
14 December 2021

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

The untyped computational -calculus and its intersection type discipline

Published version:

DOI:10.1016/j.tcs.2020.09.029

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available under a
Creative Commons license can be used according to the terms and conditions of said license. Use of all other works
requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1759632 since 2020-10-25T14:57:17Z

The untyped computational �-calculus and its

intersection type discipline

Ugo de’ Liguoroa, Riccardo Tregliaa

aUniversità di Torino, c.so Svizzera 185, 10149 Turin, Italy
ugo.deliguoro@unito.it, riccardo.treglia@unito.it

Abstract

We study a Curry style type assignment system for untyped �-calculi with
e↵ects, based on Moggi’s monadic approach. Moving from the abstract defi-
nition of monads, we introduce a version of the call-by-value computational
�-calculus based on Wadler’s variant, without let, and with unit and bind
operators. We define a notion of reduction for the calculus and prove it
confluent.

We then introduce an intersection type system inspired by Barendregt,
Coppo and Dezani system for ordinary untyped �-calculus, establishing type
invariance under conversion.

Finally, we introduce a notion of convergence, which is precisely related
to reduction, and characterize convergent terms via their types.

Keywords: Monads, Reduction, Type assignment systems

1. Introduction

The computational �-calculus was introduced by Moggi in [1, 2] as a
meta-language to describe non functional e↵ects in programming languages
via an incremental approach. The basic idea is to distinguish among values
of some type D and computations over such values, the latter having type
TD. Semantically T is a monad, endowing D with a richer structure such
that operations over computations can be seen as algebras of T .

The monadic approach is not only useful when building compilers modu-
larly with respect to various kinds of e↵ects [2], to interpret languages with ef-
fects like control operators via a CPS translation [3], or to write e↵ectful pro-
grams in a purely functional language such as Haskell [4], but also to reason

Preprint submitted to Theoretical Computer Science September 18, 2020

about such programs. In this respect, typed computational lambda-calculus
has been related to static program analysis and type and e↵ect systems [5, 6],
PER based relational semantics [7], and more recently co-inductive methods
for reasoning about e↵ectful programs have been investigated [8].

Aim of this work is to investigate the monadic approach to e↵ectful func-
tional languages in the untyped case. This is motivated by the fact that
similar, if not more elusive questions arise for e↵ectful untyped languages as
well as for typed ones. The tools we use to establish program equivalence
are classic theory of reduction and intersection type assignment, which we
exploit for defining the logical semantics of programs.

It might appear nonsense to speak of monads w.r.t. an untyped calculus,
as the monad T interprets a type constructor both in Moggi’s and in Wadler’s
formulation of the computational �-calculus [2, 4]. However, much as the
untyped �-calculus can be seen as a calculus with a single type, as formerly
observed by Scott [9], the untyped computational �-calculus, here dubbed
�u
c , has two types: the type of values D and the type of computations TD.

Semantically this involves the existence of a call-by-value reflexive object in
the categorical model [1].

Reduction and operational semantics of the computational �-calculus
have been studied in the context of call-by-need calculi, e.g. in [10, 11],
and confluence of reduction of Moggi’s untyped �c has been established re-
cently in [12], depending on the strong normalization of the calculus. How-
ever the calculus we consider here is much simpler, strictly speaking not a
sub-calculus of any of its ancestors, as it doesn’t have neither the let, nor
functional application as primitive constructs. The syntax is derived from
Wadler’s formalization of monads, in terms of unit and bind operations, writ-
ten return and >>= in Haskell idiom. Reduction is then defined simply by
orienting equations of the three monad laws, and this su�ce to obtain a
perfectly meaningful calculus with confluent reduction relation.

The main concern of our paper is the definition of an intersection type
assignment system for the untyped computational �-calculus. Intersection
types are an extension of Curry’s simple types introduced in the 80’s, such
that relevant classes of �-terms are characterized by means of their types:
see [13] Part III, and the references there. The motivation for investigating
intersection types is that, when including a universal type, usually denoted
by !, that can be assigned to any term, types are invariant under term
conversion, instead of just reduction; by this property the term meaning,
namely its functional behaviour, is fully characterized by the set of its types.

