 252

F.8.1 Initial Configuration Set Random Selection . 252

F.8.2 Other Result Sets . 252

Glossary 257

References 269

10

Chapter 1

Introduction

1.1 Motivations and Context

In a world of ever-changing self-sustaining malicious infections and ever-changing, complex, highly-

connected computer systems an effective and equally self-adaptive countermeasure will be a vital tool.

Like the components of the human immune system, these computational decision systems will need het-

erogeneous self-organisation, cooperative and autonomous system management with repairable failure-

points, collaborative decision making, trusted and verifiable interactions and will need to evolve self-

healing behaviours to sustain the dependable operational state and the fluctuating homeostasis of our

cyber and computer networks.

The day of autonomous and intelligent malicious software is near. Within the next 20 years today’s

million-node botnets will have advanced evasive and polymorphic behaviours at all levels of implemen-

tation, they will supportively collaborate and maintain their existence with dedicated and automatic

investigation of new vulnerabilities, system fingerprinting and propagation via replication. Their evolv-

ing objectives will guide their actions toward dominance over individuals, organisations and software

entities that threaten them. They will learn and evaluate new mechanisms to cause impact, finding

new ways to take control of newly developed and connected robotic technologies. These, among other

fictional possibilities, may be the news headlines of the future.

Today’s headlines in security-centric communities hail of cyberwar, cyberterrorism and countless

intellectual property thefts. In 2010, a number of large U.S. owned companies, including Google and

Yahoo, have been a target of motivated attacks with advanced persistent threats (APT) (McClure et al.

, 2010). In 2013, we saw more reports of state-on-state incursions for corporate intellectual property

theft with resident APTs (Mandia, 2013). However, it is Stuxnet’s audacity that still resonates in halls

of cyber security; a targeted attack on Iran’s critical infrastructure that caused physical damage, yet

is believed to have remained hidden for a number of months (Cherry, 2010).

Works in the academic research field of Artificial Immune Systems (AIS) have highlighted interesting

cognitive mechanisms that can be applied to address the challenges we face. There are intriguing

opportunities from pattern learning, adaptation, scalable distribution, self-organisation and self-healing

from seemingly simple communications between swarms of simple, and not so simple, components.

Deconstructing how these mechanisms operate, directly from studies of the human immune system

enable us to uncover the governing principles of the biological immune system’s engineering. With this

knowledge these biological engineering principles can be applied to our own computational mechanisms.

11

12 1. Introduction

Indeed in this study, earlier and guiding works from AIS research literature established detailed network

traffic analysis systems (Harmer et al. , 2002), theoretical and architectural principles of immune

homeostasis (Owens et al. , 2007) and conceptualised procedures to build and improve biologically

inspired algorithms (Stepney et al. , 2005). From the developing works in AIS research and the fast

progressing study of immunology we find interpolations, extrapolations and extractions of dynamic

conceptual and novel viewpoints to many of our computational problems; including the challenging

dynamic unknown representations in computer security to problem solving via infrastructural design,

as addressed in this thesis.

Critical infrastructure, automation systems and industrial networks do pose unique security prob-

lems, with differences discerned from other more conventional computer and network security fields by

many academics. Their problems carry the critical and easily understood element of risk to human life

and the risk to the ways of human life. We largely focus on the rooted technical and infrastructural

aspects of the problem that lead to the vulnerabilities in the, regularly ageing unpatched or unpatch-

able, control systems and their connected devices. Due to the often legacy state of devices in operation

and the above-all-else requirement of real-time performance, these automation controllers are unable to

run standard anti-malware solutions. These systems are big-responsibility, high-impact and as software

attacks and fuzzing (hiding) mechanisms are already becoming more advanced, these critical infrastruc-

ture controllers are inevitably ever more attractive targets for advances on nation states, governments

and corporations. Thus finding mechanisms to self-heal these systems in a non-intrusive yet reliable

manner will be of great benefit.

1.2 SHAAM PhD Project

This collaborative PhD project between Aberystwyth University and EADS Innovation Works, later

becoming Airbus Innovations, is entitled Self-Healing Architecture Against Malware (SHAAM) and was

sponsored by the Electrical and Physical Sciences Research Council (EPSRC) and EADS Innovation

Works. The project aims to build toward a system that can enable the necessary architectural ro-

bustness and autonomy to combat the novel and creative threat types, such as Stuxnet, that target

programmable logic controllers, industrial networks and critical automation infrastructure.

The collaboration of ideas and objectives on the one hand influences the study toward applied

research on real-world systems and on the other, toward the theoretical contribution to the Artificial

Immune System (AIS) field and into the marginally more applied field of Cyber Security Research in

Industrial Control Systems (ICS). This thesis reflects the study through problems and challenges in

network security to specifically ICS security research, through the study of components of biological

immunology and from bio to computational modelling in AIS to address those problems and through

to scientific evaluation of decentralised and distributed systems on real-world computer networks.

1 13

1.3 Aims

This thesis aims to investigate self-healing architectures that will provide the detection and recovery

mechanisms against the present-day threat of previously unseen malicious software attacks targeting

industrial control systems and their networks.

From an academic perspective the aim is to investigate two holistic immune system metaphors.

First the self-healing mechanisms that lead to its detection, recovery and resistance to common and

new infections. Secondly its self-organisation that give way to collaborative, communicative, supportive,

cognitive and homeostatic characteristics. The self-healing research direction carries, for us, a periphery

interest to identify and correctly respond to unknown attacks while simultaneously learning a dynamic

normal environment. With these items understood we aim to create and evaluate a stable framework

that embodies those decentralised behaviours for application to cyber security problems and in real

world networks.

The commercialisation perspective of this project carries an aim to achieve a proof of concept frame-

work that encapsulates detection and recovery in a decentralised manner as suitable for application on

industrial automation networks with safety-critical real-time systems, including low performance pro-

grammable logic controllers (PLC) or embedded PCs. Example settings include automated ore smelting

systems, water treatment plants, manufacturing production lines and refinement process pipelines that

use a Supervisory Control and Data Acquisition (SCADA) system with network attached PLCs, human

machine interfaces (HMI), servers and workstations running the monitoring and control software. The

infrastructural framework that is aimed for will give provision to use integrated security modules to

detect malicious activity and to take response actions.

Software controlled automation systems are vulnerable to misuse, misconfiguration and malfunction

of components and we know that the Stuxnet computer malware (Falliere et al. , 2011) caused and

concealed malfunctioning hardware from an automation system’s monitoring and control systems and

thus its human operators. It is to identify and recover autonomously in these industrial environments

with these kinds of previously unknown attacks of tomorrow that hold the ultimate aim for such an

architecture.

1.4 Objectives

• To identify the key computer security challenges faced by industrial networks and their attached

programmable logic controllers (PLC), see Chapter 2.

• To discover the key characteristics of the biological immune system that lead to its holistic self-

healing, self-organisation and homeostatic behaviours, see Chapter 3.

• To assess the existing state of art research in decentralised self-healing system architectures for

industrial network security, see Chapter 4.

• To design an immune system inspired proof-of-concept framework to address these issues, see

Chapter 5 and Chapter 9.

• To design an evaluation framework to validate decentralised self-healing system architectures, see

Chapter 6.

14 1. Introduction

• To implement and evaluate the components of the designed framework for its immunisation rate

performance properties, see Chapters 7 and 8.

1.5 Hypothesis and Research Question

The specific hypotheses addressed in this thesis are focused on testing an Artificial Immune System

(AIS) architecture called CARDINAL-Vanilla that operates on computer networks. The architecture

facilitates detection and response self-healing behaviours by distributing security information using a

biologically-inspired heuristic as guided by many reactive components.

The key hypothesis that is answered in this thesis is:

“In the context of a distributed and self-healing system, compared to engineered approaches a

reactive multi-agent and holistic immune system inspired approach will have better distribution,

and thus capability for self-healing, performance over a range of networked environments. Where

performance is measured by a ‘self-healing immunisation rate’, consisting of the number of items

transmitted, time to distribute an item and data sent to distribute those items, in order to assess

the objectives of self-healing and application feasibility to industrial networks.”

Which leads to the research questions:

“To what extent will a decentralised self-healing security system inspired by an holistic view of

the biological immune system, be able to distribute network transmitted security modules (i.e.

detectors and repair tools) in a network of heterogeneous devices – such as an industrial control

network? How will its self-healing and network transmission performance compare against an

engineered system.”

1.6 Key Contributions

The novel contributions of this thesis are in the following areas:

• A new viewpoint, theoretical architecture and evaluation methodology for the future of Dis-

tributed Self-Healing Security Systems (DSHSS) for protection of Industrial Networks and the

Critical National Infrastructure that they will serve. Chapters 5 and 9 contain the developed

theoretical architectures and Chapter 6 describes the evaluation methodology.

• The first distributed implementation of the Danger Theory-inspired AIS self-healing architecture

CARDINAL-Vanilla, originally modelled by (Kim et al. , 2005). At this implementation level,

we show its first mathematical instantiation in Chapter 5 and its first parameter tuning in two

computer network environments in Chapter 8.

• In Chapter 7 we show, via a comparison under a comprehensive range of test scenarios, that

the CARDINAL-Vanilla AIS architecture’s immunisation rate is significantly poorer, yet without

an important difference for a real-life applications, than our equivalent engineered self-healing

architecture’s performance.

1 15

• This thesis contains the first work of a decentralised Danger Theory-inspired AIS security ar-

chitecture applied to the Industrial Control System (ICS) and SCADA cyber security problem

domain and is among the first collaborative decentralised security systems to be applied to this

problem domain.

1.7 Key Testing Areas in this Thesis

In this thesis the CARDINAL-Vanilla architecture is formally explained in Chapter 5 and is subse-

quently evaluated. The purpose of testing the new architecture is to extract specific and generalisable

findings for future self-healing systems for distributed defence in SCADA and ICS networks. To achieve

this the evaluations must prove the stability of the architecture, of the evaluation framework and show

the feasibility of the architecture for wider application to industrial networks. The key measure of self-

healing and feasibility in these evaluations is measured by our ‘immunisation rate’ metrics, defined in

Chapter 6. The first testing area is a comparative analysis of prioritisation and distribution of security

information. The second testing area is a sensitivity analysis of key parameters within the architecture.

The basis of the CARDINAL-Vanilla architecture was an abstract model without an instantiated

mathematical or engineered definition. It embodied a complex hybridised system at the edge of research

that combined agents, a distributed system, a distributed defence application, decentralised decision

making, peer-to-peer connectivity and biologically-inspired feedback systems of decay, proliferation and

suppression. In this thesis producing a stable version of the architecture and our evaluation methodology

and framework has taken precedence and has led us to present these testing areas. Upon this base, our

and other, future self-healing security systems can be extended and built.

1.7.1 Distribution of Security Modules and Benchmarking

Chapter 7 compares the AIS architecture algorithm against engineered algorithms on the key component

that selects and distributes security information modules, containing detectors and responders. This

comparative evaluation gives indication of the CARDINAL-Vanilla architecture’s suitability to self-

healing in the problem domain, over an engineered equivalent.

We show analysis of these tests under varying sizes of two network conditions. First is in a virtualised

network running on a mid-range workstation and secondly on a single segment of an enterprise network.

These experiments provide novel benchmark results of CARDINAl-Vanilla and in addition the first fair

implementation of Kim et al.’s CARDINAL architecture with adaptations to an industrial network test

scenario. This work shows the first use case of our self-healing security system evaluation framework

described in Chapter 6 and further analysis of the performance discrepancies between the network

types.

1.7.2 Architecture Parameter Tuning

Chapter 8 carries out a sensitivity analysis of the key parameters within the CARDINAL-Vanilla

architecture. These evaluations analyses in detail the performance of discrete value ranges of the key

parameters of the architecture, defined in Chapter 5.

16 1. Introduction

These architecture evaluations are conducted using the validation framework in three parts. First

range testing of the parameter value ranges, second an exhaustive step-wise search of the ranges in a

virtual network and third a multi-start hill climb search under real enterprise network conditions. The

outcome of this analysis is the discovery of a set of parameter configurations with good performance in

our two network test types. These configurations can instruct the future application of CARDINAL-

Vanilla into industrial networks.

1.8 Thesis Scope and Organisation

The organisation of chapters in this thesis carries the conversation from problem to solution, to evalu-

ation of the platform component of that solution.

Chapter 2 explores broadly the problems that affect critical infrastructure and their industrial

networks, with examples of specific cases. The chapter uncovers the existing security systems and

standards in use to address these problems, while also reasoning why and where the limits of these

approaches reside and concludes with a list of the main challenges.

Chapter 3 describes and discusses biological self-healing behaviours from immunology, cellular

theory and beyond. In this chapter we uncover key characteristics of immune cells and their interactions

that lead to the reactive and collaborative self-healing behaviours. The chapter concludes with mapping

of solutions to the main challenges.

Chapter 4 positions the self-healing systems field and surveys the existing self-healing work under

the Artificial Immune Systems (AIS) umbrella that focuses on related computer security problems. The

chapter is concluded by selecting the existing CARDINAL decentralised abstract AIS architecture as

a base platform upon which the solution is built.

Chapter 5 formally defines the mathematical model of CARDINAL-Vanilla, an extension of CAR-

DINAL, as an immunity-inspired multi-agent platform for collaborative network-wide self-healing and

security module distribution.

Chapter 6 explains how to evaluate decentralised self-healing security systems. This chapter ac-

counts for key evaluation metrics, distributed user behaviour profiles, numerical objective maximisation,

data sources and experiment procedures as required to evaluate distributed and collaborative network

security systems, including our platform using key ‘immunisation rate’ metrics.

Chapter 7 addresses our hypothesis and research question by assessing the immunity-inspired

distribution technique of CARDINAL-Vanilla against engineered and benchmark algorithms. These

tests are conducted under a number of virtual and real-world network conditions. Together with the

key results, in depth analysis of differences between the network conditions is provided. This work is

the first of two use cases of the generalisable evaluation methodology presented in the previous chapter.

Chapter 8 contains a detailed system performance analysis of the CARDINAL-Vanilla model

under differing parameter conditions. This work includes analysis of robust searches through the

1 17

parameter space under virtual and real-network conditions, and is concluded with a selection of several

recommended and good performing sets of configurations.

Chapter 9 outlines the future work of this thesis as a result of carrying out this research. Presented

is CARDINAL-E, a detailed theoretical architecture exhibiting key infrastructural components that

address the set of main challenges specified in Chapter 2 and begin to address the greater challenges

of adaptive malware raised in this project.

Finally, Chapter 10 summarises the work done in the thesis, it presents our conclusions and

emphasises points of future work.

18 1. Introduction

Chapter 2

Security in Industrial Networks

This chapter presents a set of challenges in securing industrial networks and their necessary solutions

that this thesis will address.

The topics covered include the purpose and description of industrial networks, the driving forces

behind the necessity for their security (in section 2.1), the standards in place to achieve this (2.2), the

technical state of the computer and information security field (2.3), the historical problems that have

led to the current vulnerable state of industrial networks (2.4) and a summary of reported flaws in

academic research (2.6). Another important topic is addressed by examples of recent targeted malware

and the tools and opportunities that can easily lead to future malware in industrial networks (2.5).

Prior to summarising the problems and solutions, the key case and positioning of decentralised and

automated self-healing security systems is presented (2.7).

2.1 Introduction

Industrial networks are responsible for automation of process and production operations in facilities

of national infrastructure, such as electricity, natural gas, water resources and road networks, as well

as commercial industries including factory automation, ore smelting, chemical refinement, manufactur-

ing, construction, aviation and in the transportation and distribution industries. These primary and

production industries in the UK contributed to 14.4% of domestic gross value added (GVA) with a

worth of £213.2 billion in 2012 (ONS, 2014) up from £205.2 billion in 2011 (ONS, 2013). Each of

these industries depend heavily upon programmable logic controllers (PLC) providing the real-time op-

eration via instruction-by-instruction control over their automated systems. The Supervisory Control

and Data Acquisition (SCADA) systems are required to monitor and control those operations. These

SCADA systems are connected to other administration networks and wider-area networks to feed data

and information for decision making into other divisions of the organisation.

Protection of these critical infrastructures is undergoing increasingly intense debate in today’s cyber

threat-centric communities, particularly since the malware discoveries of Stuxnet, Flame and Duqu and

the reports of ongoing advanced persistent threats (APTs) by various groups and nations (Binde et al.

, 2011),(Mandia, 2013). While the days of “ever-changing self-sustaining malware” may not have yet

reached us, the days of poorly secured architectures, unpatched zero-day vulnerabilities, APTs, targeted

attacks and vulnerable national infrastructure certainly have.

19

20 2. Security in Industrial Networks

2.2 Standards

Organisations are attempting to address the attack issues of critical infrastructure protection (CIP) at

the industry sector, national and international levels. Each of their released documents offer detailed

and comprehensive insights into best practice recommendations or in other cases, legally enforced

regulations on system and information security policies. Some of the standards have been in draft

since the 1990s. For example the North American Electric Reliability Corporation’s (NERC) CIP-002

through CIP-011 standards documents have been released under five revisions with the latest approved

in Nov 2013. The National Institute of Standards and Technology’s (NIST) 800-82 rev 2 guide is by

far the most accessible for newcomers to cyber security and also most recently released in May 2015

(Stouffer et al. , 2015). Figures 2.2 and 2.1 show an example Industrial Control System (ICS) network

topology and an overview of the recommended “defence in depth” architecture strategy.

The documented recommendations provide practical implementation plans, guides and considera-

tions for companies to employ current day technology and security techniques. A common strategy

taken within the standards are to identify the critical systems as priorities, segment the network into

functional “enclaves”, apply a defence-in-depth strategy to secure each segment and then apply access

control measures over those segments. If implemented correctly, the standards’ approaches mitigate

the risk and the impacts of successful attacks with a wide coverage over industries and organisations.

Our focus has not been on reviewing or picking apart the standards but in sharing an awareness of

current security techniques used to prevent present day attacks on industrial networks. The standards

spend years in writing and months under review for approval. They do not and cannot aim to be the

only solution against tomorrow’s attacks and hackers, but to provide a best-guess-framework for what

may come. A list of the current standards designed toward securing ICS is in Table A.1.

2.3 Latest Vulnerabilities & Exploits

The cyber security specific standards provide strategies for system patching against newly discovered

vulnerabilities. As with any released software these security flaws are in specific firmware, software,

network protocol implementations, etc. and are found by security researchers through an intrusive and

investigative process. Among the daily news feeds from the SCADA security research communities are

frequent Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) reports on product-

specific control system exploits, workarounds and patches. There is a rising trend in the proportion of

found SCADA specific vulnerabilities since 2007 (fig 2.3a), with the biggest market share and majority

of vulnerabilities affecting Siemens manufactured PLCs (fig 2.3b), as reported to the Open Source

Vulnerability Database (OSVDB) (Kouns & Martin, 2015).

An infamous and exemplary security bulletin issued in August 2011 reported a flaw in Siemens

SIMATIC S7 200, 300, 400 and 1200 series PLCs that permitted bypassing or disabling password

protection on the devices (ICS-CERT, 2011). The S7 PLCs communicated with and remain using for

interoperability purposes, the International Organization for Standardization Transport Service Access

Point (ISO-TSAP) protocol which transmitted in plaintext passwords and payloads on port 102/TCP1.

1In fact, ISO-TSAP is very similar to TCP. In other environments encrypted traffic that transmits with TCP at the

2 21

SPECIAL PUBLICATION 800-82 REVISION 2 GUIDE TO INDUSTRIAL CONTROL SYSTEMS (ICS) SECURITY

 5-14

This strategy includes firewalls, the use of demilitarized zones and intrusion detection capabilities

throughout the ICS architecture. The use of several demilitarized zones in Figure 5-5 provides the added

capability to separate functionalities and access privileges and has proved to be very effective in

protecting large architectures comprised of networks with different operational mandates. Intrusion

detection deployments apply different rule-sets and signatures unique to each domain being monitored.

 Figure 5-5. CSSP Recommended Defense-In-Depth Architecture

5.7 General Firewall Policies for ICS

Once the defense-in-depth architecture is in place, the work of determining exactly what traffic should be

allowed through the firewalls begins. Configuring the firewalls to deny all except for the traffic absolutely

required for business needs is every organization’s basic premise, but the reality is much more difficult.

Exactly what does “absolutely required for business” mean and what are the security impacts of allowing

that traffic through? For example, many organizations considered allowing SQL traffic through the

firewall as required for business for many data historian servers. Unfortunately, the SQL vulnerability

was also the target for the Slammer worm [Table C-8. Example Adversarial Incidents]. Many important

protocols used in the industrial world, such as HTTP, FTP, OPC/DCOM, EtherNet/IP, and Modbus/TCP,

have significant security vulnerabilities.

The remaining material in this section summarizes some of the key points from the Centre for the

Protection of National Infrastructure’s (CPNI) Firewall Deployment for SCADA and Process Control

Networks: Good Practice Guide [35].

When installing a single two-port firewall without a DMZ for shared servers (i.e., the architecture

described in Section 5.5.2), particular care needs to be taken with the rule design. At a minimum, all rules

Figure 2.1 – Barrier-based Defence-in-Depth architecture, 2009 (p62), from NIST 800-82 Rev 2 Standard.

By replaying network packet content the ‘takeover’ is straightforward. In this case, Siemens released a

downloadable firmware update for S7 1200 series PLCs. Infamy rises from zero updates made on the

other devices and the ISO-TSAP protocol standard underwent no change in Siemens implementations.

Instead the standardised mitigative workarounds were recommended, including monitoring and blocking

of network traffic.

In March 2015, a hardcoded plaintext password vulnerability was found in Schneider Electric’s

integrated development environment (IDE) (ICS-CERT, 2015). In this case, the fix was to download

and install a patch. In the Siemens S7 1200 case, the same applied. The firmware update for each

PLC in a plant could be issued over the communication bus (often network), but not without first

terminating the PLC driven automation operations. As late as May 2007 firmware upgrades (≤v2.6.0)

on S7-315 PLCs required installing the firmware update on a Siemens multi-media memory card (MMC)

and executing commands from Siemens proprietary IDE. However this could not be done without first

physically visiting and inserting the MMC card into each PLC (fig 2.4).

transport layer will encrypt its payload within the session to application layer of abstraction, i.e. by using secure sockets
layer (SSL). That layer should be built into the S7 Comms protocol, but is not, or built into the receiving PLC modules.

22 2. Security in Industrial Networks

SPECIAL PUBLICATION 800-82 REVISION 2 GUIDE TO INDUSTRIAL CONTROL SYSTEMS (ICS) SECURITY

 5-9

5.5.3 Firewall and Router between Corporate Network and Control Network

A slightly more sophisticated design, shown in Figure 5-2, is the use of a router/firewall combination. The

router sits in front of the firewall and offers basic packet filtering services, while the firewall handles the

more complex issues using either stateful inspection or proxy techniques. This type of design is very

popular in Internet-facing firewalls because it allows the faster router to handle the bulk of the incoming

packets, especially in the case of DoS attacks, and reduces the load on the firewall. It also offers improved

defense-in-depth because there are two different devices an adversary must bypass [35].

 Figure 5-2. Firewall and Router between Corporate Network and Control Network

Figure 2.2 – Example of the corporate and control network topology division of industrial networks (p57), from
NIST 800-82 Rev 2 Standard.

2 23

Sheet1

Page 1

'15'14'13'12'11'10'09'08'07
%

5%

10%

15%

20%

25%

30% % of SCADA Vulnerabilities
to Web Vulnerabilities

(a) % of vulnerabilities tagged “SCADA” vs. “web”.

Sheet1

Page 1

'15'14'13'12'11'10'09'08'07
0

20

40

60

80

100

120

140

Siemens

Schneider Electric

General Electric (GE)

Rockwell (Allen-Bradley)

Honeywell

Emerson

ABB

(b) Vulnerabilities per PLC manufacturer, stacks or-
dered by total reported.

Figure 2.3 – Vulnerabilities reported to OSVDB during 2007–2015. Retrieved on Aug 25th 2015. Raw data in
Table A.2 and Table A.3.

Figure 2.4 – Automated chemical release and monitoring remote terminal unit (RTU) station.
Powered by photovoltaic and long range communication via directional radio antenna. In a field on a hill.

Image by Dan Steele, 2012.

24 2. Security in Industrial Networks

2.4 Historical Issues in the Security of Industrial Networks

The threat of attack upon ICS and SCADA systems is a consequence of unfortunate evolving opportu-

nity. But to understand the underlying causes of why industrial networks have reached this vulnerable

state is to know a little of the history of PLCs and the automation industry.

PLCs are built for reliability and durability to operate for months and years without pause. Their

life expectancy reaches into decades. Due to the initial investment of time and cost in development and

training customers are often financially “locked-in” to their selected manufacturer’s automation system.

The generations of PLC product lines have undergone added functional modules and microprocessor/

memory hardware performance upgrades. This led to greater throughput at the expense of architectural

changes and piecemeal growth of device revisions in an organisation’s automation systems. The trade

of maintenance complexity versus improved production volume is not taxing for financially driven

management.

Systems builders and PLC manufacturers of earlier automation were concerned with physical secu-

rity rather than information security. After all, early PLCs pre-dated modern day routable network

infrastructure. Remote hacking of the systems was a zero priority as there was no physical or electronic

route to the controllers, an “air-gap” as it were. Uploading new instruction binaries was via physically

inserting a new memory card or via a direct and localised serial bus. Modern controllers still use these

methods in addition to network received uploads. Systems were and have remained largely propri-

etary; however, defacto standards were introduced to enable interoperability between manufacturers,

the ISO-TSAP protocol is an open example.

Business drove the demands for improved operational efficiency and real-time monitoring along

with the widening use of interconnected networks, the Internet. The existing communication protocols

were retrofitted to reliably deliver data over the new routable networks. The air-gap became logical

via the use of firewalls. To support monitoring system interoperability, web server software were often

integrated directly into the PLCs to enable convenient access to process state data and administrative

utilities. TCP 80 port became an open target for fingerprinting. More widely used operating systems

and their application software found their way from the corporate to industrial networks under the guise

of cheaper and faster development of control and monitoring software and hardware. The standards,

introduced above, were drafted, organisations tracked vulnerabilities, manufacturers took steps toward

addressing issues in order to mitigate the security flaws as they arose.

2.5 Attacker Opportunities and Evidence

Over this period security researchers have grown in number, as have the training opportunities, in-

vestigative tools and revealed zero-day vulnerabilities, which are relatively easily found on industrial

software and firmware. Tools such as Shodan (Matherly, 2009) map online devices using the nmap

fingerprinting tool and allow users to search the internet for device addresses by tag name or vulnera-

bility. Community driven and built open source penetration testing tools, i.e. Metasploit (Moore et al.

, 2009), and open access exploit databases, i.e. Exploit-DB (Aharoni et al. , 2009), enable methods of

attack by providing code and mappings from software version numbers to vulnerability snippets. The

now ageing Zeus botnet framework (Binsalleeh et al. , 2010) and Metasploit’s “Autopwn” feature, that

2 25

tests batches of exploits and on success installs an APT backdoor access, make for an attacker’s delight.

Building APTs are thus easy to access and manufacture, while zero-days get more commonly found on

these less than appropriately secured and patched systems.

Despite best efforts, APTs can find their way onto the logical industrial networks. Whether de-

livered via open firewall ports and vulnerabilities or via social engineering and inserting a USB stick,

the residing APT means total control over the workstation or server. From this point onward, if pack-

ing, fuzzing, obfuscation or other hiding mechanisms are employed the barrier-based defence-in-depth

strategy is ineffectual.

On Siemens S7 automation networks the S7 communications proprietary application layer protocol

and underlying ISO-on-TCP or ISO-TSAP transport layer protocols transmit traffic unencrypted. Open

source tools such as S7Comms protocol disector for Wireshark (Wiens, 2013) or SNAP7 (Nardella, 2013)

can be used to monitor and manufacture packets to the PLCs (see Figure A.3 for possible instructions).

Alternatively, code from exploit databases can be used to issue commands to the PLC. Ultimately, if an

APT is on the industrial network, then total control of the PLC is in the hands of the APT operator.

To monitor SCADA packets within the industrial network DigitalBond’s rule-based QuickDraw

plugin (Peterson, 2009) for the Snort network intrusion detection system (NIDS) (Roesch et al. , 1999)

has recently been released and SecurityMatter’s deep packet anomaly-based SilentDefence NIDS (Etalle

et al. , 2014) has been commercially released in 2014. Both, however remain barrier-based blocking

strategies.

There is evidence, that furthers this argumentation, from the Idaho National Labs (INL) ‘Aurora’

experiment where a controller-driven diesel generator was destroyed at the gasps of CNN reporters in

2007 (Meserve, 2007). The method used was to power on and off relays out of sequence, and has since

been known as an ‘Aurora-attack’. There are reports in 2010 apparently employed by a China-based

group, describing its repeated use on large international US-based companies (McClure et al. , 2010).

In the INL case, a vulnerability in a web browser was used to install an APT backdoor access in a

development machine, the INL researchers issued commands over HTTPS to replace the controller

instructions leading to catastrophe (Knapp, 2011, p37).

The Stuxnet malware was specifically targeted and marginally more autonomous; it was recognised

by ICS-CERT in 2010 (ICS-CERT, 2010). It quietly damaged specific centrifuge products to hinder a

controlled uranium enrichment process. It did so by replacing the spinning frequency to minimum and

maximum values at random, while reporting normal values to the HMI and monitoring devices (Falliere

et al. , 2011). It targeted certain geographical internet address ranges and several specific Siemens S7

series PLCs, using various zero-day mechanisms to propagated itself. Its hiding and attack systems

have been the upper measure of cyber attacks since.

Stuxnet and Aurora are toward the more extreme of examples. However these impactful evidence-

based attack reports are common in cyber security news articles and literature. They reinforce the

issue of flaws and problems, despite best standardised efforts. They show that APTs can go unnoticed

and that targeted attacks can take place even without receiving communications from a source.

26 2. Security in Industrial Networks

2.6 Academic Summaries of Automation Security Flaws

Others have summarised these specific, highly specialised and technical vulnerabilities as fundamentally

architectural, legacy systems without appropriate security capabilities, issues with SCADA network

protocol standardisation, openness, i.e. use of open TCP/UDP protocols, authentication and access

control issues, network misconfiguration and flaws in application software, (Pollet, 2002), (Igure et al.

, 2006), (Ralston et al. , 2007), (Hong & Lee, 2008), (Ryu et al. , 2009), (Tsang, 2010), (Zhu & Sastry,

2010).

The focus is rarely drawn upon the need that we see for a collaborative lightweight security sys-

tem that persists for the lifelong duration of the automation system through upgrades, additions and

replacements of SCADA equipment and computer network infrastructure. Knapp raises the issue of

“automated security software” (Knapp, 2011, p39-40), which is as close to the goals of our research as we

have found. Knapp pragmatically forms the problem case for industrial networks to which host-based

self-healing security systems are the solution.

2.7 The Case and Positioning for Automated Self-Healing Security

Systems in Industrial Networks

To recognise novel sophisticated threats it is commonplace to combine contextual information, from

multiple locations with multiple indicators, to make well reasoned decisions, as Figure 2.5 depicts. En-

terprise network security practitioners use security information and event monitoring (SIEM) systems to

collect varied contextual information from their workstations and other network devices. This approach

is reflected in many of today’s network security datasets such as the Westpoint ITOC 2009 (Sangster

et al. , 2009) and DARPA KDDCup 98/99 (Hettich & Bay, 1999) and its derivative datasets and is

recommended in published standards for ICS and SCADA networks (U.S. Department of Homeland

Security, 2009), (Stouffer et al. , 2015).

Correlation and analysis engines can be used to model the collected data on a connected computing

cluster in order to return modelled “security intelligence”. The current state of practice is to visualise

the received runtime log data against the learnt model data, as viewed from the centralised SIEM server.

This visual information comes at an exorbitantly high cost, a slow pace and is information rather than

Novel Activity / Commands

Gateway
Firewall

Industrial
Firewall

Controller /
PLC

New
IP

Malicious Parameter Set
or Binary Uploaded

(by Attacker)

Firmware Security
Patch Installed

(by Vendor)

Figure 2.5 – Diagram illustrates a sophisticated attack with many innocuous steps. Showing single source of
information is insufficient to distinguish a malicious attack from a benign update.

2 27

action 2. A human operator must decide which incident response action to choose before manually

initiating that response. This delays the process two-fold. First, is the transmission and receipt of the

logs at the central server and second is the human factor. This delay is already inadequate to prevent

today’s attacks and certainly will be in the face of tomorrow’s adaptive malware.

From our point of view, the decision engine’s role is a search or specifically an unsupervised skewed

two-class online machine learning problem. This search can be used to extract detection models, and

separately extract recovery models, from runtime data. These lightweight models can then be dis-

tributed to harden the individual devices on the network. This action alone provides a collaborative

and integrated full network defence system capable of acting in real-time. The ease and success likeli-

hood of advanced persistent threat (APT) attacks and the life-threatening role that security systems

play on industrial networks is sufficient to sway our judgement toward this collaborative and essentially

host-based defence in depth methodology.

The specification requirements for such a system on ICS networks are complex due to many factors.

These factors include the necessity for real-time detection and responses, zero-to-lightweight impact on

the devices, safety-first responses, capable of running on legacy and cutting-edge equipment, capable

of hardening systems with rare or intermittent connectivity and minimal error rates over the lifetime

of the automation and security system. Aside from these complexities, our belief for why this system

hasn’t been created before are due to the relatively under explored academic research area of adaptive

self-healing software systems for computer and information security (discussed in chapter 4), the data

transmission expense of updating peer-to-peer knowledge systems and the state-of-practice machine

learning approaches favoured in an industry where SIEM systems are needed.

2.8 Problems

This chapter has identified the following key problems that affect our current capability to keep indus-

trial automation networks secure.

• There is a rising trend in reported SCADA vulnerabilities (stated in section 2.3).

• Applying patches or firmware updates can be infeasible leading to some vulnerabilities remaining

unfixed or infeasibly-unfixable, i.e. the case specified affecting S7 2,3,400 (2.3).

• PLC customers financially locked-in. This caused parallel lines of vulnerabilities in the pro-

prietary systems per solution, per PLC manufacturer as each retrofitted security patches and

interoperability implementations (2.4).

• Industrial networks open to common vulnerabilities as they host common office application soft-

ware and operating systems, either connected to the internet for updates or not connected and

not updated (2.4).

• Management complexity increases as the systems change over time via upgrades, additions and

replacements, i.e. in devices, software, protocols (2.4). Particularly applicable in businesses

running long-standing PLC driven operations.

2McAfee’s Enterprise Security Manager (ESM) SIEM product for SCADA networks costs $40,000 USD which offers
”critical facts in minutes, not hours” (SCMag, 2015), whereas AlienVault’s Unified Security Management SIEM product
costs $17,700 for similar behaviours on enterprise networks (SCMag, 2014).

28 2. Security in Industrial Networks

• Due to the above reasons, vulnerabilities are easy to find (2.5).

• APTs are easy to develop and create (2.5).

• Issuing new automation instructions is easy from within the control network (2.5).

• The network border barrier-based defence is ineffectual, if an APT is on the control network (2.5).

• Industrial networks operate within a dynamic landscape of threats and vulnerabilities as tools,

technologies and security research expands (2.5).

The following is a summary of problems in the current state of practice for securing industrial networks.

• Standards provide a best-guess framework of principles for architectural security strategies for

defence-in-depth, patching devices and implementations (stated in 2.2).

• State of IDS practice for SCADA and ICS networks use a network barrier-based approach (2.5),

which becomes ineffectual in the case of meticulously constructed APTs (2.5).

• State of information enquiry practice in SIEMs use centralised logging and reporting; this ap-

proach cannot respond to incidences in real-time due delays from centralised logging and the

human factor. The centralised design means that it cannot respond at sites if they have poor

connectivity. (2.7).

2.9 Main Challenges and Directed Focus

These lists present the main issues identified based upon the problems specified in this chapter and our

project motivations described in section 1.1. This following list informs our thesis architecture design,

in Chapter 5:

• Self-healing (and self-hardening) behaviour.

• Host-based detection and responses.

• Distribution of security information.

• Independent decision making.

• Real-time performance, operate on modern and legacy devices.

• Minimal impact on device and network resources.

And, in addition to the above list, the following informs our future architecture design, in Chapter 9:

• Distribution of network-wide contextual security information.

• Real-time performance, operate on low level controllers.

• Independent decision making, under temporary or occasional network connectivity.

Chapter 3

Biological Self-Healing

This chapter carries the conversation through a precursory introduction into an holistic view of the

Human Immune System (HIS) theories and specific behaviours of self-healing that are relevant to the

previous discussion on engineering. Throughout this chapter correlations are drawn from the main

engineering issues (2.9) to potential engineering solutions within the biological immune system. The

chapter is concluded with a discussion and mapping of the immune system behavioural characteristics

that address the engineering issues and lead into the following literature survey and our methodological

approach in this thesis.

3.1 Introduction

The human organism is endowed with impressive natural defences against infection. Prior to advances in

medical drug discovery, countless generations survived with only natural innate and adaptive protection

against invading pathogens and antigens (bacteria, parasites and viruses). How bacteria, pathogen and

viruses mutate to match our weaknesses and how the innate and adaptive systems detect and respond

has undergone much study and remains an active topic of research.

While artificial immunology work has been under way for three decades, the Human Immune System

(HIS) has undergone scientific investigations into inoculation and redefinition of the acquired immunity

dating back to the 1700s (Silverstein, 2009; Jesty & Williams, 2011). In the recent sixty years the

sustaining theories of immunity are the Self Non-Self (SNS) model (Burnet, 1959), the Infectious Non-

Self (INS) model (Janeway Jr., 1989) and the Danger Theory model (Matzinger, 1994),(Matzinger,

2002). Each of these grand overarching theories have seen refinements and clarifications as the body

of immunological knowledge has expanded. As a result immunology textbooks have been amended

every few years with the new developments released along with new discoveries recognised daily in the

scientific community.

The HIS descriptions in this chapter serve our purpose as a perspective snapshot of the human

immune system. The content is directed based foremost upon Sompayrac’s 2003 introductory text on

immune systems (Sompayrac, 2003) and secondarily on Travers’ 2008 ‘Janeway’s Immunobiology’ text

(Travers et al. , 2008). To elucidate greater understanding reference has been made to Murphy’s 2012

edition of ‘Immunobiology’ (Murphy et al. , 2012) and to Coico and Sunshine’s 2009 ‘Immunology: A

Short Course’ (Coico & Sunshine, 2009), where cited.

29

30 3. Biological Self-Healing

In this section of work we will discuss two distinguishing components of the immune system, the

innate system in 3.2 and the adaptive system in 3.3. This is followed by further discussion of aspects

of biological homeostasis directly linked to immunology in 3.4. Each characteristic is extracted with

relevance to our objectives and engineering problem.

A distinction between innate and adaptive immunity is commonly delineated and described as such;

however, in reality both systems complement and are dependent of one another. From the perspective

of an individual cell or a collection of cells there is no cognition that draws a differentiating line between

the innate group’s behaviours from the adaptive group.

3.2 The Innate Immune System

The innate immune system is the stock defence after the skin membrane layer and is highly effective

against the common forms of antigens. Invertebrates, from the longest living animal – the Quahog Clam

(McFall-Ngai, 2007), to the simplest and most thoroughly studied organisms – the C. elegans worm

(Engelmann & Pujol, 2010) and to skates and sharks have survived relying only on innate immunity

and without the lymphocytes and antibodies of the adaptive immune system (Beck & Habicht, 1996).

This section describes some of the common behaviours of innate immunity in humans.

3.2.1 Tissue Immune Defences

First line tissue defence is provided by macrophage cells. Sompayrac estimates there are two billion

monocytes at any one time in the bloodstream. Monocytes are an immature version of the macrophage,

and in a ready state to mature and transfer into the tissue and muscle cells.

Macrophages are attracted to the fatty lipopolysaccharide (LPS) surface components common on

bacteria. Their role is to consume and split bacterium and extracellular debris into smaller safe chunks.

They use a process of phagocytosis in which the macrophage will swallow a bacterium in its phagosome

vesicle (pocket). Its lysosome vesicle will then begin the process of lysis (enzymatic deconstruction or

another form of degradation) upon the bacterium.

On encountering and consuming a bacterium, macrophages will release chemical signals (cytokines)

to initiate a variety of effects. Firstly increasing the flow of blood to the region, then recruiting and

communicating with more immune response cells. Inflammation occurs in non-trivial infections and in

some cases sickness behaviours result (fever, sleepiness etc.). Interestingly, the latter has been found

to potentiate the efficiency of the immune response (Aubert & Renault, 2008).

Key Points:

• Targeted detection

• Initiate communications to invoke response

• Generalisable pre-built response mechanism

• Revert to an offline mode (inflammation / sickness) to focus on recovery

3 31

3.2.2 Neutrophils Response

Of the traits of inflammation, neutrophil cells are probably the most apparent. Their main functions in

the innate immune response are to ferociously kill bacteria whilst alive and form pus, the hallmark of

inflammation, when they die. Neutrophils, of the granulocyte cellular line, lead very short lives and are

the most common of white blood cells (leukocytes). Dead cells are quickly replaced by those circulating

in the bloodstream; Sompayrac shows an estimate of 100 billion neutrophils produced each day in the

bone marrow of healthy adults.

During the initial immune response in the tissue regions, specific cytokine messages (Interleukin-1

(IL-1) and Tumor-Necrosis Factor (TNF) proteins) secreted by macrophages will affect nearby blood

vessels. These cytokine messages will invoke endothelial cells (the cells that line the vessels) to produce

a protein on the surface of the inner wall of the blood vessel to which neutrophil cells are attracted and

are permitted to pass through toward the point of infection. The transition only occurs when secondary

signals are present in the region, i.e. the C5b complement proteins or LPS, as found on bacterium.

In summary, the neutrophils will slow at the area of infection and check for the second signal; only if

it exists will they present the receptor required to attach to the area and begin delivering the response.

In addition, the macrophages will regulate the release of message requests for reinforcement. This

depends on the quantity of macrophage cells affected, such that greater infections reactively result in

a greater request for reinforcement.

Upon arrival, the neutrophils will engulf the region of with the highest concentration of cytokines

and bacterial infection. They will then react with either phagocytosis, degranulation or the neutrophil

extracellular traps (NETs) responses (for the latter see (Brinkmann et al. , 2004)), choosing the response

that best fits its situation to suppress or kill to the bacteria. The neutrophil will then die and form

pus, which is reactively ejected from the body by other mechanisms.

Key Points:

• Secondary signal verification;

• Damage assessment and regulated recruitment directed by message release;

• Decentralised knowledge for localisation and mapping.

3.2.3 Complement System Responses

The complement system uses three immune response pathways to deal with antigen. Each pathway

uses a two-step recognise-and-respond mechanism. Firstly a fine-grained receptor binds strongly to the

antigen (bacteria, yeasts, viruses and parasites) and then secondly a component protein set will bind

to the first receptor to then deliver a response.

The lectin pathway and the alternative pathway use knowledge of common molecules (amino, hy-

droxyl groups and mannose carbohydrates) found on the surfaces of most antigen. The immune network

facilitates a set of complement proteins that circulate the bloodstream and are used similarly in both

pathways. The lectin pathway uses another (lectin) protein to bind to carbohydrate surfaces on bacte-

ria and to which the C3b protein will bind. In the alternative pathway, the C3b complement protein

attaches directly to antigen with corresponding surfaces. After the C3b protein has attached, the re-

sponse delivery system is the same. A stack of proteins called the membrane attack complex (MAC)

32 3. Biological Self-Healing

bind to C3b and will split open the bacterium’s cell wall. The bacterium’s intercellular proteins are then

consumed and lysed by phagocytotic cells, such as macrophage cells. Thus neutralising the bacterium

or antigen.

The classical pathway is the third type of complement system and relies on the attachment of

antibodies to antigen. From the adaptive immune system, B-cells produce and release antibodies

designed to benignly attach to the surfaces of specific antigen. Certain cells, such as macrophages, are

attracted to the constant “heavy chain” regions of antibodies and either attach or begin phagocytosis.

We will discuss this further in 3.3.

Key Points:

• One size fits most detection

• Abundance of cheap detectors

• Separated detection and response system

3.3 The Adaptive Immune System

The adaptive (or acquired) immune system consists of a collection of components that adapt solutions

that can recognise new or unknown antigen and store these discoveries in memory for recurrent infec-

tions. The adaptive responses can take days to develop, but are more precisely designed and to detect

antigen and viruses than innate components alone.

3.3.1 B-Cells and Adapting Antigenic Specificity

B lymphocyte cells are best known for generating and improving antibodies; the adaptive detectors

for bacteria and other antigens. On their surface B-cells produce a uniquely formed receptor (BCR)

with a light chain region that matches a specific antigen. Antibodies are a form of these receptors

that detach and travel freely in extracellular plasma. B-cells are produced in the bone marrow and

exist in several states, such as näıve and experienced with either immature or mature receptors regions.

Their maturation and activation processes occur in several places including the germinal centres in

the lymphatic organs. Activated B-cells differentiate into either antibody producing plasma cells or

memory cells that remain in the body for many years.

The gene arrangement of their original BCRs, including their light chain (Lc) and heavy chains

(Hc) regions occur by ordering and selecting at random from 4 types of gene segments. The subsequent

gene arrangement is tested to ensure stop codon are correctly placed. The successfully tested Lc and

Hc regions are then joined as an immunoglobin (Ig) IgM or IgD structure, and presented at the surface

as BCR or secreted as an antibody.

Somatic hypermutation is the process of mutating or rearranging the gene segment template that

produces the light chain regions of the B-cell’s BCRs and antibodies. This fine tuning adjustment

either improves the binding affinity to matching antigen or does not. However, those mutations that

do improve binding also lead to greater proliferation and therefore those B-cells having undergone

improved somatic hypermutation have a greater population than those with poorer affinity.

3 33

Isotypic class switching in B-cells leads to a modified heavy chain region in newly produced BCRs

and antibodies. This occurs in mature activated B-cells when their CD40 and cytokine receptors are

met by T-helper (Th) cells. This reactively leads to a BCR heavy chain region change from the initial

IgM and IgD class types, to a variant of the five immunoglobin classes. Th2, Th1 and regulatory Th

cells will release cytokines from the categories of IL-4, IL-5, IFNγ and TGFβ that lead to the change

(Travers et al. , 2008). As with somatic hypermutation, the probabilistic behaviour in the body leads

to greater populations of the B-cells that produce better targeted BCRs and antibodies.

The immune response is modularised by the heavy chain region of the antibody. The immunoglobin

(Ig) categories have differing preferred locations, attract differing cells that cause differing effects; how-

ever, the common result is the ejection or destruction of the target to which the antibody had attached.

The heavy chain regions of A,G and M attract effector cells with an appropriate (Fragment crystalliz-

able (Fc)) receptor, leading to opsonising (covering), lysis via the classical pathway and degranulation

via mast cells, basophils and eosinophils. Eosinophil cells are also activated by and respond via the

antibody-dependent cell-mediated cytotoxicity (ADCC) process to immunoglobin E heavy chains, com-

monly associated to allergens and parasites. The G and M heavy chains activate natural killer (NK)

cells via the ADCC process. Each of these mentioned cells are considered innate; this is another example

of innate and adaptive immunity working together.

Key Points:

• Modularised detection, response mapping and responses

• Variable detectors, validated by probabilistic usage

• Variable class switching, validated by probabilistic usage

• Long term storage of detectors

• Modular adaptivity moves a functional unit from one component to another to enable new recog-

nition, and as a result response, behaviours.

3.3.2 T-Cells: Dealing with Viruses, Regulation and Homeostasis

T lymphocyte cells are best known for their ability to recognise and kill the body’s own cells that

carry virus antigen without mistakenly killing uninfected cells. However, their homeostatic regulatory

behaviours lead to truly intriguing supportive functions and reinforcement feedback loops.

T-cells are known to exist in two lineages as T-helpers (Th) and Cytotoxic Lymphocyte T-cells

(CTL), their state is either näıve or activated. In their activated state they exist as Th0, Th1, Th2 and

CTL cells, where they proliferate as plasma cells or, in fewer numbers, exist as memory cells. While

activated they fulfil their functions. After their role has been completed, the redundant plasma cells

undergo an activation induced death (ACID) to maintain an appropriate quantity for their need. The

memory cell copies exists in some form for many years and can respond quickly to repeated matching

infections.

Each T-cell has a receptor (TCR) on its surface. In a similar manner to the B-cell’s BCR receptor,

the TCR is believed to produce the wide variability shown by its receptor gene arrangement via selection

from a small set of gene segments. T-cells and their TCR are known to undergo a survival test in the

Thymus, restricted to TCRs that recognise non-self antigen presented in a major histocompatibility

34 3. Biological Self-Healing

complex (MHC) molecule. This self-tolerance procedure is the primary indicator leading to the self /

non-self immunological theory. T-cells with TCRs that recognise MHC type I are classified as CTLs

and have a surface CD8 receptor to improve binding to MHC-I. T-cells with TCRs that recognise MHC

type II are known as T-helpers and have CD4 receptors the aid binding to MHC-II.

Näıve T-cells are known to become activated when an antigen presenting cell (APC) presents an

MHC molecule and antigen that match the cell’s TCR. They require a strong binding signal provided

by a costimulatory signal. In T-helpers the binding of the CD4 receptor to MHC-II and the CD28

receptor to an APC’s B7 receptor are known to aid the co-stimulation and the TCR binding. In CTL

cells the CD8 receptor is known to aid binding to MHC-I. The T-cell activation process from näıve

and activated is thought to occur after some state-dependent and order-dependent interactions between

T-helpers, dendritic cells (DC) and the CTL cells. However, the exact process is “poorly understood”

(Coico & Sunshine, 2009, p154) and similarly paraphrased by (Sompayrac, 2003, p65).

The T-helpers provide supportive functions for other innate and adaptive cell types. They do

this through the release of corresponding cytokines. The Th1 cell will release IL2, IFN-γ and TNF

cytokines, which lead to the proliferation of CTLs and natural killer (NK) cells; induce macrophages

functions; induce B-cell isotypic class switching to IgG3 for opsonizing solutions against viruses and

bacteria; activate primed macrophages and NK cells. The Th2 cell releases IL4, IL5 and IL10 cytokine

proteins that lead to B-cell isotypic class switching toward IgA and IgE; these are solutions for mucosal,

parasitic and allergenic antigen types.

T-helper cells provide recruitment feedback loops in tandem with other immune cells and are fed

by the release of cytokines. Macrophages reactively release the IL12 cytokine upon meeting LPS

bacterium. Th0, the multi-purpose T-helper, respond to IL12 by acting as Th1 cells. Th1 cells release

IFN-γ which cause macrophages to activate and release more IL12 when in contact with other danger

signals. Along with their supportive functions, T-helpers also provide self-regulatory functions. Th1

cells release IL2 in order to proliferate local Th1s, while also releasing IFN-γ to suppress Th2 cells.

In opposition, Th2 cells release IL4 to proliferate Th2s and IL10 to suppress Th1 cells. These self-

recruitment behaviours only occurs when their function is required. We know that T-helpers are

required in a location when they serve a supportive or direct response function, therefore they reduce

in quantity when they no longer receive the required signals. The physical voluminous geometry of

a small infection causes this recruitment behaviour to be localised: As the distance from the source

of infection increases, the concentration of danger and recruitment signals reduces; as the quantity of

localised danger signals reduce, the concentration of recruitment signals reduce also. These spatially

directed behaviours therefore lead to a state of homeostasis.

T-cells respond with the recruitment behaviour and finally upon a target cell with induced apoptosis.

After activation via an APC the proliferating activated T-cell will increase its fluid capacity and thus

probability of active effect in the body. When the activated TCR matches the MHC-antigen complex

on the surface of a target cell, the T-cell (the CTL is specifically known to behave in this way) will

release the Perforin protein to open the cell’s membrane and will then deliver the Granzyme protein to

induce an enzymatic apoptotic (programmed) cell death.

Key Points:

• Spatially dependent and multi-agent dependent regulatory behaviour

3 35

• Reactive module recruitment

• Probability-based rate of response and coverage

• Encapsulated object inspection and response

• Modularised detection and response

• Many adaptive components available in many (central) decentralised locations; not all locations

are equal.

3.3.3 Antigen Presenting Cells

Antigen presenting cells (APCs) transport segments of antigen to B and T-cells which in turn can

initiate an adaptive immune response. Macrophages, B-cells and dendritic cells (DC) are best known

to present antigen (Sompayrac, 2003, p51); of which DCs are known to travel furthest, from the tissue

to the lymph nodes.

DCs have several other important roles while in the tissue including recognising infections via “toll-

like” receptors (TLR), phagocytosing and acting upon signals of danger. TLR4, 2, 3 and 9 receptors

are known to be carried by DCs and recognise LPS, viruses, ribosome nucleotide amino acid RNA

produced by viral infection and bacterial DNA (Sompayrac, 2003, p62). During these roles, DCs

will ingest extracellular and cellular antigenic matter. The TNF cytokine will cause DCs to migrate

and is released by macrophages when they experience bacterial antigen (Sompayrac, 2003, p48). The

migration is routed along the one-way lymphatic vessels toward the nearby lymphoid organs or lymph

nodes. Segments of the transported antigenic matter will be carried on the DC’s surface in MHC

molecules (MHC is defined in 3.3.2).

Lymph nodes are strategically distributed across the body and contain thousands of B and T-cells.

The likelihood of activating a näıve B or T lymphocyte cell with a matching receptor for the antigenic

payload is higher in these zones and increases over the few days of the DC’s lifetime. Upon a match,

the lymphocyte will proliferate and disperse via the lymphatic vessels. The result is a migration of

ideally adapted B and T-cells for the infection. It can take several days for new antigen or less (several

hours) for recurrent infections.

The APC behaviours contribute to further reinforcement feedback loops and give insight into the

underlying conditions of the immune system that lend its homeostasis. Upon maturation, DCs release

chemokine messages (similar to cytokines) causing recruitment of monocytes to develop into DCs and

enter the area of infection. As the lifetime of the DC in the lymph node is limited, the new recruits

reaching the lymph nodes provide up-to-date information of the infection; if DCs stop arriving at the

lymph nodes, then no infection remains and a response is no longer required.

The immune response is proportional to the danger imposed by the infection as measured by the

quantity of antigen being presented or cytokines and chemokines being released (Sompayrac, 2003,

p49). However, some cells have differing functionality depending on the concentration of signals, i.e.

a variable threshold, which may be the specific cause of the behavioural change. It seems likely that

the physical navigation of B and T-cells activated by DCs to the source of infection is directed by a

sustained concentration of cytokines or danger signals at the source of infection.

Key Points:

36 3. Biological Self-Healing

• Distributed decentralised resources of processing and for knowledge;

• Strategically located centralised units;

• Adaptive agent behaviour;

• Recruit reinforcements;

• Sustained proportional, simple and informative communications;

• Response proportional to severity assessment;

• Sustained communications direct and route the responses.

• Multi-functional agents detect, respond, communicate and transport matter.

3.4 Further Homeostatic Behaviours

This section explores other biological characteristics of an holistic view of immunology that lead to

relevant homeostatic behaviours of the immune system.

3.4.1 Signalling

The immune system coordinates its actions in a conditional reactive decentralised manner and is guided

by communication signals, Figure B.1 illustrates the signalling behaviour types.

The various signalling proteins, such as cytokines, chemokines and hormones, have signalling ca-

pabilities over short (paracrine) and long (endocrine) distances and internally (intracrine) and upon

the sender (autocrine). The signalling between cells, as described above, has led to a complex yet de-

constructable set of reactive behaviours that enable recruitment with targeted specificity, appropriate

timing and concentration levels. Matzinger’s danger theory (DT) (Matzinger, 1994; Matzinger, 2002)

further proposed that control over immune system response is initiated via local recognition of alarm

signals or danger-associated molecular patterns (DAMP). The subcomponents of cellular signalling,

cellular receptors, inter-cellular interactions and the cellular membranes are proteins or chains of amino

acid molecules. Thus for a given DAMP or protein if a match is discovered, an immune response will

be initiated, irrespective of anatomical location or self/ non-self origin.

Key Points:

• Signals are broadcast to all nodes.

• Specific nodes listen for specific signals.

• Different signals travel different distances (signal specificity).

• Behaviour may change upon receipt of a signal. The decision for change is dependent on local

state. The exact decision per cell is unclear.

• Context-based data recognition takes place, irrespective of the data’s source of origin.

3 37

3.4.2 Two Signal Theory: Co-stimulation, Co-receptors and Binding Thresholds

Co-stimulation and co-receptor binding behaviours occur “reactively” between protein receptors across

the immune system’s components. The protein-protein binding is in most cases reversible and bound by

non-covalent bonds. These, commonly, ionic bonds attract sets of oppositely charged molecules. The

secondary receptors, among other benefits, give correctly charged molecules to strengthen the affinity

in the localised region and thus owe to better receptor specificity.

Moreover, two signal theory is found in B-cell activation from näıve to mature, said to occur when

the BCR binds to a corresponding antigen carried by an APC and while the B-cell’s CD40 receptor

binds to a Th cell’s CD40L surface proteins (Sompayrac, 2003, p31). Another two signal theory example

is virgin Th cell activation requiring stimulus from an activated APC. The Th cell’s TCR and CD4

receptors bind to the APC’s MHC class II molecule, together with a secondary stimulus binding the

Th cell’s CD28 protein to the APC’s B7 protein (Sompayrac, 2003, p65). However, in molecular theory

non-covalent binding affinity can be strengthened with any appropriately charged molecule. In B-cell

activation, it is known that “clustering [.] a large number BCRs appears to partially substitute [.]

co-stimulation by CD40L” (Sompayrac, 2003, p31). While this level of discussion fits our interpretative

modelling purpose further intricacies of co-stimulation can be read in (Frauwirth et al. , 2002) showing

many detailed extensions since the concept was first theorised in (Lafferty & Cunningham, 1975).

There are further cases of ligand receptor bonding discussed by (Cohen, 2000). Cohen states that

pleiotropia is the condition where a single protein (gene) has multiple effects depending on whether

its bonding is weak or strong. Degeneracy is the term used where multiple genes seem to perform the

same function.

These examples show that binding, gene activation and thus immune cell decision making is non-

binary. This is true at least at the level of cell-cell interactions and protein-protein interactions. The

non-covalent bond decision threshold is variable depending on the local environment in which it is

operating. Mapping non-covalent bonding directly to computational decision making requires a choice

at which unit or scale to map ionic charges.

Key Points:

• Threshold levels that lead to a response can vary depending on local state.

• A threshold level can be exceeded in the event of a specific concentration (frequency) of proximate

correlations (as opposed to direct correlations).

• A threshold’s level can be exceeded when a direct correlation is found.

• In some cases, a threshold level will be exceeded only in the event of a logical conjunction of two

or more correlations.

3.4.3 Evolving Self-Healing

The human biological system can change or evolve at various time scales. This includes at the birth

of each new human generation, cell generation and at the level of somatic variation. An example of

the latter are the B-lymphocyte cell receptors undergoing the hypermutation process (mutation and

selection) in 3.3.1, leading to changed antigen recognition.

38 3. Biological Self-Healing

Two indicative examples of evolution at multiple time scales are the innate immune system’s natural

killer (NK) cells and, in a counterposition, viruses. According to (O’Leary et al. , 2006) and (Vivier

et al. , 2011) NK cells have evolved to fulfil the role that is essential in the mediated fight against

tumours and where the adaptive T-cells are unable to respond directly. Some pathogens and malignant

tumour cells are known to downregulate or cease their cell’s ability to express MHC class I molecules.

CD8 CTL T-cells are thus unable to recognise and respond to the dangers of these cells. When tumour

cells produce no inflammatory signals, T-cells further lack an activation pathway and instead consider

the cell(s) as ‘self’. NK cells have several mechanisms to recognise stressed cells and may respond via

direct lysis of the cell or via cytokine release to invoke a cascaded adaptive immune response. In fact

NK cells use NK-G2D, -p44, -p46, -p30 and DNAM receptors to recognise tumour cells (Terunuma

et al. , 2008). In contrast, prostrate cancer tumour cells are known to shed NKG2D proteins that

bind to NK cells and thus generate a false response, slowing the NK’s effectiveness (O’Leary et al. ,

2006). In a similar manner to T-cells, NK cells can also impose “immunological pressure” on the human

immunodeficiency virus (HIV), but similarly to the tumour case the virus has changed to evade (Alter

et al. , 2011). We therefore state that evolving self-healing characteristics exist within the system; be

they generational in NK cells or reactive-variational as found by the HIV virus.

Darwin and Herbert’s fitness measure of survival over generations is ‘fittest’, i.e. leaving most

copies of itself that are suitable to exist in the current environment (Darwin, 1872; Spencer, 1896). The

signalling mechanisms (see section 3.4.1) suggest that a cell and smaller entities, such as organelles,

viruses or bacteriophages, are within a local (para-/ intra-/ auto-crine) environment and simultane-

ously in a remote (endocrine) environment; while also remaining embodied in a human. One can

suppose, by these indications, that a measure of fitness applies at each of these scales. Section 3.2.2

exemplified regulated recruitment behaviours of neutrophil cells as a response to the signalling within

an environment. This behaviour change is driven by some necessity. The combined effect of somatic

variation, cellular signalling distances and regulated recruitment based on necessity, therefore indicate

that evolving self-healing characteristics exist in different time scales, under a familiar fitness measure

and driven by different environmental priorities.

Key Points:

• The system has evolves over generations and in response to pressure signals.

• Cells change to fulfil a required capability as indicated by signalling.

• The fitness measure uses the current environment state and might be based on prioritised need

in local, regional and system-wide environment scales.

3.4.4 Cell Potency: Structural Adaptation and Organisation

Cell ageing, controlled (apoptotic) cell death and mitosis are natural biological processes that maintain

a healthy internal state and contribute to the homeostatic behaviour in the body. The decomposed

apoptotic cell ‘bodies’ are ejected from the body by phagocytes, i.e. macrophages. Cellular mitosis is

a regular behaviour that replenishes dead cells over a duration, known to differ between cell lineages.

Alongside these behaviours is an adaptive and controversially self-organising function, the cell potency

of stem cells.

3 39

Cell potency is the potential for embryonic or somatic stem cells (in adults) to differentiate into

different cell types. Somatic stems cells have been found in the bone marrow, brain, adipose (fat

storage) tissue (Zuk et al. , 2002), cardiac cells (Beltrami et al. , 2003), in the third molars (Gronthos

et al. , 2002) and are thought to reside in a ‘stem cell niche’ of each tissue (NIH, 2015). In each case of

somatic stem cell potency, a progenitor cell will differentiate into one of multiple cell lineages, but unlike

embryonic stem cells not all cell lineages. The bone marrow resident pluripotent hematopoietic stem

cells, for example, differentiate into blood (white and red) cells and adaptive immune cells (Narasipura

et al. , 2008). The differentiation may be induced by other somatic cells (already differentiated) that

express only a few specific genes upon the stem cell’s surface (Baker, 2007).

In the interest of adaptive–above–adapted systems we can find a correlation to computational role

switching and even periodic role adaptation depending on the needs of the system. In the body,

theoretically, under the correct guidance (expression of genes) one could envision dynamic structural

changes and changes in cell or organ behaviours based on differing expressed concentrations.

Key Points:

• Cell function can adapt within a constrained range of roles.

• Cell role changes occur as a reaction to specific signals. The specific signal can also be due to

some form of lack or abundance. The result is a homeostatic system.

40 3. Biological Self-Healing

3.5 Chapter Conclusions

In this chapter we have explored the key characteristics and principles of biological self-healing. Our

holistic view upon the biological immunology has found complex networks of components ripe for

application to intelligent decentralised decision making. The system maintains homeostasis and enables

detection and recovery from infection while collaborating with other biological systems in its proximity.

For these reasons the immune system provides interesting design templates for us to build self-healing

and adaptive computational systems to address and deal with dynamic environments.

The key engineering characteristics of each biological topic have been mapped within the chapter

and will not be repeated here. We have found that the immune system is composed of dependent,

yet individual and absolutely reactive components that result in perceivably intelligent self-healing

behaviours. The correlation to decentralised, distributed and self-organising applications, where the

system has no single (central) point of failure, is a logical step. The biological signalling mechanisms

enable self-managed communications and bottleneck avoidance, and can be developed into distributed

signalling transmission behaviours. The adaptive, self-organising and evolving self-healing behaviours

can be applied to Distributed Self-Healing Security Systems (DSHSS). First to generate adaptive de-

tectors and responders via small variations based upon a localised viewpoint, such as in a host-based

system experiencing its own view of a threat landscape. Secondly, in order to generate module-level

changes based upon the system-wide threat landscape. Many of these engineering principles will inform

the architectural design within this thesis, in accordance to the mappings stated below.

3.5.1 Mappings of Principles to Main Challenges

The end of chapter 2 specified the thesis’s problem domain challenges (2.9). This chapter identified

a number of applicable biological engineering solutions. Below is a mapping between the challenges

(numbered) and their solutions (bullets). The ‘not addressed’ items are issues that remain unsolved by

the principles extracted in this chapter.

Mappings:

1. Self-healing (and self-hardening) behaviour.

• Neutrophils (3.2.2)

• Complement System (3.2.3)

• B-cells (3.3.1)

• T-cells (3.3.2)

• Evolving Self-Healing (3.4.3)

• Cell Potency (3.4.4)

2. Host-based detection and responses.

• Tissue Defences (3.2.1)

• Neutrophils (3.2.2)

• Antigen Presenting Cells (3.3.3)

• Mature B-cells (3.3.1)

3 41

• Mature T-cells (3.3.2)

3. Distribution of security information.

• Neutrophils (3.2.2)

• Complement System (3.2.3)

• Antigen Presenting Cells (3.3.3)

• Signalling (3.4.1)

4. Independent decision making.

• Neutrophils (3.2.2)

• Complement System (3.2.3)

• Signalling (3.4.1)

• Two Signal Theory and Thresholds (3.4.2)

• Cell Potency (3.4.4)

5. Real-time performance, operate on modern and legacy devices.

• Not addressed.

6. Minimal impact on device and network resources.

• Not addressed.

7. Network-wide contextual security information.

• Antigen Presenting Cells (3.3.3)

• Signalling (3.4.1)

8. Real-time performance, operate on low level controllers.

• Not addressed.

9. Independent decision making, under temporary or occasional network connectivity.

• Tissue Defences (3.2.1)

• Antigen Presenting Cells (3.3.3)

• Mature B-cells (3.3.1)

• Mature T-cells (3.3.2)

42 3. Biological Self-Healing

Chapter 4

Artificial Self-Healing

This chapter opens by positioning self-healing systems and explores the state-of-the-art works in dis-

tributed self-healing Artificial Immune System (AIS) research with their application to industrial and

computer network-based security. The chapter concludes by selecting a decentralised platform for use

in the empirical trials of this thesis and as a foundation of a distributed self-healing security system

designed to address the issues affecting industrial networks.

4.1 Introduction to Self-Healing Systems

Self-Healing Systems (SHSs) are software architectures that enable continuous and automatic monitor-

ing, diagnosis and recovery of software faults by trying to eliminate and harden against the re-occurrence

of a given fault. The resulting state of recovery is the key factor that contrasts self-healing from tra-

ditional fault-tolerant architectures. With that latter, recovery is to resume the state of execution and

the former is to eliminate (or mitigate) of the fault’s root cause (Keromytis, 2007). Ghosh et al. define

self-healing as recovery from an abnormal (or ‘unhealthy’) state, return to the normative (‘healthy’)

state, and function as it was prior to disruption (Ghosh et al. , 2007).

Several biologically-inspired approaches have been used to solve self-healing problems drawing on the

common characteristic of homeostasis. Autonomic computing is one such approach, derived from the

biological autonomic (involuntary) nervous system which controls many of the sub-conscious functions of

the body. Recent research work on self-healing using autonomic computing can be found in (Huebscher

& McCann, 2008). The biological immune system’s capability to heal by identifying and reverting

unsafe changes also follows the homeostasis theme. A survey on immune system inspired self-healing

can be found in (Ghosh et al. , 2007), providing a more general exploration of self-healing than in

section 4.2.

Software engineering approaches to self-healing also exist to solve these problems. These solutions

more-readily consider fault tolerance, availability, resilience, survivability and dependability; and not

always taking the decentralised networking view. However the same components of detect (monitor/

predict), diagnose and recover remain. The IBM manifesto for self-managed systems (Horn 2001 (Horn,

2001)) was carried forward by Kephart & Chess’s 2003 seminal paper (Kephart & Chess, 2003) which

cast the foundations for much of the work in self-healing and autonomic self-managed computing. In

this realm detection is commonly via error monitoring and repair solutions are often interchanging of

43

44 4. Artificial Self-Healing

or modifying input arguments into middle-ware. In the context of computational systems, self-healing

systems use autonomous behaviour to address problems resulting from high complexity, a survey of

this can be found in (Psaier & Dustdar, 2011).

Self-healing integrated operating systems and application language design have also been proposed

and applied. Microkernel self-healing is grounded in delegation and management of child processes.

On encountering an irrecoverable failure, the failed process must somehow be killed and restarted. A

microkernel in any application (including operating systems) delegates tasks to sub-processes (threads).

Those tasks that may endanger system stability under failure or that have a high probability of failing

are chosen for delegation. These threads can then be monitored externally and safely restarted when

required. An example is the Minix 3 operating system http://www.minix3.org. The Erlang actor model

used by the “self-healing” AKKA distributed systems framework (from 2009 onward http://akka.io) is

Ericsson’s open source programming language developed for concurrency in clustered real-time systems.

The AKKA actor model was designed to identify and localise faults using its hierarchical (tree) error-

kernel. The error-kernel is fundamentally linked to the framework’s microkernel and uses the refresh

(restart thread), retry task (reissue function call) and report fault recovery options.

There are a number of other relevant and related fields to self-healing systems and Distributed Self-

Healing Security Systems (DSHSS). Among them are self-adaptive systems (De Lemos et al. , 2013),

swarm robotics (Brambilla et al. , 2013), self-aware systems (Lewis et al. , 2011), context aware systems

(Baldauf et al. , 2007), socially attentive monitoring (Kaminka & Tambe, 2000) and trust management

in distributed systems (Blaze et al. , 1999).

4.2 A Survey of Distributed Self-Healing Artificial Immune Systems

for Network Security

This section explores existing works inspired by the human immune system that aim to solve security

problems linked to the issues affecting industrial networks. After a survey of the state of the art, a gap

was discovered. At the time of writing, there remains little other work on industrial network security

problems exploiting inspiration from the AIS field. The works critiqued below were selected as they

meet some or all of the following search criteria listed below:

• Distributed

• Decentralised control

• Self-healing

• Self-organising

• Network security focused

• Immune system inspired

The survey explores early topics in distributed network security and security systems covering early

ground breaking works with immune inspiration. Then moves toward decentralised security system and

decentralised holistic defence self-healing systems. These include self-hardening and self-healing security

http://www.minix3.org
http://akka.io

4 45

systems employing multi-agent designs and decentralised cytokine signalling. Finally the influential

topics and specific functional components are summarised into a set of subject areas.

4.2.1 Early Distributed Intrusion Detection Systems (DIDS)

The motivation outlined above can be generalised into a problem of autonomous and distributed network

security. From this standpoint, Snapp et al. (Snapp et al. , 1991a; Snapp et al. , 1991b) in the early

nineteen-nineties offered the first distributed intrusion detection system, named DIDS.

Snapp et al.’s expert system consisted of three agents running across the network. The agents

included: a host agent service running on each machine to monitor its context data; a LAN agent

process running on some machines to monitor network behaviour data; and a director agent process

running on a single dedicated machine to analyse evidence reports from context and network agents

and instantiating recovery mechanisms. In Snapp et al.’s solution the director agent also makes high

level inferences respective of the reports’ spacial-temporal information enabled by dynamic and static

rule bases.

Figure 4.1 – Snapp et al.’s 1991 DIDS Architecture Diagram

Snapp et al.’s work in 1991(Snapp et al. , 1991a) set a standard in defining a blueprint for multi-

agent and distributed network security systems of the future.

4.2.2 File Decoys and Negative Selection in DIDS

Marmelstein, Van Veldhuizen and Lamont were the first to move forward with a similar multi-agent

blueprint in an immune system inspired context. In 1998 their publication (Marmelstein et al. , 1998)

incorporated the single machine immune system inspired computer security work of Kephart et al.

(1994) (Kephart, 1994) using a file decoy technique and Forrest et al.’s (1994) (Forrest et al. , 1994)

negative selection detector algorithm both originally inspired by the self / non-self immunology theories

(prior to Matzinger’s danger theory (Matzinger, 1994))1. In doing so, they adjusted and combined the

two approaches to reduce the inherent computational overhead in negative selection. First by reducing

1Broadly, T-cell lymphocytes mechanism theories for identifying viruses within infected biological cells describe a
training process in the thalamus that discards new T-cells with receptors (TCRs) that have a high affinity for self amino
acid strings and a virgin/mature T-cell recognition process that interacts and compare the amino acid strings (peptides)
from other cells with their trained receptors. In the latter process a cell destruct (apoptosis) cytokine is released if a string
sequence is recognised. Notably, this is also a cause of immunodeficiency diseases.

46 4. Artificial Self-Healing

the area of file content from which non-self detectors were generated and secondly by only monitoring

changes to the decoy files. The repair mechanism used changes to decoy files as distinct malware

memory signatures which were then located and removed from other files.

Figure 4.2 – Forrest et al.’s 1994 negative selection algorithm

4.2.3 File Decoys, Negative Selection and Grid Computing for Evaluation

Marmelstein et al.’s multi-agent architecture blueprint follows similarly to Snapp et al with three

agents. A local agent monitors changes to decoy files on individual machines, parses changed decoy

files with (negative selection-like) detectors and carries out file repair routines; a network agent classifies

viruses using extracted signatures from infected decoy files and validated detectors; and a global agent

extracts the signatures, generates detectors, evolves generic and virus-specific decoy files using a genetic

algorithm and stores this knowledge. Explicit execution locations for these three agent processes is not

described.

