34 research outputs found

    Statman\u27s 1-Section Theorem

    Get PDF
    Statman\u27s 1-Section Theorem [17] is an important but little-known result in the model theory of the simply-typed λ-calculus. The λ-Section Theorem states a necessary and sufficient condition on models of the simply-typed λ-calculus for determining whether βη-equational reasoning is complete for proving equations that hold in a model. We review the statement of the theorem, give a detailed proof, and discuss its significance

    The involutions-as-principal types/ application-as-unification analogy

    Get PDF
    In 2005, S. Abramsky introduced various universal models of computation based on Affine Combinatory Logic, consisting of partial involutions over a suitable formal language of moves, in order to discuss reversible computation in a game-theoretic setting. We investigate Abramsky\u2019s models from the point of view of the model theory of \u3bb-calculus, focusing on the purely linear and affine fragments of Abramsky\u2019s Combinatory Algebras. Our approach stems from realizing a structural analogy, which had not been hitherto pointed out in the literature, between the partial involution interpreting a combinator and the principal type of that term, with respect to a simple types discipline for \u3bb-calculus. This analogy allows for explaining as unification between principal types the somewhat awkward linear application of involutions arising from Geometry of Interaction (GoI). Our approach provides immediately an answer to the open problem, raised by Abramsky, of characterising those finitely describable partial involutions which are denotations of combinators, in the purely affine fragment. We prove also that the (purely) linear combinatory algebra of partial involutions is a (purely) linear \u3bb-algebra, albeit not a combinatory model, while the (purely) affine combinatory algebra is not. In order to check the complex equations involved in the definition of affine \u3bb-algebra, we implement in Erlang the compilation of \u3bb-terms as involutions, and their execution

    Enriching a Meta-Language With Higher-Order Features

    Get PDF
    Various meta-languages for the manipulation and specification of programs and programming languages have recently been proposed. We examine one such framework, called natural semantics, which was inspired by the work of G. Plotkin on operational semantics and extended by G. Kahn and others at INRIA. Natural semantics makes use of a first-order meta-language which represents programs as first-order tree structures and reasons about these using natural deduction-like methods. We present the following three enrichments of this meta-language. First, programs are represented not by first-order structures but by simply typed λ-terms. Second, schema variables in inference rules can be higher-order variables. Third, the reasoning mechanism is explicitly extended with proof methods which have proved valuable for natural deduction systems. In particular, we add methods for introducing and discharging assumptions and for introducing and discharging parameters. The first method can be used to prove hypothetical propositions while the second can be used to prove generic or universal propositions. We provide several example specifications using this extended meta-language and compare them to their first-order specifications. We argue that our extension yields a more natural and powerful meta-language than the related first-order system. We outline how this enriched meta-language can be compiled into the higher-order logic programming language λProlog

    Set theory and nominalisation, part 2

    Get PDF

    Addressing Machines as models of lambda-calculus

    Full text link
    Turing machines and register machines have been used for decades in theoretical computer science as abstract models of computation. Also the λ\lambda-calculus has played a central role in this domain as it allows to focus on the notion of functional computation, based on the substitution mechanism, while abstracting away from implementation details. The present article starts from the observation that the equivalence between these formalisms is based on the Church-Turing Thesis rather than an actual encoding of λ\lambda-terms into Turing (or register) machines. The reason is that these machines are not well-suited for modelling \lam-calculus programs. We study a class of abstract machines that we call \emph{addressing machine} since they are only able to manipulate memory addresses of other machines. The operations performed by these machines are very elementary: load an address in a register, apply a machine to another one via their addresses, and call the address of another machine. We endow addressing machines with an operational semantics based on leftmost reduction and study their behaviour. The set of addresses of these machines can be easily turned into a combinatory algebra. In order to obtain a model of the full untyped λ\lambda-calculus, we need to introduce a rule that bares similarities with the ω\omega-rule and the rule ζβ\zeta_\beta from combinatory logic

    Inheritance as Implicit Coercion

    Get PDF
    We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions which are definable in the target of the translation. Existing techniques in the theory of semantic domains can be then used to interpret the extended polymorphic lambda calculus, thus providing many models for the original language. This technique makes it possible to model a rich type discipline which includes parametric polymorphism and recursive types as well as inheritance. A central difficulty in providing interpretations for explicit type disciplines featuring inheritance in the sense discussed in this paper arises from the fact that programs can type-check in more than one way. Since interpretations follow the type-checking derivations, coherence theorems are required: that is, one must prove that the meaning of a program does not depend on the way it was type-checked. The proof of such theorems for our proposed interpretation are the basic technical results of this paper. Interestingly, proving coherence in the presence of recursive types, variants, and abstract types forced us to reexamine fundamental equational properties that arise in proof theory (in the form of commutative reductions) and domain theory (in the form of strict vs. non-strict functions)

    Categorical combinators

    Get PDF
    Our main aim is to present the connection between λ-calculus and Cartesian closed categories both in an untyped and purely syntactic setting. More specifically we establish a syntactic equivalence theorem between what we call categorical combinatory logic and λ-calculus with explicit products and projections, with β and η-rules as well as with surjective pairing. “Combinatory logic” is of course inspired by Curry's combinatory logic, based on the well-known S, K, I. Our combinatory logic is “categorical” because its combinators and rules are obtained by extracting untyped information from Cartesian closed categories (looking at arrows only, thus forgetting about objects). Compiling λ-calculus into these combinators happens to be natural and provokes only n log n code expansion. Moreover categorical combinatory logic is entirely faithful to β-reduction where combinatory logic needs additional rather complex and unnatural axioms to be. The connection easily extends to the corresponding typed calculi, where typed categorical combinatory logic is a free Cartesian closed category where the notion of terminal object is replaced by the explicit manipulation of applying (a function to its argument) and coupling (arguments to build datas in products). Our syntactic equivalences induce equivalences at the model level. The paper is intended as a mathematical foundation for developing implementations of functional programming languages based on a “categorical abstract machine,” as developed in a companion paper (Cousineau, Curien, and Mauny, in “Proceedings, ACM Conf. on Functional Programming Languages and Computer Architecture,” Nancy, 1985)
    corecore