2

So, having such a system for the computational �-calculus, opens the way to
study by well established mathematical tools the case of (untyped) �-calculi
with e↵ects.

To substantiate our claims, we consider a straightforward adaptation of
Abramsky’s idea of convergence for the lazy �-calculus, as the only observ-
able property of terms [14, 15]. We then relate convergence to reducibility
to the trivial computation of a value; eventually we show that convergent
terms are exactly those that have a type di↵erent than the universal type of
computations.

Summary. The paper is organized as follows: in section 2 we recall Moggi’s
definition of a �c-model, in the setting of concrete categories. The syntax
and semantics of our calculus are presented in section 3. Then, in section
4, we study reduction and prove its confluence in section 5. In section 6 we
introduce the type assignment system, and in section 7 we establish the sub-
ject reduction and expansion theorems. The convergence predicate is defined
in section 8; it is related to the reduction relation and the characterization
theorem is established. Finally in section 9 we discuss related works and
propose some further developments. Then we conclude.

This is a revised version of the unpublished paper [16]. With respect to the
draft, the present paper doesn’t include the modelling of types, nor soundness
and completeness of the type system w.r.t. the type interpretation, to limit
space and allow a lighter reading. However, since the subject expansion
property was established by means of semantic tools in the draft, we have
included here a syntactical proof of the same result.

2. Concrete models of the computational �-calculus

The computational �-calculus, denoted �c, has been introduced in the
seminal works [1, 2]. It is a typed calculus derived from the categorical
construction of a monad (T, ⌘, µ) (see [17] chap. VI) over a cartesian category
C, equipped with some more structure to model Kleisli exponents, which
represent internally the morphisms in CT (A,B) = C(A, TB), where CT is the
Kleisli category of the monad. For the precise definition see [1], Defs. 3.2
and 3.5, or [2] Defs. 3.2 and 3.9; see also Def. 2.2 and Props. 2.3 and 2.4
below.

As said before, in Moggi’s construction C is cartesian. When looking at
Wadler’s type-theoretic definition of monads [18, 4], that is at the basis of

3

their successful implementation in Haskell language, a natural interpretation
of the calculus is into a cartesian closed category (ccc), such that two families
of combinators, or a pair of polymorphic operators called the “unit” and the
“bind”, exist satisfying the monad laws, namely (the syntactic counterpart
of) the three equations in Def. 2.1 below (see also Prop. 3.4). This is more
directly expressed by defining the interpretation of Wadler’s version of the �c-
calculus into a (locally small) subcategory of Set which is a ccc: here C will
be called a concrete ccc. Examples are the category Dom of Scott domains
with continuous functions, and its subcategory Alg of algebraic lattices with
a countable basis.

Definition 2.1. Let C be a concrete ccc. A functional computational monad,
henceforth functional monad over C is a triple (T, unit , ?) where T is a map
over the objects of C, and unit and ? are families of morphisms

unitA : A! TA ?A,B : TA⇥ (TB)A ! TB

such that, writing ?A,B as an infix operator and omitting subscripts:

Left unit : unit a ? f = f a
Right unit : m ? unit = m
Assoc : (m ? f) ? g = m ? �� d.(f d ? g)

where �� is functional abstraction in the metalanguage: �� d.(f d ? g) means
d 7! f d ? g.

This definition is the semantic counterpart of the type theoretic one in
[4], but for the ? which is curried in [18] and Wadler’s subsequent papers, so
that it has type TA! (A! TB)! TB; we adopt here the uncurried form
to avoid the cumbersome double exponent.