As with Snapp et al., scientific assessment of this architecture is impossible without their published

results. However, Marmelstein et al. acknowledge that their and Kephart et al.’s approach to monitoring

and detection is limited by its reliance upon malware that appends to files consistent with the decoy

files and its dependency upon a decoy file becoming infected.

Marmelstein et al. also noted the problems encountered when drawing correlations between biologi-

cal immune systems and computer architectures. Fundamentally they identified that biological immune

systems are inherently parallel, whereas computer architectures are inherently sequential. That com-

puter systems lack the “evolutionary adaptation mechanisms” found in immune systems and require

careful application of evolutionary algorithms to fill this shortfall; suggesting “virus detection, virus

purge [for example using an evolutionary search mechanism], and damage repair”(Marmelstein et al.

, 1998, p3839). Due to possibility of file corruption caused during system repair they recommended a

fail-safe process to recover file content. Finally alluded to was a distributed or grid computing approach

to share the computational burden of evaluating detectors on the plethora of existing viruses.

4.2.4 Backup and Restore, Block Transmissions, Neuter Viruses

The architecture and lessons learned by Marmelstein et al. (Marmelstein et al. , 1998) at the US Air

Force enabled the further enhancement of this distributed agent architecture and tested implementations

(Lamont et al. , 1999; Harmer, 2000) culminating in the Harmer et al. 2002 (Harmer et al. , 2002) paper.

Before discussing Harmer et al.’s scientific results, let’s first cross the Pacific ocean and discuss the

results of Okamoto and Ishida’s 1999-2000 (Okamoto & Ishida, 1999; Okamoto & Ishida, 2000) similarly

4 47

Figure 4.3 – Marmelstein et al.’s 1998 Architecture Diagram

themed distributed multi-agent architecture; then, with brevity, discuss a distributed application of

Forrest et al.’s negative selection algorithm in New Mexico.

Okamoto et al.’s approach used four agents to perform virus detection, infected file neutralisation

and file recovery. Agent communications permitted file backup and restore between machines and

sending recommendations to other machines’ agents to discontinue file transfers. We can deduce that

all agent processes are executed on all machines.

The system included: a workhorse agent, the antibody agent to monitor change of infectable (ex-

ecutable) files under the —Windows— directory, analyse changes with self detectors (using a similar

algorithm to Forrest et al.’s negative selection (Forrest et al. , 1994)), issue warnings to neighbouring

machines causing them to block receipt of network file transfers from the originating machine and also

neutralise infected files by replacing their HOF (head of file). Okamoto et al. extracted the self detector

signatures from residing uninfected executable files. Additionally, a killer agent was used to remove

neutralised files; a copy agent to backup uninfected files to other machines; and lastly a control agent

to coordinate these agents.

Dissimilarly to the Snapp et al. and the Marmelstein et al. papers, experiments were conducted;

although Okamoto et al.’s published results (Okamoto & Ishida, 2000) are missing conventional detail.

The experiment compared detection, neutralisation and recovery mechanisms with equivalent mecha-

nisms of ”three commercial softwares (sic)”. Anti-virus software names and versions were not given.

The viruses tested created three file infection types: additions at EOF (end of file) and replacing HOF,

HOF block overwrites, and dispersed fragmented overwrites (viruses were —Scream3—, —Joker2—,

—Commander Bomber—, —AP-605— and —AIDS—).

A summary of their results reads as: commercial and Okamoto et al.’s detection mechanisms iden-

tified all viruses; commercial recovery mechanisms were mostly inadequate (0% success, 40% partial

success), whereas Okamoto et al.’s were mostly successful for neutralisation (60%) and recovery (100%).

Okamoto et al.’s results are remarkable and, from a distributed systems perspective, encourage further

avenues of research to answer: would their system scale to today’s commercial requirements of operat-

ing system and application size and versioning volatility? Beyond the distributed storage, can further

advantage be taken of the distributed approach or the immune system analogies, such as sharing further

48 4. Artificial Self-Healing

knowledge or delegating detector generation (as with Marmelstein et al.)? Can such a system adapt to

newly added machines on the network? Can a file-based anti-virus framework like Okamoto et al.’s be

applied to the network data transmission context?

Figure 4.4 – Okamoto et al.’s 2000 Overview of Agent Control Mechanisms

4.2.5 Negative Selection and Decentralised Lisys

Forrest et al.’s self-non-self discrimination idea (Forrest et al. , 1994) was developed further in New

Mexico during 1996-1998 (D’haeseleer, 1996; D’haeseleer et al. , 1996), (Dhaeseleer et al. , 1997),

(Somayaji et al. , 1998) and (Hofmeyr & Forrest, 2000; Forrest & Hofmeyr, 2001) which included tests

with intrusion detection systems (IDS) using the negative selection algorithm. An output of this line

of work was the Lisys IDS software (Forrest, 2011; Hofmeyr & Forrest, 2000) embodying the negative

selection algorithm refined by the research. Though, it wasn’t until the Hofmeyr’s (1999) PhD thesis

(Hofmeyr, 1999) that the algorithm could be considered described in a distributed context and applied

to network intrusion detection.

Hofmeyr explored two distributed architectures with an intrusion detection classification focus

(Hofmeyr, 1999, p72-75). The first explored was the centralised tolerisation(CT) approach; that is,

data are transferred from client (workstation) to server, detectors are generated centrally and then

subsequently transmitted back to the workstations. Due to the communication overhead of CT, decen-

tralised tolerisation (DT) was adopted. DT is the generation of detectors in situ (at the workstation)

and avoids transmission of data for detector generation and the generated detectors between machines.

This latter approach appears to retract from the advantages that complex biological systems, such as

the immune system, offer.

4.2.6 Toward an Holistic Self/Non-Self-inspired Defence System

Now let’s return our attention to Harmer et al.’s 2002 (Harmer et al. , 2002) paper. Harmer et

al. developed upon the foundation that Marmelstein et al.’s distributed multi-agent security software

architecture had laid. Harmer et al.’s implementation consisted of two groups of eight heterogeneous

agents. The first group addressed file infections running on all machines and the second addressed

4 49

network intrusion behaviour optionally run at the network border (e.g. router). The eight agents

performed the activities of their predecessors: an antibody agent to generate and store detector strings;

a detector agent to detect file infections and network attacks; a classifier agent to identify malicious

content; a cleaner/killer and repairer agent to recover; and monitor, helper and controller agents to

report, communicate and oversee the other agents.

The detection systems of both agent groups are noteworthy. The file infection detection system

used the negative selection algorithm (Forrest et al. , 1994) with a 16 bit detector string representation.

The detectors were randomly generated, censored using static self data and matched during a scan to

file contents; the system’s intended self data is the full storage content, however, only a subset was used

for experimentation. The network intrusion detection system monitored TCP, UDP and ICMP packets

and used a 320 bit string representation (including protocol name, protocol data statuses, ports, source

and destination IP addresses and validation bits). The network detectors were selected and matched

against tuples of the MIT Lincoln Laboratories (1998 DARPA) network intrusion detection evaluation

dataset (Hettich & Bay, 1999), containing genuine intrusion attacks. Both systems used the following

matching algorithms: correlation co-efficient, hamming distance and landscape affinity matching. The

landscape affinity matching algorithm used slope (change difference of two strings), euclidean difference

and a physical (stacked string) difference (see (Harmer et al. , 2002, p257-258) for details).

Harmer et al.’s recovery mechanisms consisted of: quarantine file (move and change), delete file and

“repair file” (not explained) for file infections and reset connection, route network packet to honeypot,

block port, block IP address, and reduce priority of (“shun”) IP address for the network intrusion

detection system. Both systems logged actions and forwarded decisions and reports to a network

administrator user.

The communication mechanism, used the AgentMOM framework (DeLoach, 2000) between agents

running on separate machines, consisted of alert reports and detection threshold (sensitivity) updates

(e.g. increase/ reduce). Let’s consider the distributed characteristics of Harmer et al.’s system. Like

Hofmeyr (Hofmeyr, 1999), detector generation was encapsulated at each machine. Unlike Okamato

et al. (Okamoto & Ishida, 2000), Harmer et al. did not implement the distributed backup mecha-

nism. However, Harmer et al. did exploit distributed and localised knowledge to increase the security

awareness level of neighbours, in a finer-grained manner than Okamoto et al.’s approach.

Harmer et al.’s file infection experimentation used the TIMID virus (changes a random .com file

Figure 4.5 – Harmer et al.’s 2002 Agent Mechanisms

50 4. Artificial Self-Healing

in its own directory) and the EICAR test file (an .exe file that prints a string) for comparison with

commercial security software. The network intrusion experimentation used labelled tuples of the MIT

LL 1998 test dataset (Hettich & Bay, 1999).

Harmer et al. concede that their system lacked abilities necessary of an applied real-world dis-

tributed system fitting the computer security scenario (Harmer et al. , 2002, p277-8). Such a system

would need to adapt to a dynamic self; that is, regenerate detector strings during runtime; authenti-

cate and encrypt messages between agents; improve native time complexity inherent in the negative

selection algorithm for file detector self-selection (pre-generation), censoring (post-generation) and file

system scanning (16 bit string comparison) mechanisms. Use of additional system metrics (greater

context-awareness); a mechanism to recover peers (network self-healing); and using adaptive detectors

are suggested by Harmer et al.

4.2.7 Toward an Holistic Danger Theory-based Defence System

Swimmer’s 2006 (Swimmer, 2006) paper moved toward a more complete distributed autonomic de-

fence network (ADN) inspired by the immune system danger theory. Swimmer focused on functional

industrial application of self-healing technologies to directly resolve the threat of malware, in-doing-so

he described a number of relevant projects. First described were the algorithms of IBM’s Anti-virus

(1994), later used by Symantec, for novel virus signature analysis and extraction (partly patented by

(Kephart & Sorkin, 1997), noted with brevity in (Swimmer, 2006, p1322) or detailed in (Kephart et al.

, 1997; Kephart & Arnold, 1994)), detection, file recovery, automated signature verification, packaged

release and finally replication mechanism to traverse across its hierarchical network. Second was the

Exorcist project that used offline static binary analysis to model self (safe) system calls and integrated

a kernel sensor to monitor process call stacks and process memory. Thirdly, proposed was tracking a

buffer-overflow (BoF) attacked application crash to its attacker by correlating the application’s crash

dump report’s buffered-string content to unencrypted time-relevant network packet content and then

finally to the originating IP address(es). He indicated that a combined effort against the range of

vulnerabilities was required by today’s malware defence systems.

Swimmer’s ADN model targeted network-based attacks via buffer overflow and via investigative

tunnelling attacks making use of danger theory’s analogies with danger sensors and danger signals.

This used a malicious process detection system on all machines and a network perimeter-located (e.g.

router) intrusion detection and firewall system. A functional description of the system was given, in

place of the agent approach taken above.

The process activity detection system (PADS) consisted of process and service (daemon) moni-

toring using signature matching filters on inputs; additional sensors monitored selected prone (eas-

ily/commonly targeted) processes for “signs of distress” and used this monitoring data to extract

attack signatures. Signature propagation is proposed via a network service discovery service update,

after pre-registering all clients via broadcast. Proposed for signatures are a recency property (reduce

evaluation priority over time) and signature (string) pruning via the TERIESIAS algorithm (Rigoutsos

& Floratos, 1998). A removal mechanism for embedded malicious processes was not proposed.

The network activity detection system (NADS) is described as an “IDS or Honeypot” or as a “net-

work choke point”. Proposed is a semi-dormant process initialised by a message command (containing

4 51

a detector signature and a time-to-live period) sent from PADS running on the workstations. The

NADS system will then parse network packets for these signatures for the given time interval. Blocks

are applied to source or route IP addresses and combined with protocols and ports.

The distributed and communicative aspects of Swimmer’s ADN model are (1) signature propaga-

tion, (2) raise signature priority and (3) PADS send signature message command to NADS. These,

respectively, correlate roughly to (1) B-cell (antibody) proliferation and retention in the bone marrow

(immunological memory), (2) cell with known antigen presenting in lymph node and (3) to danger

signal cytokine/chemokine releases.

As with the other decentralised security approaches discussed above, thorough experimentation is

not completed. For the purpose of our problem Swimmer’s architecture is incomplete; however, his dis-

cussion incorporates a number of important considerations applicable to our problem. Firstly, within

distributed systems on communications via network service discovery tools2 and on trust (authentica-

tion) between nodes. Secondly that, without a complete collection of targeted defence systems (e.g.

for viruses, buffer overflow attacks, botnets, rootkits and for novel attacks) vulnerabilities will remain

exposed.

4.2.8 A Sting for Worms with Self-Hardening

Brumley, Newsome, Song and Pariente’s (2005-7) Sting self-healing system (Brumley et al. , 2007)

(Newsome et al. , 2006) (Newsome et al. , 2005) carried correlations to immune system antibodies

(signatures) and antigen presenting cell traversals (vulnerability reports) to produce a four phase self-

healing system against application exploit vulnerabilities. Unique among the works above, this system

patched vulnerabilities of any application after a crash has been identified. With emphasis on exploits,

the system falls short of a thorough defensive system but is an applicable contribution to such a system.

Implementation of their model remains incomplete.

Figure 4.6 – Brumley et al.’s 2002 Architecture for self-healing process state

As with Swimmer, Brumley et al. (Brumley et al. , 2007) opted for a functional model description

rather than the formerly common agent analogies. Their proposed model is described as: a monitoring

2As network service discovery tools Swimmer (Swimmer, 2006, p1332) noted ZeroConf
(http://www.zeroconf.org) and Bonjour (http://developer.apple.com).

52 4. Artificial Self-Healing

phase performed both logging and lightweight input filtering. A diagnosis phase performed non-realtime

dynamic analysis of executables with a replayed log of system calls. System call log conditions are used

to identify malicious calls and can invoke an automated self-hardening phase. This phase extracted

a coarse vulnerability signature (parsed by the input filter with a tendency toward false-negatives)

and an acute vulnerability detection binary of the logged series of calls (guaranteed not to produce

false-positives) providing signature verification. The final recovery phase included process restart and

process restart with a mechanism to replay wanted logged system calls.

Syscalltracker (Shalem et al. , 2003) provided continuous system call logging (system call log num-

ber, arguments and return values) and Flashback (Srinivasan et al. , 2004) provided periodic process

checkpoint logging (stored process virtual memory, register values, open file handles, signal table, etc.),

and the replay of logged system calls. As part of the system, address space layout randomisation

(ASLR) is used to cause a stack (process) to crash, with a high probability, when the stack is attacked

by a code injection, such as return-to-libc or return-oriented-programming attacks. Samples of inputs

are also randomly selected for filtering in the diagnosis phase. The later diagnosis phase uses system

calls and checkpoints to identify the input activity as malicious. The lightweight input filtering is not

described further.

Diagnosis is implemented with a detection mechanism (TaintCheck (Newsome & Song, 2005) for

buffer overflow, string-format and double-free attacks, also see related patent (Yeo et al. , 2010)) to

analyse a process during a system call execution replay. The authors’ implementation only parses

binary files using Valgrind (though they recommend either PIN (Luk et al. , 2005; Luk et al. , 2011) or

DynInst (Miller et al. , 2012)), however their detailed model is more interesting. The model’s procedure

reinitialises the process from a recent process checkpoint state (corresponding to the previous crash)

and then conditionally replays the logged system calls. The system calls are tracked to the point where

the input data caused the crash; this is then used to create the input filter and the system call data

series (that lead to the crash) culminates into the guaranteed executable.

The model’s hardening phase updates the signature database and distributes an SVAA (self-

verifiable antibody alert), a packaged vulnerability test sample. The SVAA is proposed for evalua-

tion (recreate the conditions and system calls that caused the process crash) running in a sandbox

environment or virtual machine, the SVAA’s signatures are discarded if the crash fails to reoccur.

Similarly to the diagnosis and SVAA evaluation, the authors’ model recovery phase reinitialises

the process from a checkpoint state and re-runs system call logs with the aim of making the process’s

internal and external state consistent. A crashed process may be safely resumed in a state prior to

the attack. Replayed system calls are categorised into three types, where attacker Type 2 calls may be

given fabricated return values or ignored. Where correctness cannot be guaranteed the process must

be restarted. In this case, their approach permits attackers’ code, potentially retained in the external

state (an external database), to be initialised during a secondary attack. With other checks in place

this could be avoided.

The communication in this distributed system is minimised, only SVAAs are distributed. Each

node independently makes decisions based upon the evaluation its own perception; as immune system

cells operate. This decision gives redundancy and is thought may improve robustness. Otherwise put,

each node (or cell) has no trust of other cells.

4 53

4.2.9 Danger Theory Modelled for DIDS

In 2005 Kim, Wilson, Aickelin and McLeod proposed the CARDINAL self-healing architecture to detect

and respond to worm-based attacks, published in (Kim et al. , 2005). CARDINAL’s architecture

employed analogies of dendritic cells and T-cell tolerance. It was followed up by several extensions.

Fu, Yuan and Wang’s added an embryonic intrusion detection framework (Fu et al. , 2007). Ou,

Wang and Ou led an investigation for application to wired intrusion detection (Ou & Ou, 2010; Ou &

Ou, 2011; Ou et al. , 2011b; Ou et al. , 2011a; Ou, 2012). Danziger and de Lima Neto (2010) extended

the architecture to intrusion detection on wireless networks in recognising various WEP decryption

attacks (Cafe Latte and Korek’s Chop-Chop) (Danziger & de Lima Neto, 2010).

CARDINAL’s approach is interesting due to the high-level correlation to collaborative diagnosis

of danger. Upon Kim et al.’s architecture (Kim et al. , 2005), Fu et al. added a concrete weighted

equation (Fu et al. , 2007) of the diagnosis metrics designated by Kim et al. Fu et al.’s prevailing

diagnosis stated that, if a danger certainty threshold is not reached by the local client’s evaluation

of the weighted equation (attack severity, duration and detection certainty) the danger data will be

forwarded to a central server for further evaluation. Fu et al.’s description implies dependency upon a

single-point-of-failure, the central server. However, the probability of full-system failure can be reduced

by simply increasing the quantity of servers; presenting the classic performance-reliability trade-off. A

decentralised approach enables collaborative diagnosis without the single-point-of-failure problem.

Figure 4.7 – Kim et al.’s 2005 Overview of CARDINAL (lymph-tissue) distributed architecture. Extended by
Fu et al. 2007.

Fu et al.’s (2007) (Fu et al. , 2007) model framework focused on extending CARDINAL’s danger

theory-inspired architecture rather than targeting a specific security problem. Broadly, their agent-

based approach monitored workstation context data and network packet data for intrusion detection.

The monitoring agent mechanisms used were described as non-self (anomaly) detection on system

performance data (CPU, memory and disk utilisation), consistent with CARDINAL. The diagnosis

agent mechanism evaluated the following danger metrics: (1) certainty of attack (2) severity of danger

(number of agents reported same danger signal) and (3) duration of danger. Response types were deter-

mined by the normalised weighted equation with a three degree certainty threshold (uncertain; certain,

resolve locally; certain, escalate to server). The recovery agent mechanism initialises if the attack is

certain. The recovering client agent will disconnect network connections, then “create antibodies”,

reopen the network connections then “send these antibodies” to other agents. The detailed method of

54 4. Artificial Self-Healing

recovery is missing from their description. Communications use the SCTP protocol over sockets, with

TELL and ASK messaging in two channels (agent-agent and agent-server) to transfer “knowledge”.

4.2.10 Cytokine Communications in Decentralised Defense Systems

In 2005 Guo and Wang (Guo & Wang, 2005) published their ideas toward an autonomous and decen-

tralised security system framework using Mori’s (1993) (Mori, 1993) broadcast communication mech-

anism (Concept and Data Field) architecture. Their short paper proposed applying Mori’s commu-

nications architecture to common network components, such as router, firewalls, switches and also

servers and workstations. This application indeed correlates to intracellular cytokine messages released

(broadcast) by immune cells and where only specific cells respond (e.g. a multi-recipient channel).

Mori’s (1993) (Mori, 1993) autonomous fault tolerance architecture is based on control and coordina-

tion enabled by precise communication; the data field component indicates that all subsystems (nodes)

broadcast their data, however only nodes registered to the data field listen and respond to these broad-

casts.

4.2.11 Intrusion Prevention and Multi-Agent Self-Healing

Elsadig, Abdulla and Samir (2009-2010) (Elsadig & Abdullah, 2010; Elsadig et al. , 2010a; Elsadig

et al. , 2010b; Elsadig & Abdullah, 2009) propose a modelling approach toward an artificial immune

system host-based intrusion prevention and self-healing system. In (Elsadig & Abdullah, 2010; Elsadig

et al. , 2010b; Elsadig & Abdullah, 2009) the abstract model framework of four agents (Sense, Analy-

sis, Adaptation and Self-Healing) is based upon dendritic cell—lymph node interactions. An analysis

of dynamic agent state transitions (using Petri-nets and formal notation) is given and discussion of

model refinement using the Stepney et al (Stepney et al. , 2005) framework. A multi-agent imple-

mentation is described in (Elsadig et al. , 2010a) performing input monitoring and anomaly detection

(Sense), unsupervised classification for diagnosis (Analysis) and classification model updating (Adap-

tation) described using Cluster-K-Nearest-Neighbour, K-Means and Gaussian Mixture Model (GMM)

and recovery (Self-Healing), however no validation was published. Agent interactions follow the FIPA

standard (Elsadig et al. , 2010a; Elsadig et al. , 2010b). The core signals are: send anomaly detected

signal with behaviour data, send misuse behaviour data and send modelled misuse behaviour data. The

agent interactions are described between agents on a single node.

For our purposes, several limitations befall Elsadig et al.’s proposed model. Missing, vitally, are

concrete declarations of R′′, the set of abnormal behaviour for each category (monitored data context),

and f ′(sys), the function reversing the system state from anomalous to normal. Their model is not

distributed across multiple nodes, the implementation remains incomplete and validation against a

specific malware target has not been published. However, the comprehensive agent component of

Elsadig et al.’s self-healing framework can be extended to yield a decentralised system.

4 55

4.3 Chapter Conclusions

This chapter has surveyed the artificial immune system (AIS) field’s academic works on self-healing and

distributed systems with a focus on security issues related to our criteria. Below are the key findings

of this review on self-healing components including detection, diagnosis, prevention and recovery and

on relevant findings on distributed systems including communication and security mechanisms.

Detection and Diagnosis

The detection processes from artificial immune systems (AIS) discussed include a simple file decoy

approach to detection, diagnosis and identifying virus cures have been introduced by Kephart et al.

and modified by Marmelstein et al. A negative selection algorithm for self/ nonself (anomaly) de-

tection by Forrest et al. has been used by Marmelstein et al., Harmer et al., Hofmeyr et al. and

Okamoto et al. Detection designed with conventional engineering and software vulnerability consider-

ations include application crash dump analysis systems introduced by Brumley et al. and Swimmer.

Signature-based diagnosis are used by Marmelstein et al., Harmer et al., Swimmer, Brumley et al. Clas-

sification/clustering mechanisms for diagnosis were used, rarely among the works reviewed, by Harmer

et al. and Elsadig et al.

Self-Hardening: Sharing and Trust

A static self-hardening (future prevention) process was introduced by Brumley et al. which updated

diagnosis input filtering mechanisms. Brumley et al used an SVAA packaged approach to signature dis-

tribution and verification from untrusted sources. Whereas, Kim et al. and Fu et al. with CARDINAL

and Marmelstein et al. and Harmer et al. gave an abstract description of signature distributions with

trusted sources. Guo et al. described application of Mori’s broadcast and selective listening approach

to signature distribution. Anomaly detection threshold sensitivity signal alerts were distributed by

Harmer et al. and Elsadig et al. to increase neighbours’ sensitivity to/ awareness of danger. Hofmeyr’s

PhD thesis took an alternative approach first exploring centralised-tolerance, a centralised store of sig-

natures, however finally selected an entirely decentralised-tolerance approach with an independent and

individualised set of signatures that were not transmitted to neighbours. Swimmer chose an attacker

track-back approach, matching host infection signatures to historical network packet data.

Recovery Mechanisms

Recovery mechanisms may include signature identification, signature extraction, signature verification

and application of a signature-based removal mechanism. Mechanisms to respond to process attacks,

file infections and detected network attacks from generic malware types have been described. Brumley

et al. used restarting the process and replaying systems calls to restore the process’s state, using crash

dump state and system call log to identify the attack. Process monitoring to extract signatures and

network packet monitoring were integrated to block network IP address, protocol and port combinations

by Swimmer. Swimmer also describes an IBM patented approach to signature extraction of a virus

infected file; stating that, in most cases, the virus infection is reversible where a genuine-patch is not.

Okamoto and Ishida used network stored file backup and restore. Others, such as Harmer et al., used

56 4. Artificial Self-Healing

traditional anti-virus mechanisms, network IP blocking/ priority reduction and forwarding packets to

a honeypot.

Collaboration and Communications

A collaborative network perimeter-based and host-based prevention system is introduced by Snapp et

al., Marmelstein et al., Harmer et al. and Swimmer. Swimmer recommended Bonjour and Zeroconf

network service discovery tools for update distribution; which can also be extended to initialise the

self-healing software on newly connected machines.

4.3.1 Discussion

This state of art review has explored works on network security and network defence from malicious

software which take inspiration from immunology and its theories. While no works on industrial network

security have fallen under the immune system inspired search criteria, the survey has uncovered a range

of emergent features from the artificial and biological systems, including self-healing, self-hardening and

homeostasis functions that can be exploited in future designs of architectural solutions.

4.4 The Road Ahead

The survey has shown that a gap exists for works that apply immune system inspired decentralised

self-healing to industrial networks and the issues we have raised. To address these problems, a range

of new infrastructural support components are in need of development, as we have summarised in this

chapter’s conclusion section.

The first stage to build this architecture was to select, build, evaluate and optimise the decentralised

platform of the system that will facilitate the self-healing and security module distribution tasks. We

have chosen to use the CARDINAL abstract model architecture by (Kim et al. , 2005) as the founda-

tional platform for a number of reasons. We introduced and critiqued the model and its extensions in

4.2.9.

CARDINAL is an Artificial Immune System (AIS) designed as a networked software architecture

with peer-to-peer connectivity for network security applications, in particular it has the foundations of a

Host-based Intrusion Detection System (HIDS). It is modelled on the recent and developing immunolog-

ical theories of Danger Theory (DT), T-cell decision making and cytokine signalling via concentration,

reminiscent of frequentist probability. Its modelling of the immune system is similar to our own view-

point in Chapter 3. Its decision making technique for handling unknown inputs is similar to the well

known and tested Dendritic Cell Algorithm (DCA) (Greensmith et al. , 2006), using frequency as an

indicator for belief. Unlike the DCA, it is distributed and decentralised and has no published scientific

evaluation at a distributed implementation-level. Additionally it models transmissions of detector and

recovery modules, employs a conceptual classifier with individually- and collectively-built models. Thus

we believed it to be ripe for testing and adaptation to our application as a self-healing security system

for industrial networks.

4 57

The next chapter will describe our mathematical model of CARDINAL-Vanilla from an imple-

mented perspective of CARDINAL. The next chapter will present how to evaluate decentralised self-

healing security systems, including CARDINAL-Vanilla, and is followed by experimentations on the

architecture.

58 4. Artificial Self-Healing

Chapter 5

The CARDINAL-Vanilla Architecture

5.1 Introduction

The CARDINAL-Vanilla architecture is our mathematical instantiation, implementation and clarifica-

tion of CARDINAL, Kim et al.’s artificial immune system (AIS) abstract model (Kim et al. , 2005).

In summary, the architecture is designed as a distributed self-hardening system. Inputs are classified

and mapped to a response – the signature. That signature is contained in a signature module (an agent)

and is transmitted to all nodes running the networked software application to then provide an immediate

response to that input. Each node runs an identical software client of the networked application; the

holistic view of which is the architecture.

The CARDINAL-Vanilla architecture is formed from the same biological analogies as Kim et al.’s

model; however, many of the model details, including parameters, their values and ranges, were omitted

from publication. Both Kim et al.’s and our models are inspired by biological metaphors and are defined

as multi-agent based and decentralised computational decision systems. Kim et al.’s model was intended

to prohibit email spamming malicious software in a distributed defence form. Our final intention is

an holistic distributed self-healing system using behavioural monitoring to generate detection classifier

models and recovery tools using integrated and transmittable signature modules. Our critique of their

model is in (4.2.9).

The most valuable contribution of this chapter is the explicit definition of a novel probability-based

heuristic for transmission of high priority information in decentralised peer-to-peer network applications,

stated in (5.10) and (5.11).

Other contributions of this work are specifying the mathematical model, specifying a number of

key differences and clarifications between the two models (5.2) and the chapters of experimentation

and evaluation that follow. The experimentation chapters investigate the effects of the key architecture

parameter ranges (5.12) and will focus on the measurements pertaining to network-wide immunisation,

which is particularly addressed by the signature module distribution decisions (5.10) and their priority

heuristic (5.11).

In this chapter we will define the processes (5.4) within CARDINAL-Vanilla and its flow control

(5.5), the network communications (5.6), classification of inputs, their responses and signature module

creation (5.7), signature module distribution decisions (5.10) and their priority heuristic (5.11), the

time scale in which the agents interact and operate (5.9), the confirmation process of attack inputs

59

60 5. The CARDINAL-Vanilla Architecture

(5.8) and the key parameters of the architecture (5.12). We will discuss each of the key behaviours

with respect to our modelled computational decisions and agent interactions, see (Kim et al. , 2005)

for the original immune system modelling description.

5.2 Clarifications and Differences

The CARDINAL and CARDINAL-Vanilla architecture models are intentionally similar. The intended

cause for difference is due to the change to target domain, from email spamming on enterprise networks

to self-healing on industrial networks. Implementing the model as a networked software application

identified underspecified algorithm, process and mathematical modelling details. This chapter specifies

those changes.

• Table 5.3 on page 85 details CARDINAL’s textual definitions that required an engineer’s interpre-

tation. The adjacent column contains the CARDINAL-Vanilla model definitions, as implemented,

and as guided by the immune system inspired principles specified in chapter 3.

• Table 5.2 on page 84 contains the newly specified mathematical model parameters and vari-

ables. These data items, default values and ranges did not exist in earlier literature. These are

new for both CARDINAL and CARDINAL-Vanilla models. This definitive list of parameters

and variables can be referred to while reading through the mathematical instantiation described

throughout this chapter.

• Figure 5.3 on page 65 is the process diagram of CARDINAL-Vanilla in an equivalent represen-

tation to Fig. 2 in (Kim et al. , 2005). The two diagrams illustrate the process similarities and

differences in the structure of interactions, in process and data representations, including that of

agents as processes, and in minor process structural changes. The numbered processes and their

differences from Kim’s model are stated in section 5.4 on page 64.

• Figures 5.4 and 5.5 on page 68 illustrates the flow control of the Tissue and Lymph Node processes

within CARDINAL-Vanilla. These are presented in an equivalent representation to Fig. 3 in (Kim

et al. , 2005). The diagrams illustrate the flow control similarities and the differences in specificity,

complexity, vital simultaneous execution and order. The flow decisions are described in section

5.5 on page 67.

5 61

5.3 Architecture Overview

This section will introduce the CARDINAL-Vanilla architecture from the perspectives of engineering,

its immunological inspiration and its multi-agent modelling.

Inputs Tissue

Lymph Node

DCs T-cells

Node 1

InputsTissue

Lymph Node

DCs T-cells

Node 2

T-cells

Inputs

Tissue

Lymph Node

DCs T-cells

Node 3

T-cells T-cells

Figure 5.1 – Overview of CARDINAL-Vanilla.

5.3.1 Engineered System Overview

The architecture reads inputs from an input stream and classifies those inputs with a primary classifier.

If the input can be classified, a response is actioned and a signature module is created for that input

with a mapping to the response action. The signature modules are distributed to the other nodes of

the networked architecture. More common inputs that present a threat retain a higher probability for

selection and transmission to other architecture nodes. The other architecture nodes use the received

signature module to respond to its matching input. These core behaviours provide self-hardening of

the networked devices. Signature module prioritisation and validation refinement components guide

the dispatch and the secondary-level classification. An engineered view of the architecture components

is illustrated in Figure 5.2.

I/O

C
od

e
Fi

le

Sy
s

C
A

R
D

IN
A

L
-V

an
ila

Execution Environment

Responder

Primary
Classifier

Secondary
Classifier

Module
Validation

Module
Dispatch

Module
Receiver

Network I/O Lib User Agent/
Input Stream

Dataset Files Result Files

Event
Logger Lib

Ti
ss

ue

Ly
m

ph

N
od

e Module
Prioritisation

Figure 5.2 – Engineered System Overview of CARDINAL-Vanilla architecture client per node.

62
5.

T
h

e
C

A
R

D
IN

A
L

-V
an

illa
A

rch
itectu

re

Term Immunological Meaning Computational Meaning Structure Usage

Antigen A molecule recognized by an antibody or T-cell receptor Input data source attributes Data
Danger signal A molecule produced by cells undergoing stress/necrosis Label classified as dangerous Flag Response mapping to Type-I/II
Safe signal - Label classified as safe Flag
Unknown signal - Unlabelled classification Flag
Dendritic Cell (DC) A cell that presents processed antigen to T-cells Primary classifier Agent Classify inputs
T-cell A category of cells created in the thymus gland Category of agent types Category
TCE A category of cells that affect matching antigen Category of responding agent types/ signature module Category
CTL (Mature) A cell that causes apoptosis in infected cells Agent/ signature module for Type-I responses (see 5.7) Agent Match & respond to inputs
Th2 (Mature) A cell that affects responses to extracellular parasites Agent/ signature module for Type-II responses (see 5.7) Agent Match & respond to inputs
Th1 (Regulatory) A cell that assists responses by CTL cells Agent container for unknown inputs Agent Assist priority of Type-I signature modules
TCN (Näıve) A cell that can respond to novel antigen Agent container for yet validated inputs (temporary) Agent Used in input validation process
Tissue A region within which cells interact with antigen Container for agents Container Facilitate monitoring & responding
Lymph node A region within which T-cells and DCs interact Container for agents Container Facilitate validation & distribution of agents
Lymphatic vessel A conduit connecting lymph nodes Communication stream between nodes Container Facilitate distribution of agents
Cytokine signal A molecule that causes a change in cell behaviour Internal agent communication signal Message Signal the danger category to TCN

Table 5.1 – Table of important terms, their summarised definitions from biological and computational perspectives, their structure representation and usage
within the architecture. A complete list of parameter mappings are specified in Table 5.2.

5 63

5.3.2 Immune System Inspiration Overview

Kim et al.’s model drew upon components of the acquired and innate biological immune system and

based its core methodology on danger theory (Matzinger, 1994). Table 5.1 provides a summarised set

of terms and their meanings to narrate this biological description. Relevant sections within the biology

background chapter are T-cells in section 3.3.2, dendritic cells in 3.3.3, signalling between cells in 3.4.1

and co-stimulation between cells and their thresholds in 3.4.2 and to frame the tissue defence see section

3.2.

5.3.2.1 Cell and Cytokine Behaviours

The behaviour modelled cells are the dendritic cells (DCs) and T-cells. The DC behaviours include

collecting and presenting antigen to T-cells, migrations to the lymph nodes and localised release of inter-

leukin cytokines IL4 and IL12 and costimulatory signals. Among the T-cell behaviours are migrations,

maturation from näıve to effector cells, differentiation to three types of matured T-cells, activation and

responses to matching antigen epitopes.

The tissue, periphery and the lymph nodes are the compartments within which these behaviours

occur. The näıve T-cells (TCN) receive cytokines from the antigen carrying DCs, which in turn cause

the näıve T-cell to mature. The modelled matured T-cells include the CD8+ Cytotoxic T-Lymphocyte

(CTL) cells and CD4+ helper 2 T-cells (Th2) for their detect and respond capabilities, and helper 1

regulatory T-cells (Th1) to assist activation of CTL cells. Each of these immune system components

are described in Chapter 3, for detailed reference see (Murphy et al. , 2012).

5.3.3 Agent Architecture Overview

The CARDINAL-Vanilla architecture is like many other agent-based systems, in that each environ-

ment conditionally determines an agent ’s role and behaviour. Each agent has signal-based interaction

behaviours and can act in an environment. There are multiple types of agents in an instance of the ar-

chitecture executing on a single computer. The architecture (application) software is distributed across

a network and thus this is a distributed multi-agent system. Figure 5.3 illustrates of the processes and

agent behaviours operating in a single architecture node.

5.3.3.1 Actors and Agents

Every actor in the architecture is an agent. The agents are dendritic cells (DCs) and generalised T-cells.

The T-cells have three subtypes, näıve (TCN), regulatory helper (Th1) and effector T-cells (TCE). The

TCEs have two further subtypes CTL and Th2; these are the distributed responding agents. Each agent

carries a signature; only the DCs and TCEs carry a mapping to a response.

5.3.3.2 Agent Interactions Summary

Several interaction events occur in each environment. Two-way signalling between TCEs with a match-

ing signature will increase the number of agent clones, which we will call priority. Whereas TCEs with

unmatched signatures will be de-prioritised at the time of an interaction event. The TCEs’ priority

will affect the signature’s distribution and thus, response probability. One-way signalling from DCs

64 5. The CARDINAL-Vanilla Architecture

to TCNs occur and depend on the amount of danger the DC has experienced. Either a IL4, IL12 or

costimulation signal will be released depending on the amount of the danger signal.

5.3.3.3 Three Agent Environments

The agents can be located in two spatial environments per computer; these are the tissue and lymph

node. Each agent’s transition between environments is conditional.

The tissue environment is the location where TCEs and a classifier to interact with the input

streams. An input consists of an antigen and a signal, the attributes and its classified evaluation.

Agents here classify and action responses to inputs depending on the agent type’s response mapping.

For example, the input’s signal may dictate a specific response, alternatively the antigen may dictate

the response. In danger theory-based Artificial Immune System (AIS) applications, antigen and signals

are often mapped to input data and a decision based upon the input data. In a SCADA network

security example we might map the antigen to control packet data sent to the microcontroller and the

signal to an evaluation of the operational state of the monitored control systems.

The lymph node environment houses agent-to-agent interactions and agent-to-input interactions

where inputs are carried by DCs. Here T-cell agents are prioritised or de-prioritised depending on

whether matching signatures are carried. Input carrying DCs will be removed after a quantity of

interactions. This is designed to let recent inputs have a larger effect upon the current internal priority

state and let old inputs have no effect.

From the node-centric viewpoint, the final environment is the lymph node of another network-

connected node. TCEs arriving will further prioritise or de-prioritise local TCEs. Novel TCEs will

move to the local tissue to enable them to respond.

5.4 Processes of CARDINAL-Vanilla

The architecture model can be described by its processes. Figure 5.3 on page 65 illustrates the processes

within the model. These are numbered as:

(0) Input Data Enters Tissue: Input data and an input label are read into an input buffer within

the tissue component. They are referred to as antigen and signal. The label is converted into a numeric

signal representation, specified in Eq.5.1.

(1a) Signal Collection: A DC collects the current signal, associated to the current antigen. If the

signal is known and dangerous, the DC will collect the antigen (1c), respond (1b) followed by migrate

to the tissue (2). These behaviours are described in 5.7.1 as Primary Classifier.

(1b) Effector T-cell and Dendritic Cell Response: The cell will respond to matching antigen.

The TCE response is described in section 5.7.2 as Secondary Classifier and the DC response is in 5.7.1

as Primary Classifier.

(1c) Antigen Collection: The DC collects the antigen associated to the known danger signal.

(2) Dendritic Cell Migration from Tissue to Lymph Node: DC carries antigen and signal to

lymph node. Described in section 5.8 as Module Validation or cell differentiation.

(3) Dendritic Cell Activates Näıve T-cell (TCN): The DC carrying the antigen and signal will

activate (create) a TCN. If a matching TCE exists, the DC will interact instead (5).

5 65

Node 1

Lymph
Node

Tissue

Local
CTLs

Antigen Signal

DCs Local
Th2s

DCs

Local
CTLs

Local
Th2s

Local
Th1s

Naïve T-
Cells

Transit
CTLs

Transit
Th2s

Node mNode [m..M]

Migrate
Interact

Differentiate

Peer
CTLs

Peer
Th2s

(7)

(3)

Transmit to
Peer Nodes

Receive from
 Peer Node

(10)

(9)
(9) (8)

(8)

(6)(6)
(6)

(4)

(0) Read input into tissue input buffer.
(1a) Collect Signal.
If DC knows label/signal: DC collects, responds to danger and
invokes (2).
(1b) Respond to Antigen.
(1c) Collect Antigen.
If DC does not know label/signal: compare antigen to TCEs/ signature
modules, respond to match, as part of secondary classifier. -> Sec
\ref{sect:model.cardinal.ctl-th2-responders}

(2) DC carries input to lymph node -> Sec \ref{sect:model.cardinal.
danger-input-validation-process}
(3) DCs creates TCN, if no matching TCN exists.
(4) DCs interacts with T-cells -> Eq. 5.8, 5.9, 5.10
(5) DCs interact with DCs -> Eq. 5.11, 5.12
(6) TCNs differentiate into TCEs + Th1s. -> Sec 5.7.

(7) CTL interact with Th1 -> Eq. 5.6, 5.7
(8i) New Peer Th2 join Local Th2
(8i) New Peer CTL join Local CTL
(8ii) Local Th2 interact with Peer Th2 -> Eq. 5.3, 5.4, 5.5
(8ii) Local CTL interact with Peer CTL -> Eq. 5.3, 5.4, 5.5

(9) Select Th2/CTLs for distribution -> Eq. 5.1,5.2. Sec 5.3.3

(10) Select destinations for distribution -> Eq. 5.1,5.2. Sec 5.3.2
(11) Migrate new TCEs to tissue. -> Sec \ref{sect:model.cardinal.
module-to-tissue-process}

Eq. and Sec references in viva thesis.

(5)

Input Data
[a,b...n],label

(11)

(2)

(0)

(1a)(1b)

Periphery is gone. Why?
Transit vs Peer.
DC interaction order (5)
(9) Migration

3 main diff:
- Handling antigen & signals..
- No interaction Peer-Local Th1s
- Sharing CTLs/Th2 with network

(1c)
(1b) (1b)

(11)

(4)

(4)

(4)

Figure 5.3 – Tissue and Lymph Node processes in CARDINAL-Vanilla in a single node. Numbered processes
are described in 5.4. Diagram illustrates input data, data representation, agents, environments, agent interaction
types (indicated by arrow line types) and agent network transmission messages. Diagram formatted as Fig. 2
from (Kim et al., 2005) for comparisons.

66 5. The CARDINAL-Vanilla Architecture

(4) Dendritic Cell Interacts with T-cells in Lymph Node: DCs interacts with T-cells as de-

scribed in section 5.11.3 and in Eq.5.13, 5.14, 5.15.

(5) Dendritic Cells (DCs) Interact with DCs in Lymph Node: DCs interact with DCs. This

enables the capability to reclassify a DC or Th1 agent that carries an input with an unknown signal.

This will prioritise agents with common input signatures. The interaction is defined in Eq.5.16, 5.17.

The lifespan decay process, upon each interaction, is described in Eq.5.15 and in section 5.11.3.

(6) Näıve T-cell Differentiates into Mature T-cell: TCNs differentiate into mature TCEs or

Th1s. Described in section 5.8 as Module Validation Process.

(7) Regulatory Th1 cells Interacts with CTL cells: Th1 agents will help regulate the population

(priority) of matching CTL agents, via an interaction. This process is defined in section 5.11.2 and Eq.

5.11, 5.12.

(8) Peer Effector T-cells (TCE) Interact with Local TCE Pool This process follows the explicit

four stage procedure described in (Kim et al. , 2005)[p10]. Previously unseen Th2 or CTL cells are

added directly into the local TCE pool. Received TCE (Th2 and CTL cells) interact with local TCE

cells, leading to affected population (prioritisation). Described in section 5.11.1 as Module Prioritisation

& De-Prioritisation. Equations 5.8, 5.9 and 5.10 describe these interactions.

(9) Effector T-cells (TCE) Migrate around Network: A number of Th2 and CTL cell are selected

for distribution to other architecture nodes. The quantity depends on a local measure of accumulated

danger, as specified in Eq.5.6, 5.7. The module selection process is described in section 5.10.3 as Module

Selection for Transmission. Kim’s model under-specifies the accumulated danger measure calculation

and quantities, this affects the transmission selection mechanisms.

(10) Network Node Destination Selection: The selected Th2 and CTL cells are dispatched to

other architecture nodes. The quantity of destination nodes depends on a local measure of accumulated

danger, as specified in Eq.5.6, 5.7. The destination node selection process is described in section 5.10.2

as Destination Selection.

(11) Module Migration from Lymph Node to Tissue: Migrate new TCEs to tissue. Described

in section 5.8.2 as Module Migration to Tissue. These TCEs provide storage of a response mapping;

even in the event of changing input labels, i.e. under classification testing or as the input label classifier

changes over time.

5.4.1 Process Differences

There are differences between our and Kim’s process models. Firstly, the periphery is removed as it

appears to describe the tissue. The cells have changed from data items to processes, as they have

complex behaviours. Only the CTLs and Th2 cell agents are transmitted to other network nodes. The

Th1 cell agents are not transmitted to enable a distinction and preference of local CTL agents over

peer CTL agents, i.e. locally created detectors over network received detectors. The number of DC

cell agent interactions have increased to enable reclassification of inputs with uncertain (or unknown)

labels. DC cell agents now have a response pathway upon receipt of danger signals, which serves as an

immediate response. The Kim’s T-cell only response implies a delayed response. Among immunologists

5 67

it is well known that dendritic cells possess the capability to recognise bacteria, using toll-like receptors,

and respond, described in 3.3.3.

5.5 Flow Control of CARDINAL-Vanilla

Figure 5.4 and Figure 5.5 on page 68 illustrates the flow control between Tissue and Lymph Node

processes within the CARDINAL-Vanilla architecture model. Processes are described in section 5.4.

The lettered decisions in the flow diagrams are:

<a> Antigen Matches an Effector T-cell Agent Signature: If this decision is passed, the TCE

will respond following process (1c). Otherwise, the signal will be collected (1a) and evaluated in decision

.

 Signal is Normal or Non-normal: If the signal is normal or safe, the input will be discarded.

Otherwise, the DC will attempt a mapped response (1b) followed by collecting the antigen (1c) and

forwarding the input to the lymph node (2).

<c> Näıve T-cell agent is Validated: If the TCN has reached a validation (differentiation) thresh-

old, forward to the differentiation process (6). Otherwise, continue to the next interaction process

between Th1 and CTL agents (7).

<d> Differentiates into an Effector T-cell Agent: If this decision is passed, then the TCE will

be forwarded to the Tissue (11), before continuing the next interaction process between Th1 and CTL

agents (7). Otherwise, continue immediately to the next interaction process (7).

5.5.1 Flow Control Differences

There are flow control differences between the two models, as the diagrams depict. Concurrent execution

is added for two reasons. Firstly, serial execution of networked applications and complex real-time

applications are inappropriate or infeasible. Connections to many nodes and receipt of transmissions

is simpler to coordinate when a thread is listening persistently. Transmissions can cause IO delays and

therefore a single thread of execution would temporarily render the input processing in a static state.

The real-time monitor flow is separated and minimised as real-time systems must minimise the delay

between processed inputs. The Cell Storage components are added to share data between execution

threads using lockable message queues, as is common in modern concurrency implementations. The

main decision nodes are added to indicate conditional paths between processes. Others decisions exist

and are described within the text.

5.6 Network Communications

The flow of biological T-lymphocyte and dendritic cells to key parts of the body is a concept drawn

upon by Kim et al.’s model and shared by our view of the architecture. The transit of T-lymphocyte

immune cells along lymphatic vessels to other lymph node organs is directly relevant to the networking

and agent interaction design. Throughout transit, the cells experience interactions with other cells and

68
5.

T
h

e
C

A
R

D
IN

A
L

-V
an

illa
A

rch
itectu

re

Periphery is gone. Why?
Transit vs Peer.
DC interaction order (5)
(9) Migration

3 main diff:
- Handling antigen & signals..
- No interaction Peer-Local Th1s
- Sharing CTLs/Th2 with network

2

Add TCE to Tissue

Flow: Cell Storage (Tissue)Flow: Real-time Monitor (Tissue)

(0) Read Input Data

(1a) DC Collect Signal

(1b) DC Respond

b

(1c) DC Collect Antigen

(2) DC Migrate to LN

Accumulate Danger

a

(1c) TCE Respond

1

S

Figure 5.4 – Flow control diagram of the main Tissue processes.

Migrate
Interact

Differentiate

Periphery is gone. Why?
Transit vs Peer.
DC interaction order (5)
(9) Migration

3 main diff:
- Handling antigen & signals..
- No interaction Peer-Local Th1s
- Sharing CTLs/Th2 with network

Flow: Cell Storage (Lymph Node)

Flow: Cell Interactions (Lymph Node)

(4) DC Interacts T-cells

(7) Th1 Interacts CTL

c

(6) TCN Differentiates
 to TCE/Th1

(5) DC Interacts DC

(5) Remove Decayed DC

d

(11) TCE Migrates
 to Tissue

Flow: Net Transmission (Lymph Node)

(9) TCEs Migrate to Network

(10) Network Node
 Destination Selection

Transmit

3

S

2

Flow: Net Receipt (Lymph Node)

Receive

(8) Peer TCEs Interacts
 Local TCEs

S

S Establish Peer Connections

Add DC to LN

1

(3) Activate TCN

Add Peer TCE to LN

3

Figure 5.5 – Flow control diagram of the main Lymph Node processes.

The diagrams show the main flow control within the CARDINAL-Vanilla model. The diagrams are formatted as Fig. 3 in (Kim et al. , 2005) to

aid comparisons. The key difference is the vital separation of execution paths. The execution steps are additionally more detailed.

Lettered (diamond shaped) decisions described in 5.5. Numbered processes are described in 5.4.

5 69

protein messengers. Intuitively, we interpret that the more clones a cell has will lead to its higher

probability of being in the flow.

This approach leads to an heuristic which we specify in 5.11 and also leads to designs for the network

structure, network protocol and the module dispatch decision making algorithms.

5.6.1 Network Connectivity & Decision Control

The network structure of the architecture is connected peer-to-peer. Each node maintains n−1 two-way

unicast communication sessions. Each transmission’s destination will vary depending on the internal

state, e.g. priorities of the signature modules and others. The architecture uses decentralised decision

making. Each node’s internal state dictates its local actions and communications to other nodes. No

omnipresent actor directs the network-wide behaviour. Local decisions taken by a node depend on the

recent local inputs observed, the internal model of cells (agents), its signatures and its own validated

definition of danger.

5.6.2 Network Protocol

One application message protocol is used to transmit detector & response modules, while other mes-

sages oversee the experimentation run of the distributed system. We use the Java language’s built-in

serialisation and marshalling of objects on a stream and the received object’s class name is used to trig-

ger an associated action. The internet protocol (IP) and transmission control protocol (TCP) provide

the network node and application addressing.

The module transmission message type is a data object containing a set of selected and previously

validated TCE agents. Upon arrival, these TCEs interact with local TCEs and new TCEs are directly

added into the local lymph node component, in the manner stated in 5.11.1.

The most important experiment message type is a STOP marker to inform another node that the

sender’s experiment activities have finished. When each node has received this message from all other

nodes, they can each prepare to terminate the experiment run. This avoids an experiment run reaching

an irrecoverable state caused by unhandled asynchronous termination.

5.7 Classification and Responses

The architecture requires that a classification algorithm and response scripts be integrated. For a Super-

visory Control and Data Acquisition (SCADA) self-healing system selecting, configuring and training

the right classifier model(s) and choosing the right mapped response actions to those classifications are

important tasks to investigate. However, classifier evaluation in this thesis is not our focus. As such, we

have implemented the Occam’s razor of lifelong or online machine learning non-time-series classifiers.

In summary, the primary classifier depends on labelled inputs to establish a response mapping and the

secondary classifier depends on previously learnt inputs and response mappings. Invoked responses log

the response mapping category to a result file.

The classifier maps a danger input to either Type I or Type II responses, represented by the CTL

and Th2 agents respectively. The graded classification will distinguish inputs as normal, unknown or

unconfirmed, and the two categories of known danger. A threshold or label can distinguish Type-I

70 5. The CARDINAL-Vanilla Architecture

Input

Response Type
I

[Match CTL Signature]

[No Match]

Response Type
II

[Match Th2 Signature]

Classify
[No Match]

Normal

Unknown

Danger

Create Th1
Signature

[Type I]

[Type II]

Create CTL
Signature

Create Th2
Signature

Figure 5.6 – Summarised view of Input to Response from the classifier decision perspective.

from Type-II dangers; however, this work uses the Type-I danger category only. Each new non-normal

input will undergo the validation process, as we define in 5.8. The validated input will become a

distributable signature module and be subject to prioritisation in 5.11. The module forms the self-

hardened, secondary-level of response at the local monitoring component, as described in 5.7.2.

5.7.1 Primary Classifier

The primary classifier assesses an input to produce a mapping to a response. The experiment chapters

use a biased supervised classifier to label inputs as normal or attack. In line with the danger theory

approach the normal signals, SS are ignored and discarded. All attack labels are grouped as Type I

danger signals, SD such that only CTL agents are under evaluation. Therefore attack labelled inputs

are mapped to the Type I response. Note that Th2 agents have identical agent interaction profiles to

CTL agents, but have a different response mapping. Test inputs, i.e. without signal labels, that do not

match a known signature are considered as unknown signals, SU . The classifier assigns a signal value

for each label, as follows:

S =

SS = 0 , if label = normal

SD = 1 , if label = attack e.g. Type-I

SU = ∗ , if label = none

(5.1)

Upon classification of a danger signal input, a DC agent will execute the mapped response. Then,

if the input is classified as non-normal, the DC will carry it to the lymph node in order to begin the

T-cell validation process.

Kim et al. envisaged the integrated primary classifier to be the dendritic cell algorithm (DCA)

classifier (Greensmith et al. , 2006). However, Stibor et al. have shown an alternative to DCA is required

if the application problem is not linearly separable (Stibor et al. , 2009), with further evaluations in (Gu

et al. , 2011). Our work has evaluated two replacement classifier pipelines in (Song et al. , 2013) and

(Song et al. , 2014) which report good accuracy on network security datasets. However neither pipeline

use online data stream learners; as such a problem-domain specific classifier with online learning is

5 71

needed for future applications of the architecture.

5.7.2 Secondary Classifier

The secondary classifier calculates a hashing function value H(x) for the antigen An component of a

new input. The hash value is matched against a table of existing signature hashed values. Therefore,

its accuracy is dependent on the primary classifier (5.7.1) and the module validation procedure (5.8).

Hashing functions reduce the attribute set dimensionality with the feature extraction methodology;

losing the original semantics of the input features while keeping the separability (Liu & Motoda, 1998).

As we know, hash function lookups have a time complexity of O(1) and a space complexity of O(n) on

average, where n is a reduced byte size to the original An value. A specific hash function is limited by

its maximum unique mapped values. Generally speaking, a hashing function is a fast string comparison

approach that translates the literal characters into a numerical space in order to numerically evaluate the

comparison, as Equation 5.2. The growth in space complexity and it’s entirely biased learning model

ensure its suitability to experimental cases and to strict decision making cases where the potential

learning space is finite and small.

H(An) = ∀x ∈ An(h(x)) (5.2)

Each existing signature has a response mapping, as specified by the primary classifier and validated

by the danger input validation process. CTL and Th2 agents carry a response mapping and upon a

match will initiate the mapped response. When the response is issued, the matched TCE agent will

increment its RSTCE value; thus affecting its heuristic priority value.

5.7.3 Responses

In the CARDINAL-Vanilla experimentation we are interested to know when and under what circum-

stance a response is issued. Kim et al. specified “weak” and “strong” responses, associated to Th2 and

CTL agent types. In CARDINAL-Vanilla, a log entry is reported with the response type, i.e. Type-I/II,

the triggering input and the responding cell type, i.e. Th2 or CTL.

In future, applied Type I and Type II responses should be problem-domain specific. Appropriate

responses for the SCADA control network environment can be as described in C.1. These include

blocking port numbers in a firewall, alerting an administrator, issuing a command to stop the controller

operation, among others.

5.8 Module Creation & Validation

The signature module creation is the result of the validation process, which Kim et al. and immunolo-

gists refer to as cell differentiation. The cell changing from a näıve to a mature state. Between a new

input and the validation process are two intermediate steps, as described by Kim et al. First a DC

agent will evaluate the signal and choose to respond or not, as redefined in section 5.7.1. The DC agent

will then migrate to the lymph node. A new TCN agent will be created with the input information.

The DC and the new TCN agents will then join the pool of DCs and T-cells. The validation process,

or differentiation in Kim’s terms, will cause that TCN to become a TCE or Th1 agent.

72 5. The CARDINAL-Vanilla Architecture

0

RVTCN-CTL
TCTLMat

0

RVTCN-Th2
TTh2Mat

CCOSTIM

C IL4

0

RVTCN-Th1
TTh1MatC IL12

DCSD

SU

SDI

II

= P1 x RVCTL TCTLMat

= P1 x RVTh2 TTh2Mat

= P1 x RVTh1 TTh1Mat

Figure 5.7 – Danger Input Validation Process - Näıve T-cell Maturation and Differentiation with DC Interaction

The module validation process validates an input carrying TCN agent when its associated sum of

danger exceeds a threshold. Kim et al. defined this threshold as a “suitable period of time” in their

worm malware case. We have respecified this as a sum of danger, accumulated over one or more inputs

with a matching antigen. Figure 5.7 illustrates the behaviour. It shows the process is dependent upon

each matching input’s danger signal value given by the primary classifier. We will describe the process

next.

5.8.1 Module Validation Process

A DC agent will carry non-normal inputs and their signal value from (SD or SU) the tissue environment

to the lymph node environment. In the lymph node, the DC will transfer the antigen signature and

release a cytokine signal C∗ to a newly created näıve T-cell (TCN) agent. The cytokine signal increases

the corresponding runtime priority value RVTCN∗ toward one of the three differentiation thresholds.

The first threshold to be exceeded will validate the input and create the permanent differentiated T-cell;

either CTL, Th2 or Th1. A later arriving DC carrying a similar or equal antigen will release a cytokine

signal C∗ associated to its danger signal. This will invoke the same maturation process as with TCNs,

as shown in Figure 5.7.

The differentiated T-cell agent will have an initial runtime priority RV∗ value equal to P1∗T∗Mat and

enter the local population of TCEs and Th1 agents in order to be subjected to interaction behaviours.

The P1 parameter affects the initial quantity of T-cell agent clones upon differentiation and thus

affects a signature module’s starting heuristic priority value. A differentiated T-cell agent is a validated

signature module.

5.8.2 Module Migration to Tissue Process

When a TCE agent has been validated it will migrate to the tissue environment. This ensures known

validated signatures are capable of responding to inputs as part of the secondary classifier in 5.7.2.

The non-responder Th1 agents remain only in the lymph node. In terms of implementation, a linked

reference to a TCE agent is created and sent to the tissue. A linked reference causes the validated

TCE’s priority RV∗ value to be affected by peer, local and antigen input interactions; where a true

migration, i.e. move, or a copy would not.

5 73

In Kim et al.’s model, only “effector cells with a positive clone value [will migrate]”. If we chose

to use the priority value RVTCE heuristic mechanism as the deciding factor for this migration, the

effective response would be reduced. This is bad for small use cases, but good for scalability. However,

this depends on whether the priority heuristic is precise.

5.8.3 Choosing Thresholds and Cytokine Increase Values

The threshold and increase values affect the likelihood of differentiation. To equalise the values per

cell line will lead to a likelihood decision based on the dataset input order. To incorporate the signal

value will cause a sliding affect upon Type I danger, Type II danger and unknown signals, assuming

SU < SDII
< SDI

.

In our experimentation, the primary classifier mapped a signal value of Type I danger to 1 and

unknown signal to ∗, no value. We opted to equalise the rate with equal increment values of 1 and no

addition of the input’s danger value. The CTL differentiation threshold was set at 1, which removes

the validation step for training inputs labelled as dangerous. The Th1 differentiation threshold was set

at 2. This was done to leave the possibility of relabelling the unknown input, via the DC to DC agent

and via the DC to TCN agent interaction process.

5.9 Time Scale: Moving Time Window

The statically-sized moving time window enables us to track behaviour over a fixed period of passed

time. It is used by two processes. First, is for the Volume Selection decision, described in 5.10.1,

to track danger quantities over time using the accumulated sickness value, Sv. The second aids the

heuristic priority decision. Kim et al. define an accumulation of danger over two time steps. Our

change here is to define that period using a static moving window of length P3, where each moving

block of that window is measured in 500 millisecond intervals. This enables us to deal with real-time

behaviours and beyond a stream of dataset inputs, as the time step approach implies.

-P3

S

Figure 5.8 – Diagram of the data structure representation for the moving window of accumulated danger. t−P3
is the earliest time block and next to be removed, t is the current and most recently added time block.

The sum of danger values Sv over the length of the time window, is defined by Equation 5.3. i

is the index to window blocks and
∑
SDi is the sum of danger in the i-th block. We have selected

500 milliseconds as the duration of a time block. Therefore, the i-th block contains the accumulated

danger values between t−(i∗500ms) and t−((i+1)∗500ms) from the current time t. P3 is the quantity

74 5. The CARDINAL-Vanilla Architecture

Figure 5.9 – Volume Selection Feedback Loop - Sickness Focus. TUA is the under attack threshold. P0 is the
under attack percentage volume to transmit. RNUA is the percentage to send while not under attack. Sv is the
recent danger level affected by damaging inputs. Sv is increased by Sd danger signal inputs, otherwise its value
will decay over time. An is the input antigen or data input values, while S∗ is the input data’s label.

of windows over which Sv is accumulated and thus is a threshold modifier for the Volume Selection

decision.

Sv =
P3∑
i=0

∑
SDi (5.3)

The second process that uses the moving time window, has two instances within each TCE agent.

These track the recent number of responses RSTCE and the recent priority value RVTCE of the TCE.

They aid the decision to increase or reduce the priority leading to a change in the probability of its

selection for transmission to other nodes. These priority modifier decisions are shown in Equation 5.9

and Equation 5.8.

The sums of SRS and SRV are calculated similarly to Sv. Equation 5.4 and Equation 5.5 show the

semantic difference is only in the variable value accumulated.

SRS =
P3∑
i=0

∑
RSTCEi (5.4)

SRV =
P3∑
i=0

∑
RVTCEi (5.5)

5.10 Module Dispatch Decisions

5.10.1 Volume Selection Feedback Loop

The volume selection feedback loop shown in Figure 5.9 takes inputs from the monitoring sensor and

determines if the system is under attack. If so, the next transmission will uprate the percentage volume

of destinations, as in 5.10.2 and of modules sent, described in 5.10.3.

Each sensor input consists of an antigen (data input values) and a danger signal value (data input’s

label), of which the signal inputs with a non-zero value have an affect on the loop. Each input danger

signal value, SD, will cause the accumulated danger value or sickness value, Sv to be increased. Equa-

tion 5.3 defines Sv. Over t time the accumulated Sv value will be decreased, as described in 5.9. When

5 75

the value of Sv breaches the TUA decision threshold the behaviour is modified to send a volume at the

under attack rate P0, otherwise the not-under-attack rate RNUA volume is used:

Sv > TUA → P0 (5.6)

Sv ≤ TUA → RNUA (5.7)

The other parameters affecting this decision and time-dependent feedback loop are as follows. SD

is the value of danger for a given input. Sv is the accumulated danger value, explicitly defined in

Equation 5.3. In 5.9, we discuss the Sv variable and the static moving time window mechanism used

to track Sv.

In the dataset validation cases, we set the value of SD to be 1, and 0 for non-danger inputs. For

other uses, it is recommended that the value of SD be the danger score calculated by the domain-specific

classifier. The default values and ranges for each of the parameters can be found in Table 5.2.

5.10.2 Destination Selection

This decision is initiated upon each transmission to give a set of neighbouring destination nodes to which

the current transmission will be sent. The decision inputs are the set of node addresses n1, ..nN ∈ N,

the random number generator RNG1, its seed S1 and the transmission volume percentage v, given in

5.10.1. v is converted into its respective ceiling quantity qN = dv∗Ne of destination nodes. Then N−qN
addresses are removed from N with sequential uniform probability, to give the set of QN destinations

for this transmission.

5.10.3 Module Selection for Transmission

This decision selects a set of modules to send to the QN destinations. Similarly to the destination

decision, the inputs are the random number generator RNG1 and its seed S1, the transmission volume

percentage v and the set of modules m1, ..mM ∈M, including both CTL and Th2 agents. The volume

quantity becomes qM = dv ∗Me, with which qM modules are to be selected for this transmission. The

individual modules are selected with roulette wheel probability selection using each agent’s priority

RVTCE as a fitness value, where higher is best. We describe the RV priority and heuristic in 5.11. The

set of QM selected modules are then sent to the QN destinations.

5.11 Priority Heuristic for Signature Module Distribution

The priority value RV provides the key heuristic to measure the importance of an input signature.

The heuristic states that if the agent carrying the signature responded on more occasions than its RV

value, then increase its priority. Its use in the architecture affects signature probability selection for

transmission to the other nodes. The priority is increased and decreased in the following ways.

76 5. The CARDINAL-Vanilla Architecture

0

RVTCE

P2

RP

Figure 5.10 – Effector T-cell Feedback Loop upon Cell Interaction

5.11.1 Module Prioritisation & De-Prioritisation

The module prioritisation feedback loop shown in Figure 5.10 is part of each effector T-cell agent (TCE)

and affects their priority runtime value, RVTCE . This translates into an importance score for each TCE

agent which determines each agent’s probability of selection for transmission to other nodes. Finally,

this enables other nodes to respond to its signature.

The following interactions occur between the local TCEs and the TCEs received via network trans-

mission. Kim et al.’s model states that local Th1s will interact with received Th1s, in addition to TCEs

interacting with TCEs. We have chosen to remove the Th1 transmissions and therefore interactions

upon network receipt. This is done to improve the priority of signature modules (TCE agents) with

locally received inputs. Section 5.11.2 describes how Th1 agents increase the priority values of CTL

agents. In summary, Th1s store local input data with an unknown label; where CTLs store input data

with a label from either the local node or a peer node. Therefore local Th1s will increase the priority

values of local input-focused CTL agents over peer received CTL agents.

As we have described, each TCE’s signature is composed of an antigen An and signal S∗. TCEs

without matching antigen signatures are de-prioritised by ∗P2, the suppression rate. TCEs with match-

ing antigen signatures are uprated by Rp, the proliferation rate if the following clause holds. If the local

TCE’s accumulated number of responses is more than its priority, then its priority value is increased.

Otherwise, its priority is too high for its current use, we therefore reduce its priority. To avoid keeping

duplicates, the matching received TCE is discarded after all interactions have completed. Next, we

shall express these cases more explicitly in formal notation.

Prioritise Similar Local Effector T-cells via Received Peers

Equation 5.8 expresses the element-wise prioritisation case. Such that, for all aAn antigen in the local

set of TCEs ATCE , if a similarity exists with an antigen bAn in the received set of TCEs BTCE and

a’s sum of recent responses aSRS
is greater than it’s sum of recent priority aSRV

, then increase the

corresponding local TCE’s priority by Rp. SRS and SRV calculations are defined in Equation 5.4 and

Equation 5.5.

∀a ∈ ATCE((∃b ∈ BTCE : aAn ' bAn ∧ aSRS
> aSRV

)→ aRVTCE
+Rp) (5.8)

5 77

0

RVCTL
RP RVCTLRVTh1 /)(+

Figure 5.11 – Prioritisation of CTL Responders through Regulation.

Deprioritise Similar Local Effector T-cells via Received Peers

Equation 5.9 expresses the de-prioritisation case for matching antigen. Under the same matching

antigen condition, when the sum of recent responses aSRS
is less than or equal to the sum of recent

priority aSRV
, then suppress the runtime priority value RVTCE of a by ∗P2, as in:

∀a ∈ ATCE((∃b ∈ BTCE : aAn ' bAn ∧ aSRS
≤ aSRV

)→ aRVTCE
∗ P2) (5.9)

Deprioritise Dissimilar Local Effector T-cells via Received Peers

Equation 5.10 shows the de-prioritisation case for non-matches, which is the set-wise logical negation

of the matching cases. These remaining local but unmatched TCEs are reduced by the suppression

rate ∗P2. Therefore, if there is not a single case where an antigen cAn in the local set is similar to an

antigen bAn in the received set, then suppress the runtime priority value RVTCE attached to c with

∗P2, as:

@c ∈ ATCE : cAn ' bAn ∧ b ∈ BTCE → cRVTCE
∗ P2 (5.10)

These examples using TCE summarise both cases for CTL and Th2 agent interactions, including

prioritisation and de-prioritisation. Explicitly, these comparisons occur between CTLs and CTLs,

and between Th2s and Th2s. Our specific matching approach compares numerical hashed values of

the categorical input data without the label and without the signal value; however a distance-based

correlation could be envisaged for numerical variables as suggested by our use of mathematical notation

for similarity. See Table 5.2 for parameter ranges and default values.

5.11.2 More Prioritisation: Through Regulation

The further prioritisation interaction shown in Figure 5.11 takes locally residing Th1 and CTL sets as

inputs and is initiated on each scheduled interaction process. The interaction increases the selection

probability for higher danger signatures, carried by CTL agents, that have similar antigen and differing

levels of danger signals to those carried by Th1 agents. Matched signatures of CTL and Th1 agents

will cause an uprate of the CTL’s priority and the Th1’s priority.

If an element-wise match holds then an increase occurs in the runtime priority value for the CTL,

as shown in Equation 5.11, and in the Th1, as shown in Equation 5.12. For all antigen aAn from the

78 5. The CARDINAL-Vanilla Architecture

0

P4
Rd

Figure 5.12 – DC Lifespan and Decay Rate

local set of CTL agents, denoted by a ∈ ACTL, if there exists a match to an antigen bAn in the local

set of Th1 agents, b ∈ BTh1, then initiate the increase. Rp is the proliferation rate. aRVCTL
and bRVTh1

are the runtime priority values of agents that carry a matching antigen:

∀a ∈ ACTL((∃b ∈ BTh1 : aAn ' bAn)→aRVCTL
+Rp + (bRVTh1

/aRVCTL
), (5.11)

bRVTh1
+Rp) (5.12)

When the starting priority of the CTL is lower than the Th1, then a more extreme increase occurs.

Unmatched signatures are unaffected in this interaction.

5.11.3 More Prioritisation: Dendritic Cells and Decay Rates

The dendritic cell (DC) agents will interact with näıve TCN agents and the differentiated CTL, Th2

and Th1 T-cell agents residing in the local lymph node.

Dendritic Cell Increases Differentiated T-cell Priority

Upon presentation of a matching antigen, a differentiated T-cell will proliferate, its priority will increase.

This is shown in Equation 5.13, where An is the antigen signature of an agent, RVTCell is the current

priority value of the T-cell and Rp is the rate of proliferation. The local set of DCs a ∈ ADC interacts

with the local set of all T-cells b ∈ BTCell, as:

∀a ∈ ADC((∃b ∈ BTCell : aAn ' bAn) ∧ aSD
→ bRVTCell

+Rp) (5.13)

Dendritic Cell Signal is Replaced

Where the matching DC has an unknown signal, SU and the matched T-cell has a known danger signal

SD, the DC’s signal will also be overwritten:

∀a ∈ ADC((∃b ∈ BTCell : aAn ' bAn) ∧ aSU
∧ bSD

→ bRVTCell
+Rp , aSU

:= bSD
) (5.14)

5 79

Dendritic Cell Lifespan Decays

Each DC’s lifespan will decay per interaction regardless of whether or not the interaction led to a

match. The remaining lifespan LDC will decrease by Rd, the rate of decay, as shown in Figure 5.12 and

expressed in Equation 5.15. Its lifespan is initialised at P4, when the lifespan value reaches zero the

DC will be marked for deletion and removed when this scheduled interaction phase ends.

∀a ∈ ADC(∀b ∈ BTcell → aLDC
−Rd) (5.15)

Dendritic Cell Reclassifies Other Dendritic Cell Signal

The DC agents will also interact with other local DCs. This causes additional lifespan decay. Upon a

match, if a danger signal is known and an unknown signal exists, the known signal will take precedence

and replace the unknown. Equation 5.16 and Equation 5.17 show both change cases of this. In

Equation 5.16, if the a DC has an unknown signal SU and the a′ DC has a known danger signal SD,

then the a′ DC’s signal will replace the a DC’s signal. Vice-versa for the second case:

∀a ∈ ADC(∀a′ ∈ A′DC/a : aAn ' a′An
∧ aSU

∧ a′SD
→ aSU

:= a′SD
) (5.16)

∀a ∈ ADC(∀a′ ∈ A′DC/a : aAn ' a′An
∧ aSD

∧ a′SU
→ a′SU

:= aSD
) (5.17)

Dendritic Cell Reclassifies and Matures Näıve T-cell

The DC agents will also interact with local TCN agents that have a matching antigen. The purpose is

to replace an unknown signal SU of a TCN with a known danger SD signal. This behaviour is defined

by Equation 5.18 and is similar to the DC to DC interaction case:

∀a ∈ ADC(∀b ∈ BTCN : aAn ' bAn ∧ aSD
∧ bSU

→ bSU
:= aSD

) (5.18)

Upon a match, the DC will additionally transmit a cytokine message to the TCN agent in a similar

manner to Figure 5.7 and the procedure in section 5.8. If the DC holds a SD, it will release an

appropriate cytokine, either CIL4 or CCOSTIM . Otherwise, if the TCN holds a SD, the DC will release

a message to exacerbate the currently held signal. Where both the DC and TCN have unknowns

signals, the TCN will receive a cytokine message matching its current strongest signal RVTCN∗ value.

5.12 Parameters of CARDINAL-Vanilla

Table 5.2 shows a complete list of parameters with their default values and ranges. This section will

describe the parameters and identify those that affect the key components of the architecture.

The key parameters chosen are labelled P0 to P4. Each impacts one or more of the key decisions

or interactions, including the feedback loop, decay rates and thresholds. The experimentation will

80 5. The CARDINAL-Vanilla Architecture

investigate variations of these parameters. Below we will discuss each of these parameters and justify

a range of test values. First we will look at the remaining parameters and variables listed.

