19 research outputs found

    Second Order Sliding Mode Controller for Longitudinal Wheel Slip Control

    Get PDF
    This paper investigates the longitudinal wheel slip tracking control approach for ground vehicle. A mathematical model of a quarter vehicle undergoing a straight-line braking maneuver is used as the control model. Second order sliding mode (SOSM) control approach using super-twisting technique is proposed to manipulate the braking torque to control the wheel slip. The effectiveness of the SOSM is compared to the conventional sliding mode in the simulations of emergency straight line braking in Simulink. With the SOSM, the chattering phenomenon is eliminated, giving a smooth tracking trajectory and lower slip error and control effort

    Enhanced Sliding Mode Wheel Slip Controller for Heavy Goods Vehicles

    Get PDF
    This paper introduces an improved version of a sliding mode slip controller for pneumatic brake system ofheavy goods vehicles, HGVs. Using the Fast Actuating Brake Valve, FABV, allows to adopt advance control approaches forwheel-slip controllers which provide features such as fast dynamic response, stability and robustness. In this paper, the slidingmode algorithm which was developed for the speed dependent wheel slip control using the FABV hardware is analysed andimproved. The asymptotic convergence properties of the control algorithm are proven using Lyapunov stability theory and therobustness of the method is investigate

    Making Transport Safer: V2V-Based Automated Emergency Braking System

    Get PDF
    An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation

    Smart Traction Control Systems for Electric Vehicles Using Acoustic Road-type Estimation

    Full text link
    The application of traction control systems (TCS) for electric vehicles (EV) has great potential due to easy implementation of torque control with direct-drive motors. However, the control system usually requires road-tire friction and slip-ratio values, which must be estimated. While it is not possible to obtain the first one directly, the estimation of latter value requires accurate measurements of chassis and wheel velocity. In addition, existing TCS structures are often designed without considering the robustness and energy efficiency of torque control. In this work, both problems are addressed with a smart TCS design having an integrated acoustic road-type estimation (ARTE) unit. This unit enables the road-type recognition and this information is used to retrieve the correct look-up table between friction coefficient and slip-ratio. The estimation of the friction coefficient helps the system to update the necessary input torque. The ARTE unit utilizes machine learning, mapping the acoustic feature inputs to road-type as output. In this study, three existing TCS for EVs are examined with and without the integrated ARTE unit. The results show significant performance improvement with ARTE, reducing the slip ratio by 75% while saving energy via reduction of applied torque and increasing the robustness of the TCS.Comment: Accepted to be published by IEEE Trans. on Intelligent Vehicles, 22 Jan 201

    A Study of Coordinated Vehicle Traction Control System Based on Optimal Slip Ratio Algorithm

    Get PDF
    Under complicated situations, such as the low slippery road surface and split-μ road surface, traction control system is the key issue to improve the performance of vehicle acceleration and stability. In this paper, a novel control strategy with engine controller and active pressure controller is presented. First and foremost, an ideal vehicle model is proposed for simulation; then a method for the calculation of optimal slip ratio is also brought. Finally, the scheme of control method with engine controller and active brake controller is presented. From the results of simulation and road tests, it can be concluded that the acceleration performance and stability of a vehicle equipped with traction control system (TCS) can be improved

    Antisideslip and Antirollover Safety Speed Controller Design for Vehicle on Curved Road

    Get PDF
    When the drivers cannot be aware of the existing of forthcoming curved roads and fail to regulate their safety speeds accordingly, sideslip or rollover may occur with high probability. The antisideslip and antirollover control of vehicle on curved road in automatic highway systems is studied. The safety speed warning system is set before entering the curved road firstly. The speed adhesion control is adopted to shorten the braking distance while decelerating and to guarantee the safety speed. The velocity controller when decelerating on the straight path and the posture controller when driving on curved road are designed, respectively, utilizing integral backstepping technology. Simulation results demonstrate that this control system is characterized by quick and precise tracking and global stability. Consequently, it is able to avoid the dangerous operating conditions, such as sideslip and rollover, and guarantee the safety and directional stability when driving on curved road

    MODELING AND SIMULATION OF PM MOTOR TESTING ENVIRONMENT TOWARDS EV APPLICATION CONSIDERING ROAD CONDITIONS

    Get PDF
    The electric vehicle (EV) performance testing is an indispensable aspect of the design study and marketing of electric vehicle. The development of a suitable electric motor testing environment for EVs is very significant. On the one hand, it provides a relatively realistic testing environment for the study of the key technologies of electric vehicles, and it also plays an essential role in finding a reasonable and reliable optimization scheme. On the other hand, it provides a reference to the evaluation criteria for the products on the market. This thesis is based on such requirements to model and simulate the PM motor testing environment towards EV applications considering road conditions. Firstly, the requirements of the electric motor drive as a propulsion system for EV applications are investigated by comparing to that of the traditional engine as a propulsion system. Then, as the studying objective of this work, the mathematical model of PMSM is discussed according to three different coordinate systems, and the control strategy for EV application is developed. In order to test the PM motor in the context of an EV, a specific target vehicle model is needed as the virtual load of the tested motor with the dyno system to emulate the real operating environment of the vehicle. A slippery road is one of the severe driving conditions for EVs and should be considered during the traction motor testing process. Fuzzy logic based wheel slip control is adopted in this thesis to evaluate the PM motor performance under slippery road conditions. Through the proposed testing environment, the PM motor can be tested in virtual vehicle driving conditions, which is significant for improving the PM motor design and control

    Wheel Slip Control via Second-Order Sliding-Mode Generation

    No full text
    corecore