Leaving aside the discussion about di↵erent ways to define a �c-model
over a ccc in general, for which the interested reader might consult [19] and
the literature cited there, we limit ourself to show that a functional monad
is indeed a strong monad and a �c-model in the sense of Moggi. Clearly
Def. 2.1 is quite close to the notion of a Kleisli triple (T, ⌘, ⇤), which is an
equivalent definition of a monad.

Definition 2.2. A Kleisli triple over a category C is a structure (T, ⌘, ⇤)
where T : ObjC ! ObjC is a map over the objects of C, and there are a
family of morphisms ⌘A : A ! TA of C and a map ⇤, we refer to as the

4

extension map of T , sending any morphism f : A! TB in C to a morphism
f ⇤ : TA! TB of the same category, such that:

f ⇤ � ⌘A = f, ⌘⇤A = idTA, f ⇤ � g⇤ = (f ⇤ � g)⇤ (1)

where g : C ! TA.

Proposition 2.3. A functional monad (T, unit , ?) over a concrete ccc C
induces a Kleisli triple over C.

Proof. Take ⌘A = unitA and f ⇤ = �� x.x ? f : TA! TB for f : A! TB. By
the equation (Left unit) the following diagram commutes:

A

TA

unitA

?

f ⇤ = �� x. x ? f
- TB

f

-

By definition we have that ⌘⇤A = �� x.x ? unitA; therefore by (Right unit), for
all a 2 TA we have:

⌘⇤A a = (�� x.x ? unitA) a = a ? unitA = a

Finally by (Assoc) the following diagram commutes:

C A

TC

unitC

?

g⇤
- TA

unitA

?

f ⇤
-

g

-
TB

f

-

TC

idTC

? (f ⇤ � g)⇤ = �� y. y ? (�� x. g x ? f) - TB

idTB

6

namely for all c 2 TC:

(f ⇤ � g)⇤ c = c ? (�� x. g x ? f) = (c ? g) ? f

5

The above proof relies on the inter-definability of extension and bind by
the equation f ⇤a = a ? f . On the other hand by looking closely to this
equation, we see that what we have constructed is the morphism:

⇤ = �� f x. x ? f : TBA ! TBTA (2)

internalizing the Kleisli map. This is the essential step in the construction
of what is called a C-monad in [19], §5.

Since then we have not completely exploited the fact that C is a ccc. As
such it has all finite products, so that for any A,B the morphism

tA,B : A⇥ TB ! T (A⇥ B)

is definable in terms of ?, pairing and projections as

tA,B = �� x. (⇡2 x) ? �� y. unit (⇡1 x, y) (3)

which is such that:
t (a,m) = m ? �� y.unit (a, y) (4)

Then t is a tensorial strength in the sense of [2], Def. 3.2, as stated in the
following proposition.

Proposition 2.4. Given a monad (T, unit , ?) the t defined in equation (3)
commutes with the natural isomorphisms rA : 1 ⇥ A ! A and ↵A,B,C :
(A⇥ B)⇥ C ! A⇥ (B ⇥ C):

i) t1,A � rTA = TrA

ii) T↵A,B,C � tA⇥B,C = tA,B⇥C � (idA ⇥ tB,C) � ↵A,B,TC

Moreover:

iii) tA,B � (idA ⇥ unitB) = unitA⇥B

iv) tA,B � (idA ⇥ µB) = µA⇥B � TtA,B � tA,TB

where idA = �� x:A. x, µA = (idTA)⇤ = �� z. z ? idTB and for any f : A! B,

Tf = (unitB � f)⇤ = �� z. z ? (unitB � f)

Therefore (T, unit , ?, t) is a strong monad.

Proof. By definition unfolding and straightforward calculations.