5.12.1 Choosing the Key Parameters

First we can remove the variables as a result of equations, which are the initial priority value variables V∗

and the runtime priority and response variables RV∗, RS∗, the calculated CTL-Th1 interaction increase

quantity RR and the sums S∗. Secondly we can remove the parameters with values of 0 or 1, which are

the signal values given by our classifier S∗, the cytokine signal values C∗ and then the rates of increase

and decrease, which are the decay rate Rd and the proliferation or increase rate Rp. The proliferation

rate would be worthy of investigation had we not included the two other components to the priority

feedback loop, the starting priority P1 and suppression rate P2 modifiers, in our list of key parameters.

This leaves the more interesting parameters. The validation thresholds T∗Mat whose values were

stated and justified in 5.8.3. The random number generator seed S1 that enables the uniform random-

ness for the roulette wheel and probability selection mechanisms within the architecture; this is to be

chosen within the experiment design. The final two are the under attack threshold TUA and the not

under attack volume transmission percentage RNUA.

The TUA threshold is an accumulated quantity threshold that is summed using the moving window

structure. Variation of the P3 parameter modifies the length of the window and therefore the semantic

of the threshold. Thus, while we do not modify the threshold value, we can evaluate the underlying

threshold decision by modifying the value of the single P3 parameter. The threshold value of 50 was

arbitrarily selected and based upon a “small” quantity of inputs relative to our datasets and a typical

application case. The RNUA volume percentage parameter counters the higher rate of flow parameter,

P0.

RNUA gives a small constant flow of data between the nodes when the system is not under attack;

semantically the value should remain less than the value of P0. However, at one level, RNUA seman-

tically shares the same parameter space as P0. The value of 0.25 was arbitrarily selected and based

upon the architecture’s need to transmit modules to other nodes at a constant heartbeat-like flow rate.

Lowering the value toward 0 is not intuitively interesting.

The remaining parameters are the key parameters, described below.

5.12.2 Under Attack Volume Percentage Parameter (P0)

This parameter is a percentage quantity of transmissions; it is the alternative and increased percentage

used when there is evidence that the local system is under attack. The percentage is used to select

the number of modules and destinations when the under attack condition has been met. Equation 5.6

defines the condition. The default value of P0 = 0.75 counterpoints the not under attack condition

value, RNUA = 0.25.

P0

Default value: 0.75

Continuous Range: [0.25− 1.0]

Discrete Range: [0.25, 0.33, 0.5, 0.66, 0.75, 0.9, 1.0]

5 81

The module selection uses roulette wheel selection. Thus, the chance of selecting the same module

increases when some modules have high priority values and many have low priority values. The number

of items selected increases with the P0 value. By design, this does not affect the destination selection

decision. We can expect the reported quantity of data transmitted to increase as P0 increases.

5.12.3 Initial Priority Value Multiplier Parameter (P1)

This parameter will inflate the initial heuristic priority value for each signature module. This value

is later increased by increments and decreased by division P2, according to the heuristic. The P1

parameter sets the initial size, that is countered by the P2 parameter.

P1

Default value: 2

Continuous Range: [0.0− 4.0]

Discrete Range: [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]

The heuristic decisions will decrease a module’s priority value while it has no need to respond. This

parameter is thus akin to a measure of time, over which the priority value for a new module can stay

relatively high. When the parameter’s value is higher, we expect it to maintain the buffered value for

longer; when low, we expect new modules to reduce their priority quickly. The effect of this that newer

modules get selected for transmission, thus the network has a stronger relevant resistance.

5.12.4 Priority Value Suppression Parameter (P2)

This parameter decreases a module’s priority value by multiplication. The priority value is initially

affected by P1 and increased by the rate of increase Rp. With the parameter value at 1.0 no decrease

is present, closer to 0.0 will cause the priority value to decay very quickly. We include 1.0 in the range,

to investigate the effect of no suppression on the priority values. > 1.0 is in the range to investigate a

priority that only increases.

P2

Default value: 0.95

Continuous Range: [0.0− 2.0]

Discrete Range: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75, 2.0]

We expect a suppression value with a slow decay to lead to more newly created signature modules

being selected and thus transmitted. Also, we expect that this will not have a large impact on the

amount of data transmitted.

5.12.5 Static Moving Window Size Parameter (P3)

This parameter defines recency in the system. It is effectively a duration of time, to the multiple of

500 milliseconds over which a history of state data is stored. Initially we set each block size to 10

seconds; however, 500 milliseconds empirically showed a more noticeable effect on our test sizes and

test durations. The default value is set at 60 or 30 seconds and ranges between 1 and 100, or 0.5 seconds

and 50 seconds.

82 5. The CARDINAL-Vanilla Architecture

P3

Default value: 60

Continuous Range: [1− 100]

Discrete Range: [1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 40, 60, 80, 100]

The three use cases of the moving window are described in 5.9 and affect other key conditions.

Shortening the accumulated danger window size reduces the likelihood of the under attack threshold

TUA being exceeded, depending of course on the input data. Thus, affecting the P3 parameter will

affect that threshold. Reducing the two priority heuristic windows will equally reduce the duration

over which the response and priority sums are accumulated. The P3 parameter does not affect the

relativity of the two sum comparison, as the summed values are independent and compared to each

other. Thus the effect is again on the time component of the comparison. Little to no intuitively useful

information comes from varying the response and priority durations independently. Like the danger

window decision, the time component of the heuristic decision is dependent upon the input data. Thus

we can state that the same factors of experiment scale and duration and the order of input sources

cause the P3 parameter to be a dependent variable, that depends only those external factors of its use

case and the one internal factor affecting the TUA threshold.

We can expect a larger P3 will cause the TUA threshold to be exceeded more often, therefore the P0

volume percentage will be used more often and thus more data will be sent. However, we can expect a

larger P3 parameter will equally increase the accumulated values of the heuristic decision, thus should

show no noticeable independent effect upon the relative priority of the modules. Different data sources

or orders of input can however, be expected to have different effects upon the accumulated danger

classifications and upon module priorities and response rates.

5.12.6 Dendritic Cell Lifespan Parameter (P4)

This parameter defines the number of interactions a dendritic cell has before it is removed. The P4

parameter defines the lifespan and thus the impact of a new input on the permanent labelling of non-

normal signature modules, as described in 5.8. The default value and range are arbitrarily set at 50

and between 1 and 100.

P4

Default value: 50

Continuous Range: [1− 100]

Discrete Range: [1, 5, 10, 20, 50, 40, 60, 80, 100]

We can expect a larger P4 value to lead to a faster rate of validating non-normal inputs and creating

modules to distribute; the reverse is the case for a smaller P4 value. This has a direct effect on the

sensitivity of the secondary classifier; although in this thesis, the classification evaluation is not of our

direct interest.

5.13 Chapter Conclusions

This chapter stated the design of the CARDINAL-Vanilla architecture as an adaptation of Kim et al.’s

CARDINAL abstract model architecture.

5 83

The description emphasises the engineered multi-agent system approach to the mathematical instan-

tiation and the implementation design of the immunity-inspired model. These three distinct perspec-

tives result in the definition of a complex system model of interactions and behaviours. The architecture

co-operates across a network of devices, thus increasing the complexity of the complex system model.

The chapter defined the multi-agent system by its agent classes, interaction behaviours, environ-

ments and constraints. The interaction behaviours and process decisions are defined by the parameters

and expression in logical set notation of individual cells as reactive agents.

The differences between the CARDINAL and CARDINAL-Vanilla models are summarised in section

5.2 and explicitly contrasted per item throughout the chapter. CARDINAL-Vanilla is the result of the

change in problem domain, the result of mathematical instantiation and subsequently implementation,

the essential completion of the algorithm and model specification and our interpretation of missing

aspects of that specification. The model differences presented in this chapter are in process, process

structure and flow control; in establishment of model parameters, variables, their values and ranges; in

establishment of mathematical model equations (i.e. instantiation of the earlier model); in establishment

of new decisions on ill-defined aspects of the earlier specification; and in establishment of the highly

cohesive network transmission decisions.

The most valuable contribution of this work is the explicit definition of a novel probability-based

heuristic for transmission of high priority information in decentralised peer-to-peer network applications.

From a high level perspective, the chapter has stated the procedures from input classification to re-

sponse mappings, the signature module priority heuristic and network transmissions between the nodes

of the distributed architecture that each contribute to the self-hardening system that is CARDINAL-

Vanlla. The experimentation chapters that follow will evaluate the architecture for its immunisation

capability on computer networks.

5.13.1 Next Steps

Next we will specify the evaluation framework and validation methodology used to evaluate distributed

self-healing security systems and specifically CARDINAL-Vanilla. Following this we evaluate the ar-

chitecture under real-world network conditions.

8
4

5.
T

h
e

C
A

R
D

IN
A

L
-V

an
illa

A
rch

itectu
re

Parameter Mapping Description

P. Default Range Model Computation

Antigen and Signals

An Antigen Input data source attributes (e.g. [a=“1”,b=“2”,c=“x”,d=“y”])

SD 1 Danger signal Attack label (e.g. label=“attack1”, label=“attack2”)

SS 0 Safe signal Normal label (e.g. label=“normal”)

SU Unknown signal Unlabelled, i.e. unknown test data, (e.g. label=“-”)

Maturation, Differentiation and Activation

CCOSTIM 1 DC costimulation signal release to näıve T-cell in lymph node. Increase TCN differentiation value toward CTL

CIL4 1 DC interleukin 4 signal release to näıve T-cell in lymph node. Increase TCN differentiation value toward Th2

CIL12 1 DC interleukin 12 signal release to näıve T-cell in lymph node. Increase TCN differentiation value toward Th1

TCTLMat 1 Concentration required for CTL maturation Threshold for TCN to CTL maturation

TTh2Mat 1 Concentration required for Th2 maturation Threshold for TCN to Th2 maturation

TTh1Mat 2 Concentration required for Th1 maturation Threshold for TCN to Th1 maturation

P1 2 [0.5-4] Initial number of T-cell clones upon activation Initial detector priority multiplier

VCTL [P1 ∗ TCTLMat] Initial number of CTL cell clones differentiated from näıve T-cell Initialised Type I danger detector priority value

VTh2 [P1 ∗ TTh2Mat] Initial number of Th2 cell clones differentiated from näıve T-cell Initialised Type II danger detector priority value

VTh1 [P1 ∗ TTh1Mat] Initial number of Th1 cell clones differentiated from näıve T-cell Initialised unknown detector priority value

Proliferate and Suppress Detector Priority

RP 1 T-cell proliferation growth rate Detector priority increase rate

P2 0.95 [0.1-4] T-cell suppression Detector priority reduction

RR RP + (RVTh1/RVCTL) T-cell helper regulation of CTL Detector priority regulatory increase

P3 60 [1− 100] Temporal T-cell commonness Recent priority window size * 500ms

” ” Temporal T-cell antigen commonness Recent response window size * 500ms

RV∗ Quantity of T-cell clones Runtime priority value for T-cell agent

SRS Eq.5.4 Historical infection growth rate for T-cell Sum of recent responses by TCE

SRV Eq.5.5 Historical clone growth rate for T-cell Sum of recent priority value of TCE

Cell Decay Rate

P4 50 [0− 100] DC lifespan Maximum number of interactions before removal

Rd 1 DC decay rate Decrement value upon each interaction

Sickness Focus for Volume Selection

TUA 50 Sickness definition Under attack threshold

Sv Eq.5.3 Current temporal sickness level Sum of recent danger value

P3 60 [1− 100] Temporal sickness concentration, from danger inputs Recent danger window size * 500ms

P0 0.75 [0.25− 1] Lymphatic flow concentration quantity during sickness % detectors selected for transmission (A)

” ” Lymphatic flow distance during sickness % destination nodes selected for transmission (A)

RNUA 0.25 Lymphatic flow concentration quantity during no sickness % detectors selected for transmission (B)

” Lymphatic flow distance during no sickness % destination nodes selected for transmission (B)

Probability Selection

RNG1 Chance of cell transport Random number generator for selection.

S1 Seed for RNG1.

Table 5.2 – Table of CARDINAL-Vanilla parameters. Cell types parameters are described in text. Cells types are abbreviated as DC, TCN, CTL, Th2, Th1 in the table. Parameters
are abbreviated as follows: A∗ and S∗ refer to data inputs, C∗ refers to cytokine signalling, T∗ refers to a threshold, V∗ refers to an initial value, R∗ refers to a rate, RV∗ refers to a
runtime variable and P∗ refers to the key CARDINAL parameters under investigation.

5 85

Item CARDINAL CARDINAL-Vanilla

Model Components

Antigen role “Attack signature” Input without label.

Danger symptoms

or attack signature

“Excessive CPU load, bandwidth saturation on

network, abnormal email communication, etc” Labelled inputs

Danger severity Assessed by DCs Determined by classifier.

Danger certainty Assessed by DCs Determined by classifier.

Threat level “Derived from danger signal”

Derived from signal: damaging,

safe or unknown

DC purpose

“Assess danger signals”,“Extract antigen”

”Ascertain severity and certainty of attack”

Assess signals. Responder. Temporary

container for antigen and signal.

Näıve T-cell “Copy of antigen”

Temporary container for antigen

and signal

CTL purpose

“Strong response”,

“Severe [w/] high certainty”

Respond to damaging input. Module

with input signature mapping to response.

Th2 purpose

“Strong response”

“Severe [w/] lower certainty”

As CTL, with different response mapping.

Unused in experimentation.

Th1 purpose

“Weak response”,“Less severe ”

Assist proliferation of CTLs.

No response. Unlabelled input,

will proliferate matching CTLs

T-Cell differentiation

”After a suitable period of time”

“Exceeds a given threshold”
After the first maturation threshold
is exceeded

Increase or decrease
clone rate decision

“Compare historical infection growth rate

against effector T-cell clone growth rate” Same

Historical infection
growth rate None

Sum of danger inputs

in a moving time window

Historical effector T-cell
growth rate

“Total number of responses which peer

hosts made in previous two time steps”

Quantity of matching responses

in a moving time window

Unmatched received
peer T-cells

“Suppress and create new näıve T-cell

with lower maturation thresholds” Suppress T-cell. Migrate to Tissue

Effector T-cell
migration to Tissue

“Effector T-cells with positive

clone values [migrate]” All effector T-cell migrate

Effector T-cell
migration to Peers

“Send effector T-cells with positive

clone values and earlier received T-cells”

Select effector T-cells probabilistic–

ally based on number of clones

Choose destination
hosts

“Select randomly from all [.] peer

hosts” Same

Choose number of
hosts

“Number of hosts selected [.] is determined

by [.] the severity and certainty of attack.”

If Historical infection growth rate

is > threshold, then send more.

Other Self-Healing Components

Validation of input to
response mapping “After a suitable period of time”

Sum of danger value exceeds threshold,

increased by repeated inputs.

Validation of network
received detectors

After a number of matching inputs received,

then received detector is validated. Not specified

Generation of
response Not specified Not specified

Sandbox validation
of response Not specified Not specified

Issuance of
response Effector T-cell responds to matched antigen Same

Table 5.3 – Table of key differences between the CARDINAL abstract model (Kim et al. 2005) and our
CARDINAL-Vanilla model.

86 5. The CARDINAL-Vanilla Architecture

Chapter 6

How to Evaluate and Validate

Distributed Self-Healing Security

Systems

6.1 Introduction

This chapter contains principles of evaluating Distributed Self-Healing Security Systems (DSHSS) and

the key issues necessary to evaluate the distributed CARDINAL-Vanilla architecture. The objective of

this evaluation and validation methodology is to define the verifiable experimental design to measure

the global performance of self-healing, under conditions that are feasibly similar to an Industrial Control

System (ICS) corporate network scenario.

The CARDINAL-Vanilla architecture and our aim of a DSHSS require a distributed system evalu-

ation methodology and testbed. At time of writing, we were aware of no experiment methodology for

testing DSHSS applied to distributed security monitoring.

The sections of this chapter describe the experimental measures and metrics (6.2), measurement

noise (6.2.5), experiment phases (6.3), individual node execution procedure (6.4), experimental con-

stants (6.5), the datasets and input sources (6.7) and the heterogeneous user behavioural model (6.6) to

reflect computer user behaviour. The resulting measurements are combined using multi-objective eval-

uation equations and methodology (6.10) to produce three system performance measures (6.9). Each

experiment is conducted and evaluated in real-time (as described in 6.8). Later chapters will define the

specific network node topologies, network sizes and the number of iterations used per trial.

6.2 Measurements and Metrics

From a distributed self-healing security system architecture, we want malware detectors and repair

mechanisms to be propagated to all machines of our network as quickly as possible, while minimising

impact upon other network traffic. These experiments are foremost to evaluate the efficiency and

resource viability of CARDINAL-Vanilla in this scenario. We are interested in metrics representing

an network-wide state or level of security, such that we only take account of global measurements

87

88 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

(as in “a concrete measurement extracted”) and global metrics (as in “a calculation using extracted

measurements”) of data consolidated from all nodes of the architecture.

The three metrics that we are concerned with are:

(1) Distributed-M1 : quantity of monitored modules or detectors that are distributed to all network

architecture nodes.

Range from 0 to |ArbSig|. Maximum values preferred. (*detector100Coverage)

ArbSig is the set of inputs used to constrain the dataset, see 6.2.2.

(2) Time-M2 : time taken (in seconds) from module creation to full network distribution.

Range from 0 to ∞. Minimum values preferred. (*totalNetInocRateMedianSecs)

(3) DataSent-M3 : data in megabytes (MiB) sent over the network by the architecture software

(accumulated from each node) during each experiment trial.

Range from 0 to ∞. Minimum values preferred. (*dataSentTotalMiB).

* Column name in result sets and logs.

6.2.1 Measures to Metrics

Several details that each of the metrics embrace are important to note. Each connected node has

its own database of known detectors with various state timestamps and event logs (e.g. of sent and

received network transmissions with their sizes in bytes). By the end of a trial run, a set of directories

are created containing the experiment databases and logs for each node involved in the run. To extract

the global metrics we combine these logs in a sensible and unbiased manner.

6.2.2 Detector Distribution Quantity Measurement (M1)

This metric measures the quantitative notion of units of useful modules produced by and distributed

to all nodes of the networked security architectures. The notion of module quality is not measured by

this metric. The metric is concerned with measuring usable modules only. In the CARDINAL-Vanilla

architecture novel inputs become modules or detectors, in the manner stated in 5.8. Module quality is

ignored by this measure as CARDINAL-Vanilla uses exact match detection, other systems may choose

to change this. These inputs exist in a number of other states in a number of other locations; as in

Table 6.1:

In metric M1 we are interested only when detectors can recognise and respond to new inputs. Such

that M1 measures the number of detectors (‖D‖), where each detector d ∈ D reached state (e). We

show detector d in state (e) by de. Therefore expressed as:

M1 = ‖De‖ (6.1)

In each node’s logging databases we can collect the quantity of state (e) detectors and give each

node a rating. However to make this a global measure, we filter out only those detectors found in all

6 89

State Logged Description
Model

Location

(a) * read-in at Sensor from dataset n/a
(b) * input received at Monitor Tissue
(c) input received at Analytical Engine Lymphnode
(d) * detector created at Analytical Engine Lymphnode
(e) * detector sent to Monitor, i.e. can respond Tissue
(f) * detector selected for sending via network at Analytical Engine Lymphnode
(g) * detector received via network at Analytical Engine Lymphnode
(h) * detector responded to (classified) new input at Monitor Tissue

Table 6.1 – Table lists the event states of inputs to detectors in the architecture. Abstract model locations
are in italics. Events with an asterix (*) are logged within local log measurement databases, once per state per
unique input. (c) is a transfer between agent environments and is not logged.

node logging databases for the trial run. Such that the unique quantity of matching detectors found at

all nodes is the value of M1.

To constrain the search space (and therefore quantity) further, we preselected 20 arbitrary inputs,

to form a set known as ArbSig, from the dataset and distinguished these as damaging and important.

The purpose for this further arbitrary constraint is three fold; to evaluate the system against a range

of rarely occurring (yet damaging) detectors, to represent real-world threats from this network-based

security dataset and to permit human verification of correctness between repeated tests.

6.2.3 Detector Distribution Time Measurement (M2)

Following on from the quantity M1 metric input-to-detector states, the time metric (M2) uses these

state timestamps to measure the interval duration between state (a) and state (e). M1 gave us a filtered

set of detectors that reached state (e), which also are found on all nodes. From this we collect the latest

arrival timestamp tn for each of those detectors di. The earliest read-in timestamp – i.e. the earliest

state (a) timestamp – for each of those detectors is selected as t1.

The time interval (Intervaldi) between t1, the earliest state (a), and tn, the latest state (e), for each

detector di ∈ D is then simply calculated, as:

Intervaldi = tdin − t
di
1 (6.2)

Then, the median time interval duration of all detectors (D) is selected as our M2 value for this

single trial run, as:

M2 = median(IntervalD) , where Intervaldi ∈ IntervalD (6.3)

There is an event in which an input reaches state (e) but is not distributed to all nodes, i.e. not in

all node logs contain a record of that detector in state (e). We choose to avoid the inclusion of a zero

value, because this would suggest an implausibly perfect result. Instead a failsafe default is assigned,

90 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

this is the total experiment duration time for that node; often an order of magnitude larger. In this

event, the M2 duration remains as the median from this set.

6.2.4 Detector Distribution Data Sent Measurement (M3)

To assess the feasibility in terms of impact on network traffic of each of the architecture designs the

number of bytes sent from each node is measured and summed to produce a global (total) number

of bytes sent during a trial run. The experiment procedure and constants dictate a requirement of

20 objects (6.5), of varying sizes, are sent by each node. Each object is measured and logged at the

sending node and the receiving node.

The total sent bytes (BSent) recorded per object (Oj) at the sending node, per node (Ni) are

accumulated, then converted to megabytes to give the value for M3:

M3 =

N∑
i=1

(

O=20∑
j=1

(BSent/10242)) (6.4)

6.2.5 Sources of Noise affecting Measurements

Below is an incomplete list of expected causes for noise affecting collected measurements. Highlighted,

in no particular order, are the more probable causes of noise and an estimate of their likely effect upon

measured results.

Other Processes & Execution

Both virtualised network and real network testing are affected by behaviour of the operating system

and other applications. Such as behaviour of thread execution, unexpected or scheduled application

updates, time-dependent scheduled tasks and the maintenance tasks of other running processes. These

items are feasibly uncontrollable and therefore can consider them random noise. Further testing, among

other types, could look at the effects of other operating systems or more specifically, the underlying

modules for handling execution.

Packet Loss

Similarly we can expect variation between trial runs caused by packet loss. Particularly on the loopback

tests where CPU usage will be at a limit due to the number of concurrent CPU time intensive processes

(virtual nodes) competing with the kernel to manage loopback messaging. According to (Alhomoud

et al. , 2011), we can expect a roughly increasing number of dropped IP packets as the throughput

amount increases. There will also be a saturation point for the real network tests, but this will depend

upon the bottleneck cause and its threshold.

6 91

Transmission Failures

Other types of transmission failures are common in network tests, e.g. stream interrupts, connection

disconnects, destination addresses unavailable, etc. These have been handled in the conventional net-

work programming manner to attempt retransmissions after failures. The retransmission quantity is

given in 6.3. These failures are likely to be spurious – low probability of occurrence – and uniformly

random. They may affect the real network tests; however, are unlikely to affect the virtual tests as the

Linux loopback device behaves with memory redirection which is not commonly prone to failure. The

effect would manifest as delayed time to transmit – affecting time metric M2 – and in increased data

sent but not received, which is specifically data metric M3.

Other Traffic

The enterprise network tests are run on operational workstations while connected to other switched

segments of the enterprise. As such we cannot rule out the possibility of external access to workstations

and switch facilitating the test and thus another form of noise out of our control.

Time

Time drift and time measurement precision is a potential source for small deviations in time measure-

ments. This affects the real network tests, where many workstations may report differing timestamps

at the same actual time. To minimise the drift effect and improve precision, a network time protocol

(NTP) update is issued before tests begin.

6.3 Experiment Phases

The architecture is tested under a supervised learning experiment process, in which each node will

execute four phases: start-up, training, testing and shutdown.

The start-up phase: each node is initialised and waits for an agreed period, this gives each node

an opportunity to start each of its threads and have them perform their initialisation processes. The

specific thread execution at each node is shown later in 6.4.1. The time duration is given in 6.5.

The training phase: begins the read-in of training inputs during which the labels (final column

of dataset instance) is used to classify.

The testing phase: differs in that its inputs do not use (mask) the label. During training and

testing each node transmits information to other nodes. The input limits and transmission quantity

applied in these phases are defined in 6.5.

The shutdown phase: is a period dedicated to waiting other nodes to conclude their individual

trial runs, such as allowing nodes to transmit their remaining queued packets to the neighbouring

nodes. This period provides experiment robustness against the use of heterogeneity – heterogeneous

device capacities and heterogeneous resource usages. The phase is concluded through an agreed message

exchange between all connected nodes. The shutdown negotiation is described in 6.4.

92 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

6.4 Experiment Procedure

The experiment procedure that we execute to evaluate our self-healing architecture’s immunisation

rate is Procedure J shown in Figure 6.1.

The procedure steps through the four experiment phases (6.3) on each networked workstation or

virtual machine. At the beginning of the procedure the following items are initialised: the input user

model (I), the network transmission listener (R), the termination network listener (wSTOP) and the

self-healing architecture processing algorithm (P) is started in the start-up waiting state. After P ’s

waiting time is over P enters the training phase and begins parsing data inputs received from I.

In line with other constants defined in 6.5, P will process a number of inputs then schedule a

Send Event (S). A Send Event is a network transmission of a set of modules to a set of nodes. Once

the training and testing phases have completed on a given node, an experiment termination message

(sSTOP) is sent to wSTOP on all of its neighbour nodes. When all expected termination messages

have been received, the node will terminate its own R and P ending its role in the experiment run.

Typically, all nodes will terminate approximately simultaneously.

Next is a discussion of the development steps taken to reach this experiment procedure.

6.4.2 Experiment Procedure Development

Procedure J is the most robust of procedure designs that we achieved while investigating noise variations

between runs. By robust we mean with respect to lowest standard deviation of measured results and

number of transmissions sent and received by the nodes and in terms of reliably giving the shortest

time duration per network experiment run in the virtual network tests. Due to the limited number

of physical processors executing code the single machine virtual network tests were prone to resource

blocking, particularly on IO waiting. The multi-workstation enterprise network tests did not experience

such severe resource restrictions such that when using Procedure J on those machines we experienced

fewer failures and better robustness (see chapter 7).

The benefits of Procedure J pay the cost of compromising on our design principles, Table 6.2

summarises this. A particular compromise was on the real-time principle of the study. Instead we

moved toward a post-processing procedure (see 6.8). Others included refining experiment termination

conditions, implementing multi-threaded and distributed system design patterns, upgrading hardware,

delaying IO experiment logging, managing operating system restrictions and refining thread synchro-

nization.

Changes such as Procedure H using short-life threads to process received inputs caused implemen-

tation level lock contention problems and impeded progress. Similarly, Procedure A using theoretical

time delays to determine when send events were due to occur in practical fact, actually caused unre-

liable variation of delay duration much longer than the theoretical delays. The time delay issue was

exacerbated as the number of current nodes increased in the virtual network tests. In standard enter-

prise networked testing the use of time delays as means to recreate a real-time testing scenario remain

undependable in our experience, albeit to a lesser extent than in single machine tests.

Another of the hindrances in procedure design came as the number of architecture clients in-

creased. The CARDINAL architecture’s default connectivity is peer-to-peer and transmissions are

status-dependent peer-to-peer. As messages are received and queued or processed the potential of

6 93

6
.4

.1
E

x
p

e
ri

m
e
n
t

P
ro

ce
d
u
re

J

V
e
r
s
i
o
n
J
:

"
P
O
S
T
_
P
R
O
C
E
S
S
I
N
G
"
.
3
0
0
0
0
i
n
p
u
t
s
2
0
f
i
x
e
d
-
i
n
p
u
t
-
i
n
t
e
r
v
a
l
t
r
a
n
s
m
i
s
s
i
o
n
s
.
W
a
i
t
f
o
r
a
l
l
r
e
c
e
i
v
e
d

S
T
O
P
m
e
s
s
a
g
e
s
b
e
f
o
r
e
t
e
r
m
i
n
a
t
i
n
g
.

D
e
s
c
r
i
p
t
i
o
n
o
f
t
h
r
e
a
d
/
e
x
p
e
r
i
m
e
n
t
b
e
h
a
v
i
o
u
r
:

|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
t

|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
R
/
P
r

|
-
-
-
|
I

|
t
I

|
*
*
*
*
*
|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
P

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
S

|
s
S
T
O
P

|
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
|
.
.
.
.
|
w
S
T
O
P

|
-
-
-
-
-
|
t
R
,
t
P
.

t
=
T
o
t
a
l
t
i
m
e
t
a
k
e
n
.

R
=
L
i
s
t
e
n
/
R
e
c
e
i
v
e
n
e
t
w
o
r
k
c
o
n
n
e
c
t
i
o
n
s
f
r
o
m
o
t
h
e
r
m
a
c
h
i
n
e
s
.

P
r

=
P
r
o
c
e
s
s
r
e
c
e
i
v
e
d
n
e
t
w
o
r
k
c
o
m
m
u
n
i
c
a
t
i
o
n
i
n
p
u
t
s
.

I
=
R
e
a
d
-
i
n
3
0
0
0
0
l
i
n
e
s
(
f
r
o
m
d
a
t
a
s
e
t
)
.

P
=
P
r
o
c
e
s
s
3
0
0
0
0
i
n
p
u
t
s
(
f
r
o
m
I
)
.

S
=
M
a
k
e
2
0
n
e
t
w
o
r
k
s
e
n
d
i
n
g
e
v
e
n
t
s
.
S
e
n
d
t
a
s
k
i
s
s
u
e
d
a
f
t
e
r
e
v
e
r
y
1
5
0
0
i
n
p
u
t
s
.

(
2
0
u
n
i
q
u
e
s
e
r
i
a
l
i
s
e
d
o
b
j
e
c
t
s
.
S
e
n
t
t
o
0
.
.
*
m
a
c
h
i
n
e
s
.
)

s
S
T
O
P

=
S
e
n
d
S
T
O
P
m
e
s
s
a
g
e
t
o
a
l
l
k
n
o
w
n
h
o
s
t
s
.

w
S
T
O
P

=
A
w
a
i
t
S
T
O
P
m
e
s
s
a
g
e
f
r
o
m
a
l
l
k
n
o
w
n
h
o
s
t
s
.
O
n
r
e
c
e
i
v
e
(
a
l
l
)
s
h
u
t
d
o
w
n
R
.

t
*

=
T
e
r
m
i
n
a
t
e
e
a
c
h
c
o
m
p
o
n
e
n
t
o
f
t
h
e
e
x
p
e
r
i
m
e
n
t
.

-
-
|
.
.
|

=
E
n
d
-
p
o
i
n
t
f
o
r
t
h
i
s
p
r
o
c
e
d
u
r
e
i
s
v
o
l
a
t
i
l
e
.

|
*
*
|

=
W
a
i
t
i
n
g
t
i
m
e
b
e
f
o
r
e
b
e
g
i
n
n
i
n
g
P
.

F
ig

u
re

6
.1

–
D

ia
gr

a
m

o
f

th
re

a
d

b
eh

av
io

u
r

a
n

d
ex

p
er

im
en

t
p

ro
ce

d
u

re

94 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

self-imposed distributed denial of service (DDoS) becomes an issue that must be mitigated. During

procedure development the DDoS effects requiring mitigation were upon memory taken by queued

tasks and upon computational processing of received messages. Procedure J avoids these effects by in-

creasing the physical memory resource, using smaller dataset sizes and limiting experiment tasks (e.g.

transmission quantity) and duration.

v. Summary

J Set ulimit on open files and user processes, clear kernel cache between runs, turn swap off, use 16gb of RAM.

I Use same thread for dependent tasks, use Actor and Immutable design patterns to issue queued tasks and execute tasks.

H No logging to file during runs (avoid IO waiting time), cache opened sockets and streams, using short-life threads.

G Shutdown terminations with countdowns and counts of sSTOP and counts of wSTOP.

F Exit after X seconds of no receipt of data from input sensor. Shutdown conditions with 15% extra time.

E Protocol based termination: send stop messages and acknowledgements. Remove ACK, Count wSTOP.

D Send at fixed intervals. Terminate after 50% extra of time.

C Use post-processing (no time delays).

B Use 15% extra time before termination

A Real-time simulation, with delay between input batches and send transmission every 3 seconds.

Table 6.2 – Summary table showing the experiment procedure version development of the distributed system
test procedure.

6.5 Experiment Constants

The following are descriptions of the methodology constant values with justifications that led to those

value decisions. Table 6.3 summarises the constants values. These selected values limit the duration

and scale of tests. For example, architecture load, stress and life-long testing is not assessed. Other

systems may choose to run a series of experiment trials, each with a different set of values.

P. Constant Name Value Unit

tINIT Initialisation period 5 Seconds

ITRAIN Number of training inputs 15000 Instances

ITEST Number of testing inputs 15000 Instances

TTRANS Number of transmissions 20 Objects

TRetries Number of retries of a failed transmission 10 Retries

TIntv Input interval between transmissions (ITRAIN+ITEST)
TTRANS

Instances

Table 6.3 – Summary table showing the experiment constants at each node of the distributed system under
test.

The experiment initialisation period exists to provide enough time to ensure that all process in-

stances have initialised, including having created their event logs and directories within which to store

experiment measurement logs.

The quantity of experiment network transmissions is fixed to ensure tests are limited and repeatable.

Twenty object transmissions, containing any amount of data content, was an arbitrary choice. Earlier

trials identified that a fixed input interval is more robust (lower standard deviation over results) than

a time-delayed interval.

The number of dataset inputs received at a node is limited to 30000 to enable the virtual network

tests to execute, as limited by our experimental hardware set-up, and then to support comparisons

between virtual and real network tests.

6 95

6.6 Distributed System User Behavioural Model

In real-world computer networks, including ICS and SCADA networks, it is frequently the case that

individual workstations will create different behaviour profiles or patterns. Our objective was to recreate

a scenario in our tests that would be representative. To achieve this, we implemented the simplest of

user behavioural models to distinguish learning behaviour (such as experiences of malice inputs) of one

user from another.

6.6.1 Three Parameter User Model

Our three parameter model was required to modify the inputs presented to each node of the distributed

system while embracing our experiment design based upon a two-class classification data domain source.

We wanted to incorporate user (node) profiled behaviour such that each user’s behaviour could be

defined prior to runtime and be repeatable for scientific testing. Our second aim is to embody a

concept of susceptibility to attack.

The analogues of malware attack upon networked workstations and the antigen infection upon the

human immune system intersect in the manner that damage is caused where its likelihood for causing

damage is highest. A hacking attack (i.e. application probe fingerprinting and vulnerability analysis)

and malware infection will target those areas with the highest probability of success. Similarly, in cellu-

lar theory, a damaging antigen’s epitope molecules will interact with (effect) its corresponding site (an

epithelial skin cell, for example). If the antigen meets a non-corresponding surface or a corresponding

lymphocyte paratope then its damaging effect is less likely. This correlated intersection could therefore

suggest that the susceptibility to attack is location, and therefore probability, dependent.

We can then go further, by drawing on our viewpoint published in (Scully et al. , 2013) that states

that CARDINAL’s (and CARDINAL-E’s) entire architecture can be considered as a tissue surface in

multiple regions on a network. For example, the gastrointestinal tract has the densest variety and

quantities of immune system cells as a consequence of this region experiencing the highest quantities

(probabilities) of infectious antigen (Murphy et al. , 2012). We might therefore expect that some

regions are more likely to harden against infection (learn) due to more experience and thus this link of

heterogeneous susceptibility into the user model becomes even stronger.

6.6.2 Static & Runtime Model Definition

The user model is defined by a static model (MSTAT) and a runtime model (MRUN) with the parameters

shown in Table 6.4. Of the three static parameters, the first parameter a is a percentage that represents

the ratio of danger training inputs (to safe inputs), called the anomalous proportion. The second

parameter s is a seed to a random number generator that will select input indices of instances in the

dataset. The third parameter ni is the node itself, distinguished by its index i.

96 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

Model P. Value(s) Unit Description

MSTAT an [0-1] Float Anomalous proportion for n > 1.
MSTAT an1

0.7 Float Anomalous proportion for n = 1.
MSTAT s ni Int Random seed to rng1, rng2.
MSTAT ni [0− n‘] Int The unique user number per node, of n‘ = n− 1 nodes.
MRUN T [0-∞] Int Time component.
MRUN P [tr,te] Nominal Experiment phase (training or testing).
MRUN attr [0-1] Float Percentage of danger inputs received by user during tr.
MRUN atte 0.5 Float Percentage of danger inputs received by user during te.
MRUN lt [I] Set Time dependent set of (I) instances from data source.
MRUN ‖d‖ [0-∞] Int Data source instance quantity.
MRUN b 100 Int Instance batch quantity.
MRUN v 0.25 Float Maximum distance of noise variation upon attr .

Table 6.4 – Summary table showing the user model parameters. Values with square brackets show ranges, those
without show constant values.

0 5 10 15 20 25 30 35 40
number of nodes (n)

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f a
no

m
al

ou
s

in
pu

ts

n=5
n=10
n=15
n=20
n=30
n=40

Figure 6.2 – Result of function a(i, n), showing monotonic approximate linearity and close to even distribution
of percentage values per user (node).

MSTAT = a(i, n) , s(i) (6.5)

a(i, n) =

(n− 1)− i
n− 1

, if n > 1

0.7 , if n = 1
(6.6)

s(i) = i (6.7)

MSTAT defines the static model as two functions. Equation 6.6 is the function to produce the a

parameter of the user model. Figure 6.2 shows that a’s value is approximately linearly distributed across

all nodes of network sizes n = 5, 10, 15, 20, 30, 40. For n=1, we arbitrarily set a = 0.7. Equation 6.7

6 97

shows that s is selected by the node index of a given test.

MRUN defines the runtime model as four runtime variables produced using the static model MSTAT

parameters, T the time component and P the runtime experiment phase, i.e. the point in time during

the experiment (either training or testing), as inputs into two functions. Both functions make use of

random number generators (RNG) which are discussed later in this subsection. The first function at(..)

produces a percentage. The second function lt(..) produces a set of dataset instances from the dataset.

MRUN = at , lt , t ∈ T , P (6.8)

at =

at(a, v, t, rng1(s)) , if P = training

0.5 , if P = testing
(6.9)

Equation 6.9 results in the value of at, which is the time-dependent runtime variable for parameter

a. The value of at is also dependent on the experiment phase (P). During the testing phase at defaults

to 0.5. Whereas during the training phase, at is given by the undefined function at(..) which adds noise

to parameter a during runtime.

The at(..) function’s output is a value that is <= ±25% the value of a. v = 0.25 is the maximum

distance of variation. at is dependent upon the time step t ∈ T , where T = N1 = [1, 2, 3, ..] (the natural

set of integers). rng1(s) is the first random number generator taking the s parameter as seed input and

gives a value between a ∗ 1.25 and a ∗ 0.75, in a deterministic manner as dependent upon t. at is thus

not dependent upon earlier or later sequenced at values. Figure 6.3 shows the effect of this equation in

a trial example of five users.

lt = lt(at, b, ‖d‖, t, rng2(s)) (6.10)

Equation 6.10 is an undefined function that selects batches of line numbers from dataset sources.

b = 100 is the batch length that we have selected for trials. ‖d‖ is the dataset (file-specific) quantity

of instances. rng2(s) is the second random number generator. The function selects at ∗ 100 values

between 0 and ‖d‖ using rng2(s) in a time step t dependent manner. Figure 6.4 shows the effects of

this function during a trial example of five nodes.

6.6.3 Distinguishing User Learning Experiences from User Behaviour

In section 6.3, we discussed the four experiment phases that occurred at each node under test, where

phase (2) was training and phase (3) was testing. The user model defines the training experiences and

behavioural experiences of each node.

Upon the training phase, the user model had three effects. (a) Different percentages (quantities) of

danger (learning) inputs were read-in; by contrast, the remaining batch quantity of normal inputs were

read-in. This effect was directed by model parameter a and at (see equations 6.9 and 6.6). The other

effects were (b) different inputs were read-in and (c) different orders of inputs were read-in. Here (b)

and (c) were caused by model parameter s as an input into the random number generators (discussed

below) and produced by Equation 6.10.

During the testing phase, the (a) training effect was modified, whereas (b) and (c) are unchanged.

98 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

The (a) ratio of dangerous to safe testing inputs is set equally at 50%. This change to 50% allows for

testing the learnt data and learning experience of the training phase in an unbiased and flexible way.

For example, the effect of an alternative at(..) function modelling a different user behaviour profile

could be tested to measure classification accuracy or quantities of input responses per node. Whereas,

the benchmark tests in chapter 7 test the collaborative learnt state after a sequence of 30 transmissions.

Many variations to the training phase possible to test with this testing phase model.

6.6.4 Model’s Use of Random Number Generators

The user model implementation makes use of two (of CARDINAL’s three) instances of a linear con-

gruential generator (LCG) algorithm to produce random numbers. Below we’ll discuss how the two

generators effect dataset input selection. Each are seeded by the model s parameter. As LCGs have

well known pitfall cases, we analyse those pitfalls and discuss how they may effect our usage case in

section C.2.

The first random number generator (RNG) is used to select dataset line numbers from each dataset

file for each batch of b (100) inputs. The batches of inputs technique is used to avoid resource (i.e. open

file handles, processes waiting for IO, etc.) hogging by any one process. Random selection of the dataset

line numbers allows each user in the network test to receive a different sequence and different selection

of inputs. We do this to represent differing user behaviour. While a uniform random distribution may

not be a perfect representation for (typically Gaussian distribution) user behaviour, it does provides us

with adequately different inputs per user.

The second RNG adds further noise variation between nodes in that the input batch quantity is

varied by up to ±25%. This precedes the first RNG in a sequential (deterministic) manner. As we

have discussed, batches of (100) dataset inputs are read-in at a time. The model parameter a gives a

percentage (and thus amount) of which each batch contains danger inputs. Thus, this noise variation

specifically modifies a by <= ±25% (less than or equal to plus or minus 25% of a’s value) for each

input batch. The change is always from the static a value, such that each batch quantity change is

independent from its previous change. The effect of this noise upon the user model adds a uniform

random variation to the roughly linear distribution of the model’s a parameter percentage values that

are shown in Figure 6.2. Such is the case that we see batch sizes “hovering” above and below the user

model percentage over a test run as in Figure 6.3 for n = 5.

The parameter a values of 1.0 and 0.0 remain unchanged by the noise variation to ensure that

same maximum and minimum learning experiences occur at those nodes (users) in each test. This

guarantees that the user with a = 0.0 will always depend on receipt of network transmissions from

other architecture clients to learn. The user with a = 1.0 will therefore receive the greatest quantity of

the inputs from the dataset and thus likely to rely least on the receipt of network transmissions.

The final effects of the user model can be visualised. Figure 6.4 shows the specific dataset coverage

(line number index selection) read-in (via the model user) at each node while n = 5 during a benchmark

(chapter 7) trial run. What we can see is that the bottom node (n5) receives no danger (learning

experience) inputs (100% missed). Whereas the top node (n1) receives 75.11% (100 − 24.89 = 75.11),

despite having its model parameter a value equal to 1.0. The reason for this is of course the effect of

first RNG (independently) randomly selecting the line numbers. We can also visually recognise that

the distribution is roughly uniform. Neither darker nor lighter areas are at the lower or higher numbers

6 99

in our range suggesting that the typical LCG pitfall are not affecting our usage case (refer to section

C.2 for the context and scientific analysis of this discussion point).

Figure 6.3 – Actual effects of noise variation upon the user model’s learning experience percentage in a five
node network test. Shown are percentages (y-axis) of anomalous inputs reported at each input batch request
during a training phase (150 batches; 15000 inputs). Line colours represent behaviour at each node.

100 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

Figure 6.4 – Actual user model behaviour. White columns show the anomalous dataset line number indexes
(instances) that were read-in, per node (horizontal strip). Black shows coverage of missed (not read-in) dataset
instances.

6 101

6.7 Datasets

To test our hypotheses and architecture algorithm variants we needed a labelled data source or dataset.

The thesis testing is focused on distribution and speed to full network immunisation, the data that

is learnt is relatively unimportant until strong decision making is involved. However, ideally the data

would be collected from several nodes on an industrial network whilst it underwent normal operational

behaviour and also a variety of probing attacks and hacking. The ideal data content would be contextual

data, network packet and stream meta and payload data, with transmission records, i.e. Siemens S7

network protocol stack data, of malicious binaries sent to the PLC(s) and the state data collected

directly on the PLC bus(es), or less preferably collected via network transmission from the PLC(s).

At the time of experimentation we found no datasets containing network-based attacks directly on

ICS networks or Supervisory Control and Data Acquisition (SCADA) networks. For completeness, the

Mississippi State University ‘ICS Attack Dataset’ (Morris et al. , 2011) was publicly released in May

2013 and was created by transmitting commands separately to two ICS testbeds. It contains labelled

measurements from a phasor unit (electrical waves), electrical relay states, simulated control panel

states and Snort data logs. The dataset is known to be unsuitable for machine learning as “attacks

were perform[ed] with gas pressure set to one value (x) and normal operation with another value (y)

[SIC]”, thus making its class separability unrealistic (Adhikari et al. , 2013)1. Secondly its attributes

focused on electric sensor states of the automation system rather than detailed state data from the

PLC’s memory. The Snort log data items were very few, see our example and description in A.4. These

attributes would not be indicative of most types of advanced persistent threat (APT) -like attacks nor

their ongoing server communications, which are usually encrypted or obfuscated payloads on common

protocols like HTTP.

We opted for a recent labelled dataset from the network security field. A number of substitute

network security and vulnerability analysis datasets were available. The thesis evaluation tests report

results using variants of the CSIC HTTP 2010 Dataset, as described in 6.7.1. Other datasets have

undergone preliminary analysis in D.4.1.

6.7.1 CSIC HTTP 2010 Dataset Versions and Sampling

The dataset used in each of the thesis tests is the CSIC HTTP 2010 web penetration and hacking dataset

consisting of normal and anomalous instances, created by Spanish Research National Council (Torrano-

Giménez et al. , 2010b). The CSIC dataset is relatively recently created, labelled, applicable to both

a collaborative network security defence problem and to network intrusion detection problems. Details

of its creation can be found in their papers. Notably, the packets were generated from two databases

of anomalous and normal inputs, as recorded during penetration testing upon a single domain address;

this means order and frequency information is missing.

Prior to sampling and versioning for experimentation, the three file CSIC dataset of HTTP v1.1

packets was parsed into comma-separated value (CSV) format. This CSV format is used to input

instances into the architecture nodes. The normalTrafficTraining and anomalousTrafficTest CSV files,

of 104000 and 119585 instances, are selected. The normalTrafficTest file is discarded. The two selected

1The ICS Attack gas dataset can be modelled in < 1 seconds, see appendix D.4.1.

102 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

CSV files are split at their mid-point to produce two training and two testing files. The CSV files are

sampled, described in the tables below, to form the datasets used in experimentation.

6.7.1.1 DATASET A (“Full”)

The “full” dataset version converts all HTTP v1.1 protocol packet properties from the CSIC 2010 Http

dataset in text format into CSV format. This leads to the following dataset properties:

The “full” CSIC dataset version:

Qty of Attributes 17 17 17 17

Qty of Labels 1 1 1 1

Qty of Instances 59792 51999 59792 51999

Qty of Distinct Instances 59792 51999 59792 51999

Labels anom norm anom test norm test

Attributes

index, method, url, protocol, userAgent, pragma, cacheControl, accept,
acceptEncoding, acceptCharset, acceptLanguage, host, connection,
contentLength, contentType, cookie, payload

Filename sample anom.csv sample norm.csv test anom.csv test norm.csv

Table 6.5 – The “full” CSIC dataset version converts each training and testing set into a corresponding CSV
file.

Every instance in the “full” CSIC dataset is distinct as a result of the changing combination of

cookie session ID, packet index number and its payload.

6.7.1.2 DATASET B (“Full v0.5”)

The next dataset versions take the full dataset and first splits the payload (key=value) column into key

and value columns. The number of columns is reduced to the three attributes and a label. The “full

v0.5” dataset version takes all instances from “full” CSV formatted dataset with the reduced attribute

quantity and leads to a dataset with the following table of properties:

The “full v0.5” CSIC dataset version:

Qty of Attributes 3 3 3 3

Qty of Labels 1 1 1 1

Qty of Instances 59792 52000 59792 52000

Qty of Distinct Instances 2142 30 693 30

Labels anom norm anom test norm test

Attributes url, payload key, payload value

Filename anom sample.csv norm sample.csv anom test.csv norm test.csv

Table 6.6 – The “full v0.5” CSIC dataset version converts each training and testing set into a corresponding
CSV file.

Fewer instances in the “full v0.5” CSIC dataset are distinct as a result of reducing the number of

attribute columns. The normal training and testing CSIC files have fewer distinct combinations among

these attributes and directly reflect CSIC’s published dataset source files. The anomalous test file has

fewer distinct instances than the anomalous training file. We reason that the cause of this is due to the

6 103

distribution of distinctness across the original anomalousTrafficTest file; the first-half has more distinct

instances, the latter-half has fewer.

6.7.1.3 DATASET C (“v0.5”)

The “v0.5” dataset takes a uniform random samplings of the original normalTrafficTraining and anoma-

lousTrafficTest sources to produce these files. The anomalous training set and testing sets use an ar-

bitrary 9% sampling value. The normal training set uses 9% and the normal testing set uses another

arbitrary 35% sampling value.

The “v0.5” CSIC dataset version:

Qty of Attributes 3 3 3 3

Qty of Labels 1 1 1 1

Qty of Instances 10812 9065 10812 36137

Qty of Distinct Instances 615 30 615 30

Labels anom norm anom test norm test

Attributes: url, payload key, payload value

Filename anom sample.csv norm sample.csv anom test.csv norm test.csv

Table 6.7 – The “v0.5” CSIC dataset version takes a uniform random sub-sampling of the “full” dataset and
reduces the quantity of attributes to three descriptive HTTP protocol data properties.

Evidently the sampling produces a matching quantity of distinct instances in both anomalous train-

ing and testing sets and normal training and testing sets. We reason that this coincidence is due to

uniform selection of the more common instances. This is expected as there are many ’singularly’ (1

occurrence) distinct instances and fewer ’common’ (> 1 occurrences) distinct instances. Further, this

must be a result of the original source dataset creation process, that in turn used random and arbitrary

sampling.

6.7.1.4 DATASET D (“v0.5.2”)

The “v0.5.2” dataset’s files are drawn from the original normalTrafficTraining and anomalousTrafficTest

files. The first 9% is the anomalous training set and the second 9% (9-18%) is the testing set. The

first 9% is the normal training set and the second 10% is the normal test set. Both 9% and 10% are

arbitrarily selected.

The “v0.5.2” CSIC dataset version:

Qty of Attributes 3 3 3 3

Qty of Labels 1 1 1 1

Qty of Instances 10812 9065 10812 10034

Qty of Distinct Instances 615 30 615 30

Labels anom norm anom test norm test

Attributes: url, payload key, payload value

Filename anom sample.csv norm sample.csv anom test.csv norm test.csv

Table 6.8 – The “v0.5.2” CSIC dataset version takes an ordered sub-sampling of the “full” dataset and reduces
the quantity of attributes to three descriptive HTTP protocol data properties.

104 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

6.8 Real-time vs Post Processing

The experiments in the later chapters follow a conventional post-processing procedure. A post-processing

procedure is generally understood to mean performing an action on a set of data at a time after the

data has been collected. We follow that definition and in addition we intend it to mean parsing sets

of data (from a pre-collected dataset) that have already been loaded on to heap space memory. The

post-processing approach is simple and relatively less time consuming to validate than a real-time and

real input system, i.e. analysing live network packet streaming data.

The post-processing procedure, i.e. labelled data, has directed the verification and repeatability

of the experiment phases (6.3) presented in this chapter. Post-processing, i.e. inputs loaded on the

‘heap’, has guided the measurement collection procedure, experiment (execution) procedure (6.4) and

user behavioural model (6.6) implementation. Whereas the real-time and real input system has guided

the measurement methodology (6.2).

6.9 Multi-Objective Evaluation Metrics

We can summarise the M1 to M3 metrics to distinctly show one algorithm’s comparative performance

over another’s. Our goal is to find an optimal configuration of parameters and algorithms that maximises

our system performance measure; however, we need to carefully select the combinations and weightings

of each set of metric data such that they satisfy our research objectives.

Three metric combinations were chosen to evaluate the self-healing system’s immunisation rate.

Evaluation of the immunisation rate is made without consideration of data transmissions (O1). Then

for evaluation of the immunisation rate on a low-throughput capacity network (O2), such as a SCADA

network. Finally the system’s immunisation rate is evaluated on high-throughput capacity networks

(O3).

The first combination (O1) is agnostic to transmission throughput, thus it is assigned a weight of

0. The latter (O3) is more tolerant (lower weighting) to the data transmission quantity than the O2

objective. The selection of 0.1 as the M3 weight value in the O3 objective is arbitrary. This weight is

based on a belief that the algorithms can be applied to higher throughput enterprise computer networks

that provide an increased throughput capacity at an order of 10 over the low throughput networks.

The three system performance measures are combined as shown in Table 6.9, each with their

weightings. Each metric’s preferred semantic order of scores is explicitly given in Table 6.10. The

semantic ordering of each measure is essential to take account of in order to combine the scores, as we

shall discuss in the next section.

Weightings
Immunisation Rate Objective M1 M2 M3

For generalised immunisation (O1) 1 1 0
For low throughput networks (O2) 1 1 1
For high throughput networks (O3) 1 1 0.1

Table 6.9 – Table of real value weightings per metric for each of the 3 objectives.

6 105

Preferred
Metric Semantic Condition

Distributed-M1 (M1) MAX
Time-M2 (M2) MIN
DataSent-M3 (M3) MIN

Table 6.10 – Table of the semantic preferences per metric. MAX indicates a larger value is preferred over a
smaller value. MIN indicates the reverse.

6.10 Combined System Performance Measures

Having established three measure combinations in section 6.9, we shall next investigate how to combine

those measures, leading us to a comparable system performance evaluation value.

In this section we explain and extend Rodriguez and Weisbin’s bit-based system performance eval-

uation approach (Rodriguez & Weisbin, 2003) with two extensions. Both extensions add weighting

and add handling of the semantic measure condition. A reliable equation extension (see 6.10.3) that

removes the bit-based system (key to Rodriguez’s approach) is presented.

Table 6.11 summarises the core of our two extensions and Rodriquez’s original equations. The

variables and functions of the Ratio of Distances approach are fully described in the following text. In

brief the p(k, 1) refers to the benchmark score and p(k,m) refers to the actual score for a given measure

k leading us to a ratio score. The ratio scores per measure are then combined to give our immunisation

rate scores. Section F.1.1 critiques the Log Ratios with Inverses approach and it weakness to provide

reliable results while combining MIN semantic condition metrics.

Semantic Ratio of Distances Log Ratios with Inverses Rodriguez
Condition (see 6.10.3) (see F.1.1) & Weisbin

MAX

(
p(k,1)−p(k,m)

p(k,1)

)
× wk log2

[
p(k,m)
p(k,1)

]
∗ wk log2

[
p(k,m)
p(k,1)

]
MIN −

(
p(k,1)−p(k,m)

p(k,1)

)
× wk log2

[
1/p(k,m)

p(k,1)

]
∗ wk -

Table 6.11 – Summary table of the evaluation equations used to combine multiple metric scores into a combined
system performance measure score.

6.10.1 Approach

Rodriquez and Weisbin’s (Rodriguez & Weisbin, 2003) present an approach to combining multiple

performance measures using an accumulation of log base-2 values of measurement ratios, using a control

value as ratio denominator. This logarithmic ratio shows performance difference of primitives (i.e.

metrics) between a reference system (a control) and several test systems (i.e. other algorithms). The

logarithm brings the measures into the binary number base; as an outcome the control algorithm’s bit

value score becomes 0. Using the logarithm leads to small evaluation scores for result sets similar to the

benchmark control result set. Scores above zero indicate better performance than control and worse

performance are awarded scores below zero.

106 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

6.10.2 Rodriguez & Weisbin’s Equations

We will follow Rodriguez’s conventions during this discussion of their equations and our extensions. k

refers to a given metric of the N set of metrics and m is a given system of M systems, where M1 is our

reference system.

Rodrigiuez & Weisbin’s log base-2 ratio equation is given by,

P
′
(k,m) = log2

[
p(k,m)

p(k, 1)

]
(6.11)

where P
′
(k,m) is the bit value score given by the base-2 logarithm upon the ratio of the k − th

measure (metric) for the m − th system (algorithm) over the first system, where 1 is the reference

system. Rodriguez’s final bit score s(m) function accumulates each P
′
(k,m), then halves the results;

reproduced and adapted for clarity as (6.12):

s(m) =
1

2

N∑
k=1

P
′
(k,m) (6.12)

where N is equal to the number of measures and P
′
(k,m) is given by Equation 6.11.

At this stage we can evaluate each system with equal priority upon each measure, where larger

values are semantically better than smaller values (MAX) for all measures. However, in our measures

of time taken and data sent, we prefer smaller values over larger values (MIN). In our objective O3,

we weight some measures more heavily than others. Both cases need to be added for our purpose.

In section 6.10.3 we show a safe solution to achieve combining performance measures.

6.10.3 Ratio of Distances

The P
′′
(k,m) function (Equation 6.13) is added taking the negation of a ratio of the distance from

the reference value (where the reference value is the ratio denominator) to handle this MIN semantic

measure condition case, as:

P
′′
(k,m) = −

(
p(k, 1)− p(k,m)

p(k, 1)

)
(6.13)

An additional weight argument wk is added to handle measure priority in (6.14). The weight is specific

to a given k measure.

P
′′
(k,m,wk) = −

(
p(k, 1)− p(k,m)

p(k, 1)

)
× wk (6.14)

To ensure the ratio scores for MAX are directly proportional to MIN the P
′′′

(k,m,wk) function

(Equation 6.15) is added taking the ratio of the distance from the reference value:

P
′′′

(k,m,wk) =

(
p(k, 1)− p(k,m)

p(k, 1)

)
× wk (6.15)

6 107

A conditional function P (k,m,wk, ck) is added to handle both measure semantic types:

P (k,m,wk, ck) =

P
′′
(k,m,wk), if ck = MAX

P
′′′

(k,m,wk), if ck = MIN
(6.16)

Bits No Longer

You will notice we have removed the logarithm. Standard ratios, as Rodriguez’s approach capitalises

upon, will give a pivot-point of 1 (where 0 < 1 implies worse performance and > 1 implies greater per-

formance). Where as distance ratios give a pivot-point of 0, leading to negative values for performance

worse than the reference.

In this case we have a few options to reincorporate the logarithm. First, taking the logarithm of

a negative number will give a complex (Cartesian coordinate) number result. The complex number’s

components (real and imaginary values) can then be squared, summed and square-rooted to give a

real number distance (from the point of origin). Figure 6.6 shows this mapping back to real numbers

for base-2 logarithms of [−10, ..9]. Relative interval distances between negative, zero and positive

values become lost. An available option, that we choose not to attempt, is to interpolate the negative

numbers into a known normalised range and subsequently deal with relative ratio interval distances of

these (already highly manipulated) logarithm distance values.

Figure 6.5 – Distance ratio output from
P (k,m,wk, ck) for MAX and MIN semantics
for range [1, ..100] from r = 15.

Figure 6.6 – Real number mappings of base-2 loga-
rithms of [−10, ..9].

A second option to reintegrate the base-2 logarithm is to use a form of linear interpolant on the

results of P (k,m,wk, ck), Equation 6.16. The function gives a linear output (see Figure 6.5) such that

each could be raised (by a constant C) into a new range and entered into the logarithm. In such a case,

Rodriguez’s score function (s(m), Equation 6.12) could then be used (exchanging P
′
(k,m)) to combine

and compare the single measure. Due to the arbitrarily selected constant used to enlarge the values,

the option also remains untested.

Each of the approaches add complexity, unnecessarily so. Both can result in zero and sub-zero

values which, when entered into a logarithm and subsequently translated from Cartesian space back

to real number space, result in incomparable relative intervals above and below zero, as was shown in

Figure 6.6. Alternatively an arbitrarily-sized constant is issued. This approach fails when the constant

increase is exceeded by a large-enough ratio difference. Thus the ratio of distances approach is not a

candidate for us as a binary number unit evaluation mechanism.

108 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

Combining without Bits

Instead of bits, we can now combine the outcomes of Equation 6.16 for every {k,mi} in an alternative

way.

If we rank each k measure (according to its semantic condition as either MAX or MIN) with

maximum numbers indicating better rank, we can then sum the total ranks per m system (with weights)

to give a combined maximal (optimised) rank. In this approach interval distance information is lost.

For example, if mx has an improved distance of 500 shown in k=1 and k=2, k=3 have deficit distances

of -1, whereas if my has k=1 distance of 1 and k=2, k=3 have distances of -1, then both mx and my

rank equally.

The solution we will pursue maintains interval distances and updates Equation 6.12 with our de-

scribed conditional distance ratio function P (k,m,wk, ck) (Equation 6.16), in place of Rodriguez’s

P
′
(k,m) function:

s(m) =
1

2

N∑
k=1

P (k,m,wk, ck) (6.17)

Here we accumulate the weighted distance ratio scores from Equation 6.16. By keeping the 1
2 fraction

we simply reduce the distance in the accumulated score space. Each k,m is weighted by wk and its

measure semantics addressed by ck, as above.

Example Calculation of Objective 3 (O3)

We will take a short opportunity to show with a simple example how the newly developed equations

perform with the data in Table 6.12. We start by describing the example systems and then entering

each system column of performance measure values (e.g. [10, 10, 10]) with their respective weights and

condition values into Equation 6.16.

The first columns M2 and M3 in Table 6.12 show equal measure distances from the reference system

M1. Overall, M2 is improved over the reference system by distance 5 on k=3 and M3 is (equally) worse

than the reference system on k=3; k=1 and k=2 are equalised by both systems. Columns M4, ..M7

show scaling distances for the equally weighted measures k=1 and k=2 (equal measures for k=3) giving

each of these four systems a combined total improved distance of 5.

Performance Systems
Measure (k) M 1 M 2 M 3 M 4 M 5 M 6 M 7 Weighting Condition

1 15 10 20 16 17 18 19 1 MAX
2 15 10 20 11 12 13 14 1 MIN
3 15 10 20 15 15 15 15 0.1 MIN

Table 6.12 – Table of example data for reference and test systems (Mi). The quantity of metrics and conditions
of weights (w) and semantic measure conditions (c) match our third objective (O3). The individual performance
measures (k) can be thought of as M1, M2 and M3 metrics. Systems (Mi) can be thought of as alternative
algorithms, where M1 is a benchmark algorithm.

Table 6.13 shows the output of this first function for each system measurement. In M2 and M3

for k = 1 and k = 2 we expect counteracting values for a given system (e.g. [−0.333, 0.333]). These

cases have equal weighting, opposing semantics and equal values for the reference system (e.g. [15, 15)

6 109

and each test system (e.g. [10, 10]). We then find that the third measure output to be one-tenth that

of the second measure output. The reference system evaluates to 0 for each of its measures, as it

compares distance to itself and evaluates to 0. Systems M4 to M7 evaluations scale with equal intervals

(a measure distance of 1 equates to 0.066 in ratio space) and monotonically in both directions.

Performance Systems
Measure (k) M 1 M 2 M 3 M 4 M 5 M 6 M 7 Weighting Condition

1 0.0 -0.333 0.333 0.066 0.133 0.2 0.266 1 MAX
2 0.0 0.333 -0.333 0.266 0.2 0.133 0.066 1 MIN
3 0.0 0.033 -0.033 0.0 0.0 0.0 0.0 0.1 MIN

Table 6.13 – Table of results from our P (k,m,wk, ck) performance measure function in Equation 6.16 for
individual measure data from Table 6.12. Results are truncated at 3 decimal places.

We can now accumulate the final results of Equation 6.17 in Table 6.14, which sums the P (k,m,wk, ck)

function outputs and multiplies by .5 per system.

Performance Systems
Measure M 1 M 2 M 3 M 4 M 5 M 6 M 7

O3 0.0 0.033333 -0.033333 0.333333 0.333333 0.333333 0.333333

Table 6.14 – Table of results from s(m) score function in Equation 6.17. Results are truncated at 6 decimal
places.

As shown in Table 6.14, M4, ..M7 systems, with equal individual performance measure distances,

are translated into equal accumulated score space distances. With some confidence, we can now use

this approach to combine separate measures into a single system performance measure.

Summary

By extending Rodriguez’s evaluation equation, we have shown the distance from a reference as a

ratio over that reference, can be used to fairly combine measures with weightings into a single system

performance measure. This has removed Rodriguez’s binary unit evaluation mechanism due to the

complexity it adds when dealing with negative logarithm inputs.

6.10.4 Conclusion for Combined System Performance Measures

The Ratio of Differences approach in section 6.10.3 has been shown to be reliable for comparing al-

gorithm performance. This solution removes the binary unit evaluation component of (Rodriguez &

Weisbin, 2003) paper’s methodology.

110 6. How to Evaluate and Validate Distributed Self-Healing Security Systems

6.11 Chapter Conclusion

This chapter has stated our designed evaluation and validation testing components used to evaluate the

CARDINAL-Vanilla platform architecture and has described the required principles for testing future

distributed self-healing security systems.

Each test will execute the experiment testing procedure in 6.4, stepping through each of the four

phases in 6.3 while using the experiment design constants stated in 6.5. The distributed user behavioural

model will give each architecture node a different set of dataset inputs, in the manner stated in 6.6. The

cyber security testing datasets used in these thesis evaluations have been expressed with descriptive

analysis in 6.7. The architecture experiments are measured by a set of global metrics described in 6.2.

To simply and intuitively evaluate the self-healing architecture’s immunisation rate performance we

have combined the metrics into objective system performance measures for different types of network

conditions. This measure of system fitness enables optimisation of a single combined metric to quantify

the improvements or costs of new features, as we have described in 6.9. The two sets of equation

methodologies used to combine those global metrics have been analysed in 6.10, where only the Ratio

of Differences is can be recommended for reliability in future case studies.

The limitations of the measurements at this stage consider the most pressing issue to immunise the

system as rapidly as possible, thus our metrics quantify distribution and signature quantity as a measure

of protection level. In Chapter 8 we introduce other metrics, including recovery rates. Classification

metrics have not been included here due to the specific aims of the thesis and platform. Global

measures of detection quality can be locally monitored and verified during runtime via a supervised

learning method. These metric additions will be key when expanding self-healing component testing.

The limitations of the distributed user profile model are led by the single behavioural model. Adding

alternative distribution or more accurate cyber security user models will in future enable more rigorous

testing of applied self-healing system robustness.

6.11.1 Future Work upon the User Model

To aid the architecture-wide classification evaluation a more convention training and testing dataset

split would be expected instead of the 50% split. The k-fold cross validation is a suitable candidate

method to separate the source dataset into training and testing datasets (Mosteller & Tukey, 1968).

The quantities of training inputs and testing inputs would therefore change to reflect the ratios given

by the number of folds. For example, 10-fold cross validation would lead to 90% of all inputs entering

during training and 10% during testing. The total input quantities, as shown in Table 6.3, will therefore

be adjusted.

The effect of an alternative line number allocation function, at(..), could be investigated. Idealisti-

cally, further work on modelling the user profile behaviour on the target network would be a far better

solution than reading-in from a model, but that is time consuming and particularly challenging to label

accurately.

6.11.2 Next Steps

Next we will describe the evaluations, beginning with a benchmark of the architecture and evaluation

methodology, and combining a comparative analysis of the architecture.

Chapter 7

Self-Healing Benchmark

7.1 Introduction

In this chapter we will evaluate CARDINAL-Vanilla as a self-healing system and our validation method-

ology. In an effort to address our hypothesis set in section 1.5, the objective of this work is to evaluate the

performance of the architecture’s bio-inspired priority heuristic and selection mechanisms for distribu-

tion of security modules against a set of equivalent engineered approaches. Secondarily the experiment

will provide a detailed use case description of the validation methodology and its experiment design.

The following is a restatement of the key hypothesis:

“In the context of a distributed and self-healing system, compared to engineered approaches a

reactive multi-agent and holistic immune system inspired approach will have better distribution,

and thus capability for self-healing, performance over a range of networked environments.”

The CARDINAL-Vanilla architecture is specifically under analysis. It provides the distributed self-

healing system platform and the reactive multi-agent and holistic immune system inspired approach. In

section 7.2 we evaluate CARDINAL-Vanilla against three other selection and distribution algorithms

under a virtual network environment. This is followed up in section 7.4 with a comparison of the AIS

and engineered algorithms on a real enterprise network. As the results between the two network type

conditions show some discrepancy, we include further analysis of the two sets of results in section 7.6.

111

112 7. Self-Healing Benchmark

Figure 7.1 – Diagram of distribution (transmis-
sion) components under test circled in red, within
the CARDINAL model.

Figure 7.2 – Network topology example of five peers
on a single network segment and experiment infras-
tructure for the self-healing system test. DB is a run-
time database used to store the detectors, a log file
(per instance) collects data from that instance which
is later parsed to calculate test measurements.

7.2 Comparison on Virtual Networks

7.2.1 Objectives

In this work we will conduct the evaluations under a virtual network test condition. Under test is

a comparison of the detector and response distribution technique given by CARDINAL in a default

configuration against three other techniques. Figure 7.1 shows the highlighted distribution components

and abstract multi-agent system locations within the model at which the comparative algorithms are

operating. Figure 7.3 shows a flow diagram of the procedure to select detectors for each transmission

as used by each networked client of the architecture.

The three other techniques include our engineered solution which will send only newly acquired

detectors and two baseline algorithms. The first is not networked and the second is a näıve algorithm

that will send all of its known detectors at every opportunity.

To make the comparison we shall use the following measurements, as formally stated in 6.2. The

quantity of detectors distributed to all hosts on the network which we call Distributed-M1 or simply

M1. The time taken to ensure all nodes on the network have a given detector and its response, which

we refer to as Time-M2 or M2. Finally, the amount of data sent over the course of the test to achieve

the immunised state, which is DataSent-M3 or M3. We will combine these measures to give a self-

healing system immunisation rate, as described in 6.9 using the equations stated in 6.10.3. These give

an evaluation score of each approach to measure suitability for the three types of network conditions

and applications.

7.2.2 Algorithm Comparisons

In these tests the algorithms we are assessing directly replace CARDINAL’s transmission of detectors

process, as detailed in section 5.10. The four algorithms are as follows:

7 113

Dataset
Inputs

User
Model

Inputs in
Memory

Random
Inputs

B

C
D

E

F A

A B C

D E F

Detectors
in Model

Detector
Priority Value

Set & Updated
in Real-time

E

E

D

B

C

Roulette Selection
for Next

Transmission

E

D

B

C

Remove
Duplicates

Ready to
Transmit

Figure 7.3 – Flow diagram of CARDINAL’s detector selection process used during each transmission event.

Algorithm 1: CARDINAL-Vanilla

CARDINAL-Vanilla (Vanilla) is modelled upon the immune system using variable selection of quan-

tities and probabilistic selection of detectors and destination hosts. A description of the distribution

algorithms was given in 5.10 and is summarised by Figure 7.3. As a reminder, a roulette wheel ap-

proach is used to select detectors, where those with a high ‘Clonal Rate’ (number of copies) have higher

probability of selection. Selection of destination hosts is uniformly random. Whereas the percentage

quantities (of hosts and detectors) is calculated at run-time for each transmission, determined by the

under-attack condition.

Algorithm 2: Optimal-Static

Optimal-Static is our approach engineered as optimal for this test scenario. This algorithm maintains

a memory state of which detectors have been sent, such that they will never need to be resent. It uses

no state knowledge of which detectors are on any other machines such that it matches the localised

knowledge approach of CARDINAL and that of the immune system. This approach is so named as it

would be sub-optimal under dynamic scenarios, for example if any transmissions or hosts fail or delete

their detectors. Using the hash table representation, the increase in local time complexity created

by the lookup of every detector (before it is sent) is O(n)={O(1)*O(n)} and in space complexity for

storage of this algorithm’s hash table is O(n) in every case, irrespective of the quantity of connected

hosts; where n is equal to the number of local detectors.

Algorithm 3: NäıveSendAll

NäıveSendAll is the first of two baseline algorithms. NäıveSendAll is designed to always send all known

data at every sending event (which, as we will describe below, are on 20 occasions throughout each

test). This benchmark maximises the amount of data sent and shows the maximum number of detectors

that can be sent during each given test configuration.

114 7. Self-Healing Benchmark

Algorithm 4: NoNet

NoNet is the second baseline algorithm, designed to never send any detectors and terminate when it

has processed its allotted quantity of inputs. Foremost, its results show the impact of the heterogeneous

user agents upon the detector quantity measurement, and giving evidence within the results that the

experiment design supports heterogeneity and the original research question. As a side effect, it gives

us the maximum time between the first input of the first signature and the last time a CARDINAL

instance (client) terminated its experiment run.

7.2.3 Experiment Design

This experiment design specialises upon the more in depth design, experiment methodology and imple-

mentation details that we described in chapter 5. In these experiments the labelled Dataset D (specified

in 6.7.1) is read into each architecture node client. The CARDINAL architecture which is run locally

on a single host computer. n instances (clients) of the implementation are executed and connect using

TCP ports (from 60175-*) to each of the other clients in a fully connected peer-to-peer topology (see

subsubsection 7.2.3.4). Figure 7.2 gives a diagram of the network topology and experiment infrastruc-

ture.

Each client is configured with a standard configuration, including a fixed quantity and read-in rate

(quantity per processed batch) of inputs from the dataset and a pre-built set of neighbouring client

(internet or port) addresses. Per client, a unique behaviour model effects the danger-to-safe ratio of

inputs from the labelled dataset. This gives each client a heterogeneous user experience and differing

learning input experience from the dataset, as discussed in section 6.6.

