7,508 research outputs found

    What to Verify for Optimal Truthful Mechanisms without Money

    Get PDF
    We aim at identifying a minimal set of conditions under which algorithms with good approximation guarantees are truthful without money. In line with recent literature, we wish to express such a set via verification assumptions, i.e., kind of agents' misbehavior that can be made impossible by the designer. We initiate this research endeavour for the paradigmatic problem in approximate mechanism design without money, facility location. It is known how truthfulness imposes (even severe) losses and how certain notions of verification are unhelpful in this setting; one is thus left powerless to solve this problem satisfactorily in presence of selfish agents. We here address this issue and characterize the minimal set of verification assumptions needed for the truthfulness of optimal algorithms, for both social cost and max cost objective functions. En route, we give a host of novel conceptual and technical contributions ranging from topological notions of verification to a lower bounding technique for truthful mechanisms that connects methods to test truthfulness (i.e., cycle monotonicity) with approximation guarantee

    Partial Verification as a Substitute for Money

    Full text link
    Recent work shows that we can use partial verification instead of money to implement truthful mechanisms. In this paper we develop tools to answer the following question. Given an allocation rule that can be made truthful with payments, what is the minimal verification needed to make it truthful without them? Our techniques leverage the geometric relationship between the type space and the set of possible allocations.Comment: Extended Version of 'Partial Verification as a Substitute for Money', AAAI 201

    Selling Privacy at Auction

    Get PDF
    We initiate the study of markets for private data, though the lens of differential privacy. Although the purchase and sale of private data has already begun on a large scale, a theory of privacy as a commodity is missing. In this paper, we propose to build such a theory. Specifically, we consider a setting in which a data analyst wishes to buy information from a population from which he can estimate some statistic. The analyst wishes to obtain an accurate estimate cheaply. On the other hand, the owners of the private data experience some cost for their loss of privacy, and must be compensated for this loss. Agents are selfish, and wish to maximize their profit, so our goal is to design truthful mechanisms. Our main result is that such auctions can naturally be viewed and optimally solved as variants of multi-unit procurement auctions. Based on this result, we derive auctions for two natural settings which are optimal up to small constant factors: 1. In the setting in which the data analyst has a fixed accuracy goal, we show that an application of the classic Vickrey auction achieves the analyst's accuracy goal while minimizing his total payment. 2. In the setting in which the data analyst has a fixed budget, we give a mechanism which maximizes the accuracy of the resulting estimate while guaranteeing that the resulting sum payments do not exceed the analysts budget. In both cases, our comparison class is the set of envy-free mechanisms, which correspond to the natural class of fixed-price mechanisms in our setting. In both of these results, we ignore the privacy cost due to possible correlations between an individuals private data and his valuation for privacy itself. We then show that generically, no individually rational mechanism can compensate individuals for the privacy loss incurred due to their reported valuations for privacy.Comment: Extended Abstract appeared in the proceedings of EC 201

    Social Welfare in One-sided Matching Markets without Money

    Get PDF
    We study social welfare in one-sided matching markets where the goal is to efficiently allocate n items to n agents that each have a complete, private preference list and a unit demand over the items. Our focus is on allocation mechanisms that do not involve any monetary payments. We consider two natural measures of social welfare: the ordinal welfare factor which measures the number of agents that are at least as happy as in some unknown, arbitrary benchmark allocation, and the linear welfare factor which assumes an agent's utility linearly decreases down his preference lists, and measures the total utility to that achieved by an optimal allocation. We analyze two matching mechanisms which have been extensively studied by economists. The first mechanism is the random serial dictatorship (RSD) where agents are ordered in accordance with a randomly chosen permutation, and are successively allocated their best choice among the unallocated items. The second mechanism is the probabilistic serial (PS) mechanism of Bogomolnaia and Moulin [8], which computes a fractional allocation that can be expressed as a convex combination of integral allocations. The welfare factor of a mechanism is the infimum over all instances. For RSD, we show that the ordinal welfare factor is asymptotically 1/2, while the linear welfare factor lies in the interval [.526, 2/3]. For PS, we show that the ordinal welfare factor is also 1/2 while the linear welfare factor is roughly 2/3. To our knowledge, these results are the first non-trivial performance guarantees for these natural mechanisms

    Mechanism Design without Money via Stable Matching

    Full text link
    Mechanism design without money has a rich history in social choice literature. Due to the strong impossibility theorem by Gibbard and Satterthwaite, exploring domains in which there exist dominant strategy mechanisms is one of the central questions in the field. We propose a general framework, called the generalized packing problem (\gpp), to study the mechanism design questions without payment. The \gpp\ possesses a rich structure and comprises a number of well-studied models as special cases, including, e.g., matroid, matching, knapsack, independent set, and the generalized assignment problem. We adopt the agenda of approximate mechanism design where the objective is to design a truthful (or strategyproof) mechanism without money that can be implemented in polynomial time and yields a good approximation to the socially optimal solution. We study several special cases of \gpp, and give constant approximation mechanisms for matroid, matching, knapsack, and the generalized assignment problem. Our result for generalized assignment problem solves an open problem proposed in \cite{DG10}. Our main technical contribution is in exploitation of the approaches from stable matching, which is a fundamental solution concept in the context of matching marketplaces, in application to mechanism design. Stable matching, while conceptually simple, provides a set of powerful tools to manage and analyze self-interested behaviors of participating agents. Our mechanism uses a stable matching algorithm as a critical component and adopts other approaches like random sampling and online mechanisms. Our work also enriches the stable matching theory with a new knapsack constrained matching model
    • …
    corecore