6

3. Untyped �c-calculus

Much as the untyped �-calculus can be seen as a calculus with a single
type D such that D = D ! D, the untyped computational �-calculus, that
we dub �u

c , has two types: the type of values D and the type of computations
TD. In [1], §5 the semantics of these types is given by two kinds of reflexive
objects in the category of �c-models, that as type equations read either as
D = TD ! TD in case of call-by-name, or

D = D ! TD (5)

in case of call-by-value. Since the distinction among values and computations
is central in �c, which has been conceived as a generalization of Plotkin’s
call-by-value �-calculus, we adopt equation (5) in defining the corresponding
untyped calculus, which leads to the following definition of the �u

c syntax:

Definition 3.1 (Terms of �u
c). The terms of the untyped computational

�-calculus, shortly �u
c , consist of two sorts of expressions:

Val : V,W ::= x | �x.M (values)

Com : M,N ::= unit V | M ? V (computations)

where x ranges over a denumerable set Var of variables. We set Term =
Val [Com; FV(V) and FV(M) are the sets of free variables occurring in V
and M respectively, and are defined in the obvious way. Terms are identified
up to clash avoiding renaming of bound variables (↵-congruence).

Because of (5) it easily seen that, if we assume that all variables x have
type D, then any value term V has type D and any computation term has
type TD. Indeed omitting contexts, we have:

x : D ` x : D
x : D `M : TD

�x.M : D ! TD = D

V : D

unit V : TD

M : TD V : D = D ! TD

M ? V : TD

(6)

With respect to Moggi’s �c-syntax, we do not have the let construct,
which is considered as syntactical sugar for bind and abstraction:

let x = N in M ⌘ N ? �x.M

7

Notably we do not have application in the syntax. In fact, while VW
might be included, yielding a term of type TD, none among MV , VM and
MN have a type in the calculus; indeed these are not well formed terms
according to Def. 3.1. However, there is a deeper reason for dropping appli-
cation from the primitive operators: as a matter of fact the bind operator
of a monad is a postfix functional application [18], whose actual definition
depends on the monad itself.

We end this part by defining the notion of �u
c -model in a concrete ccc. by

analogy to that of environment �-model in [20].

Definition 3.2 (Reflexive T -object and �u
c -model). Let C be a concrete ccc,

and (T, unit , ?) a functional monad over C. Then an object D 2 ObjC is
T -reflexive if there exist the C-morphisms � : D ! TDD and : TDD ! D
such that � � = idTDD .

A �u
c -model in C is a tuple M(D) = (D, T,�,) where T is a monad, D

is a reflexive T -object via � and . Then, setting Term-EnvD = Var! D as
the set of variable environments ranged over by ⇢, we define a pair of maps
[[·]]D : Val ⇥ Term-EnvD ! D and [[·]]TD : Com ⇥ Term-EnvD ! D, such
that:

i) [[x]]D⇢ = ⇢(x)

ii) [[�x.M]]D⇢ = (�� d 2 D.[[M]]TD
⇢[x 7!d])

iii) [[unit V]]TD
⇢ = unit [[V]]D⇢

iv) [[M ? V]]TD
⇢ = [[M]]TD

⇢ ? �([[V]]D⇢)

where ⇢[x 7! d](x) = d and ⇢[x 7! d](y) = ⇢(y) if y 6⌘ x. Finally we say that
M is extensional if also � � = idD.

As in case of environment �-models, that interpretations [[·]]D and [[·]]TD

are well defined depends on the fact that �� d 2 D.[[M]]TD
⇢[x 7!d] 2 TDD, which

is easily established by induction over M . In the following we shall write D
for a �u

c -model M(D) whenever the context is unambiguous, and call it just
a model.

By M [V/x] and W [V/x] we denote the capture avoiding substitution of
x by V in M and W respectively. This means that x is not bound in M,W
and that V is free for x in M , namely FV(V)\BV(M) = ;, and similarly for
W . Since we have a denumerable set of variables and identify ↵-congruent
terms, such conditions can always be satisfied.

8

Lemma 3.3. Let D be a model. Then for all V,W 2 Val and M 2 Com,
and for all ⇢ 2 Term-EnvD:

[[W [V/x]]]D⇢ = [[W]]D⇢[x 7![[V]]D⇢] and [[M [V/x]]]TD
⇢ = [[M]]TD

⇢[x 7![[V]]D⇢]

Proof. By an easy induction over W and M .