The following sections will add focused detail upon this experiment setting including the impli-

cations of measurements, experiment runtime procedure, the dataset and network protocol and key

configurations.

7.2.3.1 Implications of Measurements

Measurement data are logged locally to avoid impacting network traffic and to reduce the scaling effect

of I/O disk logging upon the trial metric scores. After a trial has completed, the experiment logs are

created, collated and parsed to extract global measurements. Further detail of the metrics is in section

6.2. An experiment’s performance is evaluated according to objectives, described in detail in section 6.9

using the equations stated in 6.10.3.

We expect uncontrollable noise variation in terms of CPU activity, disk clean-ups, package updates,

other network communications, etc. between tests running on live operating systems. These noise

items are further described in 6.2.5. We have preferred medians over means as a centrality performance

indicator to reduce the effect of this noise. Twenty-five trials per test were selected as an initial quantity

to overcome the spread of variation in each algorithm and noise. Each run was carried out sequentially,

taking anything from 6 to 50 minutes from the beginning of one run, to the beginning of the second,

depending on the quantity of instances and the algorithm under test.

7.2.3.2 Experiment Runtime Procedure

The experiment follows procedure J, which is described in section 6.4.1 and by Figure 6.1.

7 115

This is a post-processing experiment, in the sense that the dataset is read into memory before any

dataset instance is processed and in the sense that there is no delay between inputs, as one might find

in typical computer network behaviour. This removes the I/O delay caused by file socket and stream

queuing and access from the Time-M2 time measure. After reading each 1500 inputs from memory, a

network transmission request is issued, collected and carried out to send a set of T-cell detectors to other

(virtual) network instances in the connected CARDINAL architecture. After sending 20 transmissions

(sets of detectors) and having processed 30,000 inputs from the dataset (including training and test

phases), a STOP protocol message is sent to all other instances on the (virtual) network. When all

machines have received a STOP from all other machines, they each will terminate, thus terminating

the experiment run.

The procedure follows a simultaneous and distributed training–testing experiment methodology.

That is a training phase followed by a test phase, where each node performs this same procedure with

differing subsets of data. Each node performs their individual learning procedure at approximately the

same time and rate. In addition each node shares their learnt T-cell detectors assisting the network

wide learning task. The measure of classification correctness (e.g. accuracy) is not of our current

interest; however, measuring the rate of distribution is our evaluation goal and thus our experiment

procedure design facilitates that goal.

7.2.3.3 Dataset

Dataset D is used these trials, statistical dataset details are available in 6.7.1. The CSIC 2010 HTTP

dataset used in web application firewall (WAF) feature selection and classification experimentation in

(Nguyen et al. , 2011), (Torrano-Gimenez et al. , 2011) and its initial design is described in (Torrano-

Giménez et al. , 2010a). The conversion process to our Dataset D version (v0.5.2) results in the

attributes {URL, Payload Key, Payload Value, Label} and is in section 6.7.1. We use this dataset as

it comprises of recent (2010) attack vulnerabilities, is relevant to network security and has labelled

instances. The attributes used here are simple to extract with Berkeley Packet Filter (BPF) parsing

of packets (e.g. TCP, HTTP) network inputs on each node, such that the transition from dataset to

network device packet filtering is straightforward.

7.2.3.4 Network Topology

The network topology was a single virtual network segment as Figure 7.2 exemplifies, consisting of n

virtual machines (up to 20). Each test used a single computer with n instances of the Java virtual

machine (JVM), we give specific version information below. Each JVM used socket communication over

the local loopback device (IP address 127.0.0.1) and attached using the TCP protocol for application

addressing (e.g. on ports 60175 to 60179) and message transmission.

7.2.3.5 Network Protocol

The theory behind the network communication of CARDINAL (and as such, our test implementation)

is the transmission of activated T-cells. Therefore, upon receipt of a T-cell an action is taken to

incorporate the T-cell into the local decision system. Two protocol message types are used taking

advantage of the (Java 7) language’s built-in serialisation and marshalling of an object stream. A

116 7. Self-Healing Benchmark

received object’s class name is used to trigger an associated action to the given protocol message. The

first message type is a data structure object containing a number of selected T-cells which, upon receipt,

are incorporated into the local decision system as described in section 5.10. The second type is a STOP

state marker. This informs another machine that the sender is in a ready state to terminate its test

run. Terminating before other nodes are ready leads those other nodes into a potentially irrecoverable

state, this second message type avoids this computational problem state.

7.2.4 Configuration

Below are the key configurations of these experimental trials. The virtual machine environment and

execution script configurations are described in section D.3 and in section D.1.

7.2.4.1 Time Desynchronisation

A 450 millisecond delay is applied between each instance execution, this was our technique to preserve

host number order. An effects analysis of this decision is undertaken in 7.6.

As shown by example in section E.4, execution of background processes in bash is non-deterministic.

The order was required for us to track individual host behaviours (as defined in 6.6) and to report met-

ric data per host over many trials. The time offset (between first and last instances) is calculated as

450ms*(n-1), such that the final host for 10,15 and 20 host test is delayed by {4.05, 6.3 and 8.55} sec-

onds. By accounting for the constant initialisation period duration (6.5) and, as gauged from empirical

experience, that network transmissions usually begin after the first 5 seconds at n = 15 or n = 20, we

can make an educated assumption. Theoretically, the delay would have a negligible effect upon the

transmission successes, leading to the time metric (Time-M2), in the virtual network experiments at

n = 15 and n = 20, and zero-to-negligible effect at n = 10 with a 4.05 second offset.

7.2.4.2 CARDINAL Configuration

The immunological model parameter values that CARDINAL-Vanilla requires have been set in Table 5.2

and described in 5.12, such as the differentiation thresholds for CTL, Th2 and Th1, the percentage of

detectors to distribute while not under-attack and many others.

7.2.4.3 Network Hosts Configuration

Each instance had a unique network configuration file and separate from the CARDINAL-Vanilla

configuration. Firstly this contained a set of neighbouring port addresses on the loopback device. For

example in the five node virtual network test, the first node had four neighbouring port addresses as

127.0.0.1:60175 to 127.0.0.1:60179.

This configuration file also contained the parameter values of the distributed user model specific for

this node, as detailed in 6.6 and the experiment constants defined in 6.3. The noteworthy user-specific

model parameters are the random seed MSTATs – that feeds the user model and the roulette wheel

selection mechanism with CARDINAL-Vanilla, and the anomalous proportion MSTATan that drives

learning.

7 117

7.2.4.4 Benchmark Parameter Defaults

We discussed each of the key parameters of CARDINAL in 5.12, labelling them parameter 0 to 4 (P0-

P4). In this experiment series, the values for P0-P4 were set as {P0=0.75, P1=2.0, P2=0.95, P3=60,

P4=50}. These values were chosen arbitrarily, after conducting a series of initial trials.

118 7. Self-Healing Benchmark

7.3 Results

We present the metric scores and immunisation rate performance scores of the four algorithms. Table 7.1

contains the raw metric results and Table 7.3 contains the combined immunisation rate scores. Medians

(η) and standard deviations (Std) over 25 trials are presented over the five network sizes (n) of 1,5,10,15

and 20 virtual clients. The medians are used to show the independent middle trial from each algorithm’s

results. The standard deviations are used to show the range of noise impact on and/or variation over

an algorithm’s set of the trials.

In tables 7.2 and 7.4 we present the difference significance results between the two algorithms. We

use Mann-Whitney U statistical tests to measure difference between the AIS algorithm (Vanilla) and

the engineered algorithm (Optimal-Static). The Cohen’s d effect size is presented to give a measure

of difference scale. The trial run scores of the two algorithms, per network size are inputs into the

equations. The inferential statistical test selection process and the complete description can be found

in section E.1 and the Mann-Whitney U test in subsection E.1.1.

7.3.1 Metric Performance

The following three subsections will report the performance of the algorithms on the metrics Dist-M1,

Time-M2 and DataSent-M3.

7.3.1.1 Number of Detectors Distributed to Entire Network (M1)

In this experiment the Dist-M1 score has a theoretical maximum of 20, as defined by the number of

instances in (arbitrary signatures.csv) the accompanying signatures dataset file. Within the 9%

sample anomalous dataset 17 reside. However, 14 is our observed maximum quantity of matches that,

we explain, is due to randomised line number selection used by each of the user agents. At network

sizes 1,5,10,15 and 20 the observed maximum Dist-M1 values are 11,13,14,14 and 14.

In the single instance tests (n=1), all algorithms perform equally on Dist-M1, the quantity of

distributed detectors. The maximum values for Dist-M1 on the remaining virtual network size tests are

consistently from Optimal-Static and SendAll, showing best performance with [11,13,14,14,14] detectors

distributed.

A clear rising and falling trajectory in Vanilla’s Dist-M1 results is apparent, as Figure 7.5a high-

lights. The bar plots in Figure 7.4 show this trajectory over all networked trials (5-20 nodes), where

n=10 visually shows the lowest spread and the highest centrality performance for Vanilla. For n=15

and n=20 lower medians and greater standard deviations are clearly found. When compared to other

algorithms, higher standard deviations on Dist-M1 suggests less performance consistency from Vanilla’s

algorithm design or greater noise during its trial runs.

We also observe two inconsistencies in Optimal-Static’s results. Optimal-Static’s 17th trial at n=15

resulted in an Dist-M1 value of 0. Optimal-Static’s 21st trial at n=5 resulted in an Dist-M1 value of

12. These two runs are Optimal-Static’s only variation shown under the Dist-M1 results.

In all virtual network sizes, SendAll’s results show the lowest standard deviation and highest medians

and very closely followed by Optimal-Static. In fact, if we exclude two of Optimal-Static’s anomalous

runs as outliers, we can conclude that Optimal-Static’s standard deviation and median results are equal

to that of SendAll at all network sizes.

7 119

(a) (b) (c) (d)

Figure 7.4 – Dist-M1 variation of Vanilla performance over 25 runs with (a) 5, (b) 10, (c) 15 and (d) 20 nodes.
Y-axis shows quantity of detectors (M1) from 0 to 14 (max), X-axis shows the test run number from 1 to 25.

The Mann-Whitney U test results for difference between Vanilla and Optimal-Static on Dist-M1

data are in Table 7.2, showing virtual network sizes 5 to 20 with significant difference, where the critical

probability value is 0.05 and very large (VL) effect sizes in favour of Optimal-Static over Vanilla. The

performance difference at n=1 was insignificant with no effect in Cohen’s d equation.

7.3.1.2 Time Taken to Distribute Median Detector (M2)

The Time-M2 score is the measured time duration between a detector being first classified and the

time at which it has been distributed to all other nodes on the network. Therefore values must be

non-negative and smaller values are preferred, as discussed in section 6.2.

The minimum values for Time-M2, the median time to distribute the median (timed) detector to

all network nodes, are SendAll for 5 node virtual network size and Optimal-Static for sizes 10, 15 and

20 nodes. Note that the NoNet Time-M2 time results for sizes 5,10,15 and 20 are the duration of time

taken to complete the experiment, such that we can exclude them from our analysis comparisons. That

is, only in the event that zero detectors are found on at least one machine (which the experiment design

creates if no distribution occurs), for all other known detectors (read-in elsewhere on the network) the

median experiment total time value is used. From this set of time durations, the median time value

is presented as the Time-M2 value for the given trial. This is, by design, always the case for the final

node under our malicious user-agent design, as that node reads-in 0% malicious inputs, consequently

creating zero detectors. Therefore, the NoNet Time-M2 time results are exactly the duration of time

taken, by the median node, to complete the experiment.

Optimal-Static’s 21st trial at n=5 was a cause of variation in the Dist-M1 results; however, within

the Time-M2 results a variation is not distinctive. The 21st trial Time-M2 result is 37.152, where the

value range is from 17.763 to 38.529 seconds.

Optimal-Static’s 17th trial at n=15 resulted in an Time-M2 value of 214.371, the largest value in

the trials. If we exclude this as an outlier the value range becomes 108.961 to 137.439, the standard

deviation then becomes 6.012 which a reduction of 13.076 seconds (in deviation) or 31.5% of this test

series’ standard deviation value.

Vanilla’s Time-M2 median performance ranks at [2nd,2nd,3rd,4th,4th] on each network size test,

when compared to the other algorithms. It’s standard deviation ranks at [4th,2nd,4th,3rd,3rd]; however

if we remove the excludable Optimal-Static outlier, that rank list becomes [4th,2nd,4th,4th,3rd].

A general observation in all algorithm results is that of a monotonic increase in median and standard

deviation values, if we exclude Optimal-Static’s outlier (17th trial at n=15), as the Figure E.1 box and

120 7. Self-Healing Benchmark

whisker plot shows. This is expected behaviour for this metric over these tests given our problem

domain.

The Mann-Whitney U test results on time taken (Time-M2) data in Table 7.2 show significant

difference between the AIS and engineered algorithms on sizes n=1,10,15,20. The 5 network node size

results showed a small (S) effect size from Cohen’s d equation in favour of Optimal-Static (by its smaller

mean value), but with no significant difference (p = 0.385) from the Mann-Whitney test. At n=1, a

small (S) effect is implicated in favour of Vanilla, with a significant P value. In virtual network sizes

10,15 and 20 the results show very large (VL) effect sizes and significant P values from each statistical

tests, in favour of Optimal-Static.

7.3.1.3 Total Data Sent During Experiment to Distribute (M3)

The DataSent-M3 score is the total amount of data sent in megabytes (MiB) by all nodes during an

experiment. As with time taken, the values must be non-negative, smaller values are preferred and a

full discussion can be found in section 6.2.

The minimum median values on each network size test were consistently given by Optimal-Static,

if we exclude NoNet’s zero communication results. Vanilla sends considerably less data than SendAll

on all network sizes, however more than double that of Optimal-Static. This can clearly be seen in the

median values of Figure E.2b. Optimal-Static sends [40%,37%,38%,39%,39%] of the data of Vanilla in

each network size test.

Optimal-Static’s 17th trial at n=15 resulted in an DataSent-M3 value of 45.3, the smallest value in

the trials. If we exclude this as an outlier the value range becomes 49.5 to 51.5, the standard deviation

then becomes 0.506 which is 44.3% of the reported test series’ standard deviation value.

Centrality and spread are monotonically increasing in all algorithm results with DataSent-M3 data,

including Optimal-Static when we ignore the outlier.

The Mann-Whitney U test results on data sent (DataSent-M3) data in Table 7.2 show significant

difference on all network sizes in favour of the engineered algorithm over Vanilla. In virtual network

sizes 1,5,10,15 and 20 the results show very large (VL) effect sizes and consistent significant P values

(well below p = 0.05) from the statistical tests, in favour of Optimal-Static.

7.3.2 Immunisation Rate System Performance

Each of the immunisation rates system performance measures are described in section 6.9. In the fol-

lowing sections the three scoring rate results are presented. The ratio of differences equation (explained

in subsection 6.10.3) is used to calculate each algorithm’s performance using the median SendAll algo-

rithm result as (reference) ratio denominator. Interval distances are comparable as ratios relative to

the reference.

NoNet’s results in these O1,O2,O3 evaluations are of little to no-interest as its quantity of distributed

detectors (Dist-M1) are 0 for all network sizes above n=1; for comparisons we can therefore ignore its

results.

7 121

n Vanilla SendAll NoNet Optimal-Static

η (Std) η (Std) η (Std) η (Std)

Dist-M1 - Quantity

1 11.0 (0.0) 11.0 (0.0) 11.0 (0.0) 11.0 (0.0)

5 12.0 (1.0) 13.0 (0.0) 0.0 (0.0) 13.0 (0.2)

10 13.0 (0.935) 14.0 (0.0) 0.0 (0.0) 14.0 (0.0)

15 12.0 (1.952) 14.0 (0.0) 0.0 (0.0) 14.0 (2.8)

20 10.0 (1.824) 14.0 (0.0) 0.0 (0.0) 14.0 (0.0)

Time-M2 - Time (Sec.)

1 0.228 (0.467) 0.48 (0.171) 0.037 (0.038) 0.356 (0.224)

5 30.24 (3.733) 27.48 (4.25) 51.729 (1.954) 30.515 (4.213)

10 93.263 (9.429) 83.425 (6.833) 106.116 (3.717) 78.214 (5.052)

15 190.317 (17.103) 146.085 (10.418) 156.071 (4.037) 123.279 (19.088)

20 308.347 (24.994) 254.701 (27.708) 201.217 (5.487) 183.182 (9.207)

DataSent-M3 - Data (MiB)

1 0.5 (0.05) 3.7 (0.091) 0.0 (0.0) 0.2 (0.0)

5 11.7 (0.609) 63.1 (1.31) 0.0 (0.0) 4.3 (0.137)

10 55.8 (1.768) 306.8 (5.992) 0.0 (0.0) 21.4 (0.321)

15 128.5 (4.89) 742.4 (13.851) 0.0 (0.0) 50.4 (1.141)

20 242.1 (5.019) 1327.1 (36.324) 0.0 (0.0) 93.1 (0.958)

Table 7.1 – Tabular results of metrics M1,M2,M3 showing medians (η) and standard deviations (Std) (with n-1
denominator) over 25 iterations of the four algorithms.

n U df P Significance Cohen’s d Effect Size

Dist-M1

1 Nan 24 Invalid insig. 0 None

5 121.5 24 5.21011297493−06 sig. < 0.05 -1.33128047094 VL (MX < MY)

10 100.0 24 4.70860459449−07 sig. < 0.05 -1.57383180959 VL (MX < MY)

15 73.0 24 1.53826232707−07 sig. < 0.05 -0.729230295609 VL (MX < MY)

20 0.0 24 4.42074243841−11 sig. < 0.05 -3.0394599246 VL (MX < MY)

Time-M2

1 161.0 24 0.00169458420376 sig. < 0.05 -0.171464805294 S (MX < MY)

5 297.0 24 0.38550931209 insig. 0.0351322388539 S (MX > MY)

10 36.0 24 4.27340833535−08 sig. < 0.05 2.05021940858 VL (MX > MY)

15 24.0 24 1.14836069702−08 sig. < 0.05 3.33476931569 VL (MX > MY)

20 0.0 24 7.07828112425−10 sig. < 0.05 6.71157900329 VL (MX > MY)

DataSent-M3

1 0.0 24 2.00381441843−11 sig. < 0.05 9.61665222414 VL (MX > MY)

5 0.0 24 5.99175394206−10 sig. < 0.05 16.74674193 VL (MX > MY)

10 0.0 24 6.75903458446−10 sig. < 0.05 27.226769181 VL (MX > MY)

15 0.0 24 6.99564862571−10 sig. < 0.05 22.2852090264 VL (MX > MY)

20 0.0 24 6.88265973526−10 sig. < 0.05 41.6269462567 VL (MX > MY)

Table 7.2 – Mann-Whitney U test results for CARDINAL vs Optimal-Static of Metrics M1,M2,M3 over 25
iterations with Cohen d’s difference and effect size.

122 7. Self-Healing Benchmark

n Vanilla SendAll NoNet Optimal-Static

η (Std) η (Std) η (Std) η (Std)

O1

1 0.263 (0.476) 0.0 (0.175) 0.461 (0.039) 0.129 (0.228)

5 −0.095 (0.086) 0.0 (0.076) −0.941 (0.035) −0.055 (0.078)

10 −0.08 (0.081) 0.0 (0.04) −0.636 (0.022) 0.031 (0.03)

15 −0.204 (0.118) 0.0 (0.035) −0.534 (0.014) 0.078 (0.16)

20 −0.217 (0.106) 0.0 (0.053) −0.395 (0.011) 0.14 (0.018)

O2

1 0.695 (0.475) 0.003 (0.181) 0.961 (0.039) 0.602 (0.228)

5 0.313 (0.086) 0.017 (0.077) −0.441 (0.035) 0.411 (0.078)

10 0.33 (0.08) 0.002 (0.036) −0.136 (0.022) 0.496 (0.03)

15 0.208 (0.116) 0.003 (0.032) −0.034 (0.014) 0.544 (0.159)

20 0.193 (0.106) −0.002 (0.048) 0.105 (0.011) 0.606 (0.018)

O3

1 0.306 (0.476) 0.0 (0.175) 0.511 (0.039) 0.176 (0.228)

5 −0.054 (0.086) 0.0 (0.076) −0.891 (0.035) −0.009 (0.078)

10 −0.039 (0.08) −0.001 (0.04) −0.586 (0.022) 0.078 (0.03)

15 −0.163 (0.118) 0.001 (0.035) −0.484 (0.014) 0.125 (0.16)

20 −0.176 (0.106) −0.001 (0.053) −0.345 (0.011) 0.187 (0.018)

Table 7.3 – Tabular results of objectives O1,O2,O3 showing medians (η) and standard deviations (Std) (with
n-1 denominator) over 25 iterations of the four algorithms.

n U df P Significance Cohen’s d Effect Size

O1

1 161.0 24 0.00169458420376 sig. < 0.05 0.171464805294 S (MX > MY)

5 240.0 24 0.0812060036749 insig. −0.470465368049 M (MX < MY)

10 26.0 24 1.43477475231−08 sig. < 0.05 −2.09972060965 VL (MX < MY)

15 25.0 24 1.28383893526−08 sig. < 0.05 −1.88109304568 VL (MX < MY)

20 0.0 24 7.07828112425−10 sig. < 0.05 −5.00406611943 VL (MX < MY)

O2

1 204.0 24 0.0180607040578 sig. < 0.05 0.0510519519454 S (MX > MY)

5 117.0 24 7.73018370803−05 sig. < 0.05 −1.17235307613 VL (MX < MY)

10 1.0 24 7.98333592845−10 sig. < 0.05 −3.0407796079 VL (MX < MY)

15 25.0 24 1.28383893526−08 sig. < 0.05 −2.26760857705 VL (MX < MY)

20 0.0 24 7.07828112425−10 sig. < 0.05 −5.75143673477 VL (MX < MY)

O3

1 166.0 24 0.00230650528542 sig. < 0.05 0.159444506344 S (MX > MY)

5 226.0 24 0.0475938676102 sig. < 0.05 −0.540498402677 L (MX < MY)

10 22.0 24 9.17775908636−09 sig. < 0.05 −2.19305668743 VL (MX < MY)

15 25.0 24 1.28383893526−08 sig. < 0.05 −1.91953699489 VL (MX < MY)

20 0.0 24 7.07828112425−10 sig. < 0.05 −5.07867480828 VL (MX < MY)

Table 7.4 – Mann-Whitney U test results for CARDINAL vs Optimal-Static of Objectives O1,O2,O3 over 25
iterations with Cohen d’s difference and effect size.

7 123

7.3.2.1 Generalised Immunisation Rate (O1)

The immunisation rate evaluation (O1) score balances the quantity of detectors with time taken to

distribute those detectors (described in section 6.9). Scores range from positive (better than) to negative

(worse than), where 0 is equal to SendAll’s median performance.

On the larger network tests (n=[10,15,20]) we find that the engineered algorithm (Optimal-Static

(OS)) consistently outperforms the others with median values above 0 in Table 7.3 and as plotted in

Figure E.3a. Optimal-Static is 2nd in the n=5 network size, giving ranks [3rd,2nd,1st,1st,1st]. The

ranks for the immune system inspired approach (Vanilla) were [2nd,3rd,3rd,3rd,3rd] over each test

network size (n=[1,5,10,15,20]).

The spread of results for n=[10,15,20] by Optimal-Static and SendAll (SA) is monotonically increas-

ing, where OS has much smaller standard deviations. Vanilla’s spread for n=[5,10,15,20] fluctuates in

the same pattern as Vanilla’s Dist-M1 standard deviation (and median) score showing its influence on

the evaluation score. By comparison Vanilla (as is shown by the raw metric standard deviation results

of Dist-M1 and DataSent-M3) implicates lower performance reliability than the engineered (OS) and

reference (SA) algorithms.

The Mann-Whitney U test results on immunisation rate (O1) data in Table 7.4 show significant

difference between the AIS and engineered algorithms on sizes n=1,10,15,20. The 5 network node size

results show a medium (M) effect size from Cohen’s d equation in favour of Optimal-Static (given by

its larger mean O1 value), but with no significant difference (p = 0.08) from the Mann-Whitney test.

At n=1, a small (S) effect is implicated in favour of Vanilla, with a significant P value. In virtual

network sizes 10,15 and 20 the results show very large (VL) effect sizes and significant P values from

each statistical tests, in favour of Optimal-Static.

7.3.2.2 Immunisation Rate for Low-Throughput Networks (O2)

The immunisation rate for low-throughput networks (O2) score, such as Supervisory Control and Data

Acquisition (SCADA) networks, incorporates an unweighted amount of data transmitted along with

the generalised immunisation rate (O1) performance scoring. Scores range from positive (better than)

to negative (worse than), where 0 is equal to SendAll’s median performance.

On the networked tests (n=[5,10,15,20]) we find that the engineered algorithm (Optimal-Static

(OS)) shows the best O2 median values in Table 7.3 and as plotted in Figure 7.5b, giving ranks

[3rd,1st,1st,1st,1st]. The AIS approach (Vanilla) is consistently ranked as [2nd,2nd,2nd,2nd,2nd], over

all test network sizes by its median score.

NoNet’s median results at n=20 show improved evaluated performance over the reference (SendAll).

This is a false indicator, in that NoNet fails to distribute any detectors for n > 1. As explained above,

we choose to exclude this algorithm’s performance results.

The AIS algorithm’s median performance shows a monotonic decrease in n=[5, 15, 20] by comparison

to the reference, while from n=5 (0.313) to n=10 (0.33) is close to stable. The engineered algorithm’s

median performance increases over n=[5,10,15,20] by comparison to the reference.

Generally speaking, the spread from O1 to O2 has corresponding ranks, whose values are adjusted

mildly by the addition of the data metric component.

124 7. Self-Healing Benchmark

The Mann-Whitney U test results on immunisation rate for SCADA networks (O2) data in Table 7.4

show significant difference between the AIS and engineered algorithms on sizes n=1,5,10,15,20.

The n=1 network size results show a small (S) effect size from Cohen’s d equation in favour of

Vanilla (indicated by d > 0 in this case) with P = 0.01. In virtual network sizes n=[5,10,15,20] a

very large (VL) Cohen d effect size is implicated toward Optimal-Static, with consistently significant

Mann-Whitney U test results. The greatest significance (smallest P-values) are found at n=10 and

n=20 in favour of Optimal-Static.

7.3.2.3 Immunisation Rate for High-Throughput Networks (O3)

The immunisation rate for high-throughput networks (O3) (such as enterprise networks) score incor-

porates the (lowly weighted) amount of data sent with the immunisation rate (O1) (as described in

section 6.9). Scores range from positive (better than) to negative (worse than), where 0 is equal to

SendAll’s median performance.

On the network tests n=[10,15,20] we find that the engineered algorithm (Optimal-Static (OS))

gives the best O3 median values in Table 7.3 and as plotted in Figure E.3b. Based upon medians OS

ranks as [3rd,2nd,1st,1st,1st] for n=[1,5,10,15,20]. The AIS approach (Vanilla) ranks on median values

at [2nd, 3rd, 3rd, 3rd, 3rd]. The SendAll algorithm performs most favourably in n=5 and second most

in n=[10,15,20].

The AIS algorithm’s median performance shows a monotonic decrease in n=[5, 15, 20] by comparison

to the reference, while from n=5 (-0.054) to n=10 (-0.039) is close to stable. The engineered algorithm’s

median performance increases over n=[5,10,15,20]. The standard deviation results from O2 to O3

corresponds similarly with those from O1 to O2.

The Mann-Whitney U test results on immunisation rate for enterprise networks (O3) data in Ta-

ble 7.4 show significant difference between the AIS and engineered algorithms on sizes n=1,5,10,15,20.

The n=1 network size results show a small (S) effect size from Cohen’s d equation in favour of

Vanilla (indicated by d > 0) with P = 0.002. In virtual network sizes n=[5] a large (L) effect, and

in n=[10,15,20] a very large (VL) Cohen d effect size is implicated in favour of Optimal-Static, with

consistently significant Mann-Whitney U test results. The greatest significance (smallest P-values) are

found at n=10 and n=20 in favour of Optimal-Static.

7.3.3 Further Discussion

• The memory footprint required by Optimal-Static’s algorithm for a host to maintain the detector

states of each neighbouring host is likely to be smaller than the ongoing transmissions to request a

minimal hashed representation of the detector state. Of course in a worse case scenario, Optimal-

Static’s algorithm will fail to distribute optimally. A comparison to this alternative engineered

request algorithm remains as open work.

• Because CARDINAL-Vanilla’s probability-based priority heuristic and detector selection mech-

anism gives lower priority to rare inputs, it is a poor representation for systems where a single

malicious input can cause as much damage as many inputs.

7 125

(a
)

M
et

ri
c

ob
se

rv
at

io
n

s.
N

u
m

b
er

of
d

et
ec

to
rs

d
is

tr
ib

u
te

d
d

u
ri

n
g

ex
p

er
im

en
t.

(b
)

Im
m

u
n

is
a
ti

o
n

ra
te

su
it

a
b

il
it

y
u

p
o
n

S
C

A
D

A
n

et
w

o
rk

s
(O

2
),

co
m

b
in

in
g

m
et

ri
c

M
1
,M

2
,M

3
d

a
ta

u
si

n
g

o
u

r
ex

te
n

si
o
n

o
f

th
e

W
ei

sb
in

&
R

o
d

ri
g
u

ez
ra

ti
o

eq
u

a
ti

o
n

w
it

h
S

en
d
A

ll
a
s

re
fe

re
n

ce
.

F
ig

u
re

7
.5

–
B

ox
p

lo
t

ob
se

rv
at

io
n

s
of

d
et

ec
to

r
d

is
tr

ib
u

ti
o
n

q
u

a
n
ti

ty
m

et
ri

c
a
n

d
m

u
lt

i-
o
b

je
ct

iv
e

ev
a
lu

a
ti

o
n

(O
2
)

o
n

th
e

v
ir

tu
a
l

n
et

w
o
rk

te
st

s.

126 7. Self-Healing Benchmark

• The underpinning decision that defines CARDINAL-Vanilla’s under-attack condition is a poor

representation for a detection system that must respond to single malicious inputs, see Equa-

tion 5.7 in section 5.10.1. This is because CARDINAL’s TUA threshold approach (set at 50) is

set too high for the values given by our simple binary output classifier, see 5.7.1. Therefore the

system is biased to a slow response.

• The experiment methodology represents a model test scenario for defence against malicious input-

based network attacks. However, it appears that the arbitrarily selected signatures required for

Dist-M1 and described in 6.2.2, are not perfectly suited to the under-attack condition or the

probability-based selection mechanism due to the relatively low occurrence of those signatures

in the dataset. This leads to sub-optimal actions taken by CARDINAL-Vanilla. The specific

probability depends on the order and repetition of inputs from the dataset. This is different

within each dataset. Without adding an adaptive mechanism based on the incoming data, the

condition and selection mechanism will perform sub-optimally.

7.3.4 Conclusions

This study achieved the first benchmark results of a fair implementation of the CARDINAL model by

(Kim et al. , 2005) and found some test conditions that support CARDINAL-Vanilla’s mechanism for

selection and distribution of detectors by comparison to two benchmark and one engineered algorithmic

approach. A new validation methodology has been used to evaluate the architecture as a distributed self-

healing system and has enabled a comparative use case study of two underlying architecture algorithms.

In addition, the first benchmark parameter configuration set has been presented and tested for the

CARDINAL model.

Under these test conditions we discovered the CARDINAL self-healing system’s immunisation rates

(i.e. O2, O3) performed similarly in small network sizes however as the virtual networks size increased

the engineered distribution selection mechanism outperformed the bio-inspired solution.

In fact, according to the detector distribution Dist-M1 results we can identify a salient performance

degradation as the network sizes increase. We found a significant correlation between the time delay and

ordered node number which we thought may have caused this behaviour, however our analysis in 7.6

shows that the behaviour exists regardless of the time delay. We can reject other possible causes such

as CARDINAL’s probability-based (roulette wheel) selection of detectors and the linear % ordering of

the distributed user behavioural model as these aspects are found in the following enterprise network

benchmark tests but are without the presence of the degradation with respect to the network size. This

leads us to believe this was an effect of process and I/O scheduling and sub-process/ thread execution

order of the operating system scheduling behaviour. We can consider this as an operational noise factor

or a performance bottleneck breach on the virtual network. Either way, we find this the most important

performance discrepancy between the virtual and enterprise tests of the architecture.

The performance reliability of CARDINAL-Vanilla as shown by the standard deviation over the

metrics and system measures varies more than the other engineered and näıve algorithms. We specu-

lated that this larger variability is caused by the probability selection of detectors and destination hosts

or the voluminosity-based priority heuristic. However, the enterprise benchmark tests that follow show

this effect is no longer noticeable. Thus we conclude this to be a factor of uncontrolled noise on the

7 127

virtual network and one that may be noticeable as the network size expands to its bottleneck capacity

threshold point.

7.3.5 Next Steps

In our next work we shall repeat the test in a real network setting and undertake a search for best

performing (optimal) parameter configuration. This study evaluated one configuration of CARDINAL-

Vanilla’s AIS parameters, at this stage we are unaware of whether the architecture will perform better

with a different parameter configuration set. Therefore an analysis of a range of parameter value sets

is another item of evaluation of the architecture presented later in the thesis.

128 7. Self-Healing Benchmark

7.4 Comparison on Enterprise Networks

7.4.1 Objectives

The earlier benchmark experiment gave immunisation rate results of our CARDINAL-Vanilla imple-

mentation as well as our engineered algorithm within a virtual network environment. This next series

of experiments will lend its focus to retesting that set-up on an enterprise network of computers. We

shall repeat the previous test comparing the CARDINAL-Vanilla and Optimal-Static algorithms for

distribution, as described in 7.2.2, under an enterprise network of connected computers.

7.4.2 Experiment Design

In this section we state the changes to the experiment design and validation methodology from the

earlier virtualised network tests.

As the enterprise network on which these tests run is in daily operation, we reduce the quantity of

runs from 25 to 10 and increase the maximum number of architecture nodes to match our 41 computer

limit. The instance addressing is updated from sequential TCP port numbers, to IP host name addresses

(on 193.x.x.x) receiving stream data over TCP on port 60175. Each client has a new pre-built set of

neighbouring client addresses. Note that we do not compress or encrypt the communications at this

stage as it does not assist our current benchmarking objective. Its effect upon the measures would

increase the data sent and processing time in a uniform manner.

Many of the virtualised test components and configurations are directly cloned to these enterprise

network experiments. Among the unchanged test components, are the single segment network topol-

ogy, shown diagrammatically in Figure 7.2, the labelled CSIC v0.5.2 dataset described in Table 6.8

and the experiment learning phases. Also unchanged is the experiment procedure described in 6.4.1,

the CARDINAL architecture implementation, its parameter configuration and the heterogeneous user

behavioural model described in 6.6.

The following sections will describe the changes and implications of those changes from the earlier

virtual network tests.

7.4.2.1 Measurements

Measurement data of each architecture node is logged on the local machine to avoid impacting network

traffic and to reduce scaling effects (i.e. exponential transmissions and I/O waiting times) during trials.

After a set of trials has completed, the individual experiment logs created by each instance are collated

and parsed to extract global measurements (metrics).

We have described the metrics in the previous experiment (and in detail in 6.2), these are detector

distribution quantity (Dist-M1), median time to distribute a detector (Time-M2) and data required

to distribute all detectors (DataSent-M3). We continue to evaluate each experiment’s performance

according to our three objectives: immunisation rate (O1), immunisation rate on low capacity networks

(O2) and on high capacity networks (O3) as discussed in 6.9.

The log collection locations and parsing location now differ in order to manage the extra data. As

the maximum quantity of our nodes has more than doubled, our log lengths have roughly doubled and

their quantity has doubled again. This has no additional effect on the extracted measurement values.

Each node logs to memory during the trials and writes to file as soon as a run concludes; a process

7 129

that remains unchanged from the virtual network experiment set-up. After a set of iterations the logs

are compressed and transferred to one location (at offset times). At a later point a single machine

takes over to uncompress, combine and then parse the logs to extract the global metrics as described

in 7.4.3.2.

7.4.3 Configuration

7.4.3.1 Environment & Preparation

The experiment network tests ran on a single network segment, consisting of 41 machines and a network

switch. All 41 machines ran during each trial, however only n machines executed the experimental

code. Trials ran with n = 1, 5, 10, 15, 20, 30 and 41 machine quantities. A summary of the environment

configuration is in D.2.

Before the experiment begins each workstation is issued with a network time protocol (NTP) update

(ntpdate); their timestamp values are then manually confirmed to match (have a average range less than

500ms). This happens by the node echoing its timestamp upon receipt of a Secure Shell (ssh) (remote

login and command execution) request. These ssh requests are issued as background processes. This

leaves an amount of imprecision equivalent to time to issue and execute a background ssh connection

process in bash. Improving upon this time synchronization precision remains open to further research.

The trials were run while other users were logged out (and had no access to) the computers. Prior to

an experiment run steps were taken to ensure that no computers were exorbitantly using their resources

(where /proc/loadavg reported 0.05 or less over the past 5 minutes of usage). Processes that exceeded

this minimum were either remotely terminated or their operating system was rebooted. However, as

with the virtual network tests, we cannot exclude the possibility of noise effects from other running

processes or operating system and package updates. In this enterprise network of 41 machines the

effect, if any, is in likelihood greater than that of the virtual network tests running on a single machine.

We believe we have achieved a fair and representative state of a real network with low load; as such

further analysis of this potential effect remains out of the scope of our current work.

7.4.3.2 Execution Script

Two GNU bash scripts are executed. The first is an overall experiment control script which is run on

a networked machine exclusive (external) to the test workstations.

The second deployment, run and upload script is copied to each of the n machines at the beginning

of each test and executed locally. This script downloads and deploys the experiment code to the local

disk (/tmp), waits until the issued time, then runs the trial code. Once a trial is completed, the

local script compresses and uploads the compressed log files to a network location. The final node’s

deployment script then waits until all logs have been uploaded and then downloads, un-compresses and

parses those logs for the global metrics. Network downloads and uploads required by multiple nodes

are executed in a staggered (node-number dependent) time manner to avoid denial of service to other

enterprise network infrastructure.

The default resource limits (ulimit) required no increase during the network tests, as each com-

puter executed only one instance of the CARDINAL client application. The number of threads per

CARDINAL instance was 9 + (n ∗ 4)), remaining unchanged from the previous virtual configuration

130 7. Self-Healing Benchmark

(see 7.2.4).

Once again, the Java code was run within the Java virtual machine (JVM) version 1.7 in 64bit

mode with the argument -d64. We set an equal maximum amount of allocated heap space memory per

instance at 1024 megabytes during all network test sizes – which, by comparison, differs only at n = 20

where in the earlier virtual tests the max heap size was 793.6MiB. We do not expect this difference had

an effect on our metric measures.

To match the earlier virtual test configuration, the STDERR and STDOUT streams were disabled

and experiment logging was buffered into memory and output to file at the end of each experiment.

This leads to an exponential scaling factor on the memory footprint size with respect to input data size

as in 7.2.4.

7.4.3.3 Network Hosts Configuration

Each node had a unique network configuration file and separate from the CARDINAL-Vanilla configu-

ration. Firstly this contained a set of neighbouring IP addresses. For example in the five node network

test, the first node had four neighbouring IP addresses as 193.x.x.2:60175 to 193.x.x.5:60175.

This configuration file also contained the parameter values of the distributed user model specific for

this node, as detailed in 6.6 and the experiment constants defined in 6.3. The noteworthy user specific

model parameters are the random seed MSTATs – which feeds the dataset input selection in the user

model and the roulette wheel selection mechanism within CARDINAL-Vanilla – and the anomalous

proportion MSTATan that drives the learning.

7 131

7.5 Results

We present the metric scores and immunisation rate performance scores of the two algorithms. Table 7.5

contains the raw metric results and Table 7.7 contains the combined immunisation rate scores. Medians

(η), interquartile ranges (IQR) and standard deviations (Std) over 10 trials are presented over the seven

enterprise network sizes (n) of 1,5,10,15,20,30 and 41 workstations.

In tables 7.6 and 7.8 we present the difference significance results between the two algorithms. We

use Mann-Whitney U statistical tests to measure difference between the AIS algorithm (Vanilla) and

the engineered algorithm (Optimal-Static). The Cohen’s d effect size is presented to give a measure

of difference scale. The trial run scores of the two algorithms, per network size are inputs into the

equations. The inferential statistical test selection process follows that of the previous virtual network

tests, where the test and its results’ complete description can be found in section E.1 and the Mann-

Whitney U test in subsection E.1.1.

7.5.1 Metric Performance

The following three subsections will report the performance of the algorithms on the metrics Dist-M1,

Time-M2 and DataSent-M3.

7.5.1.1 Number of Detectors Distributed to Entire Network (M1)

The Dist-M1 score here has a theoretical maximum of 20, as defined by the number of instances

in (arbitrary signatures.csv) the accompanying signatures dataset file. Within the 9% sample

anomalous dataset 17 of these instances reside used within these tests. However, 14 is our observed

maximum quantity of matches that. At network sizes 1,5,10,15,20,30 and 41 the observed maximum

Dist-M1 values are 11,13,14,14,14,14 and 14.

All network test sizes show equal (maximum) median Dist-M1 results for Optimal-Static and

Vanilla. Optimal-Static shows zero result dispersion over the 10 iterations, as both the interquar-

tile range (IQR) and standard deviation show 0.0 on all tests. The Artificial Immune System (AIS)

algorithm has an IQR of 1.0 at n=5, whereas all other network sizes show IQR equal to zero. Standard

deviation reports the Vanilla algorithm to have variation at n=5,30 and 41, caused by iterations falling

outside of the 25% and 75% interquartile ranges. Figure 7.9a shows zero variation among Vanilla itera-

tions at n=10,15 and 20. At n=30 and n=41, two and one (respective) iteration results show values less

than the median. A Pearson’s correlation coefficient test between both algorithms shows a significant

linear correlation with a P-value of 1.0 at all network sizes.

Figure 7.6 shows some similarity to the trajectory of the virtualised network trial results found

earlier. However, the “drop-off” begins at an unmatched (larger, n=30) network size in the enter-

prise tests and the standard deviations are evidently smaller in these enterprise network trials. If

we calculate the standard deviations for only the first ten trials from each virtualised test we have

[0.823,1.059,1.969,2.331] for n=[5,10,15,20]. Such that, each network size’s standard deviation is com-

paratively larger in the virtualised tests than the enterprise network tests over an equal number of

trials. Why this result discrepancy occurs between the two network types remains a subject of inquiry.

132 7. Self-Healing Benchmark

(a) (b) (c) (d) (e) (f)

Figure 7.6 – Dist-M1 variation of Vanilla performance over 10 runs with (a) 5, (b) 10, (c) 15, (d) 20, (e) 30
and (f) 41 nodes. Y-axis shows quantity of detectors (M1) from 0 to 14 (max), X-axis shows the test run number
from 1 to 10.

The Mann-Whitney U test results for difference between Vanilla and Optimal-Static on Dist-M1

data are in Table 7.5, showing significant difference only at network size 5, where the critical probability

value is 0.05 and very large (VL) effect sizes in favour of Optimal-Static over Vanilla. The performance

difference at all remaining network sizes was insignificant. At sizes n=30 and n=41, a large effect in

Cohen’s d equation is shown in favour of Optimal-Static, however the P-value difference is shown to be

insignificant with p ∼= 0.08.

7.5.1.2 Time Taken to Distribute Median Detector (M2)

The Time-M2 score is the measured time duration between a detector being first classified and the

time at which it has been distributed to all other nodes on the network. Therefore values must be

non-negative and smaller values are preferred, as discussed in section 6.2.

The best median Time-M2 time durations were given by Vanilla for n=[1,5,10] and by Optimal-

Static for n=[15,20,30,41]; implying faster distribution on larger networks by the engineered algorithm.

Figure E.4 visually reiterates the relatively low interquartile ranges from both algorithms as found

in Table 7.5. Also shown is an outlier at n=10 for the Optimal-Static algorithm leading to its high

standard deviation for that network size.

A pattern of apparent uncontrolled noise is recognisable within the interquartile ranges and standard

deviations for both algorithms. For example, at n=20 the Vanilla and Optimal-Static algorithms gives

an IQR difference of 2.151 (2.658 and 0.507); whereas that difference is 0.013 (1.072 and 1.085) at n=15

and 0.198 (1.709 and 1.511) at n=30. By design, the IQR will remove the effect of outliers, but does

not remove the effect of ongoing noise or the test’s intended behaviour. This result dispersion may

have shown signs of settling within a more controlled enterprise network environment, however we did

not have access to an experimental computer network of such a size.

The virtualised tests clearly show higher median times by comparison to the enterprise tests for

each of the networked tests as a result of the number of processors available to the architectures.

The Mann-Whitney U test results for difference between Vanilla and Optimal-Static on Time-M2

(time taken) data are in Table 7.5, showing significant difference at n=10 with medium effect size from

Cohen’s d equation in favour of Vanilla. An increasing significant difference (P-value decreases at n

increases) with very large effect size is reported at n=[15,20,30,41] in favour of Optimal-Static.

The box plots in Figure 7.7 show that the difference between the two algorithms, while significant,

are relatively similar over all of the network sizes.

7 133

Figure 7.7 – Box plot showing the relative difference in Time-M2 metric scores for the AIS and engineered
algorithms for selection and distribution of detector modules.

7.5.1.3 Total Data Sent During Experiment to Distribute (M3)

The DataSent-M3 score shows the total amount of data sent in megabytes (MiB) by all nodes during

an experiment iteration. As with time taken, the values are non-negative, smaller values are preferred

and a full discussion can be found in section 6.2.

Table 7.5 shows Vanilla’s DataSent-M3 median results are consistently worse than the engineered

algorithm, as plotted in Figure E.5a. The percentages of Optimal-Static’s data sent (numerator) to

Vanilla’s (denominator) are [28.6%, 34.7%, 42.5%, 49.5%, 52.3%, 57.3% and 57.7%] over each n size.

The interquartile ranges from Optimal-Static are monotonically increasing with n, the same goes for

Vanilla at n=[1,5,15,20,30,41] where n=10 is an exception. At each n size Vanilla shows larger variation

in its interquartile ranges and standard deviations compared to the engineered algorithm.

We can extrapolate a “per test, per machine variation” for both algorithms as IQR/n, giving

[0.23,0.41,0.23,0.54,0.37 and 0.38] for Vanilla and [0,0,0.02,0.05,0.1 and 0.19] for Optimal-Static over

n=[5,10,15,20,30 and 41]. This again shows larger (extrapolated) variation per machine in Vanilla than

Optimal-Static.

The Mann-Whitney U test results for difference between Vanilla and Optimal-Static on DataSent-

M3 data sent are in Table 7.5, showing significant and very large Cohen’s d effect size at all network

sizes. A monotonic increase in significance is recognisable from n=1 to n=20, suggesting the difference

exacerbates (comparatively, Vanilla becomes worse where Optimal-Static improves) as the network size

increases.

Figure 7.8 shows a box plot representation of the differences between the two algorithms. We can

clearly see that the quantity of data sent is different and in cases is transmitting roughly double the

data quantities overall; which in its current state for application on SCADA networks, is unacceptable.

134 7. Self-Healing Benchmark

Figure 7.8 – Box plot showing the relative difference in DataSent-M3 metric scores for the AIS and engineered
algorithms for selection and distribution of detector modules measured over each trial.

7
135

Vanilla Optimal-Static

n η (IQR) (Std) η (IQR) (Std)

Dist-M1

1 11.0 (0.0) (0.0) 11.0 (0.0) (0.0)

5 13.0 (1.0) (0.671) 13.0 (0.0) (0.0)

10 14.0 (0.0) (0.0) 14.0 (0.0) (0.0)

15 14.0 (0.0) (0.0) 14.0 (0.0) (0.0)

20 14.0 (0.0) (0.0) 14.0 (0.0) (0.0)

30 14.0 (0.0) (0.64) 14.0 (0.0) (0.0)

41 14.0 (0.0) (0.4) 14.0 (0.0) (0.0)

Time-M2

1 0.368 (0.535) (0.778) 0.683 (0.527) (0.331)

5 6.042 (0.34) (1.193) 6.386 (0.899) (1.027)

10 9.853 (0.826) (0.711) 10.441 (0.839) (35.694)

15 13.099 (1.072) (0.833) 12.268 (1.085) (0.839)

20 16.005 (2.658) (1.548) 14.468 (0.507) (0.48)

30 20.259 (1.709) (1.299) 18.438 (1.511) (1.0)

41 23.622 (0.869) (0.753) 20.724 (1.316) (1.183)

DataSent-M3

1 0.7 (0.1) (0.049) 0.2 (0.0) (0.0)

5 13.85 (1.15) (1.544) 4.8 (0.0) (0.03)

10 51.05 (4.125) (2.804) 21.7 (0.075) (0.078)

15 101.65 (3.375) (2.775) 50.3 (0.375) (0.219)

20 171.95 (10.725) (7.101) 90.0 (1.05) (0.808)

30 345.6 (11.05) (6.931) 198.2 (2.975) (1.555)

41 621.35 (15.675) (14.784) 358.25 (7.7) (4.765)

Table 7.5 – Tabular results of metrics M1,M2,M3 showing medians
(η), interquartile ranges (IQR) (75%-25%) and standard deviations
(Std) (with n-1 denominator) over 10 iterations of each algorithm.
Values are rounded to 3 significant digits.

n U df P Significance Cohen’s d Effect Size

Dist-M1

1 Nan 9 Invalid insig. 0.0 None

5 30.0 9 0.017212 sig. < 0.05 −1.0 VL (MX < MY)

10 Nan 9 Invalid insig. 0.0 None

15 Nan 9 Invalid insig. 0.0 None

20 Nan 9 Invalid insig. 0.0 None

30 40.0 9 0.084039 insig. −0.628587 L (MX < MY)

41 40.0 9 0.083744 insig. −0.67082 L (MX < MY)

Time-M2

1 30.0 9 0.069859 insig. −0.051407 S (MX < MY)

5 36.0 9 0.153745 insig. −0.259625 S (MX < MY)

10 22.0 9 0.018818 sig. < 0.05 −0.473186 M (MX < MY)

15 19.0 9 0.010567 sig. < 0.05 1.095983 VL (MX > MY)

20 18.0 9 0.008629 sig. < 0.05 1.447793 VL (MX > MY)

30 18.0 9 0.008629 sig. < 0.05 1.393088 VL (MX > MY)

41 7.0 9 0.000657 sig. < 0.05 2.570759 VL (MX > MY)

DataSent-M3

1 0.0 9 2.3−05 sig. < 0.05 12.597619 VL (MX > MY)

5 0.0 9 4.3−05 sig. < 0.05 7.169698 VL (MX > MY)

10 0.0 9 7.4−05 sig. < 0.05 13.858142 VL (MX > MY)

15 0.0 9 8.6−05 sig. < 0.05 24.644184 VL (MX > MY)

20 0.0 9 9.1−05 sig. < 0.05 15.10875 VL (MX > MY)

30 0.0 9 9.1−05 sig. < 0.05 27.657829 VL (MX > MY)

41 0.0 9 9.1−05 sig. < 0.05 22.651728 VL (MX > MY)

Table 7.6 – Mann-Whitney U test results for CARDINAL vs OptimalStatic
of Metrics M1,M2,M3 over 10 iterations with Cohen d’s difference and effect
size. An Invalid value in the P column and a Nan in the U statistic col-
umn represents identical results on all iterations of both algorithms in the
respective Mann-Whitney U test.

13
6

7.
S

elf-H
ealin

g
B

en
ch

m
ark

Vanilla Optimal-Static

n η (IQR) (Std) η (IQR) (Std)

O1

1 0.231 (0.391) (0.569) 0.0 (0.386) (0.242)

5 0.016 (0.053) (0.111) 0.0 (0.07) (0.08)

10 0.028 (0.04) (0.034) −0.0 (0.04) (1.709)

15 −0.034 (0.044) (0.034) 0.0 (0.044) (0.034)

20 −0.053 (0.092) (0.053) 0.0 (0.018) (0.017)

30 −0.058 (0.05) (0.047) 0.0 (0.041) (0.027)

41 −0.082 (0.022) (0.021) 0.0 (0.032) (0.029)

O2

1 −1.019 (0.641) (0.649) 0.0 (0.386) (0.242)

5 −0.912 (0.181) (0.098) 0.0 (0.07) (0.081)

10 −0.645 (0.093) (0.067) −0.001 (0.038) (1.709)

15 −0.552 (0.065) (0.048) −0.001 (0.046) (0.034)

20 −0.483 (0.104) (0.059) −0.0 (0.019) (0.018)

30 −0.421 (0.079) (0.05) 0.005 (0.035) (0.026)

41 −0.458 (0.045) (0.035) 0.005 (0.023) (0.025)

O3

1 0.106 (0.416) (0.577) 0.0 (0.386) (0.242)

5 −0.078 (0.054) (0.099) 0.0 (0.07) (0.08)

10 −0.037 (0.036) (0.034) −0.0 (0.04) (1.709)

15 −0.086 (0.044) (0.035) −0.0 (0.044) (0.034)

20 −0.099 (0.095) (0.053) −0.0 (0.018) (0.017)

30 −0.095 (0.055) (0.047) 0.001 (0.041) (0.027)

41 −0.12 (0.027) (0.022) 0.001 (0.031) (0.028)

Table 7.7 – Tabular results of objectives O1,O2,O3 showing medians
(η), interquartile ranges (IQR) (75%-25%) and standard deviations
(Std) (with n-1 denominator) over 10 iterations of the Vanilla and
Optimal-Static algorithms. Values are rounded to 3 significant digits.

n U df P Significance Cohen’s d Effect Size

O1

1 30.0 9 0.069859 insig. 0.051407 S (MX > MY)

5 42.0 9 0.285375 insig. 0.045085 S (MX > MY)

10 22.0 9 0.018818 sig. < 0.05 0.473186 M (MX > MY)

15 19.0 9 0.010567 sig. < 0.05 −1.095983 VL (MX < MY)

20 18.0 9 0.008629 sig. < 0.05 −1.447793 VL (MX < MY)

30 18.0 9 0.008629 sig. < 0.05 −1.40588 VL (MX < MY)

41 5.0 9 0.000384 sig. < 0.05 −2.715066 VL (MX < MY)

O2

1 0.0 9 8.9−05 sig. < 0.05 −2.180835 VL (MX < MY)

5 0.0 9 9.1−05 sig. < 0.05 −9.024596 VL (MX < MY)

10 10.0 9 0.001414 sig. < 0.05 −0.05062 S (MX < MY)

15 0.0 9 9.1−05 sig. < 0.05 −12.513134 VL (MX < MY)

20 0.0 9 9.1−05 sig. < 0.05 −11.026788 VL (MX < MY)

30 0.0 9 9.1−05 sig. < 0.05 −10.071471 VL (MX < MY)

41 0.0 9 9.1−05 sig. < 0.05 −13.591509 VL (MX < MY)

O3

1 42.0 9 0.285012 insig. −0.195883 S (MX < MY)

5 23.0 9 0.022577 sig. < 0.05 −0.856515 VL (MX < MY)

10 34.0 9 0.120661 insig. 0.420812 M (MX > MY)

15 2.0 9 0.000165 sig. < 0.05 −2.488031 VL (MX < MY)

20 0.0 9 9.1−05 sig. < 0.05 −2.549087 VL (MX < MY)

30 4.0 9 0.000291 sig. < 0.05 −2.319322 VL (MX < MY)

41 1.0 9 0.000123 sig. < 0.05 −4.067139 VL (MX < MY)

Table 7.8 – Mann-Whitney U test results for CARDINAL vs OptimalStatic
of Objectives O1,O2,O3 over 10 iterations with Cohen d’s difference and
effect size.

7 137

7.5.2 Immunisation Rate System Performance

The following three system performance measures O1,O2 and O3 (as described in 6.9) use a ratio of

differences equation (specified in 6.10.3) to calculate each algorithm’s performance. The Optimal-Static

algorithm is used as our reference system. Differences between Vanilla’s median result to Optimal-

Static’s median result can be compared. Generally speaking, Vanilla’s scores can be greater (better

than), less (worse than) or equal to Optimal-Static’s median performance.

The evaluation results are shown in Table 7.7 and the significance test for difference between the

algorithms is shown in Table 7.8.

7.5.2.1 Generalised Immunisation Rate (O1)

The immunisation rate evaluation (O1) score balances the quantity of detectors (Dist-M1) with time

taken to distribute those detectors (Time-M2). This provides a broad but not very discriminating

survey of performance.

Table 7.7 shows the median O1 results of Vanilla evaluated as better than the engineered algorithm

during the n=[1,5,10] tests. Whereas at the larger n sizes (15,20,30 and 41) the reverse applies, with

monotonically increasing median distances in favour of Optimal-Static. The interquartile range ranks

suggest reliability to be network size-specific, yet IQR distances between both algorithms are similar.

Per network size, Vanilla’s IQR ranks are [2nd,1st,-,-,2nd,2nd,1st], where ’-’ represents equal to Optimal-

Static.

The Mann-Whitney U test for difference between the AIS and engineered algorithms on immunisa-

tion rate (O1) data in Table 7.8 shows significant difference in network sizes n=10 to n=41. At n=10,

Cohen’s d equation suggests a medium effect size in favour of Vanilla, whereas at n=[15,20,30 and 41]

a very large effect size is in favour of Optimal-Static. At n=1 and n=5 Vanilla is preferred with a small

effect size and yet with insignificant P-values (P ∼= 0.06 and P ∼= 0.28 respectively).

The O1 immunisation rate results show Optimal-Static to be preferred with significant difference

in performance at the larger network sizes (15,20,30 and 41) and the AIS algorithm to be preferred at

network size 10, with insignificant improvement at the two smallest network sizes.

7.5.2.2 Immunisation Rate for Low-Throughput Networks (O2)

The immunisation rate for low-throughput networks (O2) score, such as SCADA networks, incorpo-

rates an unweighted amount of data transmitted along with the generalised immunisation rate (O1)

performance scoring.

Table 7.7 shows Optimal-Static’s median O2 results evaluated better than the Vanilla algorithm at

all n network sizes. Interquartile ranges report higher variation from Vanilla over Optimal-Static at all

sizes also. These points can be recognised visually in Figure 7.9b.

The results of the Mann-Whitney U statistical difference test between the AIS and engineered

algorithms on immunisation rate for SCADA-like networks (O2) can be found in Table 7.8. Here we

can identify strong significance (p < 0.001) and Cohen’s d equation difference in favour of Optimal-

Static at all network sizes n=[1,5,10,15,20,30 and 41]. The Cohen’s d effect size is very large at all

network n sizes except n=10, where it is reported as small.

138 7. Self-Healing Benchmark

The immunisation rate results for SCADA-like networks (O2) show Optimal-Static to be preferred

with significant difference in performance on all tested network sizes (1,5,10,15,20,30 and 41 nodes)

instead of the AIS algorithm.

7.5.2.3 Immunisation Rate for High-Throughput Networks (O3)

The immunisation rate for high-throughput networks (O3) (such as enterprise networks) score incor-

porates the (lowly weighted) amount of data sent with the immunisation rate (O1) (as described in

section 6.9).

Table 7.7 shows Optimal-Static’s median O3 results for all the networked sizes (5 through 41) eval-

uate as more suitable than Vanilla. However, Vanilla’s O3 median suitability results are comparatively

better (in all tests) than its O2 evaluation. Interquartile ranges report higher variation from Vanilla

over Optimal-Static at n=[1,5,10,20 and 30], equal at 15 nodes and slightly less variation at 41 nodes.

The results of the Mann-Whitney U statistical difference test between Vanilla and Optimal-Static on

immunisation rate for enterprise networks (O3) are in Table 7.8 with Cohen’s d effect size. The Mann-

Whitney U tests shows significant difference between the two algorithm at network sizes n=[5,15,20,30

and 41]. Cohen’s d show that difference in favour of Optimal-Static, each with a very large (VL) effect

size.

The immunisation rate results for enterprise networks (O3) show that Optimal-Static is evaluated

better with a strong significant improvement (P < 0.001) on network sizes of 15,20,30 and 41 nodes

instead of the Vanilla algorithm and a significant improvement (P ∼= 0.02) on the 5 node network

size tests. Vanilla’s improved performance on the 10 node network size is shown not to be significant

(P ∼= 0.12).

7.5.3 Conclusions

In this study we retested our CARDINAL-Vanilla model implementation on a 41 node enterprise

network using the experiment design, procedure, parameter configuration and evaluation approach

cloned from our previous virtualised tests.

Surprisingly, we found far more stability from CARDINAL-Vanilla on the detector transmission

quantity measure (Dist-M1) compared to its virtualised tests results, and significant correlation between

the two algorithms. However, corroborating earlier findings from the virtualised tests, the engineered

algorithm (Optimal-Static) reported significantly better suitability on larger-sized networks (>15 nodes)

than the CARDINAL algorithm with respect to its system performance for SCADA-like networks (O2)

and for enterprise networks (O3).

In this real use case scenario experiment we find both algorithms show Dist-M1 and Time-M2 scores

similar to one another. The important discrepancy between the two algorithms is in the DataSent-M3

metric. One can argue that Optimal-Static’s algorithmic approach is impossible to recreate as it has no

need to request or receive the model state of the other nodes, it assumes perfect behaviour of the nodes

– i.e. no loss of data in transmission, no disconnects, no detectors deleted or corrupted etc. Thus a true

and realistic comparison of the two methods remains as open work and will incur extra transmissions

and transmitted data.

7 139

(a
)

M
et

ri
c

ob
se

rv
at

io
n

s.
N

u
m

b
er

of
d

et
ec

to
rs

d
is

tr
ib

u
te

d
d

u
ri

n
g

ex
p

er
im

en
t.

(b
)

Im
m

u
n

is
a
ti

o
n

ra
te

su
it

a
b

il
it

y
u

p
o
n

S
C

A
D

A
-l

ik
e

n
et

w
o
rk

s
(O

2
),

co
m

b
in

-
in

g
m

et
ri

c
M

1
,M

2
,M

3
d

a
ta

u
si

n
g

o
u

r
ex

te
n

si
o
n

o
f

th
e

W
ei

sb
in

&
R

o
d

ri
g
u

ez
ra

ti
o

eq
u

a
ti

o
n

w
it

h
O

p
ti

m
a
lS

ta
ti

c
a
s

re
fe

re
n

ce
.

N
o
te

th
a
t

p
lo

t
y
-a

x
is

is
tr

u
n

-
ca

te
d

to
-1

.5
ex

cl
u

d
in

g
O

p
ti

m
a
l-

S
ta

ti
c’

s
o
u

tl
ie

r
va

lu
e

tr
a
n

sp
o
se

d
fr

o
m

th
e

T
im

e-
M

2
m

et
ri

c
re

su
lt

s.

F
ig

u
re

7
.9

–
B

ox
p

lo
t

ob
se

rv
at

io
n

s
of

d
et

ec
to

r
d

is
tr

ib
u

ti
on

q
u

a
n
ti

ty
m

et
ri

c
a
n

d
m

u
lt

i-
o
b

je
ct

iv
e

ev
a
lu

a
ti

o
n

(O
2
)

o
n

th
e

en
te

rp
ri

se
n

et
w

o
rk

te
st

s.

140 7. Self-Healing Benchmark

While these amounts are likely to be less than the roughly doubled data quantity differences there

do remain adjustments to consider in order to lower the bio-inspired algorithm’s transmission quan-

tities. Within the constraints of no external model knowledge, the single most expensive data trans-

mission are imposed by redundancy in the peer-to-peer bidirectional graph mapping that connect the

nodes. Secondly is the redundancy of retransmitting detectors or transmitting unimportant detectors.

CARDINAL-Vanilla’s presented heuristic measures importance based on commonality, whether com-

monality actually carries the opposite definition, i.e. of unimportance, is a point of discussion. An

alternative might be of multiple metrics contributing to a single definition of importance or separated

definitions for each individual neighbouring node.

7.5.4 Next Steps

The next item of work, we will look deeper at the differences between the virtual and enterprise network

test set-ups and the discrepancies in their results. We believe the culprit difference between the two

experiments is the delay and ordering of execution, including I/O, affecting both network transmissions

and dataset file read-in. These are the items that we will investigate to understand those differences.

7.5.5 Future Work

We know that data transmission (DataSent-M3) was the primary measure that led to CARDINAL’s

poorer performance evaluation. The cause for the additional data was the retransmissions of already

sent detectors; this action led to additional time spent in selection, sending, receiving and processing of

the received detectors. Investigation of a hybridised and more intelligent approaches are recommended

for future work for the priority heuristic definition, detector and destination selection mechanisms and

the transmission quantity decision used to respond to monitored danger or with the requirement of

greater intensity.

7 141

7.6 Further Analysis of Network Testing

7.6.1 Objectives

The major challenge of evaluating software intended for a real environment is how to interpret and

translate its performance in modelled, simulated or virtualised environments, with respect to the real

world behaviour of that system. In comparison to the Optimal-Static algorithm, CARDINAL-Vanilla’s

results in the real network tests were relatively stronger than the poorer performance in the virtual

network tests. This further analysis work aims to understand the cause of those differences.

The two earlier comparative benchmark studies showed discernible differences. For example the

Time-M2 median scores for the CARDINAL-Vanilla algorithm were 308.47 seconds in the virtual

network with 20 nodes and only 23.622 seconds in the enterprise network tests with 41 nodes. The

Distributed-M1 medians scores for the quantity of detectors distributed were 10 and 14 for the same

tests, representing 50% and 70% of the required detectors distributed.

An hypothesis is that the Time-M2 differences are caused by the number of cores executing the

tests, 2 cores verses 82 cores. However, the Distributed-M1 difference is not straightforward. The

discrepancy may have been caused by execution differences in the two test conditions or perhaps the

time desynchronisation used in the virtual network tests or the extended time taken during the virtual

tests thus affecting the internal model state of the CARDINAL algorithm. Further more, other forms

of uncontrolled noise, as stated in 6.2.5, may have caused an effect. Of particular likelihood to cause

these observed effects is the operating system-specific process execution behaviour.

This study will investigate the comparative effects of network virtualisation on execution behaviour

(7.6.2), the effects of virtual network time desynchronisation in terms of metric differences (7.6.4) and

in terms of detector delivery at specific nodes (7.6.5).

142 7. Self-Healing Benchmark

7.6.2 Observations of Time Synch/ Desynch in Network Virtualisation

The following is analysis of execution behaviour between three forms of time synchronisation in virtual

network tests and the earlier enterprise network tests. The following four configurations are the target

of this investigation to draw observational comparisons of execution behaviours:

• (a) shows virtual network environment with time synchronised execution (0 s delay).

• (b) shows virtual network test with 0.45 sec between node start times, matching the earlier virtual

network tests (in 7.2).

• (c) shows virtual network test with 0.9 s between node start times.

• (d) shows enterprise network test with time synchronised execution (0 s delay), matching the

earlier enterprise network tests (in 7.6.3).

Figure 7.10 shows a single exemplar execution of the benchmark CARDINAL-Vanilla algorithm

through each experiment phase event under the four different test conditions. These states include

start and finish of training and testing phases and the other states specified in 6.3. The diagram

follows the conventional sequential diagram format, however it is downscaled for presentation purposes.

Sequential execution time runs from top to bottom. Each vertical column within each sequence diagram

is an architecture client process. Each column represents the execution of a process’s experiment phases.

In Figures 7.10 (a), (b) and (c) all processes execute on a single computer. In Fig. 7.10 (d) each

process executes on a different computer.

←
−

E
x
ec

u
ti

o
n

T
im

e

Node No. (0-20) −→

(a)

Node No. (0-20) −→

(b)

Node No. (0-20) −→

(c)

Node No. (0-41) −→

(d)

Figure 7.10 – Sequence diagrams showing execution of experiment phase events w.r.t time. Time and ordered node
numbers are plotted on Y-axis and X-axis. Black blocks show the Experiment Phases (including start and finish states)
stated in 6.3 running on each node. Note the vertical-dashed lines on (d) are an image scaling effect.

7 143

The maximum tested number of nodes per trial has been selected to express the test conditions under

maximum tested load. The decision to include the enterprise network test (d) sequence behaviour is

in order to illustrate that the experiment phase event transitions are independent at each node, except

at the Shutdown phase event typically at 60% time. This virtualised vs non-virtualised difference is

observable by the contrasting execution behavioural differences. In Figure 7.10, due to the difference

in the numbers of nodes, neither correlations nor comparisons from (d) to other virtual tests should

be concluded.

7.6.2.1 Observations

In Figure 7.10, we can make informal observations of the variation in execution dependency with respect

to starting order and duration of CPU time allotted per process per execution time slot. Table 7.9

shows a summary of these observations.

The informal Dependency upon Other Processes (Obsv1) measure is separated into high, med, low

and none categories and the informal Allotted CPU Time per Process per CPU Time Slot (Obsv2)

measure has small, med, large and unknown categories. The definition of each category is given with

context in the observation descriptions below.

In the time synchronised virtual test (a), there is a visually obvious execution dependency on the

node number order (from left to right) and on the completion of the Start-Up and Start Training

phases; as the top two diagonal lines in Fig (a) exemplify. This indicates a ‘high’ category of the

Obsv1 measure. The Shutdown phase events are lower in each diagram – this phase is dependent on

the states of other nodes and as such are not executed in node order. In (a) there is a tendency that

the first process waits until all processes have completed a phase before beginning a following phase.

This indicates a ‘small’ category of the Obsv2 measure.

In the 0.45s time delayed virtual test (b) shows some differences from (a). The first node reaches

most experiment phases earlier than other nodes, exemplified by the three top diagonal lines in (b).

This indicates a ‘high’ category of Obsv1. Secondly, there is a tendency toward a process completing

more experiment phases sequentially in time; this suggests the allotted CPU execution time is greater

per process than (a). This indicates a ‘medium’ category of Obsv2.

In the doubled time delayed virtual test (c), there is a some visual evidence of execution dependency

on the node number order (from left to right). In fact, node six is first to execute in the early phases.

This observation is similar to, but less distinguished than, the top two diagonal lines in (a) and (b).

This indicates a ‘medium’ category of Obsv1. Similarly to (a), in (c) less phases are completed per

time slot than in (b) indicating a ‘small’ category of Obsv2.

In the enterprise network test (d) that same dependency between processes is not noticeable in the

early experiment phases. This indicates a ‘none’ category of Obsv1. This differs, as expected, at the

Shutdown phase (at 60% time) which is dependent upon all nodes completing the experiment phases

for Training and Testing. In (d) CPU time execution per node is dedicated to, not shared by, a single

node and thus CPU time share is unknown, indicating an ‘unknown’ category of Obsv2.

144 7. Self-Healing Benchmark

No Delay 0.45s Delay 0.9s Delay Enterprise

(a) (b) (c) (d)

(Obsv1) Dependency upon Other Processes high high med none

(Obsv2) Allotted CPU Time per Process per CPU Time Slot small med small unknown

Table 7.9 – An informal summary of sequence analysis results from informal observation of an exemplar run of
CARDINAL-Vanilla under different conditions: (a), (b), (c) and (d). Observed categorical values are given in
the ranges (high,med,low,none) and (small,med,large,unknown).

The effect of the different environments on median total execution time of an experiment run, over

10 runs, is 317.1 seconds with a sampled standard deviation (Std) of 8.1 to 1 significant digit in (a), is

325.6 seconds (Std = 5.2) in (b) and where we double the time delay to 900 ms is 327.9 seconds (Std

= 9.5) in (c). For the same activity this duration is 39.4 seconds (Std = 2.1) in (d).

No Delay 0.45s Delay 0.9s Delay Enterprise

(a) (b) (c) (d)

Experiment Runtime η 317.1 325.6 327.9 39.4

Experiment Runtime (Std) 8.1 5.2 9.5 2.1

Table 7.10 – Table of total experiment runtimes measured in seconds of CARDINAL-Vanilla under different
conditions: (a), (b), (c) and (d). η is (Std) are medians and standard deviations over 10 trial runs.

7.6.2.2 Discussion

This informal sequence execution analysis has presented observational differences in CPU execution time

and levels of dependency behaviour between virtual and enterprise network tests and dependent upon

each virtual test time synchronisation condition. This analysis is relevant to illustrate the execution

behaviour differences between the time synchronisation delays under experimental test conditions. Due

to the informality of the measures and the variation over alternative CPU architectures and alternative

operating system process scheduling algorithms only observations, not conclusions, should be drawn

from this analysis.

7 145

7.6.3 Effects of Time Desynchronisation

The time desynchronisation used in the virtual tests and described in 7.2.4.1 is a possible reason to have

caused the differences in the Distributed-M1 results. Note that the enterprise tests were synchronised.

The next two sections will describe the effects of time desynchronisation upon metric results and

upon detector arrival times. The hypothesis ‘the metric difference in Distributed-M1 between the virtual

network tests and enterprise network tests is caused by the time desynchronisation value’ is evaluated

in section 7.6.4. The hypothesis ‘the detector arrival time difference between the virtual network tests

and enterprise network tests is caused by the time desynchronisation value’ is evaluated in section 7.6.5.

In both tests the virtual network trials, there is one variable, the desynchronisation time delay value of

0 seconds, 0.45 seconds and 0.9 seconds.

7.6.4 Metric Differences with Time Desynchronisation

The following is an analysis of the measured differences between only the virtual tests when that

desynchronisation delay is changed. We conclude with metric differences between the enterprise network

tests and either using synchronised or desynchronised virtual network testing. The hypothesis for this

section is that ‘the metric difference in Distributed-M1 between the virtual network tests and enterprise

network tests is caused by the time desynchronisation value’.

Here we re-ran the virtual tests with the benchmark CARDINAL-Vanilla algorithm, over 20 runs,

with only a change in the starting time delay issued between each node. Section 7.2.4.1 described the

use of the 0.45 second value between the starting of each nodes during the benchmark tests.

0.45s Delay 0.9s Delay No Delay Kruskal-Wallis Test
n η (Std) η (Std) η (Std) H df P-value

Distributed-M1

1 11.0 (0.0) 11.0 (0.0) 11.0 (0.0) Nan 19 N/A
5 12.0 (0.768) 12.0 (0.872) 12.5 (0.887) 2.722782 19 0.256304

10 13.0 (0.812) 13.0 (0.698) 13.0 (0.748) 4.342295 19 0.114047
15 12.0 (1.276) 11.0 (1.64) 11.0 (1.424) 2.729407 19 0.255456
20 11.0 (1.411) 10.0 (1.83) 11.0 (1.114) 4.768778 19 0.092145

Time-M2

1 0.669 (0.694) 0.253 (0.745) 0.318 (0.404) 3.515293 19 0.172450
5 30.23 (3.22) 28.569 (3.34) 28.144 (3.057) 2.999344 19 0.223203

10 87.585 (5.139) 79.161 (9.798) 83.349 (7.172) 11.899016 19 0.002607
15 167.144 (9.02) 142.087 (12.739) 163.409 (5.296) 30.779344 19 2.071812E−7

20 263.056 (7.754) 258.008 (30.892) 254.56 (7.96) 13.526885 19 0.001155

DataSent-M3

1 0.5 (0.068) 0.6 (0.065) 0.6 (0.074) 5.426206 19 0.066331
5 11.35 (0.547) 11.65 (0.338) 11.7 (0.59) 6.753965 19 0.034150

10 57.7 (1.231) 54.6 (1.219) 55.05 (1.546) 30.781278 19 2.07E−7

15 130.9 (1.996) 120.0 (1.868) 121.4 (1.401) 39.852917 19 2.218447E−9

20 241.45 (3.448) 216.45 (3.241) 215.85 (1.84) 39.488576 19 2.661734E−9

Table 7.11 – Summary of metric results of virtual network tests with varying starting time delays between
nodes. Table shows 5 network sizes (n) and results of metrics Distributed-M1,Time-M2,DataSent-M3 data over
20 iterations. η and (Std) show medians and sample standard deviations. The Kruskal-Wallis null hypothesis
shows whether the mean ranks of the 3 tests are the same, critical α = 0.05.

146 7. Self-Healing Benchmark

7.6.4.1 Results

In Table 7.11 we report the effects of removing that delay (No Delay), a repeat of the benchmark test

(0.45s Delay) and doubling that delay (0.9s Delay). Table 7.11 includes a Kruskal-Wallis Test (KWT)

(Kruskal & Wallis, 1952) variance analysis of the three sets of test results, showing whether the mean

ranks of the tests samples are the same. Where P is less than the critical α = 0.05 the null hypothesis

of mean rank similarity is rejected, meaning at least one sample dominates another sample and an

implication that their mean ranks are different.

The significant KWT results in Table 7.11 show mean rank difference in Time-M2 and DataSent-M3

results at n = 10, 15, 20, i.e. as the number of network nodes (n) increases these metric results differ.

With respect to Distributed-M1, the KWT results are not significant at any n size. Therefore the mean

rank is similar over all trial time delays and over all network sizes (n) with respect to Distributed-M1.

Furthermore, the Mann-Whitney U tests in Table 7.12 with corrected two-tailed P-value1, show

population distinction over No Delay and 0.45s Delay Distributed-M1 results. To assess significance

we have corrected the critical α to 0.0167 with α/3, to adjust for 3 additional tests upon this sample

data (Field & Hole, 2003)[p247]. Where the P < α, we reject the null hypothesis of difference due to

random sampling and conclude instead that the samples are of different populations. In Table 7.12,

each network size test for difference shows a P-value of > α suggesting that the No Delay and 0.45s

Delay Distributed-M1 results are similar. The P-value at n = 20 gives particularly compelling evidence

of this.

Mann Whitney U Test: Distributed-M1

n U df P-value

5 147.5 19 0.132746

10 140.0 19 0.08642

15 140.5 19 0.101054

20 166.5 19 0.35674

Table 7.12 – Mann-Whitney U two-tailed test upon No Delay and 0.45s Delay Distributed-M1 results from
CARDINAL-Vanilla, with adjusted critical α as 0.0167. Showing metric samples of a similar population.

We follow with two additional Mann Whitney U tests for difference. In Table 7.13a we compare 0.45s

Delay Distributed-M1 results with the enterprise network results of CARDINAL-Vanilla, which as we

have already seen are distinctly different in Figure 7.5a and Figure 7.9a. The test P-values corroborate

this. Above n = 5 all P-values are less than α = 0.0167, thus implicating different population origins. In

Table 7.13b we look for a measure of statistical difference in Distributed-M1 results between No Delay

and the enterprise CARDINAL-Vanilla tests and find greater likelihood of same metric behaviour at

n = 5 than in the 0.45s Delay at P = 0.362 verse P = 0.108. However, the P-values in the remaining

tests indicate results of distinctly different population.

1Python’s statistical SciPy library implementation of the Mann Whitney U performs a one-tailed test. This can be
converted to two-tailed with P × 2 according to the SciPy test documentation.

7 147

Mann Whitney U Test: Distributed-M1

n U df P-value

5 30.0 9 0.108518

10 15.0 9 0.001826

15 5.0 9 0.000222

20 5.0 9 0.000222

*30 8.0 9 0.000967

*41 7.0 9 0.000719

(a)

Mann Whitney U Test: Distributed-M1

n U df P-value

5 38.5 9 0.362283

10 5.0 9 0.000189

15 0.0 9 5.8e− 05

20 0.0 9 5.3e− 05

*30 0.0 9 9.4e− 05

*41 0.0 9 9.3e− 05

(b)

Table 7.13 – Mann-Whitney U corrected two-tailed test for population difference of CARDINAL-Vanilla over
10 runs, comparing Distributed-M1 results, with adjusted critical α as 0.0167. Sizes *30 and *41 compare the
virtual Distributed-M1 results at n=20 with the enterprise Distributed-M1 results at sizes n = 30 and n = 41.
(a) Shows results of 0.45s Delay and enterprise network tests.
(b) Shows results of No Delay and enterprise network tests.

7.6.4.2 Discussion

This analysis has shown the effects of time desynchronisation on the virtual network tests using the

CARDINAL-Vanilla algorithm.

The Kruskal-Wallis tests have shown no significant difference between the time delays with respect

to the Distributed-M1 metric results (P1) within our tested time delay variations. It has reported

significant differences in the Time-M2 in network sizes ≥10 (P2) and differences in DataSent-M3 in

network sizes ≥5 (P3). While P2 ∧ P3 =⇒ Q difference between virtual and enterprise results,

P1 =⇒ ¬Q; therefore P1 denies the outright difference. We proceeded by further investigating the

Distributed-M1 result differences.

The first Mann Whitney U test upon the Distributed-M1 (detectors distributed) results has shown

compelling similarity, no significant difference, between the No Delay and 0.45s Delay runs. The

latter Mann Whitney U tests upon Distributed-M1 results show significant difference between both

No Delay and 0.45s Delay runs against the enterprise test results in network sizes ≥5. This indicates

that time desynchronisation is not the cause for Dist-M1 metric result discrepancy between the virtual

and enterprise network test results presented earlier in the chapter. ¬P1 ∧ P2 ∧ P3 =⇒ Q gives the

logical consequence of difference but is not valid w.r.t the metric results. Therefore we reject the first

hypothesis due to the insignificant difference between the Dist-M1 metric results with the changed

delay value.

7.6.4.3 Conclusion

Based on these results, we reject the first hypothesis due to the insignificant difference between the

Dist-M1 metric results with the changed delay value. We would expect that the Distributed-M1 results

in tests with synchronised start times will not be significantly different from the benchmark results

presented earlier. However, we would expect result differences in Time-M2 at network sizes ≥ 10 and

DataSent-M3 at network sizes ≥ 5.

148 7. Self-Healing Benchmark

7.6.5 Detector Delivery Time Differences with Time Desynchronisation

The following is an analysis of testing the hypothesis that the time delay used in the virtual tests has

an effect upon detector delivery times under the tested configurations.

Within the benchmark CARDINAL-Vanilla algorithm, we expect detector delivery at a destination

node to be approximately randomly ordered with respect to node starting indices. This is due to the

random component of the transmission destination node selection mechanism (stated in 5.10.2). The

SendAll and OptimalStatic algorithms (see 7.2.2) destination selectors will choose all known connected

nodes in order, therefore the detector arrival times should be approximately linearly ordered with respect

to the node indices. The time delay under investigation also affects nodes in order. If the time delay

does affect detector receipt times then a correlation between node starting order and detector delivery

times is expected. Therefore, this analysis will test for this correlation under each test configuration.

7.6.5.1 Results

The first network transmitted arrival time at each node is collected from the logs of a detector signature

from Dataset D (6.7.1). The detector chosen had the highest frequency in the training set to ensure the

greatest likelihood of transmission to all nodes using all of the benchmark algorithms, and specifically

including the CARDINAL-Vanilla algorithm’s detector transmission selector stated in section 5.10.3.

Explicitly, this is not the time it was read from the dataset as the read-in is not guaranteed at only one

location since multiple nodes may read-in and transmit the same detector. This collection is repeated

for each trial and each test configuration as follows.

7.6.5.2 Effect upon Virtual Benchmark Tests

Figure 7.11 reports a clear order to the arrival times at each node. Here the results are shown from

the benchmark (0.45s Delay) virtual network tests for algorithms CARDINAL-Vanilla, OptimalStatic

and SendAll. Table 7.14a reports the Spearman’s rank rho test for correlation of the median arrival

time values to the node starting index order values. Across each algorithm under this configuration,

significant correlation is implied by P-values below α = 0.05. These tests use Spearman’s rank two

tailed test on without correcting for value tie cases (Spearman, 1904). Kendall’s Tau is the alternative

that would correct tied values with an additive affect upon the P-value, which we choose not to use as

we accept that nodes may share the same median arrival times.

7 149

Figure 7.11 – Virtual network benchmark tests with 20 (0-19) nodes over 25 runs. 450ms time delay between
each node start time. Plots from left to right show findings from algorithms: CARDINAL-Vanilla, Optimal-Static,
Send-All.

7.6.5.3 Effect upon Enterprise Benchmark Tests

By contrast in Figure 7.12 the enterprise tests without the time delay over algorithms CARDINAL-

Vanilla and OptimalStatic visually show arrival times in a random-like order. Table 7.14b reports

the Spearman’s rho rank correlations as insignificant in both tests scenarios. A P-value at 0.65 for

CARDINAL-Vanilla implies sampling of random order. Less insignificantly at P = 0.15 for the Optimal-

Static algorithm, because its selection algorithm chooses the transmission destinations in natural order.

Figure 7.12 – Enterprise network benchmark tests with 41 nodes (0-40) over 10 runs. No time delay between
node start times. Plots from left to right show findings from algorithms: CARDINAL-Vanilla, Optimal-Static.

7.6.5.4 Effect upon Virtual Time Delay Tests

Next we look at the effects of time delay changes of 0 seconds, 0.45 s and 0.9 s in the virtual network

tests, at network size 20. Figure 7.13 shows the detector delivery time behaviour over 20 runs. The

central plot shows the repeated test runs of 0.45s Delay CARDINAL-Vanilla which should be very

similar to left plot in Figure 7.11. We observe similar behaviour between No Delay and 0.9s Delay

arrival times.

150 7. Self-Healing Benchmark

Figure 7.13 – Plots show time in seconds (Y-axis) for the most common detector to be received via network
at each numbered node (X-axis) (in starting order). Time is relative from earliest receipt time. Virtual network
benchmark tests with 20 (0-19) nodes over 20 runs running CARDINAL-Vanilla. Plots from left to right show
findings from time delays: None, 0.45 s and 0.9 s.

Table 7.14c reports significant correlation at P < 0.01 in the No Delay and 0.45s Delay tests, where

critical α remains at 0.05. This indirectly indicates that the synchronised virtual test (No Delay) share

significance with respect to correlation between detector delivery timestamps to node starting order,

at a network size of 20. Explicitly, the No Delay result of P = 0.011 shows less correlation than 0.45s

Delay’s with P = 1.37E−15 to node index order. Removing the time delay reduced the distinctiveness

of detector delivery order – i.e. the order is more randomly ordered. However, both are significantly

correlated to the ordered effect. The 0.9s Delay tests fails to suggest a correlation.

7 151

Vanilla Optimal-Static SendAll

rho 0.980451 0.953383 0.984962

P 3.68936E−14 8.33305E−11 3.53643E−15

df 24 24 24

(a)

Vanilla Optimal-Static

rho −0.0729158 −0.224216

P 0.65051 0.158746

df 9 9

(b)

No Time Delay Time Delay (0.45s) Time Delay (0.9s)

rho 0.553383 0.986466 0.374436

P 0.0113704 1.37757E−15 0.103841

df 19 19 19

(c)

Table 7.14 – Tables show Spearman’s (rho) rank correlation statistic and significance (p is the P-value) under
different test conditions. Each test attempts to correlate ranked detector delivery times via network transmission
per node with starting node indices. Critical α = 0.05.
(a) Table shows benchmark virtual network tests over 25 runs, 20 nodes.
(b) Table shows benchmark enterprise network tests over 10 runs, 41 nodes.
(c) Table shows time delay virtual network tests over 20 Runs, 20 nodes.

7.6.6 Discussion

This work has shown that time desynchronisation in the virtualised network tests has had a small effect

upon the sequence of detector delivery times; however, its effect is shown to be insignificant. Testing in

our virtualised network with No Delay and 0.45s Delay have both shown a significant and undesirable

correlation between detector delivery and node index. If we increase the desynchronisation to 0.9s the

correlation effect is no longer significant, however this then has a degraded Distributed-M1 (distributed

detector quantity) result, as 7.6.4 has previously shown.

In the enterprise network tests the detector delivery behaviour is as expected according to the

algorithm descriptions. Neither CARDINAL-Vanilla nor Optimal-Static show significant correlation

to node indices; however, Optimal-Static is more closely statistically rank-correlated to node index

order. The boxplots and rank correlations indicate no significance is to be found, therefore we have not

completed a test for correlation between the detector delivery times in the virtualised network tests

and in the enterprise network tests.

The Spearman’s Rank Rho tests for correlations of detector arrival times to node index order in Ta-

ble 7.14c for 0 second and 0.45 second time delay are significant under the virtual network environment

(P1). The Spearman’s Rank Rho tests on the enterprise network with no time delay in Table 7.14b are

each insignificant (P2). P1 6= P2 =⇒ ¬Q, therefore we reject the second hypothesis. This analysis

determines that the detector arrival time difference between the virtual network tests and enterprise

network tests is not caused by the time desynchronisation value.

152 7. Self-Healing Benchmark

7.6.7 Conclusion

The summary of this further analysis is that the virtual network execution behaviour had an, as yet,

unresolvable difference to real network testing. Both hypotheses of virtual to non-virtual difference

effect as caused by the time desynchronisation delay have been rejected. The resounding viewpoint

is that interpreting the results of the real network tests removes ambiguity. Thus if hard supporting

evidence for future tests of the architecture is needed, then those tests should be run on real networks

under the similar constraints as the intended target conditions.

This further analysis upon the benchmark network testing has investigated the effects of network vir-

tualisation and time desynchronisation. This has been done with the intent of recovering the difference

between the real and virtual benchmarked network testing types. The effects of network virtualisation

section has visualised and observed execution behavioural differences between tests, including differ-

ent delays under the virtual network and in the enterprise network. The metric differences with time

desynchronisation work has shown that synchronising and desynchronising by 0.45 seconds in the vir-

tualised network tests has had a small effect upon the sequence of detector delivery times; however,

it’s effect is shown to be insignificant. We can find a distinct difference between delays in the virtual

tests, but none of our tested delay changes have caused the virtual and enterprise tests to report equal

or equally distributed results for metric Distributed-M1. The detector delivery differences work has

shown that time desynchronisation in the virtualised network tests has had an insignificant effect upon

the sequence of detector delivery times. Tests with No Delay and 0.45s Delay have both shown a

significant and undesirable correlation between detector delivery and node index. Increasing the delay

reduced the correlation but also degraded the Distributed-M1 metric performance result. The further

analysis work here did not find the cause of the difference between the Distributed-M1 results nor has it

found a solution to cause the virtual network tests to behave similarly to the enterprise network tests.

Even synchronising the start times in future virtual network tests will give Distributed-M1 performance

results different from the enterprise network tests.

7.6.8 Future Work

The virtual network results presented are collected from tests run on a PC with two cores. We did

try running an earlier version of the software with 96 cores of 1165 Mhz on a single machine but

found that Time-M2 scores were slower than the two core execution for some small tests. This work

suggests that more cores is likely to improve the time for detector delivery (Time-M2) metric result

and may have a positive effect upon the Distributed-M1 results. Further work in this direction may

be rewarding. Alternatively replacing the time dependent decision components in CARDINAL and

CARDINAL-Vanilla may improve Distributed-M1 performance measures.

7 153

7.7 Chapter Conclusion

These studies achieved the first distributed implementation-level benchmark results of CARDINAL-

Vanilla, a fair implementation of the CARDINAL model by (Kim et al. , 2005), and found poorer

performance by the AIS approach than an equivalent engineered approach.

This chapter gave observations with which to assess the key hypothesis set in section 1.5. The key

statistical tests results for the virtual network trials can be found in Table 7.4 on page 122, whereas

the enterprise network trials can be found in Table 7.8 on page 136. Based on the CARDINAL-Vanilla

architecture, conducted in the stated methods and parameter configurations, the following conclusions

are drawn.

For low-throughput networks, such as industrial control networks, as measured by the objective

O2, the findings indicate that the hypothesis is rejected in all network size cases under virtual and

enterprise network trials.

For high-throughput networks, such as enterprise networks, as measured by the objective O3, the

findings indicate that the hypothesis is rejected in all network size cases under virtual and enterprise

network trials, except at network size 10 where the AIS algorithm performs insignificantly better than

the engineered approach.

The amount by which the results are poorer is not relevant to a real life application. The enterprise

network results in section 7.4 showed comparable Distributed-M1 and Time-M2 metric performances

to the engineered selection and distribution algorithm, however more data was sent by CARDINAL-

Vanilla and led to an overall poorer immunisation rate performance. The virtual network results in 7.2

reported poorer Distributed-M1 distribution performance as the network size increased by comparison

to the real networked tests. Our further analysis in 7.6 was unable to resolve that difference and as

such we concluded that the likely cause is related to the reaching of capacity bottlenecks of the virtual

networks on a single workstation. The resounding viewpoint that the further analysis gave was that

the real network tests removed ambiguity from the interpretation of the results.

7.7.1 Next Steps

The real networked experiment showed the important discrepancy between the engineered and AIS

algorithms was the DataSent-M3 metric. Optimal-Static is described in section 7.2.2, we argue that its

algorithmic approach is impossible to recreate as it has no need to request or receive the model state and

is thus prone to very poor performance under failure. Therefore adding further data transmissions and

further data sent would harden its approach. Thus, it is possible that improving CARDINAL-Vanilla’s

parameter configuration could lead to better performance. Additionally, reducing the quantity of open

communication sessions required by a peer-to-peer connectivity graph could lead to similar performance

robustness while reducing the data transmissions. The first of these two items is contained in our next

chapter of work.

7.7.2 Future Work

In section 7.4 we recognised that CARDINAL-Vanilla’s use of commonality as a measure of priority is an

avenue for further enquiry leading to better performance. In particular the task is to find a combination

of multiple measures of importance, this may include input rarity and commonality. Additionally we

154 7. Self-Healing Benchmark

found that the probability of a detector’s selection is dependent upon the order and repetition of inputs

within each dataset. By adding an adaptive mechanism based on incoming data the under-attack

condition and detector selection mechanism are likely to perform better.

The priority heuristic approach that CARDINAL-Vanilla offers leads to a predictive assessment

of what-content-is-needed-where without requesting any state knowledge. In peer-to-peer networks a

single update request for the full network leads to either a näıve near exponential (nn−1), or key

lookup-based O(Log(n)) (Rowstron & Druschel, 2001),(Stoica et al. , 2001) quantity of transmissions,

which becomes a big problem as the network size increases and the update interval reduces. With a

more intelligent evaluation of the core principle of distribution, possibly probabilistic using alternative

metrics or related to (Censor-Hillel & Shachnai, 2011), a hybrid of CARDINAL-Vanilla’s system could

be a feasible solution.

Chapter 8

Parameter Tuning

8.1 Introduction

In this chapter we will investigate the behavioural differences of each architecture parameter upon our

global metrics. Our interest is in discovering which parameter configuration is best for our Industrial

Control System (ICS) and Supervisory Control and Data Acquisition (SCADA) network application

destination. Secondarily, how does each parameter affect the metric performance; by answering this

we can adapt the architecture parameters to suit the runtime condition of any operational network or

workstation.

In section 8.2 we will begin by evaluating each parameter’s value range. The set of key architecture

parameters were selected in section 5.12 and defined with a continuous range and a discrete set of

values per parameter. The first evaluation will show only independent parameter performance in the

localised parameter space, we will follow up with a gradient ascent search to more thoroughly evaluate

the parameter space on our virtual network experiment testbed in 8.4 and on our enterprise network

in 8.6.

155

156 8. Parameter Tuning

8.2 Range Testing on Virtual Networks

8.2.1 Objectives

In the parameter range test series we want to understand how each parameter affects the metric

performance, such that we can set, or in future adapt, the architecture parameter configuration to

suit our use case scenario. This leads us to three questions. First, is there a correlation between the

parameter value and a metric result, and if so is the result affected in a monotonic order. Secondly, is

the effect one parameter has on a metric result larger than the effect of another parameter on the same

metric. Thirdly we ask which parameter set-up gives us the best immunisation rate performance. The

latter question carries the qualifier, as measured from the local point in parameter space.

We can answer the first by checking whether any of the metric results are monotonically correlated

to the ordered parameter value tests. The second question can be answered by checking the magnitude

of the metric differences between each parameter value’s change, ideally where the range value intervals

are equivalent. The third can be answered with a comparison of our multi-objective evaluation systems

for immunisation rates, which are described in 6.9.

First we will describe the experiment test set-up and discuss our metrics in these tests, then show

the results of our analysis.

8.2.2 Experiment Design

This experiment followed the same design set out in the virtual network benchmark tests 7.2.4. The

differences are the dataset and the range of parameter variables under test which we have described in

Table 8.1. We have fixed the quantity of network nodes to five with 10 repeated trials and the time

desynchronisation is set at 0.45 seconds, identically to 7.2.4 and as analysed in 7.6.3.

The execution script was adapted with a for-loop to wrap over a set of input configuration files,

where each file contained a varying set of the parameter configuration values. The CSIC Dataset C

was used, see 6.7.1.

8.2.2.1 Parameter Testing Ranges

Each parameter has been discussed with respect to the functions and agents that it affects within the

architecture in chapter 5. Within 5.12 we described each parameter and its range, these have been

copied into Table 8.1 for ease of reading.

As a recap, the P0 parameter is the Under Attack Volume Percentage, which determines the size

and destination quantity of transmissions made while an architecture node is in the under attack

condition. P1 is the Initial Priority Value Multiplier, which gives an initial priority value to newly

created detector/response modules, thus affecting its likelihood for transmission. P2 is the Priority

Value Suppression, which reduces the priority of rarely needed modules. P3 is the Static Moving

Window Size, which defines the duration of time over which recency can be considered; it affects the

thresholds within the under attack decision and the module priority decisions. P4 is the Dendritic Cell

Lifespan, which affects the rate at which a newly received input becomes a module, i.e. its rate of

validation.

8 157

During the trials that follow, we found that the priority suppression parameter P2’s range of values

caused very poor performance above 1.0; above which the multiplier becomes an increase rather than

a reduction. We have therefore separated P2’s range as P2-Reduced between [0.1,..1.0] and P2-Full

between [0.1,..2.0]. We will observe the behaviour of both, but are keenly interested by the intuitive

Reduced range for analysis only.

Parameter Default Testing Range

P0 0.75 [0.25, 0.33, 0.5, 0.66, 0.75, 0.9, 1.0]
P1 2.0 [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
P2 0.95 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75, 2.0]
P3 60 [1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 40, 60, 80, 100]
P4 50 [1, 5, 10, 20, 50, 40, 60, 80, 100]

Table 8.1 – Table shows the discrete testing range of values per parameter, as originally defined in 5.12, and
the constant default parameter value while other parameters are varied.

8.2.2.2 Extended Metrics

In these tests seven additional global metrics are used, on top of the three metrics described in 6.2.

We call these seven metrics, Extended Metrics. All ten metrics cover four areas: quantities of modules,

time to distribute, transmissions and responses and are summarised in Table 8.2. These measures give

a fuller view on architecture behaviour and performance.

Three global module quantities are measured in these tests, the first is the M1 quantity of responding

detectors or state (e) in Table 6.1. We add the logged quantity of inputs read-in from the dataset, state

(a), to see whether the input read-in rate is affected by the parameter configuration changes. We also

add the quantity of inputs that became detectors, state (d), to discover if the detector creation rate

is affected. State (d) gives the added bonus of showing the maximum possible value for M1 or state

(e), by showing the maximum number of modules at one of the nodes. Similarly, state (a) gives the

maximum quantity for state (d). All three metrics are network-wide measures.

Four measurements are taken with respect to the transmissions, first are the quantity of transmission

send events and secondly the quantity of data sent for all transmissions. These are separated into the

network wide totals and the median host. The median host results show impact on a localised scale of

the exemplar node, while the totals show the network-wide impact. As used in previous experiments,

the total network-wide quantity of megabytes sent is our metric M3.

Two measures of response quantities are reported, corresponding to state (h) in Table 6.1. Like the

transmissions, these are the network-wide quantity and the median host’s quantity of responses. These

enable us to monitor if the rate of responding is affected by the parameter value changes. This can be

viewed as a dependent measure of computational complexity and rate of distribution.

158 8. Parameter Tuning

Reference Description Preference

Inputs Number of specified inputs read-in at state (a) MAX

Detectors Number of specified detectors created at state (d) MAX

Distributed-M1 Number of specified modules distributed at state (e), metric M1 MAX

Responses-Total Number of responses network-wide at state (h) MAX

Responses-µ Number of responses by median host at state (h) MAX

Time-M2 Time to distribute all M1 modules to entire network, metric M2 MIN

IO-Events-Total Number of transmission send events network-wide -

IO-Events-µ Number of transmission send events by median host -

DataSent-M3 MiB of data sent measured network-wide, metric M3 MIN

DataSent-µ MiB of data sent measured on median host MIN

Table 8.2 – Table of metric descriptions and references used in the architecture parameter range tests. The
states refer to the state of the representation of an input, as Table 6.1. Refer to 6.2 for the metric M* descriptions.
Preference is our preferred metric value, i.e. lower (MIN) or higher (MAX) values and ‘-’ unimportant.

8.3 Results

The following are the results of varying the parameter values in isolation to answer our test objectives.

In the appendix, Table F.6 and Table F.7 show the complete set of summary statistics of metrics for

each parameter value change. The box plots in figures F.1, F.2, F.3, F.4 and F.5 visually show the

performance of each metric, with respect to each parameter’s range of test value.

8.3.1 Part 1: Parameter Effects

In this section we investigate the metric results given by testing each parameter’s range of values. We

answer whether the metric results are monotonically correlated to an independent parameter and which

parameter directly results in the greatest impact upon performance.

To identify the correlations, we compare the ranks of median results of a metric to a set of increasing

numbers with the non-parametric Spearman’s Rho statistical test (Spearman, 1904). The impact is

then measured by comparing the mean difference between each parameter value’s corresponding median

result of each metric.

The Spearman’s two tailed test is used starting with a standard critical alpha value of α = 0.05 and

without correcting for ties. No correction leads to no additive value to rho in the event of equal values,

which is applicable when our test purpose is for monotonicity with permitted equal values. Equal

values are acceptable when a small distance between parameter values leads to a zero-to-small distance

in metric space, providing the values are monotonic over the entire range. In the appendix, tables F.3,

F.4, F.5, F.9 and F.10 show the rho statistic and P-value results of each ranked test. Table 8.3 shows

a summary of these tables reporting the correlations with their significance, defined by P < α.

The direct comparison of impact per parameter is given by the mean average differences between

consecutive median metric results, as a result of the parameter’s range value tests. In the context

of the first parameter, the difference from the first median metric result and the second (and so on)

gives a set of differences. The mean of those differences is taken to show the impact of that parameter

on that metric. The mean difference of the metric results for each parameter can then be compared.

Larger absolute mean difference values show larger average impact on the metric. The impact results

8 159

are shown in Table 8.4.

Both sets of table results show that the Inputs and Detectors metrics are unaffected by the parameter

value changes, so we will not discuss them. The following is an analysis and discussion of the metric

results with respect to each parameter.

Parameters:
Metrics P0 P1 P2-Reduced P3 P4

Inputs No effect No effect No effect No effect No effect
Detectors No effect No effect No effect No effect No effect
Distributed-M1 Sig. <0.05 Pos. Sig. <0.05 Pos. Sig. < 0.05 Neg. Sig. <0.05 Pos. Insig.
Response-Total Sig. <0.05 Pos. Sig. <0.05 Pos. Insig. Sig. <0.05 Pos. Insig.
Response-µ Sig. <0.05 Pos. Sig. <0.05 Pos. Sig. < 0.05 Neg. Sig. <0.05 Pos. Insig.
Time-M2 Sig. <0.05 Neg. Sig. <0.05 Neg. Sig. < 0.05 Pos. Insig. Insig.
IO-Events-Total Sig. <0.05 Pos. Insig. Insig. Sig. <0.05 Pos. Insig.
IO-Events-µ Sig. <0.05 Pos. - No effect Sig. <0.05 Pos. Insig.
DataSent-M3 Sig. <0.05 Pos. Sig. <0.05 Pos. Sig. < 0.05 Neg. Sig. <0.05 Pos. Insig.
DataSent-µ Sig. <0.05 Pos. Sig. <0.05 Pos. Sig. < 0.05 Neg. Sig. <0.05 Pos. Insig.

Table 8.3 – Summarising table of Spearman’s rank (monotonic) correlations between each parameter’s increasing
range of values to the median results of each metric listed. The critical alpha for each two-tailed test is 0.05.
Significance markers are based upon the P-values in the earlier test tables. “Pos.” refers to positive (increasing)
correlation and “Neg.” refers to a negative (decreasing) correlation.

Parameters:
Metrics P0 P1 P2-Reduced P3 P4

x̄ (Std.) x̄ (Std.) x̄ (Std.) x̄ (Std.) x̄ (Std.)

Inputs 0 0 0 0 0 0 0 0 0 0
Detectors 0 0 0 0 0 0 0 0 0 0
Distributed-M1 1.83 1.7 0.429 0.623 -0.222 0.478 0.312 0.726 0.125 0.82
Response-Total 325 287 34.8 73.6 -9.44 167 8.75 66.3 5.31 99.8
Response-µ 25.8 23.4 9.21 9.02 -3.72 9.17 2.12 11.6 1.44 8.23
Time-M2 -4.99 6.42 -1.16 2.32 0.542 2.21 0.00375 2.42 0.0111 1.52
IO-Events-Total 47.5 48.5 0.286 2.49 0.167 1.58 7.72 25.5 -0.25 2.11
IO-Events-µ 9.83 9.51 0 0 0 0 1.62 5.62 -0.125 0.781
DataSent-M3 2.82 1.38 0.7 0.362 -1.42 1.37 0.525 1.28 0.025 0.363
DataSent-µ 0.567 0.281 0.136 0.0515 -0.289 0.238 0.1 0.265 0.00625 0.0583

Table 8.4 – Table shows the mean average (x̄) and standard deviation (Std.) of (difference) impact upon each
increase of parameter value. Preferred impacts are in bold. Minimum values on Time-M2 and DataSent-M3
metrics are preferred. Greatest values on other metrics are highlighted.

160 8. Parameter Tuning

0 5 10 15 20
Qty of Detectors

0.25

0.33

0.5

0.66

0.75

0.9

1.0 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

0 5 10 15 20
Qty of Detectors

0.25

0.33

0.5

0.66

0.75

0.9

1.0 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

0 5 10 15 20
Qty of Detectors

0.25

0.33

0.5

0.66

0.75

0.9

1.0 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure 8.1 – Box plots showing metric performance while varying the under attack volume parameter (P0) value
within the discrete testing range.

8.3.1.1 Under Attack Volume Percentage: P0

Over the discrete range of P0’s values, Table 8.3 shows us that Time-M2 is negatively monotonic with

respect to an increase in P0 configuration value. Whereas all other metrics increase with an increase of

P0, with exception of Inputs and Detectors. The effect on the IO-Events- metrics will have been directly

caused by a quantity change in destination hosts when the under attack threshold has been exceeded,

given by Equation 5.6. Under that condition, the quantity of destinations positively correlates to the

increasing parameter value.

Figure 8.1 emphasises the median metric result trajectories of Distributed-M1, Time-M2 and the

DataSent-M3, showing that the larger values give more stable and better performance in these first

two metrics. DataSent- increases as a consequence. However, there are no apparent pivot points in the

parameter’s results.

The under attack volume percentage has the greatest desirable impact on Distributed-M1, Time-M2

and the quantities of responses, as shown by emboldened values in Table 8.4. Thereby showing that

a change in the P0 parameter results in the largest improvement in performance for those metrics.

The increase in the Response-Total metric is relatively minor, as shown by an equivalent increase

percentage of 0.04% of 74696.5, the parameter’s maximum median value. The Distributed-M1 increase

of 1.83 shows a much larger improvement, at 14.1% of the 13 maximum distributed modules. The

Time-M2 metric’s average impact is -4.99 seconds, marking a 8.5% average reduction. We also note

that P0 carries the largest undesirable impact upon the DataSent-M3 metric, as shown by the mean

increase of 2.82 megabytes (MiB) per change. This represents a mean average increase of 15.2% in data

sent of 18.6 MiB, the maximum median result for this parameter as found in Table F.6.

8.3.1.2 Initial Priority Value Multiplier: P1

As the parameter value of P1 increases, a similar set of ordinal correlations occur as P0. The Time-M2

metric negatively correlates, whereas the Distributed-M1 and DataSent-M3 metrics positively correlate.

The IO-Events- metric reports insignificant order correlation on the quantity of transmission events.

The P1 multiplier has no influence on the volume selection decision, described in 5.10.1, nor the input

8 161

0 5 10 15 20
Qty of Detectors

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

0 5 10 15 20
Qty of Detectors

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

0 5 10 15 20
Qty of Detectors

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure 8.2 – Box plots showing metric performance while varying the initial priority multiplier parameter (P1)
value within the discrete testing range.

danger value in Equation 5.3, which is likely to cause the lack of impact on the IO-Events- metric.

Although P1 shares similar directional correlations to P0, the impact under each metric is smaller.

Each of the sample average values shown in Table 8.4 are smaller than P0’s impact values. Therefore

we can suggest that adjusting P1 will similar effect but less relative impact on our desired performance.

Figure 8.2 also visually reflects the matching ordinal correlations of Distributed-M1, Time-M2 and

DataSent-M3 to P0. We can see that the difference in metric results between test range values are

much smaller than in P0, while the variation of each result remains similar.

8.3.1.3 Priority Value Suppression: P2

Figure 8.3 shows that interpreting the impact and correlation with the P2-Full range of values is

misleading due to a pivot point at P2 = 1.0. For values above the P2 = 1.0 pivot point, i.e. where no

deprioritisation occurs, the results show very poor performance. These analysis tables show only the

P2-Reduced range results. The figure shows that values from 0.8 and below all lead to best performance

in Distributed-M1. Over this region of values Time-M2 remains similar. However, there is a distinct

arc of change in the amount of data sent during each of these tests.

In Table 8.3, P2 is the only parameter where Time-M2 metric positively correlates to the increas-

ing P2 value. The Distributed-M1, Response- and DataSent- metrics reduce as the parameter value

increments. P2 is the only parameter to show the opposite correlation effect compared to P0 and P1,

with respect to metrics for data sent, time taken, responses and distributed modules. This means that

tuning P2’s value will counter P0 and P1’s effects.

In Table 8.4, P2 reports the best desirable impact on the DataSent-M3 metric, unmatched by any of

the other parameters. However, each increase in P2’s value has the most undesirable average impact on

the responses, distributed modules and time taken to distribute metrics of any other single parameter

change. Albeit each absolute impact is small relative to the maximum median results: at 1.71% (0.222

of maximum 13) for Distributed-M1, at 0.013% (9.44 of maximum 74695) for Response-Total and 1.69%

(0.542 of maximum 32.1575) for Time-M2, each taken within the P2-Reduced range.

162 8. Parameter Tuning

0 5 10 15 20
Qty of Detectors

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.25
1.5

1.75
2.0

Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

0 5 10 15 20
Qty of Detectors

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.25
1.5

1.75
2.0

Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

0 5 10 15 20
Qty of Detectors

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.25
1.5

1.75
2.0

Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure 8.3 – Box plots showing metric performance while varying the priority suppression multiplier parameter
(P2) value within the discrete testing range.

0 5 10 15 20
Qty of Detectors

1
2
3
4
5
6
8
10
12
14
16
18
20
40
60
80
100 Inputs

Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

0 5 10 15 20
Qty of Detectors

1
2
3
4
5
6
8
10
12
14
16
18
20
40
60
80
100 Inputs

Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

0 5 10 15 20
Qty of Detectors

1
2
3
4
5
6
8
10
12
14
16
18
20
40
60
80
100 Inputs

Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure 8.4 – Box plots showing metric performance while varying the static moving window size parameter (P3)
value within the discrete testing range.

8.3.1.4 Static Moving Window Size: P3

Under our test scenario, P3 is the only parameter to show an insignificant correlative effect on the

Time-M2 metric while improving the Distributed-M1 metric. As with P0 and P1, increasing P3’s

value carries the undesirable result that increases the DataSent-M3 metric. The impact of P3 in

Table 8.4 shows each value change has a smaller absolute mean average difference than P0 and P1 on

every metric except for the IO-Events-* metrics.

Figure 8.4 shows a pivot point at P3 = 10, or with 5 seconds window duration. The effects of this

pivot upon the IO-Events- metrics is most obvious, showing a surge in the number of transmissions

made. The surge is likely to represent a pivotal value where the accumulated danger value exceeds the

danger threshold, within the volume selection decision 5.10.1. Thus, this pivot point is likely to reflect

the test set-up’s rate of reading inputs from the model and the frequency of danger classifications in

the dataset. Whether this conjecture is correct or not, the Distributed-M1 and DataSent-M3 metrics

each show a distinct behaviour shift at this same point.

8 163

8.3.1.5 Dendritic Cell Lifespan: P4

Table 8.3 shows that P4’s value test range reports no significant monotonic correlations. The mean

differences in Table 8.4 on parameter P4 show small values of impact, none of which measure as greatest

when compared to the other parameters. This suggests that our test range for the dendritic cell (DC)

lifespan parameter used in 5.11.3 has little impact and shows no ordinal effect. The appendix box plot

results in Figure F.5 have no obvious behavioural trends within the P4 test range.

8.3.2 Discussion of Results - Part 1: Parameter Effects

This analysis has shown which parameters affect the trade-off between DataSent-M3 and Distributed-

M1 and the Time-M2 metric. It has shown that a change in the under attack volume percentage

parameter P0 will have the largest single impact on measured performance of each of the metrics and

that parameter P2 partially counters the P0 and P1 effects.

The moving window size parameter P3, which is a direct dependent of the under attack volume

decision and priority heuristic decisions, has only a small impact on each of the metric results. The

sharp surge in P3’s metric results noticed at 10 seconds is, we think, caused by our specific experiment

design and use case on our virtual network. We expect the pivot point in other use cases to be different

and dependent on the read-in rate and the frequency of danger. A fixed duration with an adaptive

threshold may provide the under attack volume decision with greater robustness.

The priority suppression multiplier parameter P2 has an interesting range of performance between

0.1 and 0.8, leading to equal Distributed-M1 performance and an arc effect upon the DataSent-M3 met-

ric as Figure 8.3 shows. The range above 1.0 leads to very poor performance and is not recommended.

P4 does not report any significant monotonic correlations, nor shows the greatest impact on any of

the metric results. This may be due to the DC decay rate’s minimal importance within the architecture

considering the small validation parameter values that we have selected in 5.8.3. It may also be due

to the limited testing range of values for P4. More likely, is that this minimal effect is caused by a

lack of scaling upon the value of P4, or a lack of reduction scaling applied in Equation 5.15 where the

P4 value is reduced by a fixed value. The quantity of agent interactions increases as the architecture

learns. If the value of P4 or its reduction rate scales to match the quantity of agents, the decay rate is

likely to show a greater impact and robustness.

Next, in section 8.3.3 we will report on the best performing configuration value of each range, which

will help us choose a suitable value for each parameter while using the current configuration set of

parameter values.

164 8. Parameter Tuning

8.3.3 Part 2: Best Immunisation Rate Performance

In Part 2, we answer which parameter set-up gives the best and worst immunisation rate performance

based on evaluations using the default parameter values as stated in Table 8.1; from a local viewpoint

of the entire parameter value space. Having found the best configuration, we can answer whether

changing that parameter’s value from its default leads to a difference worth making.

Using the summary statistics shown in the appendix in tables F.6 and F.7, we can produce a set of

system performance measure results for the architecture’s immunisation rate. The first immunisation

rate is O1 and evaluates the quantity of detectors with time taken to distribute those detectors to give

a data transmission-agnostic measure of the architecture’s performance. Objectives O2 and O3 incor-

porate the DataSent-M3 metrics as well to evaluate two different types of networks. The immunisation

rate for low-throughput networks (O2), such as SCADA networks, adds the data metric with no weight-

ing. Primarily, O2 is the measure we are most interested in. The immunisation rate for high-throughput

networks (O3), such as enterprise networks, combines the amount of data sent with a 10% weighting.

Scores can range from positive (better than) to negative (worse than) the reference benchmark, where

0 is equal to the reference. The interval distance between two scores can be compared as ratios relative

to a reference result. In these tests the reference benchmark has the metric results set at [20, 3, 25] for

Distributed-M1, Time-M2 and DataSent-M3. In section 6.9 our three system performance measures

were defined in detail, then in 6.10.3 our multi-objective evaluation functions were explained. These

give us performance scores for our use cases by combining the metric results using difference intervals

of ratios against a benchmark result.

Tables 8.5, 8.6 and 8.7 show best and worst immunisation rate performance under each different

parameter configuration value. These entries are copied from Table F.11 where the median and standard

deviation results are shown with the best statistics emboldened per parameter range. Figure F.6

visually shows the median trends with interquartile ranges of each configuration test over the 10 trials,

separated by each immunisation rate objective. Figure 8.5 shows an overview of the median results per

configuration per immunisation rate. Matching the analysis earlier in the chapter, we shall evaluate the

P2-Reduced range, rather than the P2-Full range of values; other parameter ranges remain unchanged.

8.3.3.1 Generalised Immunisation Rate (O1)

The immunisation rate evaluation (O1) score balances the quantity of detectors with time taken to

distribute those detectors, while being agnostic to the impact upon size or quantities of transmissions.

Within the O1 columns of Table F.11 we find that the greatest median objective scores are given

in order by [P1, P2, P4, P3 and finally P0]. While considering the P2-Reduced range instead of P2-

Full, the worst scores values arise from [P0, P3, P1, P2 and P4]. These are shown respectively with

configuration values and their scores:

8.3.3.2 Immunisation Rate for Low-Throughput Networks (O2)

The immunisation rate for low-throughput networks (O2) score incorporates the amount of data sent

with the immunisation rate (O1). Decisions made based on these evaluations are applicable to networks

where the architecture’s impact on network traffic must be low, such as in SCADA networks.

8 165

Best Scores
Parameter v. µ Score

P1 4.0 -3.96
P2 0.2 -4
P4 20 -4.28
P3 80 -4.38
P0 1.0 -4.44

(a)

Worst Scores
Parameter v. µ Score

P0 0.25 -9.72
P3 2 -5.57
P1 1.0 -5.38
P2 1.0 -5.08
P4 80 -4.81

(b)

Table 8.5 – Best and worst configuration values (v.) per parameter ranked by O1 median (µ) score.

Best Scores
Parameter v. µ Score

P1 4.0 -3.74
P2 0.2 -3.96
P4 20 -4.02
P3 80 -4.11
P0 0.75 -4.3

(a)

Worst Scores
Parameter v. µ Score

P0 0.25 -9.25
P3 2 -5.13
P1 1.0 -5.09
P2 1.0 -4.77
P4 80 -4.54

(b)

Table 8.6 – Best and worst configuration values (v.) per parameter ranked by O2 median (µ) score.

The O2 columns in Table F.11 the greatest objective scores are given by [P1, P2, P4, P3 and P0].

The worst score values for O2 arise from [P0, P3, P1, P2 and P4]. These are shown respectively with

configuration values and their scores:

8.3.3.3 Immunisation Rate for High-Throughput Networks (O3)

The immunisation rate for high-throughput networks (O3) score incorporates the data sent metric with

a small weighting with the immunisation rate (O1). Decisions made based on these evaluations are

applicable to networks where the architecture’s impact on network traffic is of lower priority than its

security, such as corporate enterprise networks.

Within the O3 columns in Table F.11 the greatest objective scores are given by [P1, P2, P4, P3 and

P0]. The worst score values for O2 arise from [P0, P3, P1, P2 and P4]. These are shown respectively

with configuration values and their scores:

8.3.3.4 Significance of Default to Best Changes

Next is to discover if the configuration with the best scores are significantly better than their default

counterparts. First we take the metric results from both configurations. Then enter the best sample set

Best Scores
Parameter v. µ Score

P1 4.0 -3.94
P2 0.2 -4
P4 20 -4.26
P3 80 -4.35
P0 1.0 -4.43

(a)

Worst Scores
Parameter v. µ Score

P0 0.25 -9.67
P3 2 -5.52
P1 1.0 -5.35
P2 1.0 -5.05
P4 80 -4.79

(b)

Table 8.7 – Best and worst configuration values (v.) per parameter ranked by O3 median (µ) score.

166 8. Parameter Tuning

Parameter U df P-value Significance < 0.05

Generalised Immunisation Rate O1

P0 34.0 9 0.241322 insig.
P1 7.0 9 0.001315 sig. < 0.05
P2 21.0 9 0.031209 sig. < 0.05
P3 12.0 9 0.004586 sig. < 0.05
P4 46.0 9 0.791337 insig.

For Low-Throughput Networks O2

P0 2.0 9 0.00033 sig. < 0.05
P1 43.0 9 0.623176 insig.
P2 0.0 9 0.000183 sig. < 0.05
P3 16.0 9 0.01133 sig. < 0.05
P4 43.0 9 0.623176 insig.

For High-Throughput Networks O3

P0 42.0 9 0.57075 insig.
P1 14.0 9 0.007285 sig. < 0.05
P2 35.0 9 0.273036 insig.
P3 12.0 9 0.004586 sig. < 0.05
P4 46.0 9 0.791337 insig.

Table 8.8 – Table showing the significance of difference between best and default parameter value configurations.
Results are shown for two-tailed corrected Mann-Whitney tests (U) with an α = 0.05 with 9 degrees of freedom
(df).

of metric results into the evaluation function with the reference benchmark set as the median default

result. This is followed by the default sample set with the median default result again as reference. We

do this to avoid a three-point comparative analysis, between best, default and the arbitrary reference.

The two output sample sets of performance results are then passed into a Mann-Whitney U statisti-

cal test, thus making no assumption of the samples’ population distributions (Field & Hole, 2003)[p246].

In Table 8.8 we have employed a corrected one-tailed test using the SciPy library. It’s P-value becomes

two-tailed by applying the adjustment P ∗ 2. We set the critical value of alpha at the typical value of

0.05 (Field & Hole, 2003). Where (P ∗2) < α, we conclude that the populations of the two performance

result samples are significantly different, thus marking an improvement to make.

The Mann-Whitney U test results of immunisation rates data in Table 8.8 show consistent signifi-

cance of P-value differences between default and best parameter value configurations for parameter P3

from default 60 to best 80 (40 seconds). The reader may note that under each of the three immunisation

rate evaluations (O1-3) the same best values were selected for each parameter (P0-4) respectively.

Under the generalised immunisation rate (O1) evaluation it is clear that the parameter P2 change

from default 0.95 to best 0.2 leads to a significant improvement, as does the change of P1 from 2.0 to

4.0. Under the immunisation rate for low throughput networks (O2) evaluation we find that changes

in P3, P2 and P0 from 0.75 to 1.0 led to significant performance increases. For the high throughput

networks (O3) evaluation changes to only P3 and P1 from 2.0 to 4.0 led to significant performance

improvements.

8.3.4 Discussion of Results - Part 2: Best Immunisation Rate

Based upon these results analyses we can decide that the independent changes to parameters P0, P2

and P3 will be most appropriate for our application on low throughput networks, such as SCADA

networks; leading to a final configuration set of: [1.0, 2.0, 0.2, 80, 50]. It is interesting to note that

8
167

0.2
5
0.3

3 0.5 0.6
6
0.7

5 0.9 1.0

P0

−11

−10

−9

−8

−7

−6

−5

−4

−3
O1
O2
O3

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01.2
51.51.7
52.0

P2

1 2 3 4 5 6 8 10 12 14 16 18 20 40 60 8010
0

P3

1 5 10 20 40 50 60 80 10
0

P4

Figure 8.5 – Figure shows median results from our three system performance measures O1, O2 and O3 (scored on the Y-axis) from 10 trials with each parameter’s set
of configuration values (X-axis). Greater scores values are preferred. The plots from left to right show parameters: P0, P1, P2, P3 and P4, each are described within
the chapter. Default parameter configuration values were [0.75, 2.0, 0.95, 60, 50] respectively.

168 8. Parameter Tuning

P0 had the greatest impact per interval but did not lead to the greatest overall performance. We

can hypothesise that an improved configuration could be determined by improving each parameter,

based on these tests. We can also hypothesise that the performance behaviours under different network

conditions would be similar, this will be explored in the following items of work.

8.3.5 Conclusions

Part 1’s study analysed the correlation of parameter range to metric score and discovered which pa-

rameters had the greatest impact on performance within the tested ranges. The Under Attack Volume

Percentage parameter P0 had the greatest impact on metric performance. We found that the Priority

Value Suppression parameter P2 reduces the time taken to transmit, that both P0 and P1 increase.

The time dependent Static Moving Window Size parameter P3 showed a pivotal point at 10 seconds

within its range of values. Above which the transmission sizes and quantities surged upward as caused

by the architecture’s Under Attack decision threshold. The specific value of 10 seconds we believe is dis-

tinct to our experiment set-up. Parameter P2 showed an interesting arced curve upon the DataSent-M3

performance and sweet spot region between values 0.1 and 0.8. The Dendritic Cell Lifespan parameter

P4 appears to have no significant influence of the architecture performance, which we believe to be

caused by its lack of state dependent scaling, either on its threshold value or on its reduction rate of

decay.

In Part 2’s study we analysed the best performing parameter values and found the statistically

significant best configuration set from this local point in parameter space. Based upon our performance

evaluation score to measure the architecture’s immunisation rate for low throughput networks we found

that parameters P0, P2 and P3 were suitable to be changed from their defaults to maximise the

performance score. For the parameters P0, P1, P2, P3 and P4 this led us to the configuration set [1.0,

2.0, 0.2, 80, 50] best suited for test using the O2 objective for low-throughput networks. The analysis

shown in Table 8.8 also informs us of which parameters will most positively affect the performance of our

other network type evaluations, including those for high throughput networks where data throughput

impact is not a deciding factor with a high priority.

This analysis is grounded by the assumptions that the experiment set-up can be replicated to

real network types of differing topology and configuration to our own virtualised network. The tested

network size was small with five nodes. The loopback device provided instant and never dropped packet

transmission. The high quantity of threads vying for processor time will have had an effect upon the

thread execution order over the trials, thus a partial impact on execution behaviour. Most pressingly

is our static default configuration set that anchored the each test. These are items of our consideration

when drawing meaning from these results and lead us to toward a global parameter tuning search.

8.3.6 Next Steps

Next we will report on global searches through the parameter space for the best performing configura-

tions under different network scenarios.

8 169

8.4 Parameter Tuning on Virtual Networks

8.4.1 Objectives

In this study we are interested to find the best configuration for the architecture to maximise its

performance under our target network scenario. In this case we execute a search through a discrete

parameter space and evaluate each configuration set with our immunisation rates.

A standard technique for sensitivity analysis is Latin hypercube sampling (M. D. McKay, 1979),

where an equal density of samples are taken per column and row of the parameter space hypercube.

The Spartan is a recent sensitivity analysis sampling software tool developed to show the relationship

between a simulation and a biological system (Alden et al. , 2013; Alden et al. , 2016). As CARDINAL-

Vanilla is an interaction directed algorithm there is a real possibility of extreme fluctuation in metric

score results as the parameter values change. To reveal whether this is indeed the case an exhaustive

approach is needed; however to progressively improve throughout the space, a constrained exhaustive

step-wise hill climber is used.

8.4.2 Experiment Design

These tests followed the same experiment design as earlier in this chapter while running on the envi-

ronment configuration defined in 7.2.4. The quantity of network nodes remains at five with 10 repeated

trials and the time desynchronisation set at 0.45 seconds, identically to 7.2.4 and as analysed in 7.6.3.

The differences from the virtual network benchmark tests are the dataset and the wrapping of the

search around the architecture’s experiment set-up.

The execution script glued together the architecture’s usual execution cycle into the architecture

evaluation module, the search algorithm’s selection module and the new configuration generation mod-

ules. These integrations led to the automation of the search, which is described in more detail below.

The architecture user input model used the CSIC Dataset D, see 6.7.1.

8.4.3 Search Method

The search method employs a hill climber with a step-wise constrained-exhaustive search as illustrated

in Figure 8.6. In theory the hill climber cannot be guaranteed to find a global optimum. However,

a singularly elitist stepwise exhaustive search gives different benefits. It enables visualisation of the

parameter behaviour from multiple points in parameter space, thereby gaining information about pa-

rameter sensitivity and likelihoods of best performance regions per parameter range. The stepwise

re-evaluation of the same ranges will also permit enquiry into the effects of uncontrolled (stochastic)

operational noise, although this remains as open work. Of course exhaustive searches are time expensive,

due to this the stopping criteria is set at 10 generations. After re-evaluating the same parameter ranges

ten times from different points in search space we expect to have tested a relatively good configuration,

based upon our results containing factorised noise.

The first generation takes the default parameter configuration set shown in Table 8.9 with a sets

of configuration files for each of the parameters, P0 to P3. Each configuration file has a single change

from the generation’s initial default set. Each is evaluated under the experiment set-up. After all of

these configurations have been evaluated, the best configuration contains a single changed parameter

170 8. Parameter Tuning

value from the initial default set and is selected for the next generation. This is the step-wise hill climb.

The next generation’s configurations are generated. New configuration files for each parameter, P0 to

P3, are created as shown in Table 8.9, with the newly updated parameter defaults. The execution and

evaluation of these new generation configurations then begins.

Run
Algorithm

Export
Logs

Extract
Measures

Extract
Metrics

Compress
Logs

Evaluate
Immunisation
Rates

[Next Configs]
Elitist
Selection

[Stop]

[Stopping Criteria Met]

Create
Configs

[Next Generation]

Figure 8.6 – Diagram showing the optimisation pipeline employed to tune the parameter configuration.

The elitist selection process selected a best single configuration. The immunisation rate for high-

throughput networks (O3) was used to evaluate the system performance of each configuration. This

O3 score directed the search. At the time of testing this evaluation objective was preferred in initial

preparation for enterprise network testing. Below we present each of the immunisation rate scores

including those for low throughput networks (O2).

8.4.4 Parameter Tuning Ranges

These tests use reduced ranges of values per parameter as depicted in Table 8.9. The first of the

changes from the previously defined ranges are upon the parameter P4’s range which has been removed

as its effect upon immunisation rate performance was found to be insignificant in 8.3.3.4. Secondly the

P2-Reduced range replaces the P2-Full range as it gives superior performance and is more semantically

intuitive, as noted in 8.2.2.1. Thirdly the P3 range is reduced to limit the discrete search space. The

P3 range of 1 to 5 was selected at the time due to empirical belief that P3 had only a small effect upon

the immunisation rate scores. The total search space has 2,800 states and each generation will evaluate

thirty of those states. Therefore approximately 10% of the space will have been evaluated after ten

generations with ten independent steps through the search space from the default set.

Parameter Default Testing Range

P0 0.75 [0.25, 0.33, 0.5, 0.66, 0.75, 0.9, 1.0]
P1 2.0 [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
P2 0.95 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
P3 4 [1, 2, 3, 4, 5]
P4 50 [50]

Table 8.9 – Table shows the discrete testing range of values per parameter, adapted as a result of the earlier
tests upon the original ranges. First generation default parameter value are shown.

8.5 Results

Part 1’s results analysis shows the best configurations outputted during the search method as each

generation completed. The criteria for best configuration is the evaluation of the immunisation rate for

8 171

high throughput networks (O3). As we have seen before, O3 combines three metric scores Distributed-

M1, Time-M2 and DataSent-M3. Each of the 10 trial runs of a given configuration give the three

measurements. In Part 1’s analysis, the median measurement of each metric from the 10 trials was

selected to represent the configuration. The Ratios with Inverses equations described in F.1.1 evaluate

that set of three metric scores. The O3 score of each configuration is put forward into a pool. The best

configuration in the pool determines the next generation’s default parameter set. Table 8.10 shows the

score of the best measured configuration after each search step.

In Part 2’s results analysis the best discovered configurations are reported, based on the Ratio of

Distances evaluation equations (in section 6.10.3). Part 1’s Ratios with Inverses equations inaccurately

combine metrics with a MIN-type preferred semantic condition. To remove the effect of this inaccu-

racy on the encountered search candidates each is re-evaluated using the accurate Ratio of Distances

evaluation measure. Ratios with Inverses equations are critiqued in section F.1.1. Figure 8.7 illustrates

the double evaluation of each candidate configuration set (search state) as analysed within Part 1 and

Part 2.

In Part 2, the network-wide metrics have been re-extracted to give the complete set of Time-M2

recorded results. The standard deviations and interquartile ranges for Time-M2 have been calculated.

Tables 8.11 and 8.12 show the best ranked configuration sets from all of the search states. The

ranking of each configuration set is given by its median immunisation rate score for low throughput

networks (O2). In this part’s analysis we consider no restrictions on the source generation of the best

rankings.

The best ranking result sets for the other two immunisation rate scores are given in the appendix.

See tables F.12 and F.13 for the generalised immunisation rate (O1) and see tables F.14 and F.15 for

the immunisation rate for high throughput networks (O3).

8.5.1 Part 1: Search Results by Generation

The best runtime evaluated score is shown at generation 9 led by the runtime evaluation of the O3 score

for high throughput networks. By generation 9, the search configuration had maximised the generalised

immunisation rate (O1); the rate that does not account for data transmitted. At generation 9 the elite

configuration had maximised the value of P0 and minimised P3 and P2 values, with P1 at a low-to-

medium value position within the range.

The best immunisation rate scores for low and high throughput networks (O2 and O3) of all the

generations were found in generation 4. Its elite configuration minimised P2 and P3, while keeping

a medium-high value for P0 and a medium value for P1. Generation 4 showed the best median

and standard deviation on Distributed-M1, 4th-best Time-M2 median score and 4th-best DataSent-

M3 median, standard deviation and interquartile range scores. Generation 3 and 4 show the same

configuration with slightly differing performance scores, from this we draw two conclusions. First this

configuration takes higher preference due to taking the equally highest mode of the elite configurations,

along with generations 1 and 2. Second is the variation between any two sets of trial runs of the

algorithm is affected by noise giving metric scores; in this case 1.48 standard deviations for Distributed-

M1 and 0.36 standard deviations for DataSent-M3.

The elite configuration with the best Time-M2 score came at generation 7, however its value is

relatively similar to generations 4, 8 and 9. We did not record enough data during runtime search to

172 8. Parameter Tuning

Part 1: Search Driven Best States
Driven by Ranked O3 Evaluation Scores
using Ratios with Inverses equations.

Part 2: Best of Search States
Ranked by O2 Evaluation Scores using
Ratio of Distances equations.

Initial Default Parameter Set

Ti
m

e

Gen 1

Gen 2

Gen 0

Gen 3

Gen 4

Figure 8.7 – Illustration of the search states analysed within the text. Highlights the differing immunisation
rates and evaluation equations used during the analysis. Green circles represent the configuration set selected
during the step-wise search. Grey circles represent the configuration set selected post-search, using the Ratio of
Distances evaluation equations. Four lines from each circle represent values along the four parameter dimensions.

8 173

evaluate the standard deviation or interquartile range of Time-M2 thus are unable to show significance.

However, the metric’s median scores show the elite configurations are closely grouped. The Distributed-

M1 median scores show most of the elites perform similarly, with generation 4 showing lowest standard

deviation. The generation with the best DataSent-M3 median score came at generation 3, which

matches the configuration at generation 4.

8.5.2 Discussion - Part 1: Search Results by Generation

In this study we found a configuration set that gave the best immunisation rate performance on both

low and high throughput networks (O2 and O3). Generation 4’s unique configuration set was selected

as elite the most number of times during the search, together with a very similar set at generation 2

and gave the best O2 and O3 scores of the entire search. The search led to a configuration that should

have maximised performance for high throughput networks; however, it actually found configurations

that finally increased the amount of data sent leading to a final generation with the best generalised

immunisation rate (O1) score.

Over the 10 generations the search selected configuration that minimised both P3 and P2. We

also notice there is some relationship between increasing P1 and lower P0, as seen at generations 5

and 6. The following search step recovered to the more expected maximisation of P0, which in turn

lowered the value of P1. Over each generation, we also notice that the proximity of each of the median

metric scores are close. The standard deviations between two sets of trials (generations 3 and 4) on

the same configuration are within 1.48 and 0.36 standard deviations for Distributed-M1 and DataSent-

M3 respectively. Thus, while there most certainly is a noticeable difference between a bad and good

configuration, between the best configurations there are only relatively small differences.

The next analysis will report on metrics collected by a repeated extraction of measurements from

the runtime log files with the complete set of Time-M2 metric results per configuration and evaluated

using the Ratio of Distances equations, stated in 6.10.3.

8.5.3 Part 2: Best Search States

The top ranked configuration set lowers the P0 value and results in a large jump in the generalised

immunisation rate (O1) and the high throughput rate (O3) scores. Rank number 1’s has the best Time-

M2 score which is likely to be the reason for its performance hike. It has the 2nd-best Distributed-M1

score and the 9th-best DataSent-M3 score, although seven of the other ranks’ median DataSent-M3

scores are within 1.26 standard deviations, see ranks 3,4,5,6,7,9,10. Rank 1’s P0 value of 0.66 is found

in 30% of the top 10 ranked configuration sets and its P1 value of 0.1 is found in 90% of the top ranks.

P0 with a value of 0.66 is not found in any of Part 1’s elite configuration sets, as a result of it having

a different immunisation rate to optimise.

Part 1’s best configuration set (0.75,2,0.1,1) for immunisation rate score for low and high throughput

networks (O2 and O3) appears twice and is ranked at 2nd and 6th place in this new ranking. The rank

six set was selected from generation 4 which matches the best O2 set found in Part 1. The rank two

set was found in generation 5, which did not appear as an elite set in Part 1.

The best Distributed-M1 score is given by ranks 6 and 10, overall this ranking shows fewer configu-

ration sets maximising the number of distributed detectors score. The best Time-M2 score came from

rank number 1. The best DataSent-M3 came from rank 8’s configuration set. Ranks 8 and 10 share

17
4

8.
P

aram
eter

T
u

n
in

g
Configuration Metric Scores Immunisation Rate Parameter

Set Distributed-M1 Time-M2 DataSent-M3 Scores Change
Generation P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR O1 O2 O3 Param Config Value

init. 0.75 2 0.95 80 19.0 1.676 0.75 17.112 - - 61.1 9.448 14.4 -1.29297 -1.93759 -1.35743

0 0.75 2 0.95 2 19 3.247 0 16.707 - - 52.8 15.387 18.775 -1.27571 -1.81501 -1.32964 P3 C1 2
1 0.75 2 0.1 2 20 0.516 1 18.156 - - 53.65 11.371 10.85 -1.29871 -1.84953 -1.35379 P2 C0 0.1
2 0.75 2 0.1 2 20 0.699 0.75 16.394 - - 51.2 5.826 8 -1.22507 -1.74217 -1.27678 P1 C3 2
3 0.75 2 0.1 1 19 0.675 0 16.883 - - 42.65 9.153 6.325 -1.28327 -1.66858 -1.32180 P3 C0 1
4 0.75 2 0.1 1 20 0.483 0.75 15.787 - - 46 4.869 4.425 -1.19785 -1.63770 -1.24184 P3 C0 1
5 0.75 3.5 0.1 1 20 1.265 0.75 16.44 - - 45.45 8.036 11.275 -1.22709 -1.65826 -1.27021 P1 C6 3.5
6 0.5 3.5 0.1 1 20 0.699 0.75 17.452 - - 44.35 10.511 17.425 -1.27018 -1.68368 -1.31153 P0 C3 0.5
7 1 3.5 0.1 1 19.5 1.826 1 15.346 - - 61.5 15.966 10.4 -1.19568 -1.84501 -1.26061 P0 C6 1
8 1 1 0.1 1 20 3.719 1 15.439 - - 60.55 14.890 17.85 -1.18177 -1.81987 -1.24558 P1 C1 1
9 1 1 0.2 1 20 0.707 1 15.397 - - 67.7 17.081 23.65 -1.17981 -1.89842 -1.25167 P2 C1 0.2

Table 8.10 – Table showing the best configuration sets ranked at runtime by their O3 immunisation rate score over the ten search generations running under the virtual network
testing environment. Greatest immunisation rate scores (O1,O2,O3) are preferred. Preferred result values are shown in bold. The median Time-M2 values were runtime decision
factors used to calculate O1,O2 and O3, these are reported. The standard deviations (Std) and interquartile ranges (IQR) for the Time-M2 metric are missing as they were not
extracted at runtime.

init. 0 1 2 3 4 5 6 7 8 9
Search Generation

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

Im
m

un
is

at
io

n
Ra

te
 S

co
re

O1
O2
O3

Figure 8.8 – The plot shows the median immunisation rates (O1,O2,O3) from the table above over the 10 search generations.

8 175

the same configuration set with P0 = 0.66 and P1 = 3.5 and take a 66% share of best metric scores.

However, they rank lower as they share the two lowest Time-M2 scores of the ranking.

There is large standard deviation on the rank 3 configuration set. This is most noticeable in the

Time-M2 metric score and then subsequently in the standard deviations of the immunisation rate

scores. With a deeper understanding of the Time-M2 metric, the implemented code and the test

condition we can conclude this as follows. In the event where one of the network nodes fails to receive

any detectors, i.e. due to failing to open its receiving communication socket, and that node locally

read-in zero desirable detectors, then the Time-M2 score is set at the duration of the entire test. This

larger value is instead of the usual median time for detector distribution. Other variations on this case

can lead to a similar result. Therefore, we consider this an unrepresentative result of the configuration

and instead make our judgements based upon its median scores and their interquartile ranges.

8.5.4 Discussion - Part 2: Best Search States

In this analysis study we found a new top ranked configuration set within the discrete testing range

defined in Table 8.9, based on the immunisation rate for low throughput networks (O2). The top

ranking set lowered its value of P0 and raised its P3 value based upon Part’s top ranking set for O2,

which led to a better Time-M2 performance rate. We also found supporting evidence for the best elite

configuration set from Part 1. Part 2’s rank 2 and rank 6 configuration sets match Part 1’s best set

for low and high throughput networks (O2 and O3) from generation 4. Both Part 1 and Part 2’s top

configuration sets for O2 are relatively similar – sharing P1 and P2 parameter values and within 1 step

for both parameter P0 and P3. Based upon the results of these analyses, either configuration sets are

good initial candidates for selection in similar future applications.

This analysis has shown that lowering the parameter P0 value of % of hosts and detectors to

distribute to a point at or around 0.66-0.75 leads to the best performance for the immunisation rate

scores for low throughput networks (O2). While minimising the priority suppression parameter P2 gives

best performance. In these tests we have found that lowering the time dependent parameter P3 gives

best performance, but we note that it has some relationship to P0 and is likely to have a dependency

on the available hardware resource and throughput capacity; in this case the time dependent bottleneck

is the virtual network and the machine running the test.

We have found that many of the generations have given a top 10 ranked set. This implicates that

the timing of a generation, – i.e. a day, where a single generation ran for approximately 24 hours, –

may have had only a small effect on the immunisation rate O2 score; however this is an unmeasured

statement.

8.5.5 Conclusions

This parameter tuning evaluation has found two candidate parameter configuration sets for the CARDINAL-

Vanilla architecture that maximise the performance for SCADA like networks, those networks that

require a lower impact upon network throughput. The underlying test configuration used our virtual

network environment with five nodes, as such the direct application of these candidate configuration set

should be used with an understanding of the ordinal effects of each parameter, described within, and

an understanding of the effects of decentralised distributed applications running on the target network

hardware and topologies. The two top ranked parameter configuration sets for our application led us

17
6

8.
P

aram
eter

T
u

n
in

g

Configuration Metric Scores
Set Distributed-M1 Time-M2 DataSent-M3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR Generation

1 0.66 2 0.1 2 19.500 0.500 1.000 14.889 2.246 2.835 46.650 3.939 7.150 2
2 0.75 2.0 0.1 1 19.000 0.640 0.000 16.078 2.729 0.734 38.750 6.573 8.775 5
3 0.75 4.0 0.1 1 19.000 5.869 2.250 16.819 64.784 3.944 41.650 6.109 5.550 4
4 0.75 3.5 0.1 1 19.500 1.166 1.000 16.653 6.946 4.079 48.800 6.536 4.800 6
5 0.75 2 0.95 1 19.000 1.414 1.000 16.109 4.779 2.835 42.550 13.512 15.100 0
6 0.75 2.0 0.1 1 20.000 0.458 0.750 15.712 1.368 2.486 46.000 4.619 4.425 4
7 0.75 3.0 0.1 1 19.500 0.663 1.000 16.478 1.484 2.693 45.950 5.040 8.375 6
8 0.66 3.5 0.1 1 19.000 2.202 0.000 17.498 4.936 3.758 37.100 3.951 4.075 7
9 0.75 2.5 0.1 1 19.500 0.663 1.000 16.715 1.387 0.947 44.600 7.602 7.950 6
10 0.66 3.5 0.1 1 20.000 0.490 1.000 16.993 2.099 2.489 44.450 7.915 8.425 7

Table 8.11 – Table showing metric scores of the best configurations ranked by immunisation rate O2 score. Scores from the parameter tuning search under the virtual network
environment set-up.

Configuration Immunisation Rate Scores
Set O1 O2 O3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR

1 0.66 2 0.1 2 -1.99392 0.37643 0.46621 -2.48217 0.40510 0.49479 -2.03912 0.37866 0.47236
2 0.75 2.0 0.1 1 -2.21717 0.46889 0.12229 -2.51475 0.53059 0.32529 -2.23610 0.47378 0.11767
3 0.75 4.0 0.1 1 -2.32008 10.93923 0.71133 -2.52467 10.89624 0.70050 -2.33988 10.93487 0.71836
4 0.75 3.5 0.1 1 -2.28800 1.18286 0.68617 -2.57450 1.18113 0.71717 -2.31653 1.18204 0.67610
5 0.75 2 0.95 1 -2.19733 0.82436 0.44750 -2.60208 0.86355 0.81237 -2.23218 0.82438 0.48117
6 0.75 2.0 0.1 1 -2.11858 0.22656 0.42683 -2.64167 0.23447 0.34158 -2.17048 0.22566 0.41126
7 0.75 3.0 0.1 1 -2.24633 0.24584 0.45504 -2.66658 0.30767 0.56258 -2.28203 0.25089 0.45179
8 0.66 3.5 0.1 1 -2.44125 0.87496 0.64508 -2.66742 0.83518 0.56692 -2.46185 0.87074 0.64313
9 0.75 2.5 0.1 1 -2.32325 0.23102 0.13908 -2.67758 0.17613 0.24271 -2.35422 0.22148 0.14260
10 0.66 3.5 0.1 1 -2.33858 0.35360 0.41787 -2.69492 0.40379 0.57225 -2.38688 0.35578 0.42862

Table 8.12 – The adjoining table to the above, showing immunisation rate scores of the same best configurations ranked by their O2 score. Scores from the parameter tuning
search under the virtual network environment set-up.

8 177

to a preferred set at or near (0.66,2.0,0.1,2) and (0.75,2.0,0.1,1) for parameters P0 through to P3. A

real life application of the architecture may find good relative performance from a new configuration

set that is based on the top two sets; i.e. found by interpolating values 0.66 and 0.75 for parameter P0

and values 1 and 2 for parameter P3, where other parameter values can be taken directly. The ranked

parameter configuration set evaluations for the alternative high throughput networks are shown in the

appendix.

8.5.6 Next Steps

This test’s environment set-up used a number of nodes that we expect to be smaller than our target

application and its virtual network environment is known to behave differently than in conventional

networks. Therefore, our next item of work is to analyse the parameter configuration performance

under an enterprise network set-up, together with a larger number of nodes.

178 8. Parameter Tuning

8.6 Parameter Tuning on Enterprise Networks

The architecture will have to handle different conditions of the network either by adapting to or selecting

a preferable architecture parameter configuration. The objective will be to maximise the architecture’s

immunisation properties without hindering the network or computational performance of the underly-

ing machines. Before installing the architecture on the corporate workstations of an ICS or SCADA

network, we must find a preferable parameter configuration.

This study will search for the best configuration for the architecture under our enterprise network

experiment set-up. Matching the earlier parameter tuning on our virtual network, we will execute a

search through a discrete parameter space and appraise each configuration with our immunisation rate

evaluations.

8.6.1 Experiment Design

These tests followed the same experiment design as used in the enterprise benchmark tests in 7.4.3.1,

with the workstations’ environments set as in D.2. Twenty wired network workstations were used in

each test. In this experiment the dataset read-in by the distributed user model was the v0.5.2 CSIC

dataset version, described in 6.8.