For any model D and M,N 2 Com, we write D |= M = N if for all
⇢ 2 Term-EnvD it holds [[M]]TD

⇢ = [[N]]TD
⇢ . Then we write |= M = N if

D |= M = N for any model D.

Proposition 3.4 (Monad laws). For all V 2 Val and M,N,L 2 Com it
holds that:

i) |= unit V ? (�x.M) = M [V/x]

ii) |= M ? �x.unit x = M

iii) |= (L ? �x.M) ? �y.N = L ? �x.(M ? �y.N) where x 62 FV (N).

Proof. By definition unfolding and easy calculations. E.g. for arbitrary D
and ⇢ 2 Term-EnvD:

[[unit V ? (�x.M)]]TD
⇢ = unit [[V]]D⇢ ? �((�� d 2 D.[[M]]TD

⇢[x 7!d]))

= unit [[V]]D⇢ ? �� d 2 D.[[M]]TD
⇢[x 7!d]

= (�� d 2 D.[[M]]TD
⇢[x7!d])[[V]]D⇢

= [[M]]TD
⇢[x 7![[V]]D⇢] = [[M [V/x]]]TD

⇢

using Def. 3.2, equations � � = idTDD , Left unit and Lem. 3.3.

4. Reduction

Since we are considering a calculus where T is a generic monad and monad
laws are true in any model, we take the latter as abstractly defining the mean-
ing of unit and ?, and obtain the following reduction relation by orienting
equations in Prop. 3.4.

Following [21] §3.1, we say that a binary relation R ✓ Term ⇥ Term
is a notion of reduction. If R1, R2 are notions of reductions we abbreviate
R1R2 = R1[R2; then we denote by �!R the compatible closure of R, namely
the least relation including R which is closed under arbitrary contexts.

9

Definition 4.1 (Reduction). The relation �C = �c [id [comp is union of
the following binary relations over Com:

�c = {hunit V ? (�x.M),M [V/x]i | V 2 Val ,M 2 Com}
id = {hM ? �x.unit x,Mi | M 2 Com}

comp = {h(L ? �x.M) ? �y.N, L ? �x.(M ? �y.N)i | L,M,N 2 Com, x 62 FV (N)}

where M [V/x] denotes the capture avoiding substitution of V for x in M .

Finally �! = �!�C is the compatible closure of �C.

A more readable writing of the definition of �! in Def. 4.1 is:

�c) unit V ? (�x.M) �! M [V/x]

id) M ? �x.unit x �! M

comp) (L ? �x.M) ? �y.N �! L ? �x.(M ? �y.N) for x 62 FV (N)

Rule �c is reminiscent of the left unit law in [4]; we call it �c because it
performs call-by-value �-contraction in �u

c . In fact, by reading ? as postfix
functional application and merging V into its trivial computation unit V , �c

is the same as �v in [22]:

(�x.M)V ⌘ unit V ? (�x.M) �!M [V/x] (7)

The compatible closure of the relation �c [id[comp is explicitly defined
by means of the typed contexts:

Value contexts: V ::= h·Di | �x. C
Computation contexts: C ::= h·TDi | unit V | C ? V | M ? V

Contexts have just one hole, which is either h·Di or h·TDi. These are sorted
in the sense that they can be replaced only by value and computation terms,
respectively. Denoting by VhPi and ChPi the replacements of hole h·Di or
h·TDi in V and C by P ⌘ V or P ⌘ M (possibly catching free variables in
P), we get terms in Val and Com, respectively. Then compatible closure is
expressed by the rule:

M �!M 0

ChMi �! ChM 0i
(8)

10

Using rule (8), the correspondence of rule �c to �v can now be illustrated
more precisely. First observe that the reduction relation �! is only among
computations, therefore no computation N will ever reduce to some value
V ; however, this is represented by a reduction N

⇤�! unit V , where unit V
is the coercion of the value V into a computation. Moreover, let us assume
that M

⇤�! unit (�x.M 0); by setting

MN ⌘M ? (�z.N ? z) for z 62 FV (N) (9)

we have:

MN
⇤�! unit (�x.M 0) ? (�z.unit V ? z) by rule (8)

�! unit V ? (�x.M 0) by �c

�! M 0[V/x] by �c

where if z 62 FV (N) then z 62 FV (V) as it can be shown by a routine
argument.