The execution script wrapped the architecture’s experiment framework into the parameter tuning

framework, which integrates the search generation evaluation module, the configuration file generator

and the scripts to manage the logs, configurations files, metric results files and immunisation rate

evaluation files, as Figure 8.9 shows. The script for this parameter search is described in detail in D.4.

8.6.2 Parameter Tuning Ranges

The search uses the parameter value ranges specified in Table 8.13. The virtual network search exper-

iment in 8.4 helped us to further refine and reduce the P0 and P2 parameter ranges giving the best

performing values shown in the table. The ranges give 1800 possible states in this parameter search

space.

Parameter Testing Range

P0 [0.5, 0.66, 0.75, 0.9, 1.0]
P1 [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
P2 [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
P3 [1, 2, 3, 4, 5]
P4 [50]

Table 8.13 – Table shows the discrete testing range of values per parameter, adapted as a result of the earlier
tests upon the original ranges.

8.6.3 Search Method

The search method in these tests used a multiple start hill climbing algorithm, similar to that described

by (Mahdavi et al. , 2003). The change in optimisation method was due to the amount of time taken.

The search procedure matches the earlier method and its pipeline is restated for clarity in Figure 8.9.

8 179

Run
Algorithm

Export
Logs

Extract
Measures

Extract
Metrics

Compress
Logs

Evaluate
Immunisation
Rates

[Next Configs]
Elitist
Selection

[Stop]

[Stopping Criteria Met]

Create
Configs

[Next Generation]

Figure 8.9 – Diagram showing the optimisation pipeline employed in the parameter configuration search under
the enterprise network test set-up.

The classic hill climber search, as used in the earlier virtual network search, is prone to getting

stuck in local optima. A multi-start hill climbing algorithm climbs from N randomised starting points,

pursuing only a percentage of the best paths. This improves its likelihood of reaching a higher fitness

than the classic climber, however neither can be guaranteed to reach the global optimum. Mahdavi et

al have suggested that this search approach gives good information for subsequent searches (Mahdavi

et al. , 2003) and as such provides an approximation of the global optima.

Figure 8.10 – Illustration of the search steps taken by the multi-start hill climbing parameter tuning approach.

The first generation begins with N starting configurations, randomly selected from the parameter

state space. The architecture is run with each configuration over 10 trials and then evaluated. 10%

of the top evaluated configurations are selected as starting candidates for the next generation. Each

elite configuration’s parameters are incremented and decremented to give eight further candidate con-

figurations. Duplicates within this or from an earlier generation are not retested. This decision carries

the assumption that performance over time will not be negatively affected by noise. The parameter

increments are index-based increments within the bounds of each range of values, defined in Table 8.13.

Suitable stopping conditions are when the slope of sorted performance scores levels out, i.e. each

configuration’s fitness is statistically insignificantly different from its predecessor’s fitness when the

result set is sorted by performance, or when there are no more configurations to test. Time was a

factor in our case, which meant that after 6 days of trials consisting of 3 generations and a total of 317

configurations tested the search was terminated.

180 8. Parameter Tuning

v. Description

1800 Quantity of configuration states.
10% Starting points (180 configurations) randomly selected.
10% Top n% of results selected from each generation.
O3 Selection fitness evaluation function.
20 Architecture network node quantity.

Table 8.14 – Table of the multi-start hill climbing algorithm’s parameter values.

The configuration metric results of each generation are evaluated using the immunisation rate for

high throughput networks (O3) using the Ratios with Inverses equations mechanism. This evaluation

function selected the elite configurations per generation and directed the search in the same manner as

the virtual network search in 8.5.1. The flaw with the Ratios with Inverses equations is it inaccurately

combines metrics with a MIN-type preferred semantic condition, critiqued in F.1.1. This results section

instead reports performance of each immunisation rate objective calculated using the reliable Ratio of

Distances evaluation equation, as stated in 6.10.3. Under both evaluations, a fixed metric result set

of [M1 = 20,M2 = 3,M3 = 25] provided the preferred reference benchmark against which the ratios

were calculated.

8.7 Results

The results presented consist of the best 10 configuration sets ranked by their immunisation rate score

for low throughput networks (O2) over the 3 search generations. The ranking is calculated using the

reliable Ratio of Distance evaluation equations stated in 6.10.3. Tables F.17, F.19 and 8.19 show

the metric results from generations 1 to 3, while tables F.18, F.20 and 8.20 show their calculated

immunisation rate results.

Figure 8.11 summarises the median immunisation rate score performance for each of the 317 config-

urations over the 3 generations over six days. It clearly shows differing behaviour between generations

1 and generations 2 and 3. So the challenge is to find meaning from the stochastic search.

8 181

Gen 1: 16-May - 18-May Gen 2: 23-May - 25-May Gen 3: 25-May

Search Generations
−5.5
−5.0
−4.5
−4.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0

Im
m

un
is

at
io

n
Ra

te
 S

co
re

O1
O2
O3

Figure 8.11 – The plot shows the median immunisation rates (O1,O2,O3) over the 3 search generations and
highlights the experiment noise.

8.7.1 Reasoning through the Noise

There is variability in the min-max range of performance scores between generation 1’s configurations

and the subsequent generations. This is explained by the random selection of the generation 1’s

configuration sets and the stepwise selection used in generations 2 and 3. The reduced min-max

range of variability at the mid-point in generation 1 is caused by a shift from 5 trials (A) to 10 trials

(B) per configuration test leading to a more settled median in the second half of generation 1. This B

result set and the subsequent B 2 and B 3 sets each use 10 trials. There is a stepped-down performance

change at the start of generation 2. Shown below is evidence that indicates this is due to uncontrolled

network activity. This conclusion is drawn as no other factors were changed except the configuration

sets and the time/date of the tests on the network, however the quantity of packets sent has increased

dramatically.

The network is managed by other staff and the switch is auto-managed, therefore quality of service

(QoS) policies may have throttled the architecture transmissions or TCP:port transmissions. Dropped

packets or suspended streams would cause transmission retries, slowing the Time-M2 score and in-

creasing the DataSent-M3 scores. Generation 1’s top results consistently show a Time-M2 score 5

seconds less than and a DataSent-M3 score 100 MiB less than the top results of generations 2 and

3, Table 8.15 summarises this. The value of 2.75 in the DataSent-M3, Diff column at generations 2

and 3 may suggest that on average packets under went 2.75 retries before successfully arriving, taking

on average 34% more time to transmit. We conjecture this explains the stepped-down performance

change.

Alternatively if other workstation activity was under-way, time to process the inputs would slow

leading to a larger Time-M2 and which could cause thread priority changes delaying the time at which

182 8. Parameter Tuning

Mean Metric Scores
Generation Dist-M1 Diff. Time-M2 Diff. DataSent-M3 Diff.

1 13.7 - 11.9065 - 61.215 -
2 14 1.022 16.0007 1.344 168.565 2.754
3 14 1.022 15.9732 1.342 168.695 2.756

Table 8.15 – Table shows mean metric scores per generation from the top 10 configuration results ranked by
immunisation rate for low throughput networks (O2). The Diff. columns show the multiplier difference from
generation 1, at 3 decimal places.

IO-Events Median Host
Gen 1 Gen 2 Gen 3

Measure Sent Recv Sent Recv Sent Recv

Mean 177.714 176.088 318.982 318.860 318.982 318.814
Median 175 175 319 319 319 319

Std. 15.286 12.996 0.132 1.538 0.133 1.449
Max 236 219 319 323 319 324
Min 147 151 318 315 318 315

Table 8.16 – Table of descriptive statistics shows a clear difference between generations, based upon the number
of IO-Events, corroborating the belief that network throttling caused the metric differences between the gener-
ations. The IO-Events metric quantifies the number of transmission events by the median host of the network,
per trial; stats are shown over the entire range of trials per generation.

the detectors were selected. This could lead to a larger quantity of available detectors, thus larger

packet sizes affecting DataSent-M3, but this would not explain the IO-Events metric showing a large

discrepancy between transmission events found between generations 1 and generations 2 and 3, as

shown by Table 8.16.

Thus we conclude network throttling to be the likely cause of the stepped-down performance change

after generation 1. Therefore we can draw comparisons from within each generation, but not between

all generations. Based upon the IO-Events metric results shown in Table 8.16, one could believe that

the throttling, or noise, is equal upon both generations 2 and 3. Equally controlled experimental

conditions mean that comparisons between Gen 2 and Gen 3 are valid, but comparisons between Gen 1

and the other generations are not valid. The search selection remains valid. Therefore the best selected

configurations from all generations are valid to consider best in there respective generation; however,

comparisons between the best of the three generations is explicitly not valid. In an ideal scenario we

would control for any network throttling. In future experiments we would use the results of control

trials to deduct from test trials in order to identify fluctuations.

8.7.2 Best Configuration Set Results

The top 10 configuration sets shown in Table F.17, F.19 and 8.19 appear, at first glance, to be non-

uniform. The top 10 configurations contain parameter values from top, bottom and mid ranges for

parameter P0, P1 and P3, whereas P2 broadly stays high throughout the generations. After some

analysis we do find compelling probability characteristics on the parameter value regions.

The emboldened values in Table 8.17 show the percentage of each best performing parameter falling

above or below its mid-point in each generation. In generation 1 we see that P0 and P1 were low in

their ranges. P2 was high and P3 was low. In generation 2, P3 was equally distributed in its range,

P2 remained high and P0 and P1 remained low while moving marginally toward a higher value. In

8 183

generation 3, P0 became higher, P1 stayed low and P2 remained high and P3 became higher.

We found at the end of generation 3 that P0 and P1 had similar traits to the virtual network

parameter tuning search in Table 8.10, as Table 8.18 summarises. In the virtual network test P0

increased to its maximum of 1 in the range 0.5-1; in this test P0 had a value of 0.75-1 in 70% of the

top 10 cases, its top ranked configuration selected the highest value of 1. In the best of the virtual

tests, P1’s value was low to medium within the range. In the enterprise test P1’s value ranked low to

medium in 60% of the best configurations, with a midrange value of 3 in the top configuration.

However, Table 8.18 shows us that P2 and P3 clearly performed better at the opposite ends of

their parameter ranges when we compare the enterprise and virtual network test conditions. It is

possible that the differing network sizes (5 and 20) cause this case, but we believe this is due to the

unique time conditions of each test. P3 depicts the time duration of the danger definition within

the architecture. P2 defines how quickly detector priority is diminished, larger values cause quicker

deprioritisation. There is a relationship between faster suppression over a longer duration of P3 and

very slow suppression over a short duration of P3. Both cases have shown good performance under the

different test conditions. Ranks 3 and 9 in the top 10 B 3 result set counter this relationship by having

opposing low and high values for those parameters, but do perform well. However, we are yet to find

medium ranged values perform as well as the extremity cases. Further generations of this search would

be unable to find

In Table 8.18 parameters P1, P2 and P3 show some relations. There is a correspondence between

low to medium initial priorities with low priority suppression over short durations, and between medium

to high initial priority with higher suppression over longer durations. We observe examples of both cases

offering good immunisation rate performance for low throughput networks (O2). A critical viewpoint

taken may suggest the tuning is attempting to remove the impact of the priority heuristic by equalising

the components of the its uprate/down-rate regulation, this is a subject open to future enquiry.

Generation 1: Top 10 (A and B)

P0 0.5≥ 80% < 0.75 ≥ 20% <1.0
P1 0.5≥ 70% < 2.0 ≥ 30% <3.5
P2 0.7≥ 10% < 0.8 ≥ 90% <0.9
P3 1.0≥ 70% < 2.5 ≥ 30% <4.0

Generation 2: Top 10 (B 2)

P0 0.5≥ 60% < 0.7 ≥ 40% <0.9
P1 0.5≥ 60% < 2.25 ≥ 40% <4.0
P2 0.2≥ 30% < 0.55 ≥ 70% <0.9
P3 1.0≥ 50% < 3.0 ≥ 50% <5.0

Generation 3: Top 10 (B 3)

P0 0.5≥ 30% < 0.75 ≥ 70% <1.0
P1 2.0≥ 60% < 3.0 ≥ 40% <4.0
P2 0.2≥ 10% < 0.55 ≥ 90% <0.9
P3 2.0≥ 10% < 3.5 ≥ 90% <5.0

Table 8.17 – The tables map each of the elite configurations’ parameter values into either the top or bottom
regions of the parameter’s range. The percentages show where those configuration values fell from each of the
elite configurations per generation.

184 8. Parameter Tuning

Parameter Region
Network Size Generation Use Case P0 P1 P2 P3

Virtual 5 At Gen 9 Directed best O3 1 (H) 1 (L) 0.2 (L) 1 (L)
Virtual 5 At Gen 4 Directed best O2 0.75 (H) 2 (M) 0.1 (L) 1 (L)
Virtual 5 After Gen 9 Best O2 0.66 (M) 2 (M) 0.1 (L) 2 (ML)
Enterprise 20 After Gen 3 Best of O2 70% (H) 60% (ML) 90% (H) 90% (H)
Enterprise 20 At Gen 3 Best O2 in B 3 1 (H) 3 (M) 0.7 (H) 4 (H)
Enterprise 20 At Gen 2 Best O2 in B 2 0.9 (H) 3.5 (M) 0.7 (H) 5 (H)

Table 8.18 – Table shows a comparison of best parameter values selected during each of the parameter tuning
searches. Emboldened are the opposing findings for parameters P2 and P3 in the enterprise to the virtual
parameter tuning tests. L,ML,M and H refer to low to high values within each parameter’s test range.

8
185

Configuration Metric Scores
Set Distributed-M1 Time-M2 DataSent-M3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR Generation

1 1.0 3.0 0.7 4 14.000 0.000 0.000 16.188 0.807 0.816 164.800 5.719 2.250 B 3
2 0.9 3.0 0.8 4 14.000 0.600 0.000 15.848 1.299 0.599 167.050 6.038 6.950 B 3
3 0.75 2.0 0.2 5 14.000 0.000 0.000 15.983 0.725 0.449 167.050 2.945 1.175 B 3
4 0.5 2.5 0.9 4 14.000 0.000 0.000 15.931 0.755 1.461 168.000 5.609 6.450 B 3
5 0.9 2.5 0.7 4 14.000 0.400 0.000 16.093 0.699 0.882 165.550 5.295 4.875 B 3
6 1.0 4.0 0.7 4 14.000 0.000 0.000 15.524 0.909 1.128 171.550 4.175 6.125 B 3
7 0.66 2.5 0.8 4 14.000 0.000 0.000 15.897 1.291 0.828 169.550 1.965 2.525 B 3
8 0.9 3.0 0.6 4 14.000 0.000 0.000 15.950 0.936 1.829 169.950 5.108 9.125 B 3
9 1.0 2.5 0.9 2 14.000 0.300 0.000 16.248 1.684 1.508 173.150 8.404 8.300 B 3
10 0.5 2.5 0.7 4 14.000 0.300 0.000 16.070 0.768 1.371 170.300 6.673 7.975 B 3

Table 8.19 – Table showing metric scores of the best configurations ranked by immunisation rate O2 score. Scores from the parameter tuning search under the enterprise network
environment set-up during generation 3, result set B 3.

Configuration Immunisation Rate Scores
Set O1 O2 O3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR

1 1.0 3.0 0.7 4 -2.34800 0.13448 0.13596 -5.15200 0.17103 0.13613 -2.62840 0.13425 0.12835
2 0.9 3.0 0.8 4 -2.29142 0.22988 0.09975 -5.15783 0.34258 0.25854 -2.58062 0.24080 0.11435
3 0.75 2.0 0.2 5 -2.31375 0.12079 0.07483 -5.17867 0.12462 0.17700 -2.60378 0.11988 0.07825
4 0.5 2.5 0.9 4 -2.30517 0.12585 0.24346 -5.18408 0.14575 0.12571 -2.58037 0.12347 0.22956
5 0.9 2.5 0.7 4 -2.33208 0.12168 0.16571 -5.18550 0.16887 0.23308 -2.62578 0.12316 0.16281
6 1.0 4.0 0.7 4 -2.23733 0.15156 0.18792 -5.21033 0.18212 0.26129 -2.53043 0.15285 0.20137
7 0.66 2.5 0.8 4 -2.29950 0.21524 0.13796 -5.21050 0.23073 0.20587 -2.59230 0.21652 0.14006
8 0.9 3.0 0.6 4 -2.30842 0.15606 0.30479 -5.21700 0.18655 0.28104 -2.59442 0.15640 0.31412
9 1.0 2.5 0.9 2 -2.35792 0.28184 0.27004 -5.23150 0.23056 0.34583 -2.64282 0.27252 0.28464
10 0.5 2.5 0.7 4 -2.32825 0.12558 0.21983 -5.24417 0.12751 0.11146 -2.60695 0.11923 0.19518

Table 8.20 – The adjoining table to the above, showing immunisation rate scores of the same best configurations ranked by their O2 score. Scores from the parameter tuning
search under the enterprise network environment set-up during generation 3, result set B 3.

186 8. Parameter Tuning

8.7.3 Discussion

The experiment infrastructure gave a plethora of noise hiding the comparisons over the generations

while transforming the second and third generation results of the multi-start hill climbing search.

By observing indicators of QoS throttling on the transmission values of our non-metric IO-Events

test measures we drew understanding from the underlying results. Table 8.18 shows the best of the

information extracted to help readers choose an appropriate configuration.

The best configurations selected after six days of trials and three search generations show some

similarity and some conflict to those found in our earlier virtual network parameter tuning search.

Parameters P0 and P1 have matching traits to the earlier tests. P0 was maximised to transmit more

detectors to more hosts. The tuning pipeline assigned P1 a midrange to minimised value for a detector’s

initial heuristic priority value. More generations may further support these similarity, however due to

operational needs of the network at this test scale we were unable to tune further.

Parameters P2 and P3 differed from the virtual tests by mostly raising or maximising their values

within their ranges by the end of the third generation, shown by example in Figure 8.12. Earlier in

the chapter, in Figure 8.5 a small dip in parameter P3’s performance between values 1 and 5 can be

found, as is tested during this tuning. The cause of this search path difference between the virtual and

enterprise tests remains unclear. We believe this is the result of an another region of good performance

for the combined effect of the two parameters, however it may have been selected as a result of the

differing network sizes or execution times of each experiment set-up.

Parameter Values
for P2 & P3

Virtual
Network
Tests

Enterprise
Network
Tests

Im
m

u
n

is
a
ti

o
n
 S

co
re

Figure 8.12 – An illustration of the saturated regions of highest immunisation rate scores found within the
parameter ranges for P2: [0.1-0.9] and P3: [1-5]. Circled are the regions preferred by the virtual and enterprise
network conditions.

While, an advantage of our search method was its rapidity to converge on an optima in only a few

generations, it remained prone to finding locally-optimal solutions, similarly to the standard hill climb

except with a lower probability. Climbing further generations would be unlikely to resolve the P2 - P3

condition. This is because performance of parameters P2 and P3 seem to be mappable to a parabolic

curve, i.e. medium values gave poorer performance, extremities gave better performance – and the

selected elites of generation three each have high range values. The stepwise index-increments used to

modify each generation would be unable to traverse the range(s) if the performance is indeed parabolic.

An alternative stochastic or sub-optima resolving search would be required.

8 187

The best performing configurations appear to give good immunisation rate results, and can be

chosen as appropriate for the target network. Alternatively these configurations can stand as a base for

future tunings. Without the effects of throttling we can expect the best performing generation three

configurations to perform similarly to or faster than the random configurations tested in generation

one. It remains open work to discover if a configuration in generation one may be optimal. Evidence

from the virtual network range testing and tuning analysis suggests the generation three configurations

show greater similarity to the best of those earlier tests, and are therefore our configuration sets that

take our preference.

8.7.4 Conclusion

In this study we have tuned the architecture to find an good quality parameter configuration set to

use with the architecture while running on low throughput networks, such as SCADA or ICS networks.

Despite the operational network noise, after the tuning’s third generation we have found regions within

each parameter range that optimise our immunisation rate objective, as Table 8.17 depicts. Table 8.19

has presented the ranked top 10 configuration sets of the tuning after its third generation; together

with Table 8.18 these configurations are the preferred configurations for this network type as selected

by the tuning search under our experimental conditions. Finally, we have found similarity and conflict

in the best performing configuration sets when comparing the virtual and enterprise network tuning

experiments, as shown in Table 8.18. This table also summarises the best performing configurations

from both tests.

188 8. Parameter Tuning

8.8 Chapter Conclusions

Overall this chapter has presented a broad and detailed analysis of the architecture’s key parameter

performances. The first parameter range testing experiment has shown the importance and impacts

of each parameter based upon a static point in parameter space. The second parameter tuning study

exhaustively explored the ten dynamic points in parameter space while running under a virtual network

set-up with five nodes, and gave a small number of best performing configurations for the architecture.

The third study ran a parameter tuning search on the architecture while running under our enterprise

network set-up with twenty workstations and results in a few elite configurations that will be appropriate

for selection in real applications of this architecture.

These works have found similar immunisation rate behaviours in the Under Attack Volume Per-

centage (P0) and Initial Priority Value Multiplier (P1) parameter under the differing real and virtual

network experiment set-ups. In parameters Priority Value Suppression (P2) and Static Moving Window

Size (P3) we have observed conflicting preference by each of the tuning methods, which we believe is

either caused by these parameters sharing parabolic performance curves leading to two regions of good

performance or by the distinct timing differences shown between the two network types. Parameters

P0, P2 and P3 have been shown to give the greatest impact on our immunisation rate score for low

throughput networks, such as SCADA and ICS networks.

A small set of parameter configurations that show good performance under the two test network

conditions have been presented in Table 8.18. A summary of the good performance regions of each

parameter range are shown in Table 8.17 as found under our enterprise network of 20 machines.

8.8.1 Peripheral Discoveries

Although this chapter’s work has achieved our aim of finding appropriate parameter configurations for

the architecture, its further testing has highlighted other interesting findings.

The network throttling occurring during the enterprise network tuning tests has presented us a

problem. While common among peer-to-peer distributed systems, it has identified for us the task of

bottleneck avoidance as a feature necessary for future large scale decentralised self-healing architec-

tures. In engineered algorithms for distributed system state transfer further state packets must be

sent to request and inform other nodes of which update data is required. This adds to the quantity of

transmissions. This Artificial Immune System (AIS) approach entirely avoids those additional packets

and still performs well; it does so by using its priority heuristic to evaluate the importance of local

data for transmission. We note that monitoring of data bitrate or transmission retries will allow nodes

to adapt their performance to further fit the network throttling bottleneck and further throughput

capacity thresholds.

The first two experiments have broadly covered the architecture parameter ranges and have reported

good robustness over many configurations. Clearly we can find poorer performing configurations, as

we have shown in 8.3.3. However there are many better performing configurations, many of which give

approximately equal performance scores. Figure 8.5 is perhaps our best example of this, showing that

our selected ranges of the parameters P1, P3 and P4 perform well. Within the confined ranges both

P0 and P2 report good performance and poorer performance depending on the value regions.

8 189

The results of the decay parameter P4 during the first study showed insignificant effect which was

surprising. This caused us to analyse further the likely behaviours of the dendritic cell (DC) agent’s

lifespan and its decay within the Multi-Agent System (MAS) component of the architecture. From that

analysis we reached an expectation that the decay rate and lifespan length lacked in scalability over

time and over the number of objects within the multi-agent system. Thorough testing and updating of

this component remains as open work from the viewpoint of the AIS architecture.

8.8.2 Future Work

As an adaptive reconfiguration test for the architecture, the tuning test set-ups take a long time to com-

plete, and do not show huge rewards providing an initially good configuration is selected. Additionally

they are not nearly the most interesting component to adapt. Locating and appeasing or circumventing

bottlenecks in the system, such as the QoS throttling that we experienced in the enterprise network

tuning search are in themselves challenges for adaptive and self-healing software systems.

We can mitigate network throttling and even recognition by targeted attacks by monitoring and

varying the intervals, quantities and protocols of the architecture’s transmissions. By performing pe-

riodic input analysis and feature selection we can select the most informative features to aid better

classification decision making. This can lead to improved anomaly recognition as the sensor input

definition of normal changes over time. We can also vary the graph connectivity map used by each

architecture node. If we monitor the connected architecture devices for latency, data bitrates (up-

load/download) and the switch routing paths then the software can adapt to changes in the network

conditions and topologies over time.

These kinds of pervasive applications of intelligence as mechanisms for adaptivity can be trialled

and must comprise software engineered frameworks of the future; be their application to anti-malware

/ anti-intrusion tasks or for more widely applicable applications requiring robust underlying distributed

system platforms, such as Apache’s Hadoop1 or TypeSafe’s AKKA framework2.

1The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across
clusters of computers using simple programming models. https://hadoop.apache.org/

2Akka is a toolkit and runtime for building highly concurrent, distributed, and fault tolerant event-driven applications
on the Java virtual machine. http://akka.io/

https://hadoop.apache.org/
http://akka.io/

190 8. Parameter Tuning

Chapter 9

Towards a Decentralised Self-Healing

Security System for Industrial

Networks

This chapter presents a future work solution to our problem case, that of a decentralised self-healing

security system for industrial networks. The description contains our design principles, an in-depth

view of the self-healing system component applied to industrial networks and takes a broader view

of self-management components needed in self-healing security systems of the future. The applied

recovery generation is specifically targeted at automation networks with Siemens S7 controllers, but

the theoretical approach can be applied to any programmable logic controller (PLC) manufacturer. This

architecture is named CARDINAL-E, as a conceptual extension to the CARDINAL-Vanilla self-healing

architecture stated in chapter 5 and originally modelled by (Kim et al. , 2005).

9.1 Design Principles

The architecture’s design is based upon principles and characteristics drawn from immune system cell

interaction and organisational behaviours, as described in chapter 3, and partially take from the past

works in the survey of distributed self-healing Artificial Immune Systems (AISs) shown in 4.2. Any

implementation of this security software system should adhere to state-of-art best practices in security

design principles and methodologies; reference should be made to those guidelines. Our newly acquired

principles and ideas lead us to two components and categories of system behavioural goals:

Self-Healing Component Tenets:

• Detection: all devices will use trained models to recognise deviations in normal activity.

• Recovery: all devices will execute recovery modules or scripts that revert behaviour to a normal

or improved operational state, guided by historical data and performance objectives. Devices

performing the intensive role (i.e. behaviours of lymphocytes and in lymph nodes) will generate

and validate modules.

191

192 9. Towards a Decentralised Self-Healing Security System for Industrial Networks

• Collaborative Model Training: intensive role devices will build and distribute classifier models

using collected historical device activity data and performance objectives.

Self-Management Component Tenets:

• Redundancy: devices that perform the intensive role will store recovery tools, historical data

and resources to support other devices.

• Social Sensing: devices inspect each other, via issued scripts, to discover the device’s current

activity.

• Self-Organising: device roles adjust depending on the available resources.

• Optimising Footprint: devices adapt their processing tasks and communications, including

scheduling and execution delays, to maintain a minimal resource impact and to avoid saturating

system resources.

• Regional Clustering: devices will recognise scaling bottlenecks and will regionally cluster nodes

into sub-architectures. This enables a balance of impact on communication and resources against

full system redundancy and processing objectives.

• Collaborative Decisions: devices can issue commands upon the other devices, however a con-

centration threshold must be breached, i.e. a request from multiple origins, before the recipient

device will act.

• Trusted Communications: devices will communicate using trusted session mechanisms.

• Openness: architecture devices will ‘admit’ new devices into the network by installing the client.

Other devices will inspect a new device’s secure state and perform repair actions.

• Avoidance Strategies: architecture devices will adapt their behavioural profiles to avoid mali-

cious software targeting the architecture.

9.2 Self-Healing Component

The distributed self-healing architecture will run on each device connected to the network. The archi-

tecture will generate and serve classifier models and recovery tools to the devices. These data-driven

tools will require sensor and indicator information from across the network. Not all devices will have

the computational power to generate the tools and therefore a role separation is necessary. The role

separation and tool storage will be redundant in a decentralised manner to avoid the single point of

failure problem. Every device will have a capacity to receive and use the up-to-date tools and also will

transmit its local sensor and indicator information.

A reward-penalty fitness function using the performance indicator information will support user-

driven reinforcement for classifier model learning. This indicator information provides the system’s

application-specific definition of damage and malicious behaviour. Recovery tools are focused on in-

dustrial networks, specifically enabling an automated restore and track-back feature on the PLCs. The

self-management component takes the recovery and defence mechanisms a step further and follows the

self-healing component feature descriptions.

9 193

9.2.1 Role Separation

The system will monitor and learn a dynamic model of normal activities on each industrial network

device including transmissions received at the PLCs and other sensor data on the network. Passing

input data through a trained machine learning model can be fast, however the behavioural model

learning of large amounts of information is time intensive. In a dynamic system, this intensive task is

additionally more frequent.

We can make responsible processing use of the industrial network devices, such as HMIs, historian

and acquisition servers for example. However, as these devices are often of varying age, operator usage

and available resource capacity any attempt to perform intensive tasks on these devices can render

them inoperable, defeating our purpose. A device’s availability can be recognised by monitoring and

learning its activity profile based on time-series patterns. Therefore the system needs role switching to

vary the architecture’s activity, depending on its devices’ states.

Our view of responsible use is risk reduction and architectural robustness. Firstly to avoid impacting

the devices’ operational duties, but more subtly to avoid a single-point-of-failure of important roles of

the self-healing security system. From the collaborative immunisation viewpoint, it is essential to enable

each device a capacity to perform these important roles, such as to create a recovery solution to aid

itself or other devices.

The separation in resource capacity will designate the lightweight and intensive performance roles of

the framework. This mechanism of dividing the roles is dependent on the network devices’ availability,

we refer to this as self-management, performed by a self-management component within each device

on the distributed system. The intensive role operates in addition to the lightweight role, however only

when available capacity and timing are appropriate.

The lightweight role devices perform detection and execute recovery solutions in a lightweight man-

ner, i.e. without carrying out a model learning or validating process. To facility the lightweight

functions, these devices periodically send monitored inputs or traffic to the intensive role devices. The

intensive role consolidates the network-wide contextual data for analysis and uses it to learn detection

models and recovery solutions, as we will describe further below. The intensive role devices will issue

these security modules to the lightweight devices in order to respond to matching input data.

9.2.2 Additional Hardware

First we add an additional functional module with dedicated processor and network interface to each

PLC, such as a replacement to the Siemens S7 CP343-1* network module. We refer to this as the PLC

bus module (PLCBM). Secondly we add a dedicated server and optional single purpose connection to

a trusted computing cluster with dedicated processing capacity. The computing cluster is for offline

model learning of the collected data and supports the self-healing functions. The other devices, e.g.

human machine interface (HMI) workstations and historian servers, etc., connected to the industrial

network form essential host-based viewpoints and detection components of the architecture.

The PLCBM device supports information verification by providing sensor and controller state data

with greater trust than elsewhere on the network. As you will recall, the Stuxnet malware caused

its infected PLCs to send industrial network packets with false sensor values to the monitoring and

acquisition systems, thus avoiding detection (Falliere et al. , 2011). The PLCBM will act as a trusted

194 9. Towards a Decentralised Self-Healing Security System for Industrial Networks

device on the PLC rack. Therefore, in theory at least, it can gain direct access to the sensor values

stored in memory at the PLC or at the PLC’s driver that receives the data from the sensor/actuator

communications bus. The PLCBM can pass these values into its local classifier, i.e. the detection

model trained on network-wide collected data. From our perspective, if a PLCBM reported sensor

value differs from the historian reported sensor value, there is cause for investigation. Further, if other

security indicators report deviations from normal and worsening performance evaluation, there is cause

for action.

PLC

(1)

(3)

(4)

(5)

(2)

PLCBM

PC PC HMI Dedicated
Server

Acquisition
Server

Computing
Cluster

Figure 9.1 – A toy-example topology with added hardware integrated and automation sensors numbered.

9.2.3 Performance Indicators

The operational performance of the automation system, the security system and its recovery actions

can be evaluated over a range of performance indicators from several areas of the network. The example

indicator categories are:

• (SAI) Sensor value anomaly indicators

• (APTI) Advanced persistent threat (APT) indicators

• (PLCI) Programmable logic controller (PLC) state anomaly indicators

• (SPI) SCADA network packet indicators

• (BSI) Business success indicators, i.e. quantity and quality of product

• (VCI) Video capture of device indicators, i.e. device action, output and anomalies.

To correlate these indicators to our example topology in Figure 9.1, the SAI indicator are values from

the automation sensors (1-5) collected directly by the PLCBM and collected by the acquisition server via

the standard SCADA network packet request-return process. The PLCI are to monitor the PLC state

as seen by the PLCBM, acquisition server, and other developer workstations; these indicators include

functional block checksums and timestamps. The APTI monitor activity indicative of connections

to/from the network and irregular activities on the devices. These items are well studied and range

from application-layer firewalls, to process call tree analysis, to audit logs of incorrect password alerts

and beyond. The SPI are to monitor the communications to the automation system. SCADA network

9 195

protocol-specific intrusion detection systems and firewalls on the industrial network will provide SPI

indicator measurements. The BSI measure performance from the business or organisational perspective.

Measurements over output quantity, output quality and maintenance costs, for example, can indicate

undesirable effects of the current automation system state. The VCI monitors anomalies in automation

system’s visual behaviours. This measurement can indicate anomalies in the physical activity of the

automation equipment.

Our selection of indicator categories is led by the belief that a single indicator cannot be guaranteed

to pinpoint the root cause of a novel attack. However, the combination of relevant and informative

indicators that measure belief in our system objectives and the good operational state of our system can

localise a novel attack’s acting location or targeted system. We believe the specific objectives be driven

to avoid damage to the automation system and its production output, while the specific measurements

must be selected for the specific use case.

9.2.4 Belief and Objective Weightings

An initial set of weights are assigned per indicator category to each neighbour device. If the device can

provide the indicator measurement, it is assigned a weight value of 1, otherwise it is assigned a weight

value of 0.

1

2

SAI
APTI
PLC

I
SPI
BSI
VCI

D
ev
ic
es

Indicators

00 10 1 1

11010 1

Figure 9.2 – An example of default objective weightings assigned to each indicator category per device.

For example in Figure 9.2, device number 1 is the PLCBM device, which has no access nor compu-

tational facility to calculate the BSI, business metrics nor evaluate the VCI, video capture of its own

behaviour. The weighting for information on those metrics is thus zero.

9.2.5 Periodic Indicator Updates

Each device can use the up-to-date pre-evaluated performance indicator measurements as an input into

their local classifier, as described below under detection modelling. In theory this enables an expert

specified performance measurements of the changes to the system, be those changes repair or update.

This also offers multi-layered decision making at a localised viewpoint, by using that measurement

knowledge from other sources. This is essential to make the best decision, i.e. quickest with most

up-to-date information. To do so, the detection classifier model must incorporate new input data with

the pre-evaluated indicator knowledge.

196 9. Towards a Decentralised Self-Healing Security System for Industrial Networks

1

2

3

4

SA
I

AP
TI

PL
CI

SP
I

BS
I

VC
I

+ ++
++

1

2

3

4

2

1

3

4

SA
I

AP
TI

PL
CI

SP
I

BS
I

VC
I

+ ++
++

Figure 9.3 – An example of the current indicator states as viewed from each device, updated by periodic state
message transmissions. X’es are values unavailable to that device.

The cost for this knowledge is in the data quantity of up-to-date measurement transmissions and

enables localised decision making similar to the innate immune system. The alternative centralised,

i.e. client and one server, or hierarchical, i.e. client and multiple servers such as our role separation

approaches lead to a delay in decision making. In these cases a request for a decision is sent and result

returned. Similarly to adaptive immunity using antigen presenting cells, the process pipeline is sense,

send, schedule, decide, return and act. Bottlenecks will occur in scheduling at the server and on the

network paths in transmissions with this latter approach.

A further challenge for the detection model and training the model is deriving semantic-time-

relevance from the indicators, particularly in the business success indicators (BSI). For example, the

BSI data will report the output state of the automation system. This implies the measure is an

evaluation of automation activity already completed. From the perspective of other indicators, such

as the real-time video capture indicator (VCI), the corresponding BSI indicator’s relevant value is at a

time in the future.

9.2.6 Current Trust and Self-Centric View

The current trust in received indicator measurements can be drawn by an individual node from the

age of those measurements or whether an indicator is unexpectedly missing. This will cause each

device to have a marginally different perceived system performance. Discovering whether deviations or

anomalies, at this level, can be evaluated to indicate damage remains as an open research question.

The ego-centric view is to place the device’s own indicator measurements above other devices’

measurements. The matrices in Figure 9.3 show the order of indicator rows sorted by age. The first

row is always its own row of data. The lower the row, the lower the priority of that information.

9.2.7 Fitness Function of Performance

The performance indicator data can be fused and evaluated in any number of ways to give a system

performance or danger evaluation score. The example fitness function shown in Equation 9.1 takes

account of initial belief weighting (wi,j), current trust (tj), a ego-centric view (wj) and the present

value (Vi,j) of the indicator from the device’s matrix of indicator values. m and n are rows and columns

of the matrices shown in Figure 9.3.

9 197

m∑
j=1

n∑
i=1

Vi,j ∗ wi,j ∗ tj ∗ wj (9.1)

We arbitrarily limit the ego-centric view’s effect by reducing linearly the weighting for each matrix

row as: wj = 1.0, .., 0.75. Vi,j should be a positive MIN-to-MAX (from poorest to best) indicator

measurement value. tj should be evaluated using a error distance from normal learnt transmission

delays. wi,j are assigned as described in 9.2.4, based upon the information accessible to each of the

devices. Further consideration of data fusion techniques may be beneficial before implementation.

9.2.8 Data Transmission

There are three forms of data transmission, the high volume one-way transmission of traffic data from

lightweight to intensive role devices for learning, the low volume one-way learnt classifiers and recovery

solutions from the intensive to lightweight devices and the low volume two-way transmission of evaluated

performance indicator states sent between all lightweight role devices.

The first enables learning the detection classifier models and recovery models. For this, the perfor-

mance indicator data is required from within each PLC controller rack, from within the human machine

interface (HMI) workstations and historian servers, etc. on the industrial network. These items of data

are transmitted from these lightweight role devices to the intensive role devices with a relatively high

frequency. The detection classifier model and recovery models are then returned periodically at a size

much smaller than the original sent data. Thirdly, in order to make up-to-date detection decisions with

network-wide knowledge summaries (performance indicator scores) we must transmit this information

in a two-way decentralised manner.

To avoid a self-imposed denial of service scenario, we can employ engineered methods to ensure

this data is transmitted in an intelligent manner. These include: data compression, selective data

item transmission (which data to send), selective data item destinations (where to send) and selective

periodic transmissions (when to send).

9.2.9 Detection Modelling

The detection modelling consists of data collection, accumulation and labelling, off-line data learning to

generate a detection model classifier and redistribution of that classifier to all lightweight role devices.

The detection model will use a hierarchical classifier where each layer corresponds to an indicator

category. The classifier will enable one of its layers’ output to be exported and used as an input into

the next layer of the same classifier in another device. This feature will permit fast decision making by

transferring a partial pre-evaluated decision to each device. Each layer will output a numerical measure

of danger corresponding to its indicators. These will be accumulated to give an absolute level of danger

based upon each new set of inputs.

Feature selection is used to let the feature representation be led by the data rather than the designer.

Data quality, such as information gain, is a typical measure for feature preference and is data-driven to

intelligently direct the selected monitored data by analysing the collected data over time. Employing

feature representation learning via feature selection results in two important outcomes, less data needed

198 9. Towards a Decentralised Self-Healing Security System for Industrial Networks

for approximately equivalent accuracy. This means the traffic data collected and sent is the most

indicative of normal or improved behaviour. Thus this can be used to reduce the amount of and focus

on the most informative data collected, sent for learning and input into the classifier.

Periodic re-evaluation of the classifier model will enable regular monitoring of the dynamic normal

behaviour. Updating of the detection mechanism is in part analogous to an evolving self-healing

action. The detection modelling will receive input traffic and sensor data which is labelled with the

performance indicator evaluation scores. The task at the intensive role device(s) will be to uncompress

and accumulate the received data in time-series. The data will be time-correlated to the performance

indicator fitness scores, either using some aggregate or average over all devices or the ego-centric viewed

evaluation score from the sender of the specific item of data.

The intensive feature learning and classifier modelling will occur anywhere within the trusted dis-

tributed system as a task for the intensive role. The ideal location is to employing dedicated parallel

processing hardware, i.e. a computing cluster, and software, i.e. Apache Spark (Zaharia et al. , 2010)

and Hadoop (White, 2009), to distribute the off-line data mining task. In this work we do not propose

the details of the model learning nor the output classifier, only the required theoretical information

semantics as specified within this text.

During an initial bootstrap period overseen by human operators a set of performance indicator

fitness scores will be recorded, these will provide the benchmark for good system performance. The

indicator scores are required as numerical from MIN-to-MAX values, reflecting a corresponding worse

to better performance.

Changes to the automation system via upgrades or replacements will affect the performance indi-

cators and the system evaluation fitness score, thus the data labelling and the detection modelling will

be impacted. To workaround this case, we resort to human operator white-listing via a user interface.

A future solution will be to use the system evaluation fitness score, as a true measure of performance,

to determine whether the change was beneficial and therefore revoke poorer performing changes. We

believe the performance fitness score will also hold the key to generated recovery solution validation

for future self-healing security systems.

9.2.10 Extracting Recovery State Models

The recovery creation module will extract from monitored Supervisory Control and Data Acquisition

(SCADA) network protocols transmission packet logs upload binaries and parameter write data to the

PLCs, permitting automated restore to previous configurations. This static recover approach enables us

to take advantage of the enduring decision by Siemens (on many of their S7 PLCs) and the International

Organisation for Standards (ISO) to not encrypt automation instruction commands at these layers. The

packets can be collected when received at the PLCBM device and when sent from an HMI or other

device. In the binary upload case, we can extract the payloads from a TCP/TSAP steam, recombine

the byte data as the original binary and attach the new binary to another S7 Comms transmission at

will. In the parameter write case, we can simply extract the parameter value and its target data block

(DB) address.

The extracted and time-series stacked artefacts of parameter values and a checkpoint of binaries will

form the recovery solutions. Once extracted the intensive role will distribute the relevant known good

9 199

parameter change stack and the binary checkpoint stack. An S7 comms protocol transmission script,

i.e. SNAP7/MOKA7 (Nardella, 2013), and ordered argument list is enclosed in the recovery tool. The

script will execute the recovery solution and will confirm that the PLC’s block data timestamps and

the parameter values are as expected. In the event of a failure to verify the change an alert can be

issued to the expert operators and the next argument on the stack can be attempted. Further failures

can either be terminated with a STOP PLC command sent and an alert issued.

By storing the most relevant recovery solutions on the PLCBM the update can be issued imme-

diately. The decision to execute the recovery is either after an alert to and approval by a human

operator or after a timeout in cases of a higher success probability. Probability of recovery success can

theoretically be achieved by reinforcement of earlier user approval to similar contextual conditions and

performance indicator scores to those earlier cases.

9.3 Self-Management Component

Further adaptive and intelligent mechanisms will add additional security, autonomy and redundancy

to the distributed self-healing security system. We include these components in this work for their

consideration. A collective awareness algorithm can monitor other devices to improve the trust as-

sessment and better localise malicious activity in the network. A moving target strategy can enable

obfuscation of the security system’s behaviour profile to avoid or hide itself from malicious attacks.

Dynamic recovery generation tools can find and evaluate new repairs to revert or improve the system

performance. Regional node clustering and bottleneck avoidance can be employed to optimise applica-

tion layer payload routing and focus the repairs to a localised region. Each has its own computational

costs, challenges and application specific requirements and restrictions to manage in order to be applied

to industrial networks.

9.3.1 Social Sensing and Collective Awareness – “the guards themselves become

the threat”

In the innate and adaptive immunity cellular-membrane levels and in social animal groups, the members

will observe the behaviours of other neighbouring individuals to evaluate the degree of trust in the

other individual. This is often referred to as social sensing in academic literature. The trust level is

communicated to other members and used for praise, i.e. increased belief in data from that device, or

segregation, i.e. phagocytosis or exclusion from the group.

In Figure 9.4 we illustrate an example of social sensing in an industrial network. In each intensive

role (IR) device a map of normal behaviour is built per neighbouring device. A behavioural map of

device (A) is collected at two or more IR devices and enables a collective decision to be made when a

change in device (A)’s behaviour is noticed.

200 9. Towards a Decentralised Self-Healing Security System for Industrial Networks

Acquisition
Server

HMI

Workstation

PLCBM

Dedicated
Server

IR

L

IR

IR

L

Acq
Svr

Wks HMI

Acq
Svr

HMI PLCBMDed
Svr

Ded
Svr

Wks PLCBM

Figure 9.4 – Diagram of intrusive social sensing behaviours as depicted by one-way requests (white arrows) and
two-way requests (black arrows). Grey tables at intensive role (IR) devices show the collected local perspective
knowledge of the other devices’ normal behaviours.

We have selected a simple intrusive request mechanism inspired by (Brumley et al. , 2007)’s locally

evaluated self-verifiable antibody-alert (SVAA) mechanism, see 4.2.8. A node will receive and run a

request command, then return the result. The approach gives an unrestricted range of possible data

collection request tasks, however it is not without limitation. There is a weakness of returning falsified

values if the execution environment is not trusted, and care should be taken to ensure the request

command does not damage the recipient node.

The issuance of a request command can be implemented using a conventional information request

mechanism such as remote procedure calls (RPCs) or an application programming interface (API). The

interface should enable receipt of two forms of generated commands. Firstly built-in commands and

secondly a formulaic question with a range of possible variables; e.g. “frequency of x per interval of

y seconds” or “frequency of x in automation project directory y”. For example, the frequency of a

‘specific statement list (STL) or ladder logic (LAD) function code’ in automation project ’Proj1’ or the

frequency of ‘network data bytes received/ sent’ per interval of ‘two’ seconds.

The intrusive requests should aim to return behaviour or status information. A sensing mechanism

should then be able to discern normal from non-normal behaviour or be able to correlate to worsening

performance indicator scores. Expert-directed industrial network security metrics should be considered,

the two metrics drawn above are adapted from (Knapp, 2011, p196).

The non-normal recognition and decision to act is carried on three devices (A,B,C) as follows:

(1) Device (B) recognises an anomaly in its collected data from device (A).

(2) (B) will ask all trusted devices (i.e. C) with (A) data whether (A) is acting anomalously.

(3) (C) will respond with its assessment score.

(4) (B) will combine the scores, reach a decision and act.

The collective awareness mechanism enabled by social sensing allow us to finely monitor device

9 201

behaviours from a group perspective and will lead to improved trust assessment and better localisation

of non-normal or malicious activity. The mechanism uses and contributes to the performance indicator

evaluations and trust beliefs within the self-healing system component. This concept and area is

presently under-explored in existing literature, in the context of decentralised or swarm-based security

systems. The minor drawback to this approach is a imposed increase in computation and local storage

requirements. The more critical concern is the increase in the quantity of two-way network transmissions

at potentially high volumes to enable up-to-date multivariate monitoring.

9.3.2 Moving Target Strategies – “who will guard the guards themselves”

Future self-healing security systems will need to handle attack mitigation activities as a response to

a recognised attack, in addition to the collaborative repair and immunisation actions of self-healing.

In (Crouse & Fulp, 2011) and (Fink & Oehmen, 2012) the authors address moving target avoidance

strategies by using a genetic algorithm to evolve less vulnerable configurations for the host operating

system and its network-facing applications. In those works the systems change from vulnerable to less

vulnerable.

Another problem exists where a device may be a victim of distributed denial of service (DDoS)

on a specific port number or where a router is reconfigured to drop packets of a specific protocol or

where a process is targeted and its heap space becomes corrupted, in essence survivability. In these

and similar cases, collective swarming behaviour via a change in configuration, such as spawning and

disowning a fresh process or initiating a coordinated change in communicating port number or protocol,

is a necessary mechanism for self-healing in our context. (Polack, 2010) discusses this in the context

of highly connected information systems, whereas (Owens et al. , 2007) offers a theoretical and generic

architecture toward building these homeostatic immunity behaviours, at this time neither have citations

in applied computer security. Blocking mechanisms (Kang et al. , 2011) and time-to-live blacklisting

signatures (Swimmer, 2006) have been used to avoid or mitigate the effects of DDoS attacks. However,

where the information system is affected by an uncategorised threat, i.e. as indicated by a decaying

performance evaluation score, the execution of coordinated behavioural changes upon the distributed

system remains under-explored.

9.4 Strategy Generation and Evaluation: Static vs. Dynamic

Using static strategies in moving target and recovery generation is inadequate as a solution when the

reliant systems change or when targeted by intelligent and autonomous malware. While our static recov-

ery approach may be translated to automation systems of other manufacturers that use the ISO-TSAP

protocol or by direct cooperation with the PLC manufacturer, we don’t see it as a final solution. When

the ISO-TSAP or S7 protocol standards or implementations change the recover extraction strategy will

lose its value.

A dynamic viewpoint on repair generation is likely to be the path of fruition. Other authors

have noted that code can be validated within a virtual sandbox environment (Brumley et al. , 2007),

(Newsome et al. , 2006), (Newsome et al. , 2005) and that evolutionary algorithms can be used to

generate and evaluate those repairs using unit testing (Le Goues et al. , 2012) and runtime crashes

202 9. Towards a Decentralised Self-Healing Security System for Industrial Networks

(Perkins et al. , 2009). Ensuring absolute correctness in modelled industrial network environments in

which a recovery solution will execute is challenging. PLC simulation environments exist to assist code

development and testing normal and failure cases, such as sensor and mechanical failures. However

automating the validation of controller code under extreme external changes remains a challenge. If it

can be done, an evaluation score of the automation system behaviour and the system-wide performance

indicators would be suitable to direct the automated repair generation. Then for each solution an

evaluation score can be calculated by executing the solution within the model. Over an evolutionary

period the best solution can be evaluated, selected and approved for use. Application of these dynamic

generation approaches is more flexible to dynamic changes in industrial networks and will thereby

facilitate future self-healing security systems.

9.5 Application Focus

The application goal of this architecture is upon automated assembly lines and life-critical automation

processes such as helicopter pan-tilt stick control, among other networked real-time and automation

systems.

9.6 Challenges

Several challenges of the system have been identified. Implementation and validation of the architecture

for application to industrial networks remains open. Two other unavoidable problems are managing the

computational expense on self-healing systems on networks of heterogeneous nodes and large quantities

of data transmissions required by decentralised distributed systems operating on real-time information

with many sources.

Managing the computational expense of learning data from multiple sources is an infrastructural

challenge addressed in this theoretical architecture. The presented solution separates and offloads

intensive processing tasks from industrial network devices with low capability or availability to other

devices with higher availability. This enables classifiers to be trained and delivered to the low capability

devices.

Large data transmission quantities are unavoidable in peer-to-peer topologies operating on real-

time distributed data. In our architecture these occur in the quantity of one-way transmitted traffic

required for learning, the two-way state data updates and the two-way social sensing state data requests.

Questions on reduction of data transmission quantities remain open for future work. Possible approaches

include data transmission heuristics specific to decentralised systems; such as using predictions of

other node’s data transmission content and their destinations to help improve information quality per

transmission. An open question exists over whether the data transmissions (identified above) will

remain at an acceptable throughput-level to maintain the real-time performance of the self-healing

application and the automation operations.

9 203

9.7 Chapter Conclusions

This chapter described the CARDINAL-E theoretical decentralised self-healing system architecture for

application to industrial networks. The detection and recovery solutions are applicable to automa-

tion networks that use the unencrypted ISO-TSAP SCADA network protocol for binary uploads and

parameter writes to the controllers. The design has been inspired by the cellular interaction and organ-

isational behaviours of the biological immune system and is stated as a self-healing component and a

self-managing component. The path ahead will be to evaluate the feasibility, safety concerns and cor-

rectness of the presented features and components in testbed lab trials before moving onto industrial

networks.

204 9. Towards a Decentralised Self-Healing Security System for Industrial Networks

Chapter 10

Conclusions

This thesis has made advances in both applied and theoretical self-healing computer security systems

for industrial automation networks, including those supporting critical national infrastructure. Based

on this research into academic artificial immunity, an evaluation framework and a theoretical architec-

ture for self-healing and collaborative security systems have been designed, presented and undergone

prototype testing for application to real-world Industrial Control System (ICS) and Supervisory Control

and Data Acquisition (SCADA) networks. Specifically a foundational piece of this theoretical architec-

ture, CARDINAL-Vanilla an immunity-inspired decentralised security module distribution platform,

has been formally defined in Chapter 5 and rigorously assessed on virtual and real-world enterprise

networks in Chapters 7 and 8 using our new evaluation framework introduced in Chapter 6.

The key hypothesis of this work was defined in section 1.5, it stated: “In the context of a distributed

and self-healing system, compared to engineered approaches a reactive multi-agent and holistic immune

system inspired approach will have better distribution, and thus capability for self-healing, performance

over a range of networked environments. Where performance is measured by a ‘self-healing immuni-

sation rate’, consisting of the number of items transmitted, time to distribute an item and data sent

to distribute those items, in order to assess the objectives of self-healing and application feasibility to

industrial networks.”

Chapter 7 conducted a comparative analysis of the prioritisation and distribution mechanisms of an

equivalent engineered algorithm, called Optimal-Static, to the CARDINAL-Vanilla architecture’s algo-

rithm. The evaluation was performed under virtual and enterprise network types with a multi-objective

metric to measure their applicability to networks of certain throughput capacities. In section 7.7 the

key hypothesis was rejected in all tested cases for low-throughput networks (O2), such as industrial

networks, and it was rejected in all tested cases, except in networks of ten nodes, for applicability to

high-throughput networks (O3), such as enterprise networks. The rejections were confined to the stated

test design methods and test parameter configurations.

The research questions stated with the key hypothesis in section 1.5, were: “To what extent will a

decentralised self-healing security system inspired by an holistic view of the biological immune system,

be able to distribute network transmitted security modules (i.e. detectors and repair tools) in a network

of heterogeneous devices – such as an industrial control network? How will its self-healing and network

transmission performance compare against an engineered system.”

The amount by which CARDINAL-Vanilla’s results were poorer under the enterprise network tests

205

206 10. Conclusions

reported in section 7.4 is not relevant to a real life application. Those enterprise network results showed

comparable Distributed-M1 and Time-M2 metric performances to the engineered selection and distri-

bution algorithm. CARDINAL-Vanilla sent more data which led to an overall poorer immunisation

rate performance. The virtual network tests in section 7.2 reported poorer Distributed-M1 distribution

performance as the network size increased by comparison to the real networked tests. The further

analysis in section 7.6 indicated that the real network tests should be used for interpretation as they

removed ambiguity from the results.

In section 7.7.1 we argued that Optimal-Static’s algorithmic approach is inappropriate to implement

in a real system as it assumes perfect conditions and is thus prone to poor performance under failures,

see section 7.2.2. To remove this assumption from the algorithm requires further data transmissions

which will in turn reduce its measurement scores.

Chapter 8 presented a sensitivity analysis of CARDINAL-Vanilla’s key parameters. Section 8.3.3.4

indicated that an independent change to parameters P0, P2 and P3 of the default CARDINAL-Vanilla

parameter configuration would lead to a statistically significantly improved result set measured under

the low-throughput networks multi-objective metric (O2), as compared to the configuration evaluated in

Chapter 7. Under the high-throughput networks multi-objective metric (O3), section 8.3.3.4 indicated

a significant and improving effect will result by an independent change to parameters P1 and P3.

Section 8.7.2 provided a small set of parameter configurations, without the P4 parameter as it reported

an insignificant effect. Comparing these configurations to the engineered approach remains as open

work.

10.1 Contributions for Industrial Network Security

We have proposed and reported on Distributed Self-Healing Security Systems (DSHSS), a new perspec-

tive advocating intelligent, host-based collaborative support and learning as an infrastructural security

architecture, to address the computer security challenges affecting the ICS and SCADA networks prob-

lem domain specified in Chapter 2. Our view sits amongst a growing handful of existing theoretical

academic works, as specified in Chapter 9.

It is our belief that nature inspired algorithms will provide robustness of a range of conditions, and

we persist to believe they can be applied to maintaining automation process up-time via automated self-

healing detection and recovery and via infrastructural architectures. Our self-healing system benchmark

experimentation of CARDINAL-Vanilla in Chapter 7 has shown that the resource expense for detection

and distribution is certainly feasible for application to the corporate network devices of industrial

networks, where small quantities of data are learnt on every device.

For real-world automation systems the future work architecture in Chapter 9 offers a mechanism for

monitoring and optimising automation process instructions via a reinforcement methodology. It offers

performance indicator and recovery mechanisms to establish a causal relationship leading to better or

worse performance. This approach can be applied to cyber security applications and to automation

process benchmarking and improvement as the system operates over its lifetime under different instruc-

tion configurations. Today instructions are written by engineers, tomorrow using the proposed future

architecture, instruction improvements can be automated and guided using this approach. This sets a

roadmap for future DSHSS operating on industrial networks.

10 207

The evaluation methodology in Chapter 6 enables assessment of DSHSS, including distributed

collaborative security systems and collaborative Host-based Intrusion Detection Systems (HIDS). The

systems performance measures assess self-healing capability and resource feasibility for application

suitability to enterprise networks and to ICS and SCADA control networks. Classification accuracy

and self-healing quality metrics remain to be included. These items will need to be integrated into the

methodology in cooperation with the future work architecture. A number of other future work items

are mentioned at the end of each chapter.

10.2 Contributions for Artificial Immune Systems

The thesis holds several items of interest to the Artificial Immune System (AIS) research community.

We have introduced an expanded theoretical standpoint on self-healing, self-organisation and other

self-* behaviours for computer security applications as led by our biological theory analysis work in

Chapter 3 and surveys of artificial immunity in Chapter 4. With this new perspective we have developed

the CARDINAL-Vanilla architecture in Chapter 5 and our future work architecture in Chapter 9 that

embodies those concepts and self-* principles in a real-world applicable manner to address security

problems in industrial control system security.

We have extended existing AIS work based on (Kim et al. , 2005)’s abstract danger theory-inspired

CARDINAL model to combat malicious spamming software. Our work has adapted its use case to a

distributed defence application similar to collaborative HIDS. For the first time CARDINAL’s abstract

model has undergone formal mathematical specification in Chapter 5 and key differences between our

fair implementation of Kim et al.’s model called ‘CARDINAL-Vanilla’ and Kim et al.’s original model

have been specified. Thorough parameter range evaluations under several rigorous testing conditions

have been undertaken in Chapter 8. Rigorous comparison evaluations of CARDINAL-Vanilla against an

optimal engineered system were conducted in Chapter 7. This latter work reported similar self-healing

performance scores between the two systems, however the bio-inspired distribution mechanism sent

more data. Recommendations to modify the distribution heuristic from commonality- and importance-

based to another or combined measures were discussed within to rectify this difference.

The work into AIS modelling and metaphorical immuno-engineering and the testing in Chapter 8

has led us to show our experience of common AIS algorithm components, such as decay, suppression,

proliferation and focus when in danger in section 8.2 and conclusions in 8.8. Interpretation of these items

carries a warning, of consideration only with respect to their function within the mathematical multi-

agent CARDINAL-Vanilla model expressed in Chapter 5 and with respect to the testing conditions.

A key lesson learnt was that CARDINAL-Vanilla has a wide range of parameter configurations that

give good and similar performance scores in section 8.8. This owes to its robustness over parameter

configuration changes, a feature, we expect, may be common among communicative multi-agent-based

systems.

10.3 Summaries and Conclusions

In Chapter 2 we investigated the causes of software security vulnerabilities and architectural problems

faced by industrial automation networks that are in operation today. Through this investigation we

208 10. Conclusions

identified the necessity for collaborative and automated self-healing security software, a view that we

share with other experts in the field. The chapter concluded with the uncovered main architectural

challenges affecting the security of industrial automation networks.

In Chapter 3 we began to address the self-healing problem in industrial networks by expanding

on recent findings and theories in biological immunology for their cellular component and interaction

behavioural traits that lend themselves to self-healing in the human body. We drew out the key

characteristics and immuno-engineering mechanisms that lead to biological self-healing and homeostatic

behaviours in human immunity. The chapter concluded with a mapping from the main challenges to

the biologically engineered solutions.

In Chapter 4 we followed up this line of enquiry in existing artificial immunity. Here we explored the

bio-modelling and bio-inspired metaphorical approaches taken by authors in the AIS field. Following

this we surveyed research works on distributed self-healing architectures that employed immune system

correlations to the detection and response against malicious software attacks. This work led us to select

the abstract CARDINAL architecture model by (Kim et al. , 2005) as an underlying design for the

platform.

In Chapter 5 we formalised the mathematical model of the CARDINAL architecture, extended and

described its implementation-level definition into CARDINAL-Vanilla using a distributed multi-agent

system representation based upon immunological danger theory. Stemming from the agent interactions

and their constraints, we determined the key emergent behaviour of CARDINAL-Vanilla were led by

the priority and distribution heuristic and the voluminosity-based dispatch decisions. With the belief

that these modular decisions had the most influence upon the local decentralised decision making

and upon the speed of immunisation, we prepared an evaluation methodology in order to test these

components and CARDINAL-Vanilla’s self-healing capability.

In Chapter 6 we explained the principles behind the evaluation and validation for our CARDINAL-

Vanilla platform, and those that also apply to other DSHSS. These principles addressed user behaviour

modelling, globally measured metrics to assess network-wide performance, multi-objective optimisation

evaluations to draw simple meaning from the metrics, data sources, configurations to enable real-time

read-in of data and a two-phase experimentation method to evaluate self-healing, among others. This

evaluation methodology was experimentally benchmarked in Chapters 7 and 8, has shown to be reliable

on conventional and virtualised networks, and is applicable to future DSHSS on industrial networks.

Because of the sensitive nature of the real-time operations on industrial automation networks and

the academic novelty of incorporating a non-engineered decision system into this environment, it was

necessary to thoroughly assess CARDINAL-Vanilla in real computer networks. In the first benchmarks

the evaluation methodology and the architecture were tested for their stability under virtual network

and real network conditions. The platform was compared against equivalent engineered solutions in

Chapter 7. The results showed that CARDINAL-Vanilla had similar immunisation rate performance

on real-networks to our engineered solution. However, it transmitted comparatively more data on larger

sized networks, which is due to its data-driven selection mechanism of distributed security modules. We

pinpointed the algorithm’s distribution heuristic as the key component that will improve the system’s

module and destination selection and thus lower the quantity of data it transmits for distribution.

In Chapter 8 we assessed the architecture under ranges of parameter configurations to find the

set that reported best improvement in our immunisation rate system performance objectives. This

10 209

enabled a thorough benchmark of the architecture’s underlying AIS model, its algorithms and its

configurations. Two parameter tuning searches reported a number of good performing configurations

under virtual and real networks. The results showed that some regions within the parameter ranges

degrade the immunisation rate performance scores to an extreme. However, many parameter space

regions exist where performance is broadly good and similar. Therefore we found that the platform

and AIS model show remarkable robustness over many parameter configuration ranges when applied

to our problem domain.

In Chapter 9 we presented a future work infrastructural DSHSS architecture that aims to address

the problem cases of decentralised and automated self-healing systems for industrial networks. The

design is guided by immunity principles in self-healing and self-management. It incorporates recovery

mechanisms using SCADA network protocols, damage detection via performance indicators and real-

time decision making using network-wide contextual information by dispatching partially evaluated

decision scores. This provides a future roadmap for security information infrastructural architectures

and Distributed Self-Healing Security Systems (DSHSS) in industrial networks.

210 10. Conclusions

Appendix A

Security in Industrial Networks

A.1 Industrial Security Standards

A.1.1 Organisations with Released Industrial Security Standards

The following are names and acronyms of the publishing organisations of Industrial Control System

(ICS) standards, and other acronyms. Note ANSI/ISA and ISO/IEC are collaborators on their released

standards.

• National Institute of Standards and Technology (NIST)

• North American Electric Reliability Corporation (NERC)

• International Electro-technical Commission (IEC)

• International Organization for Standardisation (ISO)

• American National Standards Institute (ANSI)

• International Society of Automation (ISA)

• Critical Infrastructure Protection (CIP)

• Critical National Infrastructure (CNI)

A.1.2 Released Industrial Security Standards

Table A.1 lists the current standards designed toward securing ICS and electronic networks.

Organisation Standard Purpose

ISO/IEC 27001:2005, 27001:2013 Standards for information security management.
ISO/IEC 27002:2005, 27002:2013 Code of practice for information security management controls.
NERC CIP002-011, Revision 5 Standards for bulk electric systems and network security.
NIST 800-82, Revision 2 Guidelines for ICS security –performance, reliability, safety requirements
ANSI/ISA 62443 , ISA-99 Comprehensive standards and technical reports for electronic security of ICS.

Table A.1 – Standards for securing ICS and electronic networks. Organisation acronyms are listed in A.1.1.

211

212 A. Security in Industrial Networks

A.2 Vulnerabilities Reported on OSVDB 2007–2015

The following table contains the raw quantity data from searches within the OSVDB (Kouns & Mar-

tin, 2015) database of vulnerabilities. The OSVDB database is formally and consistently tagged by

dedicated staff, sponsored by Risk Based Security in Richmond Vancouver, Canada.

A.2.1 SCADA and Web Vulnerabilities Reported on OSVDB

The search terms used are quoted within the table headers.

Year
‘SCADA’

Vulnerabilities
‘Web’

Vulnerabilities
% of SCADA Vulnerabilities

to Web Vulnerabilities

’15 98 387 25.323%
’14 225 992 22.681%
’13 183 857 21.354%
’12 241 978 24.642%
’11 172 654 26.300%
’10 43 674 6.380%
’09 28 585 4.786%
’08 31 559 5.546%
’07 17 532 3.195%

Table A.2 – Vulnerabilities reported to OSVDB during 2007–2015. Retrieved on Aug 25th 2015.

We compare ‘SCADA’ to ‘Web’ vulnerabilities as the latter are perhaps the most commonly dis-

cussed and reported of exploits.

1 213

Sheet1

Page 1

'15'14'13'12'11'10'09'08'07
0

200

400

600

800

1000

1200
`SCADA' Vulnerabilities
`Web' Vulnerabilities

(a) Quantity of reported vulnerabilities.
Sheet1

Page 1

'15'14'13'12'11'10'09'08'07
%

5%

10%

15%

20%

25%

30% % of SCADA Vulnerabilities
to Web Vulnerabilities

(b) % of vulnerabilities tagged “SCADA” vs. “web”.

Figure A.1 – Vulnerabilities reported to OSVDB during 2007–2015. Retrieved on Aug 25th 2015. Raw data in
Table A.2.

214 A. Security in Industrial Networks

A.2.2 Vulnerabilities per PLC Manufacturer Reported on OSVDB

The search terms used are quoted within the table headers and prepended to the keyword “SCADA”.

Year ‘Siemens’
‘Schneider’

Electric
General

Electric (‘GE’)
‘Rockwell’

(Allen-Bradley) ‘Honeywell’ ‘Emerson’ ‘ABB’

’15 22 9 3 4 1 2 1
’14 36 22 2 4 26 4 0
’13 36 19 12 6 2 4 3
’12 37 33 28 12 1 7 2
’11 24 12 6 5 2 0 1
’10 1 1 0 8 0 0 0
’09 0 0 0 0 0 0 0
’08 2 2 4 6 0 0 1
’07 2 0 3 0 0 0 0

Total 160 98 58 45 32 17 8

Table A.3 – Vulnerabilities per PLC manufacturer, ordered by total reported to OSVDB during 2007–2015.
Retrieved on Aug 25th 2015.

Sheet1

Page 1

'15'14'13'12'11'10'09'08'07
0

20

40

60

80

100

120

140

Siemens

Schneider Electric

General Electric (GE)

Rockwell (Allen-Bradley)

Honeywell

Emerson

ABB

Figure A.2 – Vulnerabilities per PLC manufacturer, ordered by total reported to OSVDB during 2007–2015.
Retrieved on Aug 25th 2015. Raw data in Table A.3.

1 215

A.3 SNAP7 - Open Source S7 Communications API

Figure A.3 shows a compatibility table of controller functions (first column) remotely called via the S7

networked communications protocol for the specified Siemens controllers (top row). The open source

SNAP7 application programming interface (API) facilitates the manufacture and transmission of these

packets to Siemens programmable logic controllers (PLC).

Table available at http://snap7.sourceforge.net/snap7 client.html Retrieved on 2015.08.20.

S7 Protocol partial compatibility list (See also § LOGO and S7200)
 CPU CP DRIVE
 300 400 WinAC Snap7S 1200 1500 343/443/IE SINAMICS
DB Read/Write O O O O O O(3) O
EB Read/Write O O O O O O O
AB Read/Write O O O O O O O
MK Read/Write O O O O O O
TM Read/Write O O O O
CT Read/Write O O O O
Read SZL O O O O O O O O
Multi Read/Write O O O O O O O
Directory O O O O O (2)
Date and Time O O O O O
Control Run/Stop O O O O (1) O
Security O O O O
Block Upload/Down/Delete O O O O O

Snap7S = Snap7Server

(1) After the “Stop” command, the connection is lost, Stop/Run CPU sequence is needed.
(2) Tough DB are present and accessible, directory shows only SDBs.
(3) See S71200/1500 notes.

 S7 1200/1500 Notes

An external equipment can access to S71200/1500 CPU using the S7 “base” protocol, only working as an HMI, i.e.
only basic data transfer are allowed.

All other PG operations (control/directory/etc..) must follow the extended protocol, not (yet) covered by Snap7.

Particularly to access a DB in S71500 some additional setting plc-side are needed.

1. Only global DBs can be accessed.
2. The optimized block access must be turned off.
3. The access level must be “full” and the “connection mechanism” must allow GET/PUT.

Let’s see these settings in TIA Portal V12

DB property

Select the DB in the left pane under “Program blocks” and press Alt-Enter (or in the contextual menu select
“Properties…”)

Uncheck Optimized block access, by default it’s checked.

Protection

Select the CPU project in the left pane and press Alt-Enter (or in the contextual menu select “Properties…”)

In the item Protection, select “Full access” and Check “Permit access with PUT/GET ….” as in figure.

Figure A.3 – Table shows compatibility of controller functions (first column) remotely called on the specified
Siemens controllers (top row) as invoked via the Siemens S7 networked communication protocol.

http://snap7.sourceforge.net/snap7_client.html

216 A. Security in Industrial Networks

A.4 Extract of ICS Attack - Water.arff Dataset

Below is an extract from the water.arff dataset released in May 2013 as part of the ICS Attack dataset

by Mississippi State University. The dataset is known to be unsuitable for machine learning as “attacks

were perform[ed] (SIC) with [an attribute set] to one value (x) and normal operation with another

value (y)”, thus making its class separability unrealistic (Adhikari et al. , 2013). Note also the limited

quantity of network packet or stream data attributes.

@attribute ’command_address’ real

@attribute ’response_address’ real

@attribute ’command_memory’ real

@attribute ’response_memory’ real

@attribute ’command_memory_count’ real

@attribute ’response_memory_count’ real

@attribute ’comm_read_function’ real

@attribute ’comm_write_fun’ real

@attribute ’resp_read_fun’ real

@attribute ’resp_write_fun’ real

@attribute ’sub_function’ real

@attribute ’command_length’ real

@attribute ’resp_length’ real

@attribute ’HH’ real

@attribute ’H’ real

@attribute ’L’ real

@attribute ’LL’ real

@attribute ’control_mode’ real

@attribute ’control_scheme’ real

@attribute ’pump’ real

@attribute ’crc_rate’ real

@attribute ’measurement’ real

@attribute ’time’ real

@attribute ’result’ {’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’}

@data

7,7,183,233,9,10,3,10,3,10,0,25,21,90,80,20,10,2,1,0,1,85.7589569091797,1.00,0

7,7,183,233,9,10,3,10,3,10,0,25,21,90,80,20,10,2,1,0,1,85.6736755371094,1.07,0

7,7,183,233,9,10,3,10,3,10,0,25,21,90,80,20,10,2,1,0,1,85.616828918457,1.16,0

7,7,183,233,9,10,3,10,3,10,0,25,21,90,80,20,10,2,1,0,1,85.5599746704102,1.10,0

7,7,183,233,9,10,3,10,3,10,0,25,21,90,80,20,10,2,1,0,1,85.4747009277344,1.15,0

Appendix B

Biological Immune System

Figure B.1 summarises cell and protein signalling behaviours within the human body.

Figure B.1 – Cellular signalling types.

217

218 B. Biological Immune System

Appendix C

CARDINAL-Vanilla Architecture

C.1 Implementation Specific Responses

To block incoming protocol-port network traffic from the sender, i.e.:

iptables -A INPUT -p tcp --dport ssh -s 10.10.10.10 -j DROP && sudo /sbin/iptables-save

To send an email to inform administrative staff of an imminent threat:

sendemail -f fromuser@gmail.com -t touser@domain.com -u subject -m "Type II danger

signal received from 10.10.10.10" -s smtp.gmail.com -o tls=yes -xu gmailaccount

-xp gmailpassword

To issue a STOP PLC command to terminate operation on the microcontroller. This can be done
on Siemens SIMATIC S7 series programmable logic controllers (PLC) in the following way using the
opensource SNAP7 or MOKA7 library1 (Nardella, 2013), as:

S7Client Client = new S7Client();

Client.SetConnectionType(S7.OP);

Client.ConnectTo(IpAddress, Rack, Slot);

Client.PlcStop();

1SNAP7 library download and documentation address: http://snap7.sourceforge.net/

219

http://snap7.sourceforge.net/

220 C. CARDINAL-Vanilla Architecture

C.2 Use of Random Number Generators

The implementation of CARDINAL-Vanilla makes use of three instances of the linear congruential
generator (LCG) algorithm to produce random numbers. In each case we use Java’s java.util.Random
class with a pre-determined 48 bit seed. LCGs are known to be prone to produce a lack of randomness
in their number generation, in fact Java’s LCG (RAND) algorithm implementation has been shown to
score worst out of a selection of random number generator (RNG) in the diehard test in (Meysenburg
& Foster, 1999); see (Marsaglia, 2003) for an explanation and update of the original Diehard Battery
of Tests for Randomness.

The pitfalls of LCGs are well known, in particular sequences of the lower order bits perform poorly
on the diehard RNG testing suite. As shown in (Marsaglia, 1968) and more recently in (Gärtner, 2000)
and (Coffey, 2013), sequences of those lower order bits are generated in planes and are thus particularly
inappropriate in geometric (i.e. 3 to n-dimensional) applications when used as coordinates. Of course
the advantages of LCGs are that they’re written into most standard language libraries, they’re fast and
they’re deterministic.

An Analysis of java.util.Random

Our tested implementation uses Java’s Random method nextInt(). The method produces 32 bit two’s
complement big-endian integers. Figure C.1 shows a graphical reiteration of the point made above, in
that we notice the darker (bit index with value mostly equal to 0) and lighter (value mostly equal to
1) bits are mostly at opposite ends (of the binary representation). In Table C.1 we show the mean
frequency counts of bits equal to 0 (black in the figure) of each of those bit indexes for 16384 (1282 calls
to the method). The mean bit values presented are calculated over 32 separate seeds (0-31). These
empirical tests using seeds 0 to 31 show very low standard deviation in Table C.2, relative to the range
of possible values; except in the case of the signed (first) bit index. There is also a tendency that in each
byte, bit index position 4 (from left) carries a higher probability to be zero (is darker). An inferential
significance analysis of correlation between numbers selected by differing seeds remains as open work.

In conclusion, the descriptive statistics (and in part the cited references) strongly suggest that Java’s
nextInt() method using LCG will more probably result in smaller numbers (within its possible range
of 0 to 322 and maximum range of 0 to 482) rather than larger numbers (in the range). We find this to
be the case given the default seed and within those seeds presented in 0-31 range (used by up to the
first 32 nodes of the self-healing benchmark experiments) when given the default value limit and over
1282 generated random numbers. However, as the quantities of lines in our datasets are within this
lower region, we do not see this as a pitfall in our case.

16384 8203.1 8174.3 4096.9 8197.6 4104.5 4084.4 2043.9
8198.3 4107.2 4080.8 2043.3 4102.7 2055.1 2038.8 1016.4
8202.4 4104.5 4093.1 2048.3 4101.8 2053.1 2044.2 1021.2
4109.4 2055.2 2050.3 1022.9 2056.3 1028.2 1024.8 508.3

Table C.1 – Tabular representation of related Figure C.1, showing mean of frequency of 0 bit values (black) per
bit index using seeds 0 to 31. Rows 1 to 4 show bits 0-7, 8-15, 16-23, 24-31. See text and figure description for
details.

3 221

Figure C.1 – Figure showing 32 images produced by java.util.Random’s use of linear congruential algorithm
with default seed and limit on nextInt(). 1 image for each of the 32 bit values of integers, using two’s complement
(signed bit is index 0) with big endian representation (8th bit in 4th byte represents the smallest number). Black
and white represent 0 and 1 (non-zero). Rows 1 to 4 shows bits 0-7, 8-15, 16-23 and 24-31. Images are scaled
down from 128 by 128 pixels over 1282 bits.

Bit Std (freq.) Bit Std (freq.)

0 0.0 16 75.8
1 63.0 17 55.8
2 60.1 18 60.9
3 48.1 19 38.0
4 83.4 20 75.8
5 60.8 21 46.5
6 58.3 22 48.7
7 41.8 23 32.1
8 62.2 24 55.2
9 52.7 25 35.3

10 48.0 26 46.2
11 33.2 27 28.3
12 63.3 28 52.0
13 45.5 29 30.2
14 37.1 30 33.0
15 24.9 31 18.8

Table C.2 – Table showing standard deviation of frequency of 0 bit values (black) per bit index, using seeds 0
to 31.

222 C. CARDINAL-Vanilla Architecture

Appendix D

Configurations

D.1 Virtual Machine Environment Configuration

Item Configuration Value

Operating System Fedora 16
Bash 4.2.37(1)-release (x86 64-redhat-linux-gnu)
Java ”1.7.0 09-icedtea”
OpenJDK Runtime Env fedora-2.3.5.3.fc16-x86 64
OpenJDK 64-bit server VM build 23.2-b09, mixed mode
Ulimit ulimit -c unlimited

ulimit -n 2000
ulimit -u (9+(n*4))*n)+1024

Java arguments -d64
-Xms (16GiB-512MiB)/n

Swap swapoff -a
Kernel cache echo 3>/proc/sys/vm/drop caches

D.2 Enterprise Machine Environment Configuration

Item Configuration Value

Operating System Linux v3.8.0-25 kernel operating system
Java 1.7
Ulimit ulimit -c <default>

ulimit -n <default>
ulimit -u <default>

Java arguments -d64
-Xms 1024M

CPU Intel Dual core E2220 2.4 Ghz
Memory 3,826 MiB
Network Adapter Intel 82566DM-2, width: 32bit, clock: 33Mhz, 1Gbit, wired.

Network Switch Dell PowerConnect 5448 switch, 1 Gbit with 48 ports.
- Port Config 1000-BaseT

223

224 D. Configurations

D.3 Virtual Machine Environment and Execution Script

In this section we describe the environment and script configuration, section D.1 summarises the de-
scription.

The bash script, which executes the Java code, is run within GNU bash version 4.2.37(1)-release
(x86 64-redhat-linux-gnu). The code is run with Java version ”1.7.0 09-icedtea” using the OpenJDK
runtime environment (fedora-2.3.5.3.fc16-x86 64) with OpenJDK 64-bit server VM (build 23.2-b09,
mixed mode).

In order to successfully run, we must set the resource limit (ulimit) on the maximum size of
core files created to ulimit -c unlimited, the number of open files allowed to ulimit -n 2000 (for
example opened sockets, streams to network destinations and file system inodes) and the maximum
number of processes available to a single user to ulimit -u (9+(n*4))*n)+1024. Where the number
of threads per CARDINAL instance is 9 + (n∗4)). The Java virtual machine requires four, five threads
are required to execute the CARDINAL model code and n ∗ 4 threads are required for two sockets
and two streams, one for both sending and receiving network communications. 1024 is the operating
system’s default maximum number of user processes, which we retain in case of other (unplanned)
executing processes. ∗n is to ensure that all instances can co-exist for the duration of the experiment,
without any being blocked by the limit.

The Java code is run in 64bit mode with the argument -d64. We set an equal amount of allocated
heap space memory per instance, with a maximum limit of 1024 megabytes. The minimum quantity
is set to (16GiB − 512MiB)/n, such that for 10, 15 and 20 hosts {1024, 1024 and 793.6} megabytes
were allocated. 512MiB was left for the Fedora 16 operating system to operate. To reduce unnecessary
I/O waiting times debugging STDERR and STDOUT were disabled and experiment logging is buffered
in memory and output to file at the end of each experiment trial run. This (eventually) leads to an
exponential scaling factor on the memory footprint size (i.e. for transmission logs), but is encompassed
by our large heap size allocation described. These relatively high values were precautionary allowances
based on our assumption of memory required with some empirical trial and error. In future tests, this
will need to be considered with respect to the dataset size and the maximum memory footprint.

The process of improving the reliability of the experiment lead to investigating the removal of
operating system noise effects. The trialled actions that follow were not used during tests leading to
the presented results as we found they had no noticeable influence on the reliability on the preliminary
results. They are worth noting as they are likely to have an effect under similar test conditions. To avoid
periodic disk to memory swapping we tried disabling the swap mount point, or swapoff -a under Linux.
To avoid subsequent runs benefiting from memory cached file content we tried clearing the kernel cache
between test trials, with echo 3>/proc/sys/vm/drop caches. To reduce periodic processes starting
we cleared the scheduled tasks (cron job) lists for the current and root users, with crontab -e. No
further daemons or services were installed beyond the distribution’s default set and we did not disable
those running by default. We found the most commonly successful action for reducing the occurrence
of intermittent execution failures were inspection of synchronized blocks and the immutability of data
in the multi-threaded implementation; debugging at this implementation level can be a cause for much
time investment, particularly in distributed applications that are running in an environment at the
point of resource exhaustion.

D.4 Enterprise Network Environment Parameter Search Execution
Script

The execution script consists of a server script, a client deployment script and a number of integrated
modules. The server script begins by opening a remote terminal shell (Secure Shell (ssh)) on n machines,
which downloads and executes the client script to run the experiment trials. The server script selects
and passes arguments into the client script via the ssh session on each of the n machines. Each quantity
of n has its own associated host configuration file(s), containing a pre-built connectivity mapping for

4 225

each machine. The server script loops through the quantity of parameter configurations c.
The client script performs the execution of the architecture algorithm for a number of trials where the

parameter configuration file, host connectivity configuration file and experiment-specific configurations
are parametrised. Upon completion of i trials the experiment logs on each machine are compressed and
moved to a central location where they are labelled and parsed for their metric result values.

Termination of a single trial is coordinated by the architecture experiment messaging framework
code and occurs (separately on the individual machines) when all machines have completed their role
within the experiment procedure (see subsection 6.4.1). The next trial will begin on the minute after
all n machines have reported the termination of their previous experiment run.

226 D. Configurations

D.4.1 Time Evaluations of Other Datasets

The evaluation process leading to Table D.1 included model training within a single instance of the
Weka data mining framework (Hall et al. , 2009). The reason for this test is to discover an approximate
dataset parse time as given in columns Mean and Std. (sample standard deviation). We can then
approximately estimate the memory and time costs required by CARDINAL to evaluate each dataset
and estimate these costs as we increase the quantity of nodes.

The algorithm used was the pruned C4.5 decision tree (Quinlan, 1993). There is no doubt that the
CARDINAL and C4.5 algorithms perform differently, have different actions and evaluations. Therefore,
these values should be used as approximate estimates. The C4.5 algorithm was run with 0.25 pruning
confidence threshold, 2 minimum instances per leaf, 2 fold error reduction, 1 fold pruning, seed value
of 1 and uses multi-interval discretisation (Fayyad & Irani, 1993) to bin (group) continuous attributes.
No other parameter conditions were evaluated. The parameters selected are defaults of the J48 imple-
mentation of C4.5 written by Eibe Frank (Hall et al. , 2009). The workstation used during the test was
the same as that used in 7 such that a correlation of timings and the virtual benchmark tests should
be solvable.

Time Taken (sec.) Size
Dataset File Mean (Std.) (MiB)

CSIC-HTTP-2010 http-csic-2010-weka-with-duplications-utf8-escd-full.csv 573.5 (455.9) 97
KDDCup99-1999 kddcup.data-10-percent-corrected-ALL.arff 1542.5 (2.3) 53
gureKDDdataset-2008 gureKddcup6percent.arff 1051.4 (52.5) 31
ISCX-2012-9Flows-0%-to-10%-sample TestbedThuJun17-2Flows.csv 10.4 (0.5) 21
ICSAttack-MississippiState-2011 water-final.arff 568.7 (9.6) 18
ISCX-2012-9Flows-0%-to-10%-sample TestbedMonJun14Flows.csv 9.8 (0.4) 14
ISCX-2012-9Flows-0%-to-10%-sample TestbedThuJun17-3Flows.csv 6.9 (0) 13
ICSAttack-MississippiState-2011 gas-final.arff 0 (0) 9.1
NSLKDD-2009 KDDTrain+-20Percent.arff 25.1 (0.3) 3.6
CSIC-HTTP-2010 sample-CSIC-2010-http-v0-5-2-sample-0p-to-9p-dataset 1.9 (0.3) 1.4

Table D.1 – Summary table showing dataset size and time taken to evaluate state of art network
security SCADA and vulnerability security datasets using the C4.5 decision tree algorithm with one
instance on one node. Time is taken over 10 runs.

Appendix E

Further Results and Analysis

E.1 Self-Healing Benchmark - Inferential Statistics

To expose the significance of the iteration independent results for both metric (M1,M2 and M3) and
objective (O1,O2 and O3) results, we employ the following statistical tests and a null-hypothesis of
equivalence between the AIS (Vanilla) and engineered (OptimalStatic) algorithms.

E.1.1 Difference from AIS to Engineered

Here we set the null-hypothesis as there is no significant difference, as follows:

Null Hypothesis 1. H0(A) : AIS = AENG

The immune system-inspired selection algorithm (AIS) modelled in CARDINAL’s implementation (CARDINAL-
Vanilla) performs no differently than the engineered Optimal-Static selection algorithm (AENG) over
each node network sizes. Using experiment procedure J with code versions J3 and J4 and evaluated
according to the key measurement criteria with a number of repeated trial runs.

Theorem Specialisations

The key measurement criteria are M1,M2,M3 and O1,O2,O3 as have been discussed within the body
of the thesis. Where M1,O1,O2 and O3 are measured with a preference on the highest value, while M2
and M3 are preferred with lowest values. The network sizes in the simulated (virtual network) tests
are n = [1, 5, 10, 15, 20] and n = [1, 5, 10, 15, 20, 30 and 41] in the enterprise network tests.

Which test and why?

The statistics test selection chart given in (Field & Hole, 2003)[p274] directs us to select the Mann-
Whitney H non-parametric test (Mann & Whitney, 1947). In this case, the data are measurement
scores from an experimental design using 1 independent variable (the changing algorithm), independent
measures (the repeated iterations that do not affect each another) and with two groups (algorithms).
We can safely assume the data is non-normally distributed, and thus the corresponding non-parametric
Mann-Whitney U test can be selected.

The test ranks and produces its results using ranked data giving a U statistic; the value of incon-
sistent ranked sample values. Each test is carried out on each metric for each network size. The results
upon the H0(A) can be found in Table 7.2. For example, the first test uses the input data of the metric
M1 data of the four algorithm results with network size 1, which is identical for both algorithms, and
thus shows as invalid (there is no significant difference).

227

228 E. Further Results and Analysis

Table description of the Mann-Whitney U and Cohen’s d Tests

For the simulated trials, the results using the metric (M1,M2,M3) data are shown in Table 7.2, whereas
the objective (O1,O2,O3) results are in Table 7.4 within its chapter. The enterprise network trial results
are shown inTable 7.6 and Table 7.8 respectively.

Each table uses the same format, tabular structure and use the same test conditions. The first
column (n) shows the number of nodes used during the given row of tests. Results are from a one-
tailed Mann-Whitney test in the U statistic column with df showing degrees of freedom and the P-value
is corrected to show a two-tailed significance value. The condition of p =< α is used to determine the
significance column value as significant (sig.) or insignificant (insig.) where critical alpha is α = 0.05.
Cohen’s d statistic function is defined in equation E.1, where σ and x̄ are sample standard deviation
and mean values. Its Effect Size categories are given in (Cohen, 1988)[p285], however our interpretation
of Cohen’s rating categories are expanded slightly to: S (Small) > 0 <= .3, M (Medium) > .3 <= .5,
L (Large) > .5 <= .7, VL (Very Large) > .7. MX refers to the mean value of the CARDINAL results
and MY to the mean value of the OptimalStatic results for a given test.

d = x̄x − x̄y

/
σ2
x + σ2

y

2
(E.1)

Note that reference median results can (and do) have small variations from zero on the objective
evaluation results O1, O2 and O3. These evaluation measures have already been introduced in sec-
tion 6.9 and the equation used to generate these scores was explained in subsection 6.10.3. These
variations from zero are not unexpected behaviour. This is because the values are reported as medians
of the ratio result of the equation, where the median reference value inputs (from M1, M2 and M3) into
that equation are not necessarily from the same (single) instance. This can lead to the selected median
reference instance for M1, for example, having a non-median representation in the objective evaluation
space (e.g. O1) due to having a outlier as its M2 result. Upon return from the equation, the new O1
result for this example instance is distinctly non-zero.

5 229

E.2 Self-Healing Benchmark - Virtual Network Plot Results

Figure E.1 – Time taken to transmit the median detector.

Note: A description of this plot is given in subsubsection 7.3.1.2 including discussion of how to interpret the misleading
NoNet time results (green coloured boxes).

230 E. Further Results and Analysis

(a
)

N
u

m
b

er
o
f

sign
a
tu

res
d

istrib
u

ted
d

u
rin

g
ex

p
erim

en
t.

(b
)

M
egab

y
tes

of
d

ata
sen

t
d

u
rin

g
ex

p
erim

en
t.

F
ig

u
re

E
.2

–
B

ox
p

lo
ts

o
b

serva
tio

n
s

o
f

m
etric

resu
lts

fro
m

th
e

v
irtu

al
n

etw
ork

tests.

5 231

(a
)

Im
m

u
n

is
at

io
n

ra
te

(O
1)

,
co

m
b
in

in
g

m
et

ri
c

M
1,

M
2

d
at

a
(b

)
Im

m
u

n
is

a
ti

o
n

ra
te

su
it

a
b

il
it

y
u
p

o
n

en
te

rp
ri

se
n

et
w

o
rk

s
(O

3
),

co
m

b
in

in
g

m
et

ri
c

M
1
,M

2
,M

3
d

a
ta

F
ig

u
re

E
.3

–
B

ox
p

lo
t

ob
se

rv
at

io
n

s
of

ou
r

S
el

f-
H

ea
li

n
g

S
y
st

em
re

se
a
rc

h
o
b

je
ct

iv
e

ev
a
lu

a
ti

o
n

s
(O

1
a
n

d
O

3
)

a
s

te
st

ed
o
n

a
v
ir

tu
a
l

n
et

w
o
rk

.
U

si
n

g
o
u

r
ex

te
n

si
o
n

of
th

e
W

ei
sb

in
&

R
o
d

ri
gu

ez
ra

ti
o

eq
u

at
io

n
,

w
it

h
th

e
S

en
d

A
ll

al
go

ri
th

m
re

su
lt

s
u

se
d

a
s

re
fe

re
n

ce
.

G
re

a
te

r
va

lu
es

im
p

ly
b

et
te

r
p

er
fo

rm
a
n

ce
.

232 E. Further Results and Analysis

E.3 Self-Healing Benchmark - Enterprise Plot Results

Figure E.4 – Time taken to transmit the median detector.

5 233

(a
)

M
eg

ab
y
te

s
of

d
at

a
se

n
t

d
u

ri
n

g
ex

p
er

im
en

t.
(b

)
N

u
m

b
er

o
f

si
g
n

a
tu

re
s

d
is

tr
ib

u
te

d
d

u
ri

n
g

ex
p

er
im

en
t.

F
ig

u
re

E
.5

–
M

et
ri

c
o
b

se
rv

a
ti

o
n

s.

234 E. Further Results and Analysis

(a
)

Im
m

u
n

isa
tion

rate
(O

1),
com

b
in

in
g

m
etric

M
1
,M

2
d

a
ta

(b
)

Im
m

u
n

isation
rate

su
itab

ility
u
p

on
en

terp
rise

n
etw

ork
s

(O
3),

com
b

in
in

g
m

etric
M

1
,M

2,M
3

d
ata

F
ig

u
re

E
.6

–
B

ox
p

lot
o
b

serva
tion

s
of

ou
r

S
elf-H

ea
lin

g
S

y
stem

resea
rch

o
b

jectiv
e

eva
lu

a
tio

n
s

(O
1

an
d

O
3)

as
tested

on
an

en
terp

rise
n

etw
ork

.
U

sin
g

ou
r

ex
ten

sion
o
f

th
e

W
eisb

in
&

R
o
d

rigu
ez

ratio
eq

u
a
tio

n
,

w
ith

th
e

S
en

d
A

ll
a
lg

o
rith

m
resu

lts
u

sed
as

referen
ce.

G
reater

valu
es

im
p

ly
b

etter
p

erform
an

ce.
N

ote
th

at
p

lo
t

y
-a

x
es

a
re

tru
n

cated
to

-1.5,
in

ord
er

to
ex

clu
d

e
O

p
tim

a
l-S

ta
tic’s

o
u

tlier
va

lu
e

tra
n

sp
o
sed

from
th

e
M

2
(T

im
e)

m
etric

resu
lts.

5 235

E.4 Time Delay: Bash Background Process Execution Order

Here we show execution order of background processes and foreground processes is non-deterministic
while using the bash eval function. We use this approach to initialise each instance of CARDINAL-
Vanilla within our virtual network tests and use this output to justify the use of a time delay to ensure
the execution order is predetermined.

#!/bin/bash

File name: test_bash_queue_execution_order.sh

#

HOSTS=10

for((h=1; h<=$HOSTS; h++))

do

if [$h -eq $HOSTS] # Final host:

then

eval "echo $h" # eval as a foreground process

else

eval "echo $h &" # eval as a background process

fi

location of possible time delay

done

#--------------------------

Output:

#--------------------------

bash --version

GNU bash, version 4.2.45(1)-release (x86_64-pc-linux-gnu)

#

#

./test_bash_queue_execution_order.sh

1

2

3

4

5

6

7

8

10

9

#£

236 E. Further Results and Analysis

Appendix F

Parameter Range Evaluations

F.1 Combined System Performance Measures: Part 2

This section describes an approach to combining measures to enable a multi-objective system perfor-
mance evaluation. It complements section 6.10.

Section F.1.1 describes a bit-based extension that is used by the search evaluation function in
8.4 and 8.6. This combination approach inaccurately combines metrics with a MIN-type preferred
semantic condition. To remove the effect, each search candidate is re-evaluated using the accurate ratio
of difference evaluation measure, specified in 6.10.3.

F.1.1 Failed Route: Log Ratio with Inverse

With respect to our goals for Objective 3 (O3) evaluation, two deficiencies of Rodriguez’s equations
were identified and described, alongside the introduction of their equations in subsection 6.10.2. We
shall describe extensions to handle those additions. First, by adding an inverse to handle the MIN
semantic measure condition case:

P
′′
(k,m) = log2

[
1/
p(k,m)

p(k, 1)

]
(F.1)

such that both MIN and MAX cases can be handled by P (k,m, ck):

P (k,m, ck) =

{
P
′
(k,m), if ck = MAX

P
′′
(k,m), if ck = MIN

(F.2)

To include the measure-specific weightings (required for our third objective (O3)) a weight wk is mul-
tiplied against the logarithm result. The updated performance measure functions become:

P
′
(k,m,wk) = log2

[
p(k,m)

p(k, 1)

]
∗ wk (F.3)

P
′′
(k,m,wk) = log2

[
1/
p(k,m)

p(k, 1)

]
∗ wk (F.4)

Our new weighting parameter wk is then added to the P functions in a straight-forward manner,

P (k,m,wk, ck) =

{
P
′
(k,m,wk), if ck = MAX

P
′′
(k,m,wk), if ck = MIN

(F.5)

and therefore Equation 6.12, our scoring function becomes:

237

238 F. Parameter Range Evaluations

s(m) =
1

2

N∑
k=1

P (k,m,wk, ck) (F.6)

Summary

We have shown our own extension to Rodriguez and Weisbin’s system performance evaluation (Ro-
driguez & Weisbin, 2003), using an inverse ratio, weights, conditional function and maintaining the
Rodriguez’s use of binary units as is summarised by Equation F.6. In the following section we will
show an example of the pitfalls when evaluating system performances using this described extension to
Rodriguez’s approach.

Example Calculation of Objective 3 (O3)

We will repeat the simple example from section 6.10.3 showing how the weighted Log Ratios with
Inverses equations perform with the example systems presented in Table 6.12. The example systems
exemplify distance equal and scaling behaviour of the measure equations, as described in more de-
tail above. In this case, we start by enter each system column of performance measure values (e.g.
[10, 10, 10]) with their respective weights and condition values into Equation F.5.

Table F.1 shows the output of this first function for each system measurement. With k = 1 and
k = 2 we expect counteracting values for a given system (e.g. [−0.584, 0.584]). This is due to the equal
weighting, opposing semantics and equal values for the reference system (e.g. [15, 15) and each test
system (e.g. [10, 10]). We then find that the third measure output to be one-tenth that of the second
measure value. The reference system evaluates to 0 for each of its measures, as it is using its own
results to create the ratio giving 1, and log21 then evaluates to 0.

Performance Systems
Measure (k) M 1 M 2 M 3 M 4 M 5 M 6 M 7 Weighting Condition

1 0.0 -0.584 0.415 0.093 0.180 0.263 0.341 1 MAX
2 0.0 0.584 -0.415 0.447 0.321 0.206 0.099 1 MIN
3 0.0 0.058 -0.041 0.0 0.0 0.0 0.0 0.1 MIN

Table F.1 – Table of results from our P (k,m,wk, ck) performance measure function in Equation F.5 for individual
measure data from Table 6.12. Results are truncated at 3 decimal places.

Alarmbells 1/2

Importantly, we find that distance information between the systems is not maintained into the new
ratio space. This is exemplified in our first three test systems by their equal distance (of 5) in result
space, but differing ratio distances in ratio space. From this point onward, we can only draw interval
distance comparisons on ratio score pairs within the same k (measure source) and that are both positive
or both negative.

Next we can see the final results of Equation F.6 in Table F.2, which sums the P (k,m,wk, ck)
function outputs and multiplies by .5 per system.

Alarmbells 2/2

Table F.2 shows that multiplication by .5 has reduced the ratio space distance difference between
systems M1 and M2. Systems M4, ..M7 each have equally improved distances and equal weighting, yet
there is transparent discrepancy between those values, both in logarithm-ratio space (Table F.1) and in

6 239

Performance Systems
Measure M 1 M 2 M 3 M 4 M 5 M 6 M 7

O3 0.0 0.029248 -0.020751 0.270284 0.251250 0.234742 0.220286

Table F.2 – Table of results from s(m) score function in Equation F.6. Results are truncated at 6 decimal
places. Noticeable differences in O3 values for systems M4, ..M7 of equal weight and improved distance.

score space (as an outcome of Equation F.6). This difference is exacerbated (increased or reduced) as
the configurations of weights, conditions, absolute value differences and signed value differences change.

Summary

We have shown that the latter four systems scale differently with differing values of the MAX and
MIN condition measures. They have clear final score s(m) variation despite having equally distanced
measures. Using the Log Ratios with Inverses is not a suitable reverse alternative to a ratio, and
particularly so when combining values with opposing MIN/MAX semantics as a system performance
measure.

240 F. Parameter Range Evaluations

F.2 Descriptive Statistics of Each Parameter Value Range

Table F.6 and Table F.7 show the complete set of summary statistics of metrics for each parameter
value change.

F.3 Box Plots of Each Parameter Value Range

The following figures show the box plot performance per parameter per range value, see Figure F.1,
Figure F.2, Figure F.3, Figure F.4, Figure F.5. The list of metrics are identified in Table 8.2 and
complement the descriptive statistic result tables per metric, which are also within this appendix.

F.4 Ordinal Correlation from Parameter Value to Metric Results

Tables F.3, F.4, F.5, F.9 and F.10 show the rho statistic and P-value results from the Spearman’s rank
correlations described in subsection 8.3.1.

v. rho P − value df Correlation

Under Attack Volume Percentage: P0

Inputs nan nan 6 No effect
Detectors nan nan 6 No effect
Distributed-M1 0.991 1.46−05 6 Sig. < 0.05 Pos.
Response-Total 1 0 6 Sig. < 0.05 Pos.
Response-µ 0.937 0.00185 6 Sig. < 0.05 Pos.
Time-M2 -0.964 0.000454 6 Sig. < 0.05 Neg.
IO-Events-Total 0.929 0.00252 6 Sig. < 0.05 Pos.
IO-Events-µ 0.982 8.29−05 6 Sig. < 0.05 Pos.
DataSent-M3 1 0 6 Sig. < 0.05 Pos.
DataSent-µ 1 0 6 Sig. < 0.05 Pos.

Table F.3 – Table of Spearman’s rank rho (monotonic) correlations between the P0 range values and the median
results for each metric listed.

v. rho P − value df Correlation

Initial Priority Value Multiplier: P1

Inputs nan nan 7 No effect
Detectors nan nan 7 No effect
Distributed-M1 0.946 0.000386 7 Sig. < 0.05 Pos.
Response-Total 0.833 0.0102 7 Sig. < 0.05 Pos.
Response-µ 0.976 3.31−05 7 Sig. < 0.05 Pos.
Time-M2 -0.929 0.000863 7 Sig. < 0.05 Neg.
IO-Events-Total -0.0479 0.91 7 Insig.
IO-Events-µ nan nan 7 No effect
DataSent-M3 1 0 7 Sig. < 0.05 Pos.
DataSent-µ 1 0 7 Sig. < 0.05 Pos.

Table F.4 – Table of Spearman’s rank rho (monotonic) correlations between the P1 range values and the median
results for each metric listed.

6
241

Qty of Modules Responses Time to Send Qty of I/O Events MiB Sent
Inputs Detectors Dist. M1 Median Host Total M2 Total Median Host Total M3 Median Host

v µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.)

Under Attack Volume Percentage: P0

0.25 13 0 13 0 2 0.894 14798.5 19.2 72747 138 58.568 2.69 120 0 24 0 1.7 0.064 0.4 0
0.33 13 0 13 0 7 1.02 14863 14.7 73609 169 40.332 13.7 213 2.62 43 0.7 4.05 0.134 0.9 0.064
0.5 13 0 13 0 8.5 1.51 14889 19.6 74117 201 34.3185 9.63 211 1.85 43 0.539 5.6 0.211 1.2 0.06

0.66 13 0 13 0 11.5 1.02 14926.5 26.3 74438.5 119 32.595 2.11 309 1.2 62 1.12 10.3 0.545 2.1 0.0922
0.75 13 0 13 0 12.5 1.3 14953.5 12.3 74528.5 129 29.303 4.15 310 2.68 63 0.872 11.85 0.699 2.4 0.118
0.9 13 0 13 0 12.5 0.781 14941 20.5 74601.5 126 31.639 3.84 407 3 83 0.4 16.6 0.655 3.4 0.11

1 13 0 13 0 13 0.4 14953.5 13.2 74696.5 45.9 28.5995 2.79 405 4.4 83 1.2 18.6 0.415 3.8 0.064

Initial Priority Value Multiplier: P1

0.5 13 0 13 0 10 1.36 14895 24 74409 206 33.6515 3.99 309 2.87 63 0.6 9.35 0.326 1.9 0.08
1 13 0 13 0 10 1.11 14921.5 16.6 74450 151 33.768 2.66 310.5 5.02 63 0.7 10.25 0.492 2.1 0.0748

1.5 13 0 13 0 11.5 1 14922.5 19.6 74452.5 139 33.307 2.18 312 3.94 63 1.62 10.8 0.498 2.25 0.0781
2 13 0 13 0 12 0.781 14927 16.4 74518.5 102 31.6795 4.13 309.5 3.67 63 0.64 11.4 0.503 2.35 0.102

2.5 13 0 13 0 12 0.64 14936.5 19.5 74419.5 214 32.489 4.32 308.5 5.53 63 0.539 11.55 0.753 2.4 0.118
3 13 0 13 0 13 0.64 14935.5 22.1 74535.5 140 28.128 3.88 310.5 4.66 63 0.806 12.55 0.533 2.5 0.136

3.5 13 0 13 0 12.5 0.781 14953 15.2 74522.5 121 30.097 4.58 307 3.32 63 0.458 12.95 0.38 2.7 0.102
4 13 0 13 0 13 0.49 14959.5 12.5 74652.5 102 25.546 4.37 311 1.3 63 0.632 14.25 0.465 2.85 0.0917

Priority Value Suppression: P2

0.1 13 0 13 0 13 0 14967.5 13.6 74570.5 131 27.275 3.79 310 1.97 63 0.3 22.25 1.33 4.6 0.293
0.2 13 0 13 0 13 0 14974.5 8.34 74539 153 25.961 2.78 310.5 1.94 63 0.447 23.75 1.14 4.8 0.232
0.3 13 0 13 0 13 0 14969.5 13.5 74626.5 111 27.7855 3.64 309.5 3.4 63 0.8 23.15 0.815 4.7 0.169
0.4 13 0 13 0 13 0 14960 9.22 74483 102 30.3195 3.69 307 2.82 63 0.539 21.65 1.08 4.45 0.228
0.5 13 0 13 0 13 0 14971 15.7 74589 128 27.156 2.97 309.5 3.43 63 1 21.35 1.04 4.3 0.202
0.6 13 0 13 0 13 0 14958.5 16.4 74695 105 29.053 2.77 308 1.87 63 0.922 18.65 0.908 3.8 0.241
0.7 13 0 13 0 13 0.3 14953 13.2 74365.5 522 31.1105 4.03 308 4.44 63 0.632 17.3 1.26 3.35 0.224
0.8 13 0 13 0 13 0 14959 18.9 74639 95.4 29.4215 2.51 308.5 4.36 63 0.781 14.95 0.953 3.05 0.195
0.9 13 0 13 0 12.5 0.872 14941 22.4 74616.5 134 28.4775 3.19 311 2.54 63 0.3 12.65 0.842 2.65 0.174

1 13 0 13 0 11 1.49 14934 14.4 74485.5 110 32.1575 2.74 311.5 2.86 63 0.917 9.45 0.31 2 0.0748
1.25 13 0 13 0 3.5 1.28 14842 45.6 74015.5 3290 62.9235 1.5 310 3.01 63 0.8 4.4 0.294 0.9 0.064
1.5 13 0 13 0 2.5 0.917 14850.5 17.3 73870 123 60.5815 1.65 308.5 3.47 63 0.671 3.6 0.214 0.8 0.049

1.75 13 0 13 0 1 0.748 14807 29.9 73621.5 160 60.2395 2.18 306.5 4.07 62.5 0.98 3.15 0.174 0.7 0.049
2 13 0 13 0 1.5 1.11 14842.5 17.4 73640 127 61.4 2.35 309 3.87 63 0.632 3.1 0.133 0.7 0.0458

Table F.6 – Table shows measured results upon the variation of only the value v setting for parameters P0, P1 and P2. Tests are conducted under a given virtual
network experiment set-up with five virtual hosts. Median µ and sampled standard deviation (Std.) summary statistics are reported per metric.

24
2

F
.

P
aram

eter
R

an
ge

E
valu

ation
s

Qty of Modules Responses Time to Send Qty of I/O Events MiB Sent
Inputs Detectors Dist. M1 Median Host Total M2 Total Median Host Total M3 Median Host

v µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.) µ (Std.)

Static Moving Window Size: P3

1 13 0 13 0 7.5 1.36 14911 15.6 74385 205 29.451 16.2 185.5 7.2 37 1.57 3.05 0.335 0.7 0.07
2 13 0 13 0 7.5 1.43 14910 11.7 74342 89.3 34.5395 12.5 188 5.1 38.5 1.97 3.2 0.245 0.65 0.0917
3 13 0 13 0 8 1.36 14905 12.2 74386 75.5 31.8435 3.7 185 7.31 36 1.92 3.3 0.26 0.7 0.104
4 13 0 13 0 8.5 1.66 14914.5 17.2 74493.5 106 29.512 14.7 191 5.7 38.5 1.57 3.7 0.293 0.8 0.07
5 13 0 13 0 7.5 1.96 14915.5 10.6 74439.5 151 32.216 14.6 190.5 6.96 38.5 2.05 3.55 0.316 0.8 0.098
6 13 0 13 0 8.5 1.51 14915.5 16.3 74432.5 99.2 32.5825 14 185 10.7 37.5 2.23 3.5 0.345 0.8 0.0748
8 13 0 13 0 8.5 1.72 14907 19.5 74358 180 31.759 14.3 193 10.3 38.5 2.21 3.9 0.405 0.9 0.12

10 13 0 13 0 9.5 1.22 14921 15.7 74449 72.1 29.5555 4.93 205.5 7.7 40 2.06 4.6 0.309 1 0.0943
12 13 0 13 0 12 0.9 14944 11.5 74524.5 60 29.576 2.76 310.5 3.69 63 0.917 9.95 0.504 2.1 0.0943
14 13 0 13 0 12 0.872 14939 16.9 74532 416 31.1565 4.74 310.5 3.03 63 0.748 10.3 0.402 2.2 0.08
16 13 0 13 0 12 0.748 14956.5 22.3 74591 105 28.222 2.56 309.5 3.57 63 0.917 11 0.666 2.25 0.127
18 13 0 13 0 12 0.943 14937.5 20.8 74555 124 29.3675 3.93 310.5 3.35 63 0.748 10.65 0.514 2.2 0.108
20 13 0 13 0 12 0.64 14945.5 15.3 74564 134 28.752 3.6 310.5 4.15 63 0.8 10.85 0.547 2.25 0.11
40 13 0 13 0 12 0.775 14944 15.9 74431 122 30.4865 3.62 308.5 2.84 63 1.1 11.25 0.299 2.3 0.0748
60 13 0 13 0 12 0.781 14930.5 19.5 74462 126 32.6815 3.08 307.5 3.51 63 0.781 11.45 0.437 2.3 0.0872
80 13 0 13 0 12 0.748 14949 14.3 74557.5 90.9 28.235 2.45 309 2.68 63 0.8 11.7 0.517 2.4 0.14

100 13 0 13 0 12.5 1.14 14945 14.6 74525 194 29.511 5.23 309 3.29 63 0.9 11.45 0.739 2.3 0.194

Dendritic Cell Lifespan: P4

1 13 0 13 0 12 0.8 14933.5 38.1 74462 147 28.76 3.5 310.5 2.46 63 0.539 11.4 0.316 2.35 0.0663
5 13 0 13 0 12 0.943 14926 31.5 74441.5 205 30.4255 2.92 311 2.73 63 0.458 11.15 0.633 2.3 0.16

10 13 0 13 0 11 1.2 14945 27.7 74586 141 29.649 1.59 308.5 3.83 63 0.917 11.35 0.308 2.4 0.0539
20 13 0 13 0 12.5 0.663 14944 18.8 74572.5 157 27.5645 4.16 309 3.31 62 0.6 12 0.42 2.4 0.08
40 13 0 13 0 13 0.458 14952.5 22.6 74442.5 82.2 29.7925 4.06 307.5 2.82 63 1.14 11.25 0.525 2.3 0.09
50 13 0 13 0 13 0.917 14953 22.2 74556.5 158 30.065 3.25 311 2.38 63 0.781 11.45 0.498 2.35 0.0872
60 13 0 13 0 12 0.7 14945 10.9 74625 167 29.706 3.04 307.5 4.03 62 0.943 11.55 0.461 2.4 0.1
80 13 0 13 0 12 1 14946 18.4 74517 210 30.688 3.19 310.5 3.06 63 0.64 11.35 0.438 2.4 0.11

100 13 0 13 0 13 0.663 14945 18.7 74504.5 156 28.849 2.47 308.5 2.77 62 1 11.6 0.544 2.4 0.125

Table F.7 – Table shows measured results upon the variation of only the value v setting for parameters P3 and P4. Tests are conducted under a given virtual network
experiment set-up with five virtual hosts. Median µ and sampled standard deviation (Std.) summary statistics are reported per metric.

6
243

0 5 10 15 20
Qty of Detectors

0.25

0.33

0.5

0.66

0.75

0.9

1.0 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure F.1 – Under Attack Volume Percentage (P0) - parameter value range effects.

0 5 10 15 20
Qty of Detectors

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure F.2 – Initial Priority Value Multiplier (P1) - parameter value range effects.

24
4

F
.

P
aram

eter
R

an
ge

E
valu

ation
s

0 5 10 15 20
Qty of Detectors

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.25
1.5

1.75
2.0

Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure F.3 – Priority Value Suppression (P2) - parameter value range effects.

0 5 10 15 20
Qty of Detectors

1
2
3
4
5
6
8
10
12
14
16
18
20
40
60
80
100 Inputs

Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure F.4 – Static Moving Window Size (P3) - parameter value range effects.

6
245

0 5 10 15 20
Qty of Detectors

1

5

10

20

50

40

60

80

100 Inputs
Detectors
Distributed

0 20 40 60 80 100
Qty of Responses (10−3)

Host η
Total

0 10 20 30 40 50 60 70
Inoculation Time (in seconds)

0 100 200 300 400 500
Qty of I/O Events

Total
Host η

0 5 10 15 20 25 30
MiB of Data

Total
Host η

Figure F.5 – Dendritic Cell Lifespan (P4) - parameter value range effects.

246 F. Parameter Range Evaluations

v. rho P − value df Correlation

Priority Value Suppression: P2 (Full Range)

Inputs nan nan 13 No effect
Detectors nan nan 13 No effect
Distributed-M1 -0.898 1.29−05 13 Sig. < 0.05 Neg.
Response-Total -0.613 0.0197 13 Sig. < 0.05 Neg.
Response-µ -0.921 2.98−06 13 Sig. < 0.05 Neg.
Time-M2 0.855 9.77−05 13 Sig. < 0.05 Pos.
IO-Events-Total -0.168 0.566 13 Insig.
IO-Events-µ -0.378 0.182 13 Insig.
DataSent-M3 -0.987 7.38−11 13 Sig. < 0.05 Neg.
DataSent-µ -0.986 1.2−10 13 Sig. < 0.05 Neg.

Table F.5 – Table of Spearman’s rank rho (monotonic) correlations between the full P2 range values and the
median results for each metric listed. The full range tested here is between 0.1 and 2.0.

v. rho P − value df Correlation

Priority Value Suppression: P2 (reduced range)

Inputs nan nan 9 No effect
Detectors nan nan 9 No effect
Distributed-M1 -0.701 0.024 9 Sig. < 0.05 Neg.
Response-Total 0.0545 0.881 9 Insig.
Response-µ -0.842 0.00222 9 Sig. < 0.05 Neg.
Time-M2 0.685 0.0289 9 Sig. < 0.05 Pos.
IO-Events-Total 0.171 0.637 9 Insig.
IO-Events-µ nan nan 9 No effect
DataSent-M3 -0.964 7.32−06 9 Sig. < 0.05 Neg.
DataSent-µ -0.964 7.32−06 9 Sig. < 0.05 Neg.

Table F.8 – Table of Spearman’s rank rho (monotonic) correlations between the reduced P2 range of values and
the median results for each metric listed. The tested range here is between 0.1 and 1.0, a more intuitive range.

v. rho P − value df Correlation

Static Moving Window Size: P3

Inputs nan nan 16 No effect
Detectors nan nan 16 No effect
Distributed-M1 0.926 9.46−08 16 Sig. < 0.05 Pos.
Response-Total 0.662 0.00381 16 Sig. < 0.05 Pos.
Response-µ 0.82 5.65−05 16 Sig. < 0.05 Pos.
Time-M2 -0.392 0.119 16 Insig.
IO-Events-Total 0.714 0.0013 16 Sig. < 0.05 Pos.
IO-Events-µ 0.882 2.81−06 16 Sig. < 0.05 Pos.
DataSent-M3 0.979 1.06−11 16 Sig. < 0.05 Pos.
DataSent-µ 0.98 7.09−12 16 Sig. < 0.05 Pos.

Table F.9 – Table of Spearman’s rank rho (monotonic) correlations between the P3 range values and the median
results for each metric listed.

6 247

v. rho P − value df Correlation

Dendritic Cell Lifespan: P4

Inputs nan nan 8 No effect
Detectors nan nan 8 No effect
Distributed-M1 0.443 0.232 8 Insig.
Response-Total 0.217 0.576 8 Insig.
Response-µ 0.593 0.0922 8 Insig.
Time-M2 0.233 0.546 8 Insig.
IO-Events-Total -0.432 0.245 8 Insig.
IO-Events-µ -0.456 0.217 8 Insig.
DataSent-M3 0.326 0.391 8 Insig.
DataSent-µ 0.461 0.212 8 Insig.

Table F.10 – Table of Spearman’s rank rho (monotonic) correlations between the P4 range values and the
median results for each metric listed.

F.5 Descriptive Statistics of Immunisation Rates

Table F.11 shows summary statistics of each system performance measure for each parameter value
change.

F.6 Box Plots of Immunisation Rates

Figure F.6 shows box-plot results of three system performance measures for each parameter range.

F.7 Best of Search States from Virtual Network Environment Tests

Metric and immunisation rate scores of the best configurations discovered during the virtual network
parameter tuning search are collected in the following tables:

• Tables F.12 and F.13 are ranked by the generalised immunisation rate (O1).

• Results within the corresponding experiment chapter in tables 8.11 and 8.12 are ranked by the
immunisation rate for low through-put networks (O2).

• Finally, in tables F.14 and F.15 results are ranked by the immunisation rate for high through-put
networks (O3).

248 F. Parameter Range Evaluations

0.2
5

0.3
3 0.5 0.6

6
0.7
5 0.9 1.0

P0

−10

−8

−6

−4

−2

0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01.2

51.51.7
52.0

P2

1 2 3 4 5 6 8 10 12 14 16 18 20 40 60 8010
0

P3

1 5 10 20 40 50 60 80 10
0

P4

(a) For transmission-agnostic evaluation (O1).

0.2
5

0.3
3 0.5 0.6

6
0.7
5 0.9 1.0

P0

−10

−8

−6

−4

−2

0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01.2

51.51.7
52.0

P2

1 2 3 4 5 6 8 10 12 14 16 18 20 40 60 8010
0

P3

1 5 10 20 40 50 60 80 10
0

P4

(b) For evaluation on low-throughput networks (O2).

0.2
5

0.3
3 0.5 0.6

6
0.7
5 0.9 1.0

P0

−10

−8

−6

−4

−2

0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.01.2

51.51.7
52.0

P2

1 2 3 4 5 6 8 10 12 14 16 18 20 40 60 8010
0

P3

1 5 10 20 40 50 60 80 10
0

P4

(c) For evaluation on high-throughput networks (O3).

Figure F.6 – The box-plots show results of our three system performance measures (scored on the Y-axis) from
trials with our five parameter’s sets of configuration values (X-axis). Greater Y-axis values are preferred. The
red dotted line shows the median trend. From left to right, P0, P1, P2, P3 and P4 parameter results are shown.
Each are described within the chapter.

6
249

O1 O2 O3
v µ (Std.) µ (Std.) µ (Std.)

Under Attack Volume Percentage: P0

0.25 -9.72 0.444 -9.25 0.445 -9.67 0.444
0.33 -6.55 2.3 -6.13 2.3 -6.5 2.3
0.5 -5.49 1.63 -5.11 1.63 -5.45 1.63

0.66 -5.16 0.362 -4.86 0.353 -5.13 0.361
0.75 -4.56 0.702 -4.3 0.694 -4.53 0.701
0.9 -4.96 0.635 -4.8 0.627 -4.94 0.634
1.0 -4.44 0.467 -4.32 0.464 -4.43 0.467

Initial Priority Value Multiplier: P1

0.5 -5.33 0.691 -5.02 0.687 -5.3 0.691
1.0 -5.38 0.458 -5.09 0.452 -5.35 0.457
1.5 -5.24 0.356 -4.96 0.349 -5.21 0.356
2.0 -4.97 0.694 -4.71 0.689 -4.94 0.694
2.5 -5.1 0.732 -4.83 0.722 -5.08 0.731
3.0 -4.36 0.643 -4.13 0.638 -4.34 0.643
3.5 -4.72 0.76 -4.47 0.756 -4.69 0.759
4.0 -3.96 0.729 -3.74 0.729 -3.94 0.729

Priority Value Suppression: P2

0.1 -4.22 0.631 -4.15 0.623 -4.21 0.63
0.2 -4 0.463 -3.96 0.451 -4 0.462
0.3 -4.31 0.607 -4.26 0.614 -4.3 0.608
0.4 -4.73 0.615 -4.66 0.602 -4.72 0.614
0.5 -4.2 0.495 -4.14 0.489 -4.19 0.494
0.6 -4.52 0.462 -4.39 0.469 -4.5 0.463
0.7 -4.86 0.67 -4.68 0.656 -4.84 0.669
0.8 -4.58 0.419 -4.4 0.411 -4.56 0.418
0.9 -4.45 0.543 -4.21 0.534 -4.42 0.542
1.0 -5.08 0.473 -4.77 0.469 -5.05 0.472

P2-Full

1.25 -10.4 0.239 -9.96 0.241 -10.3 0.24
1.5 -10.1 0.259 -9.63 0.262 -10 0.259

1.75 -10 0.366 -9.58 0.367 -9.97 0.366
2.0 -10.2 0.382 -9.76 0.383 -10.1 0.382

(a)

O1 O2 O3
v µ (Std.) µ (Std.) µ (Std.)

Static Moving Window Size: P3

1 -4.7 2.73 -4.26 2.73 -4.65 2.73
2 -5.57 2.1 -5.13 2.1 -5.52 2.1
3 -5.11 0.642 -4.67 0.64 -5.06 0.642
4 -4.69 2.49 -4.27 2.5 -4.65 2.49
5 -5.17 2.48 -4.74 2.48 -5.13 2.48
6 -5.23 2.37 -4.8 2.37 -5.19 2.37
8 -5.11 2.41 -4.68 2.41 -5.06 2.41

10 -4.7 0.85 -4.29 0.848 -4.66 0.85
12 -4.64 0.467 -4.34 0.461 -4.61 0.466
14 -4.89 0.803 -4.6 0.797 -4.86 0.802
16 -4.39 0.437 -4.12 0.434 -4.36 0.437
18 -4.58 0.671 -4.29 0.665 -4.55 0.67
20 -4.5 0.609 -4.24 0.603 -4.48 0.608
40 -4.78 0.595 -4.51 0.592 -4.75 0.595
60 -5.16 0.522 -4.88 0.52 -5.13 0.522
80 -4.38 0.41 -4.11 0.411 -4.35 0.41

100 -4.61 0.898 -4.34 0.889 -4.58 0.897

Dendritic Cell Lifespan: P4

1 -4.49 0.586 -4.22 0.584 -4.47 0.586
5 -4.75 0.492 -4.47 0.482 -4.72 0.491

10 -4.69 0.261 -4.42 0.257 -4.66 0.26
20 -4.28 0.695 -4.02 0.696 -4.26 0.695
40 -4.69 0.558 -4.41 0.55 -4.66 0.557
50 -4.65 0.679 -4.38 0.671 -4.63 0.678
60 -4.65 0.512 -4.38 0.511 -4.62 0.512
80 -4.81 0.536 -4.54 0.529 -4.79 0.535

100 -4.49 0.416 -4.22 0.41 -4.46 0.415

(b)

Table F.11 – Tables of system performance measure results taken from 10 repeated trials with changes to each parameter’s configuration value (v.). Median (µ) and
standard deviations (Std.) are shown for each of the three performance measure objectives O1, O2 and O3. Greatest median and smallest Std. values are preferred and
have been emboldened. P2-Full has been segregated as this range of values show particularly poor performance, as discussed in Part 1.

25
0

F
.

P
aram

eter
R

an
ge

E
valu

ation
s

Configuration Metric Scores
Set Distributed-M1 Time-M2 DataSent-M3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR Generation

1 0.66 2 0.1 2 19.500 0.500 1.000 14.889 2.246 2.835 46.650 3.939 7.150 2
2 1.0 3.5 0.1 1 19.500 1.732 1.000 14.974 2.563 4.075 61.500 15.147 10.400 7
3 1.0 1.0 0.1 1 20.000 3.528 1.000 15.271 71.078 2.943 60.550 14.126 17.850 8
4 1.0 1.0 0.1 1 20.000 0.663 0.750 15.473 7.904 9.268 70.400 14.602 16.750 9
5 0.75 2.0 0.1 1 20.000 0.458 0.750 15.712 1.368 2.486 46.000 4.619 4.425 4
6 0.75 2.5 0.1 2 20.000 0.458 0.750 15.806 1.991 2.217 55.350 12.394 5.075 2
7 0.75 3.5 0.2 1 19.000 1.432 0.750 16.017 9.418 9.769 50.950 15.067 30.025 6
8 0.75 2.0 0.1 1 19.000 0.490 1.000 16.103 4.840 2.894 42.650 13.007 14.150 4
9 0.75 2 0.95 1 19.000 1.414 1.000 16.109 4.779 2.835 42.550 13.512 15.100 0
10 0.75 0.5 0.1 1 19.000 0.458 0.750 16.133 3.236 3.056 49.050 4.820 4.775 6

Table F.12 – Table showing metric scores of the best configurations ranked by immunisation rate O1 score. Scores from the parameter tuning search under the virtual network
environment set-up.

Configuration Immunisation Rate Scores
Set O1 O2 O3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR

1 0.66 2 0.1 2 -1.99392 0.37643 0.46621 -2.48217 0.40510 0.49479 -2.03912 0.37866 0.47236
2 1.0 3.5 0.1 1 -2.01883 0.45722 0.67821 -2.79025 0.47530 0.76950 -2.08645 0.44997 0.68672
3 1.0 1.0 0.1 1 -2.04525 11.93326 0.50921 -2.75625 12.09073 0.72437 -2.11635 11.94880 0.51251
4 1.0 1.0 0.1 1 -2.09142 1.32638 1.53962 -3.00325 1.52301 1.87300 -2.16002 1.34448 1.55388
5 0.75 2.0 0.1 1 -2.11858 0.22656 0.42683 -2.64167 0.23447 0.34158 -2.17048 0.22566 0.41126
6 0.75 2.5 0.1 2 -2.14675 0.32735 0.35879 -2.73550 0.47378 0.55579 -2.20485 0.33668 0.39009
7 0.75 3.5 0.2 1 -2.19442 1.60036 1.67825 -2.79717 1.39991 1.43696 -2.24632 1.57888 1.65868
8 0.75 2.0 0.1 1 -2.19633 0.80939 0.47612 -2.70067 0.87729 0.51117 -2.25233 0.81270 0.46875
9 0.75 2 0.95 1 -2.19733 0.82436 0.44750 -2.60208 0.86355 0.81237 -2.23218 0.82438 0.48117
10 0.75 0.5 0.1 1 -2.20125 0.53848 0.52812 -2.73625 0.57344 0.54021 -2.25475 0.54130 0.52122

Table F.13 – The adjoining table to the above, showing immunisation rate scores of the same best configurations ranked by their O1 score. Scores from the parameter tuning
search under the virtual network environment set-up.

6
251

Configuration Metric Scores
Set Distributed-M1 Time-M2 DataSent-M3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR Generation

1 0.66 2 0.1 2 19.500 0.500 1.000 14.889 2.246 2.835 46.650 3.939 7.150 2
2 1.0 3.5 0.1 1 19.500 1.732 1.000 14.974 2.563 4.075 61.500 15.147 10.400 7
3 1.0 1.0 0.1 1 20.000 3.528 1.000 15.271 71.078 2.943 60.550 14.126 17.850 8
4 1.0 1.0 0.1 1 20.000 0.663 0.750 15.473 7.904 9.268 70.400 14.602 16.750 9
5 0.75 2.0 0.1 1 20.000 0.458 0.750 15.712 1.368 2.486 46.000 4.619 4.425 4
6 0.75 2.5 0.1 2 20.000 0.458 0.750 15.806 1.991 2.217 55.350 12.394 5.075 2
7 0.75 2 0.95 1 19.000 1.414 1.000 16.109 4.779 2.835 42.550 13.512 15.100 0
8 0.75 2.0 0.1 1 19.000 0.640 0.000 16.078 2.729 0.734 38.750 6.573 8.775 5
9 0.75 3.5 0.2 1 19.000 1.432 0.750 16.017 9.418 9.769 50.950 15.067 30.025 6
10 0.75 2.0 0.1 1 19.000 0.490 1.000 16.103 4.840 2.894 42.650 13.007 14.150 4

Table F.14 – Table showing metric scores of the best configurations ranked by immunisation rate O3 score. Scores from the parameter tuning search under the virtual network
environment set-up.

Configuration Immunisation Rate Scores
Set O1 O2 O3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR

1 0.66 2 0.1 2 -1.99392 0.37643 0.46621 -2.48217 0.40510 0.49479 -2.03912 0.37866 0.47236
2 1.0 3.5 0.1 1 -2.01883 0.45722 0.67821 -2.79025 0.47530 0.76950 -2.08645 0.44997 0.68672
3 1.0 1.0 0.1 1 -2.04525 11.93326 0.50921 -2.75625 12.09073 0.72437 -2.11635 11.94880 0.51251
4 1.0 1.0 0.1 1 -2.09142 1.32638 1.53962 -3.00325 1.52301 1.87300 -2.16002 1.34448 1.55388
5 0.75 2.0 0.1 1 -2.11858 0.22656 0.42683 -2.64167 0.23447 0.34158 -2.17048 0.22566 0.41126
6 0.75 2.5 0.1 2 -2.14675 0.32735 0.35879 -2.73550 0.47378 0.55579 -2.20485 0.33668 0.39009
7 0.75 2 0.95 1 -2.19733 0.82436 0.44750 -2.60208 0.86355 0.81237 -2.23218 0.82438 0.48117
8 0.75 2.0 0.1 1 -2.21717 0.46889 0.12229 -2.51475 0.53059 0.32529 -2.23610 0.47378 0.11767
9 0.75 3.5 0.2 1 -2.19442 1.60036 1.67825 -2.79717 1.39991 1.43696 -2.24632 1.57888 1.65868
10 0.75 2.0 0.1 1 -2.19633 0.80939 0.47612 -2.70067 0.87729 0.51117 -2.25233 0.81270 0.46875

Table F.15 – The adjoining table to the above, showing immunisation rate scores of the same best configurations ranked by their O3 score. Scores from the parameter tuning
search under the virtual network environment set-up.

252 F. Parameter Range Evaluations

Generation 1: Top 10 (A only)

P0 0.5≥ 80% < 0.625 ≥ 20% <0.75
P1 0.5≥ 50% < 1.5 ≥ 50% <2.5
P2 0.7≥ 30% < 0.8 ≥ 70% <0.9
P3 1.0≥ 50% < 2.5 ≥ 50% <4.0

Generation 1: Top 10 (B only)

P0 0.5≥ 60% < 0.75 ≥ 40% <1.0
P1 0.5≥ 80% < 2.0 ≥ 20% <3.5
P2 0.7≥ 10% < 0.8 ≥ 90% <0.9
P3 1.0≥ 70% < 2.5 ≥ 30% <4.0

All Generations Top 10s (A,B,B 2,B 3)

P0 0.5≥ 60% < 0.75 ≥ 40% <1.0
P1 0.5≥ 62% < 2.25 ≥ 38% <4.0
P2 0.2≥ 10% < 0.55 ≥ 90% <0.9
P3 1.0≥ 45% < 3.0 ≥ 55% <5.0

Table F.16 – The table maps each of the elite configurations’ parameter values into either the top or bottom
regions of the parameter’s range. The percentages show where those configuration values fell from each of the
elite configurations. Shown are result sets A , B and a combination of A, B, B 2 and B 3 result sets. This table
is included to give further informative coverage of the differing A and B set behaviours and an overview of all of
the tested configuration sets.

F.8 Enterprise Network Environment Parameter Tuning Tests

This test ran for 6 days and consisted of 4 result sets, over 3 search generations using a multiple search
hill climbing search. Result sets A and B were the results of generation 1’s configurations, under two
slightly differing test conditions. Both used the same experiment hardware, physical conditions and
experiment framework. Set A experienced 5 trials per configuration. Set B and its series experienced
10 trials per configuration. Network noise drastically affected generations 2 and 3; meaning it would
be inappropriate to compare results between generation 1 and the later generations.

F.8.1 Initial Configuration Set Random Selection

The initial configuration sets were generated using the java.util.Random library class. Result set A
used a seed of 1. Result set B used a seed of 2. The random.nextInt() method was used to select
the indexes within each parameter’s index range in order. An analysis of the class’s linear congruential
generator algorithm is shown in C.2.

F.8.2 Other Result Sets

Table F.16 shows percentage configuration value of the top results from generation 1’s result sets and
an overview of the configurations tested during the search. These are given to provide information on
bias of the configuration coverage of the search.

Tables F.17 to F.20 show the metric and immunisation rate performance scores of the top configu-
rations during generations 1 and 2.

6
253

Configuration Metric Scores
Set Distributed-M1 Time-M2 DataSent-M3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR Generation

1 0.5 1.5 0.8 2 14.000 0.458 0.750 11.104 0.763 0.653 61.650 2.919 3.525 B
2 0.66 0.5 0.9 1 13.000 0.671 1.000 11.729 1.221 0.754 54.400 3.000 3.475 B
3 0.5 2.5 0.9 2 14.000 0.800 1.000 11.794 0.828 1.687 55.500 0.602 0.400 A
4 0.5 3.5 0.8 2 14.000 0.000 0.000 11.117 1.003 1.502 67.950 1.263 1.425 B
5 0.66 2.0 0.9 3 14.000 0.400 0.000 12.019 0.950 1.501 59.900 2.033 3.100 A
6 0.75 0.5 0.9 4 13.000 0.748 1.000 12.483 1.237 0.990 58.950 3.637 3.250 B
7 0.66 0.5 0.8 1 14.000 0.400 0.000 12.029 1.060 0.520 62.200 1.972 2.625 B
8 1.0 1.0 0.9 1 14.000 0.458 0.750 12.329 0.942 0.966 61.600 6.471 9.975 B
9 0.5 1.5 0.8 4 13.000 0.748 1.000 12.457 1.394 0.848 65.100 2.020 3.800 A
10 0.5 1.0 0.7 1 14.000 0.400 0.000 12.004 1.458 2.156 64.900 1.212 1.600 A

Table F.17 – Table showing metric scores of the best configurations ranked by immunisation rate O2 score. Scores from the parameter tuning search under the enterprise network
environment set-up during generation 3, result sets A and B.

Configuration Immunisation Rate Scores
Set O1 O2 O3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR

1 0.5 1.5 0.8 2 -1.51175 0.12884 0.12350 -2.22333 0.15673 0.25088 -1.58505 0.13073 0.13225
2 0.66 0.5 0.9 1 -1.62992 0.19850 0.13338 -2.22892 0.19823 0.13925 -1.68752 0.19766 0.14261
3 0.5 2.5 0.9 2 -1.64067 0.12630 0.24683 -2.25067 0.13546 0.25883 -1.70167 0.12719 0.24803
4 0.5 3.5 0.8 2 -1.50283 0.16717 0.25033 -2.35983 0.18162 0.26033 -1.58853 0.16850 0.25133
5 0.66 2.0 0.9 3 -1.65317 0.16403 0.26300 -2.38317 0.18819 0.34917 -1.72617 0.16616 0.27380
6 0.75 0.5 0.9 4 -1.73508 0.21127 0.18308 -2.41167 0.25505 0.27317 -1.80178 0.21494 0.18873
7 0.66 0.5 0.8 1 -1.66725 0.17626 0.09287 -2.42783 0.18828 0.15017 -1.74203 0.17710 0.09842
8 1.0 1.0 0.9 1 -1.70475 0.16151 0.18608 -2.46375 0.20429 0.20404 -1.77285 0.16169 0.20078
9 0.5 1.5 0.8 4 -1.72617 0.23676 0.11633 -2.46817 0.24625 0.16433 -1.80037 0.23742 0.12113
10 0.5 1.0 0.7 1 -1.65067 0.24053 0.33433 -2.47067 0.22600 0.35433 -1.73267 0.23901 0.33633

Table F.18 – The adjoining table to the above, showing immunisation rate scores of the same best configurations ranked by their O2 score. Scores from the parameter tuning
search under the enterprise network environment set-up during generation 3, result sets A and B.

25
4

F
.

P
aram

eter
R

an
ge

E
valu

ation
s

Configuration Metric Scores
Set Distributed-M1 Time-M2 DataSent-M3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR Generation

1 0.9 3.5 0.7 5 14.000 0.000 0.000 15.854 0.883 1.053 166.800 4.340 6.375 B 2
2 0.5 1.0 0.6 5 14.000 0.000 0.000 15.816 0.864 0.909 169.400 4.192 5.675 B 2
3 0.5 3.5 0.2 2 14.000 0.000 0.000 15.660 0.748 0.593 169.750 5.203 4.550 B 2
4 0.5 0.5 0.7 1 14.000 0.806 0.750 16.453 1.450 2.042 168.400 4.570 5.250 B 2
5 0.75 0.5 0.8 5 14.000 0.300 0.000 16.120 1.423 0.822 168.750 3.849 3.075 B 2
6 0.5 0.5 0.4 1 14.000 0.000 0.000 16.132 0.885 0.729 167.400 5.351 7.950 B 2
7 0.5 1.0 0.6 1 14.000 0.400 0.000 15.963 0.825 1.317 170.800 6.383 7.625 B 2
8 0.5 0.5 0.3 2 14.000 0.300 0.000 15.985 1.055 1.672 167.600 2.450 3.725 B 2
9 0.9 4.0 0.7 4 14.000 0.300 0.000 15.962 0.783 0.688 168.400 3.291 4.825 B 2
10 0.9 4.0 0.9 5 14.000 0.000 0.000 16.062 1.216 1.226 168.350 3.098 4.925 B 2

Table F.19 – Table showing metric scores of the best configurations ranked by immunisation rate O2 score. Scores from the parameter tuning search under the enterprise network
environment set-up during generation 3, result set B 2.

Configuration Immunisation Rate Scores
Set O1 O2 O3

Rank P0 P1 P2 P3 µ Std IQR µ Std IQR µ Std IQR

1 0.9 3.5 0.7 5 -2.29242 0.14716 0.17554 -5.05108 0.16988 0.24175 -2.56532 0.14731 0.18564
2 0.5 1.0 0.6 5 -2.28608 0.14397 0.15142 -5.13425 0.20550 0.22663 -2.56928 0.14915 0.16062
3 0.5 3.5 0.2 2 -2.26000 0.12460 0.09879 -5.13717 0.19333 0.22150 -2.55272 0.12937 0.09765
4 0.5 0.5 0.7 1 -2.42967 0.25201 0.34029 -5.14967 0.25310 0.38308 -2.70167 0.25063 0.35059
5 0.75 0.5 0.8 5 -2.34925 0.23658 0.13700 -5.16050 0.24815 0.22925 -2.62695 0.23664 0.14560
6 0.5 0.5 0.4 1 -2.33867 0.14748 0.12146 -5.18683 0.19791 0.22037 -2.61967 0.14987 0.12131
7 0.5 1.0 0.6 1 -2.31042 0.14321 0.23462 -5.18742 0.16949 0.28404 -2.60262 0.14094 0.22111
8 0.5 0.5 0.3 2 -2.31417 0.17826 0.29087 -5.19217 0.18997 0.22938 -2.60197 0.17886 0.28472
9 0.9 4.0 0.7 4 -2.31033 0.13655 0.11467 -5.19342 0.13919 0.21083 -2.59623 0.13538 0.12748
10 0.9 4.0 0.9 5 -2.32708 0.20261 0.20433 -5.20067 0.23638 0.24312 -2.60928 0.20539 0.20408

Table F.20 – The adjoining table to the above, showing immunisation rate scores of the same best configurations ranked by their O2 score. Scores from the parameter tuning
search under the enterprise network environment set-up during generation 3, result set B 2.

6 255

Endnotes

1Broadly, T-cell lymphocytes mechanism theories for identifying viruses within infected biological cells describe a
training process in the thalamus that discards new T-cells with receptors (TCRs) that have a high affinity for self amino
acid strings and a virgin/mature T-cell recognition process that interacts and compare the amino acid strings (peptides)
from other cells with their trained receptors. In the latter process a cell destruct (apoptosis) cytokine is released if a string
sequence is recognised. Notably, this is also the cause of immunodeficiency diseases.

2As network service discovery tools Swimmer (Swimmer, 2006, p1332) noted ZeroConf
(http://www.zeroconf.org) and Bonjour (http://developer.apple.com).

3Address space layout randomisation (ASLR) is now a standard feature of today’s operating systems to reduce the
probability of successful buffer overflow jump exploits. A jump (JMP) exploit can enable an attacker to run code in static
areas of memory, known either by runtime pointer reference or by prior knowledge. According to Shacham et al. (2004)
(Shacham et al. , 2004) Address space layout randomization (ASLR) makes these types of attack “extremely unlikely to
succeed on 64-bit machines as the memory locations of functions are random” whereas for “32-bit systems ASLR provides
little benefit since there are only 16 bits available for randomization, and they can be defeated by brute force in a matter
of minutes”.

4Mori’s (1993) (Mori, 1993) autonomous fault tolerance architecture is based on control and coordination enabled by
precise communication; the data field component indicates that all subsystems (nodes) broadcast their data, however only
nodes registered to the data field listen and respond to these broadcasts.

5That is, only in the event that zero detectors are found on at least one machine (which the experiment design creates
if no distribution occurs), for all other known detectors (read-in elsewhere on the network) the median experiment total
time value is used. From this set of time durations, the median time value is presented as the Time-M2 value for the given
trial. This is, by design, always the case for the final node under our malicious user-agent design, as that node reads-in
0% malicious inputs, consequently creating zero detectors. Therefore, the NoNet Time-M2 time results are exactly the
duration of time taken, by the median node, to complete the experiment.

6Python’s statistical SciPy library implementation of the Mann Whitney U performs a one-tailed test. This can be
converted to two-tailed with P × 2 according to the SciPy test documentation.

7Apache Hadoop’s website: https://hadoop.apache.org/ . Summarising description from the website “The Apache
Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of
computers using simple programming models.”

8TypeSafe AKKA.io framework’s website: http://akka.io/ . Summarising description from the website: “Akka is a
toolkit and runtime for building highly concurrent, distributed, and fault tolerant event-driven applications on the JVM.”

https://hadoop.apache.org/
http://akka.io/

256 ENDNOTES

Glossary

CARDINAL-Vanilla Our implementation and extension of CARDINAL. A number of changes to
Kim et al.’s Danger Theory-inspired abstract model are discussed and tested within the thesis
including vital implementation details and its application domain.. 127, 128, 141, 149, 200–202

CARDINAL Is a Danger Theory-inspired artificial immune system architecture model using an in-
ternal multi-agent system to determine priority with peer-to-peer network connectivity designed
to detect and respond to worm and email spamming attacks. First published in (Kim et al. ,
2005).. 15, 16, 69, 70, 121, 122, 124–126, 128, 137, 139, 140, 151, 163, 200, 201

AIS Artificial Immune System. 14, 15, 41, 42, 44, 45, 58, 69, 72, 142, 144, 145, 163, 197–202, 248

ASLR Address space layout randomisation (ASLR) is now a standard feature of today’s operating sys-
tems to reduce the probability of successful buffer overflow jump exploits. A jump (JMP) exploit
can enable an attacker to run code in static areas of memory, known either by runtime pointer
reference or by prior knowledge. According to Shacham et al. (2004) (Shacham et al. , 2004)
Address space layout randomization (ASLR) makes these types of attack “extremely unlikely to
succeed on 64-bit machines as the memory locations of functions are random” whereas for “32-bit
systems ASLR provides little benefit since there are only 16 bits available for randomization, and
they can be defeated by brute force in a matter of minutes”.. 52

BPF Berkeley Packet Filter (BPF) is an efficient binary message parsing system used to rapidly
separate (or extract) packet property data from a stream of packets. A protocol schema (a filter
definition) is required to “filter” (collect) or “drop” a packet.. 125

CTL Cytotoxic T-Lymphocyte. 72

DC The dendritic cell is a cell type of the innate immune system found in humans. It is named after its
dendrite-like appearence (many branches). It is generalised as an antigen presenting cell (APC)
as it collects, carries and presents antigen from peripheral areas of the body (such as the tissue
or gut) to lymphocyte cells, typically in the lymphatic organs.. 72, 79, 198

DCA Dendritic Cell Algorithm. 69

DT Danger Theory. 69

Enclave An enclave is a logical grouping of users, assets, systems and/or services that define or fulfil
a functional behaviour within the system. Enclaves represent regions or “zones” that can be used
to isolate certain functions in order to secure them more effectively. Assets may be any hardware
device within the network. Systems may be a collection of devices. Services may be a collection
of software services on one or more devices.. 18

257

258 Glossary

Fingerprinting Fingerprinting is the process of collecting outputs from open ports on a system and
mapping those to a device or software version. This is can be used to monitor system state.
However it is commonly used by penetration testers to recognise which applications are running
to thus test for exploits.. 21

HIDS Host-based Intrusion Detection System (HIDS) is a type of distributed application with a client
on every machine on a network, each performing intrusion detection activities and sharing state/
detectors with each other. Such activities include monitoring for abnormal traffic and comparing
incoming network traffic against known detectors.. 69, 200

HIS Human Immune System. 28

ICS An Industrial Control System (ICS) consists of controller(s) (such as a programmable logic con-
troller), sensor(s) and actuators to fulfil an automation role, typically for repetitive industrial
application.. 14, 15, 18, 21, 24, 91, 107, 165, 188, 196, 197, 199, 200, 205, 254

MAS Multi-Agent System. 69, 198

PLC A programmable logic controller is a single processor microcontroller that executes a single binary
program and thoroughly tested to ensure it operates in critical real-time dependent circumstances.
The controller is typically programmed using ladder logic (LAD) like programming languages by
engineers. They will typically use sensor(s) and actuators to fulfil an automation role, such as
repetitive industrial applications.. 13, 17, 21, 58, 59, 200, 211

SCADA Supervisory Control and Data Acquisition (SCADA) refers to an Industrial Control System
(ICS) with monitoring and control processes. A SCADA network typically carry remote sensors
or actuators (i.e. separated by large geographical distance from the control and monitoring
interfaces) and this fact is often used to differentiate them from ICS networks.. 13–15, 17, 19, 21,
23, 24, 65, 81, 83, 91, 107, 134, 144, 148, 165, 174, 188, 196, 197, 199, 200

SHS Self-Healing System. 91

ssh Secure Shell (ssh) is an encrypted network protocol for secure data communication, remote command-
line login, remote command execution, and other secure network services between two networked
computers.. 140, 216

zero-day A zero-day vulnerability specifies the day on which a vulnerability is known by a party,
often not the author(s) of the affected code. For example, a zero-day attack will use detailed
knowledge of a zero-day vulnerability to exploit the weakness in order to carry out an intended
action. The 0-th day can refer to the date of the vulnerability or attack’s recognition, depending
on the terminology user.. 17, 22, 23

List of Figures

2.1 Barrier-based Defence-in-Depth architecture, 2009 (p62), from NIST 800-82 Rev 2 Stan-
dard. 21

2.2 Example of the corporate and control network topology division of industrial networks
(p57), from NIST 800-82 Rev 2 Standard. 22

2.3 Vulnerabilities reported to OSVDB during 2007–2015. Retrieved on Aug 25th 2015. Raw
data in Table A.2 and Table A.3. 23

2.4 Automated chemical release and monitoring remote terminal unit (RTU) station. Pow-
ered by photovoltaic and long range communication via directional radio antenna. In a
field on a hill. Image by Dan Steele, 2012. 23

2.5 Diagram illustrates a sophisticated attack with many innocuous steps. Showing single
source of information is insufficient to distinguish a malicious attack from a benign update. 26

4.1 Snapp et al.’s 1991 DIDS Architecture Diagram . 45
4.2 Forrest et al.’s 1994 negative selection algorithm . 46
4.3 Marmelstein et al.’s 1998 Architecture Diagram . 47
4.4 Okamoto et al.’s 2000 Overview of Agent Control Mechanisms 48
4.5 Harmer et al.’s 2002 Agent Mechanisms . 49
4.6 Brumley et al.’s 2002 Architecture for self-healing process state 51
4.7 Kim et al.’s 2005 Overview of CARDINAL (lymph-tissue) distributed architecture. Ex-

tended by Fu et al. 2007. 53

5.1 Overview of CARDINAL-Vanilla. 61
5.2 Engineered System Overview of CARDINAL-Vanilla architecture client per node. 61
5.3 Tissue and Lymph Node processes in CARDINAL-Vanilla in a single node. Numbered

processes are described in 5.4. Diagram illustrates input data, data representation,
agents, environments, agent interaction types (indicated by arrow line types) and agent
network transmission messages. Diagram formatted as Fig. 2 from (Kim et al., 2005)
for comparisons. 65

5.4 Flow control diagram of the main Tissue processes. 68
5.5 Flow control diagram of the main Lymph Node processes. 68
5.6 Summarised view of Input to Response from the classifier decision perspective. 70
5.7 Danger Input Validation Process - Näıve T-cell Maturation and Differentiation with DC

Interaction . 72
5.8 Diagram of the data structure representation for the moving window of accumulated

danger. t − P3 is the earliest time block and next to be removed, t is the current and
most recently added time block. 73

5.9 Volume Selection Feedback Loop - Sickness Focus. TUA is the under attack threshold.
P0 is the under attack percentage volume to transmit. RNUA is the percentage to send
while not under attack. Sv is the recent danger level affected by damaging inputs. Sv is
increased by Sd danger signal inputs, otherwise its value will decay over time. An is the
input antigen or data input values, while S∗ is the input data’s label. 74

259

260 LIST OF FIGURES

5.10 Effector T-cell Feedback Loop upon Cell Interaction . 76
5.11 Prioritisation of CTL Responders through Regulation. 77
5.12 DC Lifespan and Decay Rate . 78

6.1 Diagram of thread behaviour and experiment procedure 93
6.2 Result of function a(i, n), showing monotonic approximate linearity and close to even

distribution of percentage values per user (node). 96
6.3 Actual effects of noise variation upon the user model’s learning experience percentage in

a five node network test. Shown are percentages (y-axis) of anomalous inputs reported
at each input batch request during a training phase (150 batches; 15000 inputs). Line
colours represent behaviour at each node. 99

6.4 Actual user model behaviour. White columns show the anomalous dataset line number
indexes (instances) that were read-in, per node (horizontal strip). Black shows coverage
of missed (not read-in) dataset instances. 100

6.5 Distance ratio output from P (k,m,wk, ck) for MAX and MIN semantics for range [1, ..100]
from r = 15. 107

6.6 Real number mappings of base-2 logarithms of [−10, ..9]. 107

7.1 Diagram of distribution (transmission) components under test circled in red, within the
CARDINAL model. 112

7.2 Network topology example of five peers on a single network segment and experiment
infrastructure for the self-healing system test. DB is a runtime database used to store
the detectors, a log file (per instance) collects data from that instance which is later
parsed to calculate test measurements. 112

7.3 Flow diagram of CARDINAL’s detector selection process used during each transmission
event. 113

7.4 Dist-M1 variation of Vanilla performance over 25 runs with (a) 5, (b) 10, (c) 15 and
(d) 20 nodes. Y-axis shows quantity of detectors (M1) from 0 to 14 (max), X-axis shows
the test run number from 1 to 25. 119

7.5 Box plot observations of detector distribution quantity metric and multi-objective eval-
uation (O2) on the virtual network tests. 125

7.6 Dist-M1 variation of Vanilla performance over 10 runs with (a) 5, (b) 10, (c) 15, (d) 20,
(e) 30 and (f) 41 nodes. Y-axis shows quantity of detectors (M1) from 0 to 14 (max),
X-axis shows the test run number from 1 to 10. 132

7.7 Box plot showing the relative difference in Time-M2 metric scores for the Artificial Im-
mune System (AIS) and engineered algorithms for selection and distribution of detector
modules. 133

7.8 Box plot showing the relative difference in DataSent-M3 metric scores for the AIS and
engineered algorithms for selection and distribution of detector modules measured over
each trial. 134

7.9 Box plot observations of detector distribution quantity metric and multi-objective eval-
uation (O2) on the enterprise network tests. 139

7.10 Sequence diagrams showing execution of experiment phase events w.r.t time. Time and ordered node

numbers are plotted on Y-axis and X-axis. Black blocks show the Experiment Phases (including start

and finish states) stated in 6.3 running on each node. Note the vertical-dashed lines on (d) are an image

scaling effect. 142
7.11 Virtual network benchmark tests with 20 (0-19) nodes over 25 runs. 450ms time delay

between each node start time. Plots from left to right show findings from algorithms:
CARDINAL-Vanilla, Optimal-Static, Send-All. 149

7.12 Enterprise network benchmark tests with 41 nodes (0-40) over 10 runs. No time de-
lay between node start times. Plots from left to right show findings from algorithms:
CARDINAL-Vanilla, Optimal-Static. 149

6 261

7.13 Plots show time in seconds (Y-axis) for the most common detector to be received via
network at each numbered node (X-axis) (in starting order). Time is relative from earliest
receipt time. Virtual network benchmark tests with 20 (0-19) nodes over 20 runs running
CARDINAL-Vanilla. Plots from left to right show findings from time delays: None, 0.45
s and 0.9 s. 150

8.1 Box plots showing metric performance while varying the under attack volume parameter
(P0) value within the discrete testing range. 160

8.2 Box plots showing metric performance while varying the initial priority multiplier pa-
rameter (P1) value within the discrete testing range. 161

8.3 Box plots showing metric performance while varying the priority suppression multiplier
parameter (P2) value within the discrete testing range. 162

8.4 Box plots showing metric performance while varying the static moving window size pa-
rameter (P3) value within the discrete testing range. 162

8.5 Figure shows median results from our three system performance measures O1, O2 and
O3 (scored on the Y-axis) from 10 trials with each parameter’s set of configuration
values (X-axis). Greater scores values are preferred. The plots from left to right show
parameters: P0, P1, P2, P3 and P4, each are described within the chapter. Default
parameter configuration values were [0.75, 2.0, 0.95, 60, 50] respectively. 167

8.6 Diagram showing the optimisation pipeline employed to tune the parameter configuration.170
8.7 Illustration of the search states analysed within the text. Highlights the differing immu-

nisation rates and evaluation equations used during the analysis. Green circles represent
the configuration set selected during the step-wise search. Grey circles represent the
configuration set selected post-search, using the Ratio of Distances evaluation equations.
Four lines from each circle represent values along the four parameter dimensions. 172

8.8 The plot shows the median immunisation rates (O1,O2,O3) from the table above over
the 10 search generations. 174

8.9 Diagram showing the optimisation pipeline employed in the parameter configuration
search under the enterprise network test set-up. 179

8.10 Illustration of the search steps taken by the multi-start hill climbing parameter tuning
approach. 179

8.11 The plot shows the median immunisation rates (O1,O2,O3) over the 3 search generations
and highlights the experiment noise. 181

8.12 An illustration of the saturated regions of highest immunisation rate scores found within
the parameter ranges for P2: [0.1-0.9] and P3: [1-5]. Circled are the regions preferred
by the virtual and enterprise network conditions. 186

9.1 A toy-example topology with added hardware integrated and automation sensors num-
bered. 194

9.2 An example of default objective weightings assigned to each indicator category per device.195
9.3 An example of the current indicator states as viewed from each device, updated by

periodic state message transmissions. X’es are values unavailable to that device. 196
9.4 Diagram of intrusive social sensing behaviours as depicted by one-way requests (white

arrows) and two-way requests (black arrows). Grey tables at intensive role (IR) devices
show the collected local perspective knowledge of the other devices’ normal behaviours. 200

A.1 Vulnerabilities reported to OSVDB during 2007–2015. Retrieved on Aug 25th 2015. Raw
data in Table A.2. 213

A.2 Vulnerabilities per PLC manufacturer, ordered by total reported to OSVDB during 2007–
2015. Retrieved on Aug 25th 2015. Raw data in Table A.3. 214

262 LIST OF FIGURES

A.3 Table shows compatibility of controller functions (first column) remotely called on the
specified Siemens controllers (top row) as invoked via the Siemens S7 networked com-
munication protocol. 215

B.1 Cellular signalling types. 217

C.1 Figure showing 32 images produced by java.util.Random’s use of linear congruential
algorithm with default seed and limit on nextInt(). 1 image for each of the 32 bit values
of integers, using two’s complement (signed bit is index 0) with big endian representation
(8th bit in 4th byte represents the smallest number). Black and white represent 0 and 1
(non-zero). Rows 1 to 4 shows bits 0-7, 8-15, 16-23 and 24-31. Images are scaled down
from 128 by 128 pixels over 1282 bits. 221

E.1 Time taken to transmit the median detector. 229
E.2 Box plots observations of metric results from the virtual network tests. 230
E.3 Box plot observations of our Self-Healing System research objective evaluations (O1 and

O3) as tested on a virtual network. Using our extension of the Weisbin & Rodriguez
ratio equation, with the SendAll algorithm results used as reference. Greater values
imply better performance. 231

E.4 Time taken to transmit the median detector. 232
E.5 Metric observations. 233
E.6 Box plot observations of our Self-Healing System research objective evaluations (O1 and

O3) as tested on an enterprise network. Using our extension of the Weisbin & Rodriguez
ratio equation, with the SendAll algorithm results used as reference. Greater values
imply better performance. Note that plot y-axes are truncated to -1.5, in order to
exclude Optimal-Static’s outlier value transposed from the M2 (Time) metric results. . . 234

F.1 Under Attack Volume Percentage (P0) - parameter value range effects. 243
F.2 Initial Priority Value Multiplier (P1) - parameter value range effects. 243
F.3 Priority Value Suppression (P2) - parameter value range effects. 244
F.4 Static Moving Window Size (P3) - parameter value range effects. 244
F.5 Dendritic Cell Lifespan (P4) - parameter value range effects. 245
F.6 The box-plots show results of our three system performance measures (scored on the Y-

axis) from trials with our five parameter’s sets of configuration values (X-axis). Greater
Y-axis values are preferred. The red dotted line shows the median trend. From left to
right, P0, P1, P2, P3 and P4 parameter results are shown. Each are described within
the chapter. 248

List of Tables

5.1 Table of important terms, their summarised definitions from biological and computa-
tional perspectives, their structure representation and usage within the architecture. A
complete list of parameter mappings are specified in Table 5.2. 62

5.2 Table of CARDINAL-Vanilla parameters. Cell types parameters are described in text.
Cells types are abbreviated as DC, TCN, CTL, Th2, Th1 in the table. Parameters are
abbreviated as follows: A∗ and S∗ refer to data inputs, C∗ refers to cytokine signalling,
T∗ refers to a threshold, V∗ refers to an initial value, R∗ refers to a rate, RV∗ refers to a
runtime variable and P∗ refers to the key CARDINAL parameters under investigation. . 84

5.3 Table of key differences between the CARDINAL abstract model (Kim et al. 2005) and
our CARDINAL-Vanilla model. 85

6.1 Table lists the event states of inputs to detectors in the architecture. Abstract model
locations are in italics. Events with an asterix (*) are logged within local log measurement
databases, once per state per unique input. (c) is a transfer between agent environments
and is not logged. 89

6.2 Summary table showing the experiment procedure version development of the distributed
system test procedure. 94

6.3 Summary table showing the experiment constants at each node of the distributed system
under test. 94

6.4 Summary table showing the user model parameters. Values with square brackets show
ranges, those without show constant values. 96

6.5 The “full” CSIC dataset version converts each training and testing set into a correspond-
ing CSV file. 102

6.6 The “full v0.5” CSIC dataset version converts each training and testing set into a corre-
sponding CSV file. 102

6.7 The “v0.5” CSIC dataset version takes a uniform random sub-sampling of the “full”
dataset and reduces the quantity of attributes to three descriptive HTTP protocol data
properties. 103

6.8 The “v0.5.2” CSIC dataset version takes an ordered sub-sampling of the “full” dataset
and reduces the quantity of attributes to three descriptive HTTP protocol data proper-
ties. 103

6.9 Table of real value weightings per metric for each of the 3 objectives. 104
6.10 Table of the semantic preferences per metric. MAX indicates a larger value is preferred

over a smaller value. MIN indicates the reverse. 105
6.11 Summary table of the evaluation equations used to combine multiple metric scores into

a combined system performance measure score. 105
6.12 Table of example data for reference and test systems (Mi). The quantity of metrics

and conditions of weights (w) and semantic measure conditions (c) match our third
objective (O3). The individual performance measures (k) can be thought of as M1, M2
and M3 metrics. Systems (Mi) can be thought of as alternative algorithms, where M1

is a benchmark algorithm. 108

263

264 LIST OF TABLES

6.13 Table of results from our P (k,m,wk, ck) performance measure function in Equation 6.16
for individual measure data from Table 6.12. Results are truncated at 3 decimal places. 109

6.14 Table of results from s(m) score function in Equation 6.17. Results are truncated at 6
decimal places. 109

7.1 Tabular results of metrics M1,M2,M3 showing medians (η) and standard deviations (Std)
(with n-1 denominator) over 25 iterations of the four algorithms. 121

7.2 Mann-Whitney U test results for CARDINAL vs Optimal-Static of Metrics M1,M2,M3
over 25 iterations with Cohen d’s difference and effect size. 121

7.3 Tabular results of objectives O1,O2,O3 showing medians (η) and standard deviations
(Std) (with n-1 denominator) over 25 iterations of the four algorithms. 122

7.4 Mann-Whitney U test results for CARDINAL vs Optimal-Static of Objectives O1,O2,O3
over 25 iterations with Cohen d’s difference and effect size. 122

7.5 Tabular results of metrics M1,M2,M3 showing medians (η), interquartile ranges (IQR)
(75%-25%) and standard deviations (Std) (with n-1 denominator) over 10 iterations of
each algorithm. Values are rounded to 3 significant digits. 135

7.6 Mann-Whitney U test results for CARDINAL vs OptimalStatic of Metrics M1,M2,M3
over 10 iterations with Cohen d’s difference and effect size. An Invalid value in the P
column and a Nan in the U statistic column represents identical results on all iterations
of both algorithms in the respective Mann-Whitney U test. 135

7.7 Tabular results of objectives O1,O2,O3 showing medians (η), interquartile ranges (IQR)
(75%-25%) and standard deviations (Std) (with n-1 denominator) over 10 iterations of
the Vanilla and Optimal-Static algorithms. Values are rounded to 3 significant digits. . 136

7.8 Mann-Whitney U test results for CARDINAL vs OptimalStatic of Objectives O1,O2,O3
over 10 iterations with Cohen d’s difference and effect size. 136

7.9 An informal summary of sequence analysis results from informal observation of an ex-
emplar run of CARDINAL-Vanilla under different conditions: (a), (b), (c) and (d). Ob-
served categorical values are given in the ranges (high,med,low,none) and (small,med,large,unknown).144

7.10 Table of total experiment runtimes measured in seconds of CARDINAL-Vanilla under
different conditions: (a), (b), (c) and (d). η is (Std) are medians and standard deviations
over 10 trial runs. 144

7.11 Summary of metric results of virtual network tests with varying starting time delays
between nodes. Table shows 5 network sizes (n) and results of metrics Distributed-
M1,Time-M2,DataSent-M3 data over 20 iterations. η and (Std) show medians and sam-
ple standard deviations. The Kruskal-Wallis null hypothesis shows whether the mean
ranks of the 3 tests are the same, critical α = 0.05. 145

7.12 Mann-Whitney U two-tailed test upon No Delay and 0.45s Delay Distributed-M1 results
from CARDINAL-Vanilla, with adjusted critical α as 0.0167. Showing metric samples
of a similar population. 146

7.13 Mann-Whitney U corrected two-tailed test for population difference of CARDINAL-
Vanilla over 10 runs, comparing Distributed-M1 results, with adjusted critical α as
0.0167. Sizes *30 and *41 compare the virtual Distributed-M1 results at n=20 with
the enterprise Distributed-M1 results at sizes n = 30 and n = 41. (a) Shows results of
0.45s Delay and enterprise network tests. (b) Shows results of No Delay and enterprise
network tests. 147

7.14 Tables show Spearman’s (rho) rank correlation statistic and significance (p is the P-
value) under different test conditions. Each test attempts to correlate ranked detector
delivery times via network transmission per node with starting node indices. Critical
α = 0.05. (a) Table shows benchmark virtual network tests over 25 runs, 20 nodes. (b)
Table shows benchmark enterprise network tests over 10 runs, 41 nodes. (c) Table shows
time delay virtual network tests over 20 Runs, 20 nodes. 151

6 265

8.1 Table shows the discrete testing range of values per parameter, as originally defined in
5.12, and the constant default parameter value while other parameters are varied. 157

8.2 Table of metric descriptions and references used in the architecture parameter range
tests. The states refer to the state of the representation of an input, as Table 6.1. Refer
to 6.2 for the metric M* descriptions. Preference is our preferred metric value, i.e. lower
(MIN) or higher (MAX) values and ‘-’ unimportant. 158

8.3 Summarising table of Spearman’s rank (monotonic) correlations between each parame-
ter’s increasing range of values to the median results of each metric listed. The critical
alpha for each two-tailed test is 0.05. Significance markers are based upon the P-values
in the earlier test tables. “Pos.” refers to positive (increasing) correlation and “Neg.”
refers to a negative (decreasing) correlation. 159

8.4 Table shows the mean average (x̄) and standard deviation (Std.) of (difference) impact
upon each increase of parameter value. Preferred impacts are in bold. Minimum values
on Time-M2 and DataSent-M3 metrics are preferred. Greatest values on other metrics
are highlighted. 159

8.5 Best and worst configuration values (v.) per parameter ranked by O1 median (µ) score. 165
8.6 Best and worst configuration values (v.) per parameter ranked by O2 median (µ) score. 165
8.7 Best and worst configuration values (v.) per parameter ranked by O3 median (µ) score. 165
8.8 Table showing the significance of difference between best and default parameter value

configurations. Results are shown for two-tailed corrected Mann-Whitney tests (U) with
an α = 0.05 with 9 degrees of freedom (df). 166

8.9 Table shows the discrete testing range of values per parameter, adapted as a result of
the earlier tests upon the original ranges. First generation default parameter value are
shown. 170

8.10 Table showing the best configuration sets ranked at runtime by their O3 immunisation
rate score over the ten search generations running under the virtual network testing
environment. Greatest immunisation rate scores (O1,O2,O3) are preferred. Preferred
result values are shown in bold. The median Time-M2 values were runtime decision
factors used to calculate O1,O2 and O3, these are reported. The standard deviations
(Std) and interquartile ranges (IQR) for the Time-M2 metric are missing as they were
not extracted at runtime. 174

8.11 Table showing metric scores of the best configurations ranked by immunisation rate O2
score. Scores from the parameter tuning search under the virtual network environment
set-up. 176

8.12 The adjoining table to the above, showing immunisation rate scores of the same best
configurations ranked by their O2 score. Scores from the parameter tuning search under
the virtual network environment set-up. 176

8.13 Table shows the discrete testing range of values per parameter, adapted as a result of
the earlier tests upon the original ranges. 178

8.14 Table of the multi-start hill climbing algorithm’s parameter values. 180
8.15 Table shows mean metric scores per generation from the top 10 configuration results

ranked by immunisation rate for low throughput networks (O2). The Diff. columns
show the multiplier difference from generation 1, at 3 decimal places. 182

8.16 Table of descriptive statistics shows a clear difference between generations, based upon
the number of IO-Events, corroborating the belief that network throttling caused the
metric differences between the generations. The IO-Events metric quantifies the number
of transmission events by the median host of the network, per trial; stats are shown over
the entire range of trials per generation. 182

8.17 The tables map each of the elite configurations’ parameter values into either the top or
bottom regions of the parameter’s range. The percentages show where those configura-
tion values fell from each of the elite configurations per generation. 183

266 LIST OF TABLES

8.18 Table shows a comparison of best parameter values selected during each of the parameter
tuning searches. Emboldened are the opposing findings for parameters P2 and P3 in
the enterprise to the virtual parameter tuning tests. L,ML,M and H refer to low to high
values within each parameter’s test range. 184

8.19 Table showing metric scores of the best configurations ranked by immunisation rate O2
score. Scores from the parameter tuning search under the enterprise network environment
set-up during generation 3, result set B 3. 185

8.20 The adjoining table to the above, showing immunisation rate scores of the same best
configurations ranked by their O2 score. Scores from the parameter tuning search under
the enterprise network environment set-up during generation 3, result set B 3. 185

A.1 Standards for securing Industrial Control System (ICS) and electronic networks. Organ-
isation acronyms are listed in A.1.1. 211

A.2 Vulnerabilities reported to OSVDB during 2007–2015. Retrieved on Aug 25th 2015. . . . 212
A.3 Vulnerabilities per PLC manufacturer, ordered by total reported to OSVDB during 2007–

2015. Retrieved on Aug 25th 2015. 214

C.1 Tabular representation of related Figure C.1, showing mean of frequency of 0 bit values
(black) per bit index using seeds 0 to 31. Rows 1 to 4 show bits 0-7, 8-15, 16-23, 24-31.
See text and figure description for details. 220

C.2 Table showing standard deviation of frequency of 0 bit values (black) per bit index, using
seeds 0 to 31. 221

D.1 Summary table showing dataset size and time taken to evaluate state of art network se-
curity SCADA and vulnerability security datasets using the C4.5 decision tree algorithm
with one instance on one node. Time is taken over 10 runs. 226

F.1 Table of results from our P (k,m,wk, ck) performance measure function in Equation F.5
for individual measure data from Table 6.12. Results are truncated at 3 decimal places. 238

F.2 Table of results from s(m) score function in Equation F.6. Results are truncated at 6
decimal places. Noticeable differences in O3 values for systems M4, ..M7 of equal weight
and improved distance. 239

F.3 Table of Spearman’s rank rho (monotonic) correlations between the P0 range values and
the median results for each metric listed. 240

F.4 Table of Spearman’s rank rho (monotonic) correlations between the P1 range values and
the median results for each metric listed. 240

F.6 Table shows measured results upon the variation of only the value v setting for parameters
P0, P1 and P2. Tests are conducted under a given virtual network experiment set-up with
five virtual hosts. Median µ and sampled standard deviation (Std.) summary statistics
are reported per metric. 241

F.7 Table shows measured results upon the variation of only the value v setting for parameters
P3 and P4. Tests are conducted under a given virtual network experiment set-up with
five virtual hosts. Median µ and sampled standard deviation (Std.) summary statistics
are reported per metric. 242

F.5 Table of Spearman’s rank rho (monotonic) correlations between the full P2 range values
and the median results for each metric listed. The full range tested here is between 0.1
and 2.0. 246

F.8 Table of Spearman’s rank rho (monotonic) correlations between the reduced P2 range
of values and the median results for each metric listed. The tested range here is between
0.1 and 1.0, a more intuitive range. 246

F.9 Table of Spearman’s rank rho (monotonic) correlations between the P3 range values and
the median results for each metric listed. 246

6 267

F.10 Table of Spearman’s rank rho (monotonic) correlations between the P4 range values and
the median results for each metric listed. 247

F.11 Tables of system performance measure results taken from 10 repeated trials with changes
to each parameter’s configuration value (v.). Median (µ) and standard deviations (Std.)
are shown for each of the three performance measure objectives O1, O2 and O3. Greatest
median and smallest Std. values are preferred and have been emboldened. P2-Full has
been segregated as this range of values show particularly poor performance, as discussed
in Part 1. 249

F.12 Table showing metric scores of the best configurations ranked by immunisation rate O1
score. Scores from the parameter tuning search under the virtual network environment
set-up. 250

F.13 The adjoining table to the above, showing immunisation rate scores of the same best
configurations ranked by their O1 score. Scores from the parameter tuning search under
the virtual network environment set-up. 250

F.14 Table showing metric scores of the best configurations ranked by immunisation rate O3
score. Scores from the parameter tuning search under the virtual network environment
set-up. 251

F.15 The adjoining table to the above, showing immunisation rate scores of the same best
configurations ranked by their O3 score. Scores from the parameter tuning search under
the virtual network environment set-up. 251

F.16 The table maps each of the elite configurations’ parameter values into either the top or
bottom regions of the parameter’s range. The percentages show where those configura-
tion values fell from each of the elite configurations. Shown are result sets A , B and
a combination of A, B, B 2 and B 3 result sets. This table is included to give further
informative coverage of the differing A and B set behaviours and an overview of all of
the tested configuration sets. 252

F.17 Table showing metric scores of the best configurations ranked by immunisation rate O2
score. Scores from the parameter tuning search under the enterprise network environment
set-up during generation 3, result sets A and B. 253

F.18 The adjoining table to the above, showing immunisation rate scores of the same best
configurations ranked by their O2 score. Scores from the parameter tuning search under
the enterprise network environment set-up during generation 3, result sets A and B. . . 253

F.19 Table showing metric scores of the best configurations ranked by immunisation rate O2
score. Scores from the parameter tuning search under the enterprise network environment
set-up during generation 3, result set B 2. 254

F.20 The adjoining table to the above, showing immunisation rate scores of the same best
configurations ranked by their O2 score. Scores from the parameter tuning search under
the enterprise network environment set-up during generation 3, result set B 2. 254

268 LIST OF TABLES

References

Adhikari, Uttam, Pan, Shengyi, & Morris, Tommy. 2013 (May). Mississippi State Uni - ICS Attack
Dataset – Retrieved on 2013.10.02. http:// bespin.ece.msstate.edu/ wiki/ index.php/ ICS Attack
Dataset .

Aharoni, Mati, Frankovic, Igor, OGorman, Jim, et al. . 2009. The Offensive Security Exploit-DB
Project. Retrieved on 2013.07.18. https:// exploit-db.com.

Alden, K., Timmis, J., Andrews, P., Veiga-Fernandes, H., & Coles, M. 2016. Extending and Applying
Spartan to Perform Temporal Sensitivity Analyses for Predicting Changes in Influential Biological
Pathways in Computational Models. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, PP(99), 1–1.

Alden, Kieran, Read, Mark, Timmis, Jon, Andrews, Paul S., Veiga-Fernandes, Henrique, & Coles,
Mark. 2013. Spartan: A Comprehensive Tool for Understanding Uncertainty in Simulations of
Biological Systems. PLoS Comput Biol, 9(2), 1–9.

Alhomoud, Adeeb, Munir, Rashid, Disso, Jules Pagna, Awan, Irfan, & Al-Dhelaan, Abdullah. 2011.
Performance evaluation study of intrusion detection systems. Procedia Computer Science, 5, 173–
180.

Alter, Galit, Heckerman, David, Schneidewind, Arne, Fadda, Lena, Kadie, Carl M, Carlson,
Jonathan M, Oniangue-Ndza, Cesar, Martin, Maureen, Li, Bin, Khakoo, Salim I, et al. . 2011.
HIV-1 adaptation to NK-cell-mediated immune pressure. Nature, 476(7358), 96–100.

Aubert, Arnaud, & Renault, Julien. 2008. Cytokines and Immune-Related Behaviors. Pages 527–547
of: Phelps, & Korneva (eds), Cytokines and the Brain, vol. Volume 6. Elsevier.

Baker, Monya. 2007. Adult cells reprogrammed to pluripotency, without tumors. Nature Reports Stem
Cells, 124.

Baldauf, Matthias, Dustdar, Schahram, & Rosenberg, Florian. 2007. A survey on context-aware sys-
tems. 2, 263–277.

Beck, Gregory, & Habicht, Gail S. 1996. Immunity and the invertebrates. Scientific American, 275(5),
60–66.

Beltrami, Antonio P, Barlucchi, Laura, Torella, Daniele, Baker, Mathue, Limana, Federica, Chimenti,
Stefano, Kasahara, Hideko, Rota, Marcello, Musso, Ezio, Urbanek, Konrad, et al. . 2003. Adult
cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

Binde, Beth, McRee, Russ, & OConnor, Terrence J. 2011. Assessing outbound traffic to uncover
advanced persistent threat. SANS Institute. Whitepaper.

Binsalleeh, Hamad, Ormerod, Thomas, Boukhtouta, Amine, Sinha, Prosenjit, Youssef, Amr, Debbabi,
Mourad, & Wang, Lingyu. 2010. On the analysis of the zeus botnet crimeware toolkit. Pages
31–38 of: Privacy Security and Trust (PST), 2010 Eighth Annual International Conference on.
IEEE.

269

http://bespin.ece.msstate.edu/wiki/index.php/ICS_Attack_Dataset
http://bespin.ece.msstate.edu/wiki/index.php/ICS_Attack_Dataset
https://exploit-db.com

270 REFERENCES

Blaze, Matt, Feigenbaum, Joan, Ioannidis, John, & Keromytis, Angelos. 1999. The Role of Trust
Management in Distributed Systems Security. Pages 185–210 of: Vitek, Jan, & Jensen, Christian
(eds), Secure Internet Programming. Lecture Notes in Computer Science, vol. 1603. Springer Berlin
/ Heidelberg. 10.1007/3-540-48749-2 8.

Brambilla, Manuele, Ferrante, Eliseo, Birattari, Mauro, & Dorigo, Marco. 2013. Swarm robotics: a
review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

Brinkmann, Volker, Reichard, Ulrike, Goosmann, Christian, Fauler, Beatrix, Uhlemann, Yvonne, Weiss,
David S., Weinrauch, Yvette, & Zychlinsky, Arturo. 2004. Neutrophil Extracellular Traps Kill
Bacteria. Science, 303(5663), 1532–1535.

Brumley, David, Newsome, James, & Song, Dawn. 2007. Sting: An End-to-End Self-Healing System
for Definding against Internet Worms, Malware Detection. Springer Publications. Chap. 7, pages
147–170.

Burnet, F. M. 1959. The Clonal Selection Theory of Acquired Immunity. Vanderbilt Univ. Press,
Nashville, TN.

Censor-Hillel, K., & Shachnai, H. 2011. Fast information spreading in graphs with large weak conduc-
tance. Pages 440–448 of: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM.

Cherry, Steven. 2010. IEEE Spectrum: How Stuxnet Is Rewriting the Cyberterror-
ism Playbook. Retrieved on 2012.07.18. http:// spectrum.ieee.org/ podcast/ telecom/ security/
how-stuxnet-is-rewriting-the-cyberterrorism-playbook .

Coffey, Neil. 2013. java.lang.Random falls ”mainly in the planes”. Retrieved on 2014.02.26. http:
// www.javamex.com/ tutorials/ random numbers/ lcg planes.shtml .

Cohen, I.R. 2000. Tending Adam’s garden: evolving the cognitive immune self. Academic Press.

Cohen, Jacob. 1988. Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Lawrence Earlbaum Associates.

Coico, R., & Sunshine, G. 2009. Immunology: a short course. Wiley-Blackwell.

Crouse, Michael, & Fulp, Errin W. 2011. A moving target environment for computer configurations
using genetic algorithms. Pages 1–7 of: Configuration Analytics and Automation (SAFECONFIG),
2011 4th Symposium on. IEEE.

Danziger, M., & de Lima Neto, F.B. 2010. A Hybrid Approach for IEEE 802.11 Intrusion Detection
Based on AIS, MAS and Näıve Bayes. Pages 201–204 of: Hybrid Intelligent Systems (HIS), 2010
10th International Conference on. IEEE.

Darwin, Charles. 1872. On the Origin of Species. 6th Ed. New York: Atheneum.

De Lemos, Rogério, Giese, Holger, Müller, Hausi A, Shaw, Mary, Andersson, Jesper, Litoiu, Marin,
Schmerl, Bradley, Tamura, Gabriel, Villegas, Norha M, Vogel, Thomas, et al. . 2013. Software
engineering for self-adaptive systems: A second research roadmap. Pages 1–32 of: Software Engi-
neering for Self-Adaptive Systems II. Springer.

DeLoach, Scott A. 2000. agentMOM User Manual. Retrieved on 2012.07.23. http:// macr.cis.ksu.edu/
agentmom.

D’haeseleer, P. 1996. An immunological approach to change detection: Theoretical results. Pages 18–26
of: In Proceedings of 9th IEEE Computer Security Foundations Workshop. IEEE.

http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-the-cyberterrorism-playbook
http://www.javamex.com/tutorials/random_numbers/lcg_planes.shtml
http://www.javamex.com/tutorials/random_numbers/lcg_planes.shtml
http://macr.cis.ksu.edu/agentmom
http://macr.cis.ksu.edu/agentmom

6 271

D’haeseleer, P., Forrest, S., & Helman, P. 1996. An immunological approach to change detection:
Algorithms, analysis and implications. Pages 110–119 of: Security and Privacy, 1996. Proceedings.,
1996 IEEE Symposium on. IEEE.

Dhaeseleer, P., Forrest, S., & Helman, P. 1997. A distributed approach to anomaly detection. Submitted
to ACM Transactions on Information System Security.

Elsadig, M., & Abdullah, A. 2010 (jan.). Biological Intrusion Prevention and Self-Healing Model for
Network Security. Pages 337 –342 of: Future Networks, 2010. ICFN ’10. Second International
Conference on.

Elsadig, M., Abdullah, A., & Samir, B.B. 2010a (june). Immune multi agent system for intrusion
prevention and self healing system implement a non-linear classification. Pages 1 –6 of: Information
Technology (ITSim), 2010 International Symposium in, vol. 3.

Elsadig, M., Abdullah, A., & Samir, B.B. 2010b (feb.). Intrusion Prevention and self-healing algorithms
inspired by danger theory. Pages 843 –846 of: Computer and Automation Engineering (ICCAE),
2010 The 2nd International Conference on, vol. 5.

Elsadig, Muna, & Abdullah, Azween. 2009. Biological Inspired Intrusion Prevention and Self-healing
System for Network Security Based on Danger Theory. International Journal of Video & Image
Processing and Network Security, 9(October).

Engelmann, Ilka, & Pujol, Nathalie. 2010. Innate immunity in C. elegans. Pages 105–121 of: Inverte-
brate Immunity. Springer.

Etalle, Sandro, Gregory, Clifford, Bolzoni, Damiano, & Zambon, Emmanuele. 2014 (September). Se-
curity Matters - SilentDefense ICS Whitepaper Retrieved on 2015.04.15. http:// www.secmatters.
com/ sites/ www.secmatters.com/ files/ documents/ whitepaper ics EU.pdf .

Falliere, Nicolas, Liam, O Murchu, & Chien, Eric. 2011. Symantec Security Response: W32.Stuxnet
Dossier. Retrieved on 2012.07.16. http:// www.symantec.com/ content/ en/ us/ enterprise/ media/
security response/ whitepapers/ w32 stuxnet dossier.pdf .

Fayyad, Usama M., & Irani, Keki B. 1993. Multi-interval discretization of continuousvalued attributes
for classification learning. Pages 1022–1027 of: Thirteenth International Joint Conference on
Articial Intelligence, vol. 2. Morgan Kaufmann Publishers.

Field, Andy, & Hole, Graham J. 2003. How to design and report experiments. Sage.

Fink, Glenn A, & Oehmen, Chris S. 2012. Final Report for Bio-Inspired Approaches to Moving-Target
Defense Strategies.

Forrest, S. 2011. Lisys Software. Retrieved on 2011.12.01. http:// www.cs.unm.edu/∼forrest/ software.
html .

Forrest, Stephanie, & Hofmeyr, Steven. 2001. Engineering an immune system. GRAFT-
GEORGETOWN-, 4(5), 369–369.

Forrest, Stephanie, Perelson, Alan S., Allen, Lawrence, & Cherukuri, Rajesh. 1994. Self-Nonself Dis-
crimination in a Computer. Pages 202–212 of: In Proceedings of the 1994 IEEE Symposium on
Research in Security and Privacy. IEEE Computer Society Press.

Frauwirth, Kenneth A, Thompson, Craig B, et al. . 2002. Activation and inhibition of lymphocytes by
costimulation. The Journal of clinical investigation, 109(109 (3)), 295–299.

http://www.secmatters.com/sites/www.secmatters.com/files/documents/whitepaper_ics_EU.pdf
http://www.secmatters.com/sites/www.secmatters.com/files/documents/whitepaper_ics_EU.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.cs.unm.edu/~forrest/software.html
http://www.cs.unm.edu/~forrest/software.html

272 REFERENCES

Fu, Haidong, Yuan, Xiguo, & Wang, Na. 2007 (dec.). Multi-agents Artificial Immune System (MAAIS)
Inspired by Danger Theory for Anomaly Detection. Pages 570 –573 of: Computational Intelligence
and Security Workshops, 2007. CISW 2007. International Conference on.

Gärtner, Bernd. 2000. Pitfalls in computing with pseudorandom determinants. Pages 148–155 of:
Proceedings of the sixteenth annual symposium on Computational geometry. ACM.

Ghosh, Debanjan, Sharman, Raj, Raghav Rao, H., & Upadhyaya, Shambhu. 2007. Self-healing systems
- survey and synthesis. ”Decision Support Systems”, 42(4), 2164 – 2185. Decision Support Systems
in Emerging Economies.

Greensmith, Julie, Aickelin, Uwe, & Twycross, Jamie. 2006. Articulation and Clarification of the
Dendritic Cell Algorithm. Pages 404–417 of: Bersini, Hugues, & Carneiro, Jorge (eds), Artificial
Immune Systems. Lecture Notes in Computer Science, vol. 4163. Springer Berlin / Heidelberg.

Gronthos, S, Brahim, J, Li, W, Fisher, LW, Cherman, N, Boyde, A, DenBesten, P, Robey, P Gehron,
& Shi, S. 2002. Stem cell properties of human dental pulp stem cells. Journal of dental research,
81(8), 531–535.

Gu, Feng, Feyereisl, Jan, Oates, Robert, Reps, Jenna, Greensmith, Julie, & Aickelin, Uwe. 2011. Quiet
in class: classification, noise and the dendritic cell algorithm. Pages 173–186 of: Artificial Immune
Systems. Springer.

Guo, Yanhui, & Wang, Cong. 2005 (march). Autonomous decentralized network security system. Pages
279 – 282 of: Networking, Sensing and Control, 2005. Proceedings. 2005 IEEE.

Hall, Mark, Frank, Eibe, Holmes, Geoffrey, Pfahringer, Bernhard, Reutemann, Peter, & Witten, Ian H.
2009. The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1).

Harmer, Paul K., Williams, Paul D., Gunsch, Gregg H., & Lamont, Gary B. 2002. An artificial im-
mune system architecture for computer security applications. IEEE Transactions on Evolutionary
Computation, 6, 252–280.

Harmer, P.K. 2000. A distributed agent architecture for a computer virus immune system. Tech. rept.
DTIC Document.

Hettich, Seth, & Bay, SD. 1999. The UCI KDD Archive [http://kdd. ics. uci. edu]. Irvine, CA: University
of California. Department of Information and Computer Science, 152.

Hofmeyr, Steven A., & Forrest, Stephanie. 2000. Architecture for an Artificial Immune System. Evo-
lutionary Computation, 4(4), 443–473.

Hofmeyr, Steven Andrew. 1999 (May). An Immunological Model of Distributed Detection and Its
Application to Computer Security. Ph.D. thesis, University of New Mexico.

Hong, Sugwon, & Lee, Seung-Jae. 2008. Challenges and Perspectives in Security Measures for the
SCADA System. In: Proc. 5th Myongji–Tsinghua University Joint Seminar on Protection &
Automation.

Horn, P. 2001. Autonomic Computing: IBM’s Perspective on the State of Information Technology.
Computing Systems, 15(Jan), 1–40.

Huebscher, Markus C., & McCann, Julie A. 2008. A survey of autonomic computing degrees, models,
and applications. ACM Comput. Surv., 40(3), 7:1–7:28.

ICS-CERT. 2010 (September). ICSA-10-238-01B: Stuxnet Malware Mitigation (Update B), Septem-
ber 15, 2010. Revised:2014.01.08. Retrieved 2015.08.25.. https:// ics-cert.us-cert.gov/ advisories/
ICSA-10-238-01B .

https://ics-cert.us-cert.gov/advisories/ICSA-10-238-01B
https://ics-cert.us-cert.gov/advisories/ICSA-10-238-01B

6 273

ICS-CERT. 2011 (July). ICS-ALERT-11-186-01: Siemens SIMATIC Controllers Password Pro-
tection Vulnerability. July 2011. Retrieved 2015.08.25.. https:// ics-cert.us-cert.gov/ alerts/
ICS-ALERT-11-186-01 .

ICS-CERT. 2015 (August). ICS-ALERT-15-225-01A: Rockwell Automation 1769-L18ER and
A LOGIX5318ER Vulnerability. Retrieved 2015.08.25.. https:// ics-cert.us-cert.gov/ alerts/
ICS-ALERT-15-225-01A.

Igure, Vinay M, Laughter, Sean A, & Williams, Ronald D. 2006. Security Issues in SCADA Networks.
Computers & Security, 25(7), 498–506.

Janeway Jr., C.A. 1989. Approaching the asymptote? Evolution and revolution in immunology. Page
1 of: Cold Spring Harbor symposia on quantitative biology, vol. 54.

Jesty, Robert, & Williams, Gareth. 2011. Who invented vaccination? Malta Medical Journal, 23(02),
29.

Kaminka, Gal A., & Tambe, Milind. 2000. Robust agent teams via socially-attentive monitoring.
Journal of Artificial Intelligence Research.

Kang, Seung-Hoon, Park, Keun-Young, Yoo, Sang-Guun, & Kim, Juho. 2011. DDoS avoidance strategy
for service availability. Cluster Computing, 1–8. 10.1007/s10586-011-0185-4.

Kephart, J. O. 1994. A Biologically Inspired Immune System for Computers. Pages 130–139 of: Brooks,
R. A., & Maes, P. (eds), Artificial Life IV Proceedings of the Forthe Int. Workshop on the Synthesis
and Simulation of Living Systems. MIT Press.

Kephart, Jeffrey O., Sorkin, Gregory B., Swimmer, Morton, & White, Steve R. 1997. Blueprint for
a Computer Immune System. In: Virus Bulletin International Conference in San Francisco,
California, October 1-3, 1997.

Kephart, J.O., & Arnold, W.C. 1994. Automatic Extraction of Computer Virus Signatures. Pages
179–194 of: in: Proceedings of the Forth International Virus Bulletin Conference. Virus Bulletin,
Ltd.

Kephart, J.O., & Chess, D.M. 2003. The Vision of Autonomic Computing. Computer, 36(1), 41–50.

Kephart, J.O., & Sorkin, G.B. 1997 (Mar. 18). Generic Disinfection of Programs Infected with a
Computer Virus. US Patent 5,613,002.

Keromytis, Angelos D. 2007. Characterizing Self-Healing Software Systems. In: In Proceedings of the
4th International Conference on Mathematical Methods, Models and Architectures for Computer
Networks Security (MMM-ACNS).

Kim, J., Wilson, W., Aickelin, U., & McLeod, J. 2005. Cooperative automated worm response and
detection immune algorithm (CARDINAL) inspired by t-cell immunity and tolerance. Pages 168–
181 of: ICARIS’05. Springer.

Knapp, Eric D. 2011. Industrial Network Security: Securing Critical Infrastructure Networks for Smart
Grid, SCADA, and Other Industrial Control Systems. Syngress.

Kouns, Jake, & Martin, Brian. 2015. Open Source Vulnerability Database (OSVDB) Search Engine.
Retrieved on 2015.08.25. http:// osvdb.org .

Kruskal, William H, & Wallis, W Allen. 1952. Use of ranks in one-criterion variance analysis. Journal
of the American statistical Association, 47(260), 583–621.

https://ics-cert.us-cert.gov/alerts/ICS-ALERT-11-186-01
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-11-186-01
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-15-225-01A
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-15-225-01A
http://osvdb.org

274 REFERENCES

Lafferty, K J, & Cunningham, A J. 1975. A NEW ANALYSIS OF ALLOGENEIC INTERACTIONS.
Aust J Exp Biol Med, 53(1), 27–42.

Lamont, G.B., Marmelstein, R.E., & Van Veldhuizen, D.A. 1999. A distributed architecture for a self-
adaptive computer virus immune system. Pages 167–184 of: New ideas in optimization. McGraw-
Hill Ltd., UK.

Le Goues, Claire, Dewey-Vogt, Michael, Forrest, Stephanie, & Weimer, Westley. 2012. A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8 each. Pages 3–13 of: Software
Engineering (ICSE), 2012 34th International Conference on. IEEE.

Lewis, P.R., Chandra, A., Parsons, S., Robinson, E., Glette, K., Bahsoon, R., Torresen, J., & Yao,
Xin. 2011 (oct.). A Survey of Self-Awareness and Its Application in Computing Systems. Pages
102 –107 of: Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2011 Fifth IEEE
Conference on.

Liu, Huan, & Motoda, Hiroshi. 1998. Feature extraction, construction and selection: A data mining
perspective. Springer Science & Business Media.

Luk, Chi-Keung, Cohn, Robert, Muth, Robert, Patil, Harish, Klauser, Artur, Lowney, Geoff, Wallace,
Steven, Reddi, Vijay Janapa, & Hazelwood, Kim. 2011. PIN: A Dynamic Binary Instrumentation
Tool. Retrieved on 2012.07.27. http:// pintool.org/ .

Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., & Hazel-
wood, K. 2005. Pin: Building customized program analysis tools with dynamic instrumentation.
Pages 190–200 of: ACM SIGPLAN Notices, vol. 40. ACM.

M. D. McKay, R. J. Beckman, W. J. Conover. 1979. A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2),
239–245.

Mahdavi, Kiarash, Harman, Mark, & Hierons, Robert Mark. 2003. A multiple hill climbing approach
to software module clustering. Pages 315–324 of: Software Maintenance, 2003. ICSM 2003. Pro-
ceedings. International Conference on. IEEE.

Mandia, Kevin. 2013 (Feb). Mandiant, APT1: Exposing One of Chinas Cyber Espionage Units (Ac-
cessed 2013.03.11), http:// intelreport.mandiant.com/ Mandiant APT1 Report.pdf .

Mann, H. B., & Whitney, D. R. 1947. On a Test of Whether one of Two Random Variables is Stochas-
tically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50–60.

Marmelstein, Robert E., Veldhuizen, David A. Van, & Lamont, Gary B. 1998. A Distributed Architec-
ture for an Adaptive Computer Virus Immune System. Pages 11–14 of: Proceedings of the 1998
IEEE International Conference on Systems.

Marsaglia, George. 1968. Random numbers fall mainly in the planes. Proceedings of the National
Academy of Sciences of the United States of America, 61(1), 25.

Marsaglia, George. 2003. Random number generators. Journal of Modern Applied Statistical Methods,
2(1), 2–13.

Matherly, John. 2009. SHODAN the computer search engine. Retrieved on 2015.07.15. https:// www.
shodan.io.

Matzinger, P. 1994. Tolerance, danger, and the extended family. Annu Rev Immunol, 12, 991–1045.

Matzinger, Polly. 2002. The Danger Model: A Renewed Sense of Self. Science, 296(5566), 301–305.

http://pintool.org/
http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf
https://www.shodan.io
https://www.shodan.io

6 275

McClure, Stuart, Gupta, Shanit, Dooley, Carric, Zaytsev, Vitaly, Chen, Xiao Bo,
Kaspersky, Kris, Spohn, Michael, & Permeh, Ryan. 2010. Protecting Your Crit-
ical Assets: Lessons Learned from Operation Aurora. Retrieved on 2015.08.25.
http://www.wired.com/images blogs/threatlevel/2010/03/operationaurora wp 0310 fnl.pdf.
McAfee Labs and McAfee Foundstone Professional Services. Whitepaper.

McFall-Ngai, Margaret. 2007. Adaptive immunity: care for the community. Nature, 445(7124), 153–
153.

Meserve, Jeanne. 2007 (Sept). CNN Report on Idaho National Labs: Aurora – “Staged cyber attack
reveals vulnerability in power grid.” Retrieved on 2014.08.15. https:// www.youtube.com/ watch?
v=fJyWngDco3g http:// cnn.com/ 2007/ US/ 09/ 26/ power.at.risk/ .

Meysenburg, Mark M, & Foster, James A. 1999. Random generator quality and GP performance. Pages
1121–1126 of: Proceedings of the genetic and evolutionary computation conference, vol. 2.

Miller, Barton, Hollingsworth, Jeff, et al. . 2012. DynInst Analysis Software Tool. Retrieved on
2012.07.27. http:// dyninst.org/ .

Moore, HD, et al. . 2009. The Metasploit Project. Retrieved on 2012.03.14. http:// www.metasploit.com.

Mori, K. 1993. Autonomous decentralized systems: Concept, data field architecture and future trends.
Pages 28–34 of: Autonomous Decentralized Systems, 1993. Proceedings. ISADS 93., International
Symposium on. IEEE.

Morris, Thomas, Srivastava, Anurag, Reaves, Bradley, Gao, Wei, Pavurapu, Kalyan, & Reddi, Ram.
2011. A control system testbed to validate critical infrastructure protection concepts. International
Journal of Critical Infrastructure Protection, 4(2), 88–103.

Mosteller, Frederick, & Tukey, John W. 1968. Data analysis, including statistics. In Handbook of Social
Psychology, Addison-Wesley, Reading, MA,.

Murphy, Kenneth M, Travers, Paul, Walport, Mark, et al. . 2012. Janeway’s Immunobiology. Vol. 7.
Garland Science New York, NY, USA.

Narasipura, Srinivas D, Wojciechowski, Joel C, Charles, Nichola, Liesveld, Jane L, & King, Michael R.
2008. P-Selectin–Coated Microtube for Enrichment of CD34+ Hematopoietic Stem and Progenitor
Cells from Human Bone Marrow. Clinical chemistry, 54(1), 77–85.

Nardella, Davide. 2013 (September). SNAP7 – Communication suite for natively interfacing with
Siemens S7 PLCs. Retrieved on 2014.11.07. http:// snap7.sourceforge.net/ .

Newsome, J., & Song, D. 2005. Dynamic taint analysis for automatic detection, analysis, and signature
generation of exploits on commodity software. In: In Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS 05). San Diego, CA: Internet Society.

Newsome, J., Brumley, D., Song, D., & Pariente, M.R. 2005. Sting: An end-to-end self-healing system
for defending against zero-day worm attacks on commodity software. Tech. rept. Carnegie Mellon
University.

Newsome, J., Brumley, D., & Song, D. 2006. Sting: An end-to-end self-healing system for defending
against zero-day worm attacks. Tech. rept. Technical Report CMU-CS-05-191, Carnegie Mellon
University School of Computer Science.

Nguyen, Hai Thanh, Torrano-Gimenez, Carmen, Alvarez, Gonzalo, Petrović, Slobodan, & Franke,
Katrin. 2011. Application of the generic feature selection measure in detection of web attacks.
Pages 25–32 of: Computational Intelligence in Security for Information Systems. Springer.

https://www.youtube.com/watch?v=fJyWngDco3g
https://www.youtube.com/watch?v=fJyWngDco3g
http://cnn.com/2007/US/09/26/power.at.risk/
http://dyninst.org/
http://www.metasploit.com
http://snap7.sourceforge.net/

276 REFERENCES

NIH. 2015 (March). What are adult stem cells?. In Stem Cell Information [World Wide Web site].
Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services,
2015. Retrieved on 2015.04.15. http:// stemcells.nih.gov/ info/ basics/ pages/ basics4.aspx .

Okamoto, T., & Ishida, Y. 1999. A distributed approach to computer virus detection and neutralization
by autonomous and heterogeneous agents. Pages 328 –331 of: Autonomous Decentralized Systems,
1999. Integration of Heterogeneous Systems. Proceedings. The Fourth International Symposium on.

Okamoto, Takeshi, & Ishida, Yoshiteru. 2000. A distributed approach against computer viruses inspired
by the immune system. IEICE transactions on communications, 83(5), 908–915.

O’Leary, Jacqueline G, Goodarzi, Mahmoud, Drayton, Danielle L, & von Andrian, Ulrich H. 2006. T
cell–and B cell–independent adaptive immunity mediated by natural killer cells. Nature immunol-
ogy, 7(5), 507–516.

ONS, UK. 2013. United Kingdom National Accounts, The Blue Book, 2013 Edition. Office of National
Statistics, UK Statistics Authority.

ONS, UK. 2014. United Kingdom National Accounts, The Blue Book, 2014 Edition. Office of National
Statistics, UK Statistics Authority.

Ou, Chung-Ming. 2012. Host-based intrusion detection systems adapted from agent-based artificial
immune systems. Neurocomputing, 88, 78–86.

Ou, Chung-Ming, & Ou, Chung-Ren. 2010. Agent-Based immunity for computer virus: abstraction from
dendritic cell algorithm with danger theory. Pages 670–678 of: Advances in Grid and Pervasive
Computing. Springer.

Ou, C.M., & Ou, CR. 2011. Immunity-Inspired Host-Based Intrusion Detection Systems. Pages 283–
286 of: Genetic and Evolutionary Computing (ICGEC), 2011 Fifth International Conference on.
IEEE.

Ou, C.M., Wang, Y.T., & Ou, CR. 2011a. Intrusion detection systems adapted from agent-based
artificial immune systems. Pages 115–122 of: Fuzzy Systems (FUZZ), 2011 IEEE International
Conference on. IEEE.

Ou, C.M., Wang, Y.T., & Ou, C. 2011b. Multiagent-based dendritic cell algorithm with applications
in computer security. Intelligent Information and Database Systems, 466–475.

Owens, Nick, Timmis, Jon, Greensted, Andrew, & Tyrell, Andy. 2007. On Immune Inspired Homeostasis
for Electronic Systems. Pages 216–227 of: de Castro, Leandro, Von Zuben, Fernando, & Knidel,
Helder (eds), Artificial Immune Systems. Lecture Notes in Computer Science, vol. 4628. Springer
Berlin / Heidelberg.

Perkins, Jeff H, Kim, Sunghun, Larsen, Sam, Amarasinghe, Saman, Bachrach, Jonathan, Carbin,
Michael, Pacheco, Carlos, Sherwood, Frank, Sidiroglou, Stelios, Sullivan, Greg, et al. . 2009. Auto-
matically patching errors in deployed software. Pages 87–102 of: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM.

Peterson, Dale. 2009. Quickdraw: Generating security log events for legacy SCADA and control system
devices. Pages 227–229 of: Conference For Homeland Security, 2009. CATCH’09. Cybersecurity
Applications & Technology. IEEE.

Polack, Fiona AC. 2010. Self-organisation for survival in complex computer architectures. Pages 66–83
of: Self-Organizing Architectures. Springer.

http://stemcells.nih.gov/info/basics/pages/basics4.aspx

6 277

Pollet, Jonathan. 2002. Developing a solid SCADA security strategy. Pages 148–156 of: Sensors for
Industry Conference, 2002. 2nd ISA/IEEE. IEEE.

Psaier, Harald, & Dustdar, Schahram. 2011. A survey on self-healing systems: approaches and systems.
Computing, 91(1), 43–73. 10.1007/s00607-010-0107-y.

Quinlan, Ross. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.

Ralston, PAS, Graham, JH, & Hieb, JL. 2007. Cyber Security Risk Assessment for SCADA and DCS
Networks. ISA transactions, 46(4), 583–594.

Rigoutsos, Isidore, & Floratos, Aris. 1998. Combinatorial pattern discovery in biological sequences:
The TEIRESIAS algorithm. Bioinformatics, 14(1), 55–67.

Rodriguez, Guillermo, & Weisbin, Charles R. 2003. A new method to evaluate human-robot system
performance. Autonomous Robots, 14(2-3), 165–178.

Roesch, Martin, et al. . 1999. Snort: Lightweight Intrusion Detection for Networks. Pages 229–238 of:
LISA, vol. 99.

Rowstron, Antony, & Druschel, Peter. 2001. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. Pages 329–350 of: Middleware 2001. Springer.

Ryu, Dae Hyun, Kim, HyungJun, & Um, Keehong. 2009. Reducing security vulnerabilities for critical
infrastructure. Journal of Loss Prevention in the Process Industries, 22(6), 1020–1024.

Sangster, Benjamin, OConnor, T, Cook, Thomas, Fanelli, Robert, Dean, Erik, Adams, William J,
Morrell, Chris, & Conti, Gregory. 2009. Toward instrumenting network warfare competitions to
generate labeled datasets. In: Proc. of the 2nd Workshop on Cyber Security Experimentation and
Test (CSET09).

SCMag. 2014 (April). SCMagazine Product Review: AlienVault Unified Security
Management v4.4 SIEM. Retrieved on 2015.09.16. http:// www.scmagazine.com/
alienvault-unified-security-management-v44/ review/ 4143/ .

SCMag. 2015 (May). SCMagazine Product Review: McAfee Enterprise Security Man-
ager (ESM) SIEM. Retrieved on 2015.09.16. http:// www.mcafee.com/ uk/ resources/ reviews/
sc-magazine-esm-5-star-rating.pdf .

Scully, Peter, Song, Jingping, Disso, Jules Pagna, & Neal, Mark. 2013. CARDINAL-E: AIS Extensions
to CARDINAL for Decentralised Self-Organisation for Network Security. Pages 1235–1236 of:
Advances in Artificial Life, ECAL, vol. 12.

Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., & Boneh, D. 2004. On the effectiveness
of address-space randomization. Pages 298–307 of: Proceedings of the 11th ACM conference on
Computer and communications security. ACM.

Shalem, Amir, Shemer, Eli, Keren, Guy, Ben-Yehuda, Muli, Agmon, Orna, Fish, Shlomi, Segall, Itai,
Ben-Yossef, Gilad, & Friedman, Roy. 2003. syscalltracker: Sourceforge Project.

Silverstein, A.M. 2009. A history of immunology. Academic Press. Academic Press/Elsevier.

Snapp, S.R., Brentano, J., Dias, G., Goan, T., Granee, T., Heberlein, L.T., Ho, C.L., Levitt, K.N.,
Mukherjee, B., Mansur, D.L., et al. . 1991a. Intrusion Detection Systems (IDS): A Survey of
Existing Systems and a Proposed Distributed IDS Architecture. Tech. rept. Technical Report CSE-
91-7, Division of Computer Science, University of California, Davis.

http://www.scmagazine.com/ alienvault-unified-security-management-v44/review/4143/
http://www.scmagazine.com/ alienvault-unified-security-management-v44/review/4143/
http://www.mcafee.com/uk/resources/reviews/ sc-magazine-esm-5-star-rating.pdf
http://www.mcafee.com/uk/resources/reviews/ sc-magazine-esm-5-star-rating.pdf

278 REFERENCES

Snapp, Steven R., Brentano, James, Dias, Gihan V., Goan, Terrance L., Heberlein, L. Todd, lin Ho,
Che, Levitt, Karl N., Mukherjee, Biswanath, Smaha, Stephen E., Grance, Tim, Teal, Daniel M., &
Mansur, Doug. 1991b. DIDS (Distributed Intrusion Detection System) - Motivation, Architecture,
and An Early Prototype. Pages 167–176 of: In Proceedings of the 14th National Computer Security
Conference.

Somayaji, A., Hofmeyr, S., & Forrest, S. 1998. Principles of a computer immune system. Pages 75–82
of: Proceedings of the 1997 workshop on New security paradigms. ACM.

Sompayrac, L. 2003. How the immune system works. How It Works Series. Blackwell Pub.

Song, Jingping, Zhu, Zhiliang, Scully, Peter, & Price, Chris. 2013. Selecting Features for Anomaly
Intrusion Detection: A Novel Method using Fuzzy C Means and Decision Tree Classification.
Pages 299–307 of: Cyberspace Safety and Security. Springer.

Song, Jingping, Zhu, Zhiliang, Scully, Peter, & Price, Chris. 2014. Modified Mutual Information-based
Feature Selection for Intrusion Detection Systems in Decision Tree Learning. Journal of computers,
9(7), 1542–1546.

Spearman, Charles. 1904. The proof and measurement of association between two things. The American
journal of psychology, 15(1), 72–101.

Spencer, Herbert. 1896. The principles of biology. Vol. 1. D. Appleton.

Srinivasan, S.M., Kandula, S., Andrews, C.R., & Zhou, Y. 2004. Flashback: A lightweight extension for
rollback and deterministic replay for software debugging. Pages 3–3 of: Proceedings of the annual
conference on USENIX Annual Technical Conference. USENIX Association.

Stepney, Susan, Smith, Robert E., Timmis, Jonathan, Tyrrell, Andy M., Neal, Mark J., & Hone,
Andrew N. W. 2005. Conceptual Frameworks for Artificial Immune Systems. International Journal
of Unconventional Computing, 1(3), 315–338.

Stibor, Thomas, Oates, Robert, Kendall, Graham, & Garibaldi, Jonathan M. 2009. Geometrical insights
into the dendritic cell algorithm. Pages 1275–1282 of: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation. ACM.

Stoica, Ion, Morris, Robert, Karger, David, Kaashoek, M Frans, & Balakrishnan, Hari. 2001. Chord: A
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer Com-
munication Review, 31(4), 149–160.

Stouffer, Keith, Pillitteri, Victoria, Lightman, Suzanne, Abrams, Marshall, & Hahn, Adam. 2015.
Guide to industrial control systems (ICS) Security. NIST 800-82 Rev.2. NIST Special Publication,
1(800-82), 247.

Swimmer, M. 2006. Using the Danger Model of Immune Systems for Distributed Defense in Modern
Data Networks. Computer Networks, 51(5), 1315–1333. Elsevier.

Terunuma, Hiroshi, Deng, Xuewen, Dewan, Zahidunnabi, Fujimoto, Shigeyoshi, & Yamamoto, Naoki.
2008. Potential role of NK cells in the induction of immune responses: implications for NK cell–
based immunotherapy for cancers and viral infections. International reviews of immunology, 27(3),
93–110.

Torrano-Giménez, Camen, Perez-Villegas, Alejandro, Álvarez Marañón, Gonzalo, et al. . 2010a. An
Anomaly-Based Approach for Intrusion Detection in Web Traffic. Tech. rept.

Torrano-Giménez, Carmen, Perez-Villegas, Alejandro, & Álvarez Marañón, Gonzalo. 2010b. An
anomaly-based approach for intrusion detection in web traffic. Journal of Information Assurance
and Security, 5(4), 446–454.

6 279

Torrano-Gimenez, Carmen, Nguyen, Hai Thanh, Alvarez, Gonzalo, Petrovic, Slobodan, & Franke,
Katrin. 2011. Applying feature selection to payload-based Web Application Firewalls. Pages 75–
81 of: Security and Communication Networks (IWSCN), 2011 Third International Workshop on.
IEEE.

Travers, Paul, Walport, Mark, & Janeway, Charles. 2008. Janeway’s immunobiology. Vol. 978. Garland
Pub.

Tsang, Rose. 2010. Cyberthreats, Vulnerabilities and Attacks on SCADA Networks. University of
California, Berkeley, Working Paper, http://gspp. dreamhosters. com/iths/Tsang SCADA% 20At-
tacks. pdf (as of Mar. 25, 2013).

U.S. Department of Homeland Security. 2009 (October). Recommended Practice: Improving Indus-
trial Control Systems Cybersecurity with Defense-in-Depth Strategies. October 2009. Retrieved
on 2015.04.16. https:// ics-cert.uscert.gov/ sites/ default/ files/ recommended practices/ Defense
in Depth Oct09.pdf .

Vivier, Eric, Raulet, David H, Moretta, Alessandro, Caligiuri, Michael A, Zitvogel, Laurence, Lanier,
Lewis L, Yokoyama, Wayne M, & Ugolini, Sophie. 2011. Innate or adaptive immunity? The
example of natural killer cells. Science, 331(6013), 44–49.

White, Tom. 2009. Hadoop: The Definitive Guide. 1st edn. O’Reilly Media, Inc. Apache Hadoop.

Wiens, Thomas. 2013. S7comm Wireshark Dissector Plugin. Retrieved on 2014.11.08. https:// wiki.
wireshark.org/ S7comm.

Yeo, M., et al. . 2010 (Aug. 31). Extrusion detection using taint analysis. US Patent 7,788,235. Filed
2006.

Zaharia, Matei, Chowdhury, Mosharaf, Franklin, Michael J, Shenker, Scott, & Stoica, Ion. 2010. Spark:
cluster computing with working sets. Page 10 of: Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, vol. 10. Apache Spark.

Zhu, Bonnie, & Sastry, Shankar. 2010. SCADA-specific Intrusion Detection/Prevention Systems: A
Survey and Taxonomy. In: Proceedings of the 1st Workshop on Secure Control Systems (SCS).

Zuk, Patricia A, Zhu, Min, Ashjian, Peter, De Ugarte, Daniel A, Huang, Jerry I, Mizuno, Hiroshi,
Alfonso, Zeni C, Fraser, John K, Benhaim, Prosper, & Hedrick, Marc H. 2002. Human adipose
tissue is a source of multipotent stem cells. Molecular biology of the cell, 13(12), 4279–4295.

https://ics-cert.uscert.gov/sites/default/files/recommended_practices/Defense_in_Depth_Oct09.pdf
https://ics-cert.uscert.gov/sites/default/files/recommended_practices/Defense_in_Depth_Oct09.pdf
https://wiki.wireshark.org/S7comm
https://wiki.wireshark.org/S7comm

	Introduction
	Motivations and Context
	SHAAM PhD Project
	Aims
	Objectives
	Hypothesis and Research Question
	Key Contributions
	Key Testing Areas in this Thesis
	Distribution of Security Modules and Benchmarking
	Architecture Parameter Tuning

	Thesis Scope and Organisation

	Security in Industrial Networks
	Introduction
	Standards
	Latest Vulnerabilities & Exploits
	Historical Issues in the Security of Industrial Networks
	Attacker Opportunities and Evidence
	Academic Summaries of Automation Security Flaws
	The Case and Positioning for Automated Self-Healing Security Systems in Industrial Networks
	Problems
	Main Challenges and Directed Focus

	Biological Self-Healing
	Introduction
	The Innate Immune System
	Tissue Immune Defences
	Neutrophils Response
	Complement System Responses

	The Adaptive Immune System
	B-Cells and Adapting Antigenic Specificity
	T-Cells: Dealing with Viruses, Regulation and Homeostasis
	Antigen Presenting Cells

	Further Homeostatic Behaviours
	Signalling
	Two Signal Theory: Co-stimulation, Co-receptors and Binding Thresholds
	Evolving Self-Healing
	Cell Potency: Structural Adaptation and Organisation

	Chapter Conclusions
	Mappings of Principles to Main Challenges

	Artificial Self-Healing
	Introduction to Self-Healing Systems
	A Survey of Distributed Self-Healing Artificial Immune Systems for Network Security
	Early Distributed Intrusion Detection Systems (DIDS)
	File Decoys and Negative Selection in DIDS
	File Decoys, Negative Selection and Grid Computing for Evaluation
	Backup and Restore, Block Transmissions, Neuter Viruses
	Negative Selection and Decentralised Lisys
	Toward an Holistic Self/Non-Self-inspired Defence System
	Toward an Holistic Danger Theory-based Defence System
	A Sting for Worms with Self-Hardening
	Danger Theory Modelled for DIDS
	Cytokine Communications in Decentralised Defense Systems
	Intrusion Prevention and Multi-Agent Self-Healing

	Chapter Conclusions
	Discussion

	The Road Ahead

	The CARDINAL-Vanilla Architecture
	Introduction
	Clarifications and Differences
	Architecture Overview
	Engineered System Overview
	Immune System Inspiration Overview
	Agent Architecture Overview

	Processes of CARDINAL-Vanilla
	Process Differences

	Flow Control of CARDINAL-Vanilla
	Flow Control Differences

	Network Communications
	Network Connectivity & Decision Control
	Network Protocol

	Classification and Responses
	Primary Classifier
	Secondary Classifier
	Responses

	Module Creation & Validation
	Module Validation Process
	Module Migration to Tissue Process
	Choosing Thresholds and Cytokine Increase Values

	Time Scale: Moving Time Window
	Module Dispatch Decisions
	Volume Selection Feedback Loop
	Destination Selection
	Module Selection for Transmission

	Priority Heuristic for Signature Module Distribution
	Module Prioritisation & De-Prioritisation
	More Prioritisation: Through Regulation
	More Prioritisation: Dendritic Cells and Decay Rates

	Parameters of CARDINAL-Vanilla
	Choosing the Key Parameters
	Under Attack Volume Percentage Parameter (P0)
	Initial Priority Value Multiplier Parameter (P1)
	Priority Value Suppression Parameter (P2)
	Static Moving Window Size Parameter (P3)
	Dendritic Cell Lifespan Parameter (P4)

	Chapter Conclusions
	Next Steps

	How to Evaluate and Validate Distributed Self-Healing Security Systems
	Introduction
	Measurements and Metrics
	Measures to Metrics
	Detector Distribution Quantity Measurement (M1)
	Detector Distribution Time Measurement (M2)
	Detector Distribution Data Sent Measurement (M3)
	Sources of Noise affecting Measurements

	Experiment Phases
	Experiment Procedure
	Experiment Procedure Development
	Experiment Procedure J

	Experiment Constants
	Distributed System User Behavioural Model
	Three Parameter User Model
	Static & Runtime Model Definition
	Distinguishing User Learning Experiences from User Behaviour
	Model's Use of Random Number Generators

	Datasets
	CSIC HTTP 2010 Dataset Versions and Sampling

	Real-time vs Post Processing
	Multi-Objective Evaluation Metrics
	Combined System Performance Measures
	Approach
	Rodriguez & Weisbin's Equations
	Ratio of Distances
	Conclusion for Combined System Performance Measures

	Chapter Conclusion
	Future Work upon the User Model
	Next Steps

	Self-Healing Benchmark
	Introduction
	Comparison on Virtual Networks
	Objectives
	Algorithm Comparisons
	Experiment Design
	Configuration

	Results
	Metric Performance
	Immunisation Rate System Performance
	Further Discussion
	Conclusions
	Next Steps

	Comparison on Enterprise Networks
	Objectives
	Experiment Design
	Configuration

	Results
	Metric Performance
	Immunisation Rate System Performance
	Conclusions
	Next Steps
	Future Work

	Further Analysis of Network Testing
	Objectives
	Observations of Time Synch/ Desynch in Network Virtualisation
	Effects of Time Desynchronisation
	Metric Differences with Time Desynchronisation
	Detector Delivery Time Differences with Time Desynchronisation
	Discussion
	Conclusion
	Future Work

	Chapter Conclusion
	Next Steps
	Future Work

	Parameter Tuning
	Introduction
	Range Testing on Virtual Networks
	Objectives
	Experiment Design

	Results
	Part 1: Parameter Effects
	Discussion of Results - Part 1: Parameter Effects
	Part 2: Best Immunisation Rate Performance
	Discussion of Results - Part 2: Best Immunisation Rate
	Conclusions
	Next Steps

	Parameter Tuning on Virtual Networks
	Objectives
	Experiment Design
	Search Method
	Parameter Tuning Ranges

	Results
	Part 1: Search Results by Generation
	Discussion - Part 1: Search Results by Generation
	Part 2: Best Search States
	Discussion - Part 2: Best Search States
	Conclusions
	Next Steps

	Parameter Tuning on Enterprise Networks
	Experiment Design
	Parameter Tuning Ranges
	Search Method

	Results
	Reasoning through the Noise
	Best Configuration Set Results
	Discussion
	Conclusion

	Chapter Conclusions
	Peripheral Discoveries
	Future Work

	Towards a Decentralised Self-Healing Security System for Industrial Networks
	Design Principles
	Self-Healing Component
	Role Separation
	Additional Hardware
	Performance Indicators
	Belief and Objective Weightings
	Periodic Indicator Updates
	Current Trust and Self-Centric View
	Fitness Function of Performance
	Data Transmission
	Detection Modelling
	Extracting Recovery State Models

	Self-Management Component
	Social Sensing and Collective Awareness – ``the guards themselves become the threat''
	Moving Target Strategies – ``who will guard the guards themselves''

	Strategy Generation and Evaluation: Static vs. Dynamic
	Application Focus
	Challenges
	Chapter Conclusions

	Conclusions
	Contributions for Industrial Network Security
	Contributions for Artificial Immune Systems
	Summaries and Conclusions

	Security in Industrial Networks
	Industrial Security Standards
	Organisations with Released Industrial Security Standards
	Released Industrial Security Standards

	Vulnerabilities Reported on OSVDB 2007–2015
	SCADA and Web Vulnerabilities Reported on OSVDB
	Vulnerabilities per PLC Manufacturer Reported on OSVDB

	SNAP7 - Open Source S7 Communications API
	Extract of ICS Attack - Water.arff Dataset

	Biological Immune System
	CARDINAL-Vanilla Architecture
	Implementation Specific Responses
	Use of Random Number Generators

	Configurations
	Virtual Machine Environment Configuration
	Enterprise Machine Environment Configuration
	Virtual Machine Environment and Execution Script
	Enterprise Network Environment Parameter Search Execution Script
	Time Evaluations of Other Datasets

	Further Results and Analysis
	Self-Healing Benchmark - Inferential Statistics
	Difference from AIS to Engineered

	Self-Healing Benchmark - Virtual Network Plot Results
	Self-Healing Benchmark - Enterprise Plot Results
	Time Delay: Bash Background Process Execution Order

	Parameter Range Evaluations
	Combined System Performance Measures: Part 2
	Failed Route: Log Ratio with Inverse

	Descriptive Statistics of Each Parameter Value Range
	Box Plots of Each Parameter Value Range
	Ordinal Correlation from Parameter Value to Metric Results
	Descriptive Statistics of Immunisation Rates
	Box Plots of Immunisation Rates
	Best of Search States from Virtual Network Environment Tests
	Enterprise Network Environment Parameter Tuning Tests
	Initial Configuration Set Random Selection
	Other Result Sets

	Glossary
	References