We end this section by considering the issue of weak and full extensional-
ity, that have not been treated in Def. 4.1. Weak extensionality, also called
⇠-rule of the ordinary �-calculus, is reduction under abstraction. This is
guaranteed by rule (8), but only in the context of computation terms.

Concerning extensionality an analogous of ⌘-rule is:

⌘c) �x. (unit x ? V) �!⌘c V, x 62 FV (V) (10)

This involves extending reduction from Com to the whole Term. However
the reduction obtained by adding ⌘c to �C is not confluent:

(M ? �x. (unit x ? y)) ? �z.N
comp - M ? �x. ((unit x ? y) ? �z.N)

(M ? y) ? �z.N

⌘c

?
- ?

?

5. Confluence

A fundamental property of reduction in ordinary �-calculus is confluence,
established in the Church-Rosser theorem. In this section we prove confluence

11

of �! for the �u
c -calculus. This is a harder task since reduction in �u

c has
three axioms instead of just the �-rule of the �-calculus, whose left-hand
sides generate a number of critical pairs. Before embarking into the proof,
let us see a few examples.

Example 5.1. In this example we see how outer reduction by comp may
overlap with an inner reduction by �c. Representing the given reductions by
solid arrows, we see how to recover confluence by a reduction and a relation
represented by a dashed arrow and a dashed line, respectively:

(unit V ? �x.M) ? �y.N
comp - unit V ? �x. (M ? �y.N)

M [V/x] ? �y.N

�c

?

⌘
(M ? �y.N)[V/x]

�c

?

where x 62 FV(N), which is the side condition to rule comp; therefore the two
terms in the lower line of the diagram are syntactically identical.

Example 5.2. In this example we see how outer reduction by comp, over-
lapping with outer id, can be recovered by an inner reduction by id:

(M ? �y.N) ? �x. unit x
comp - M ? �y. (N ? �x. unit x)

M ? �y.N
�

id
id

-

Example 5.3. Here the outer reduction by comp overlaps with an inner
reduction by id. This is recovered by means of an inner reduction by �c:

(M ? �x. unit x) ? �y.N
comp - M ? �x. (unit x ? �y.N)

M ? �y.N

id

?

↵
M ? �x.N [x/y]

�c

?

12

where x 62 FV(N) as observed in Example 5.1, and therefore �x.N [x/y] is
the renaming by x of the bound variable y in �y.N : then the dashed line
represents ↵-congruence.

After having inspected the above examples, one might by tempted to
conclude that the reduction in Definition 4.1 enjoys the diamond property,
namely it is confluent within (at most) two single steps, one per side (for the
diamond property see (12) below: we say here ‘at most’ because �! is not
reflexive). Unfortunately, this is not the case because of rule �c, that can
multiplicate redexes in the reduced term exactly as the �-rule in ordinary
�-calculus. Even worse, rule comp generates critical pairs with all other
rules and with itself, preventing the simple extension of confluence proofs for
�-reduction to succeed.

Following a strategy used in case of call-by-need calculi with the let-
construct (see e.g. [11, 10]), we split the proof in three steps, proving con-
fluence of �c [id and comp separately, and then combining these results by
means of the commutativity of these relations.

In the first step we adapt the parallel reduction method, originally due
to Tait and Martin Löf, and further developed by Takahashi [23]. See e.g.
the book [24] ch. 10. Let’s define the following relation ��!:

Definition 5.4. The relation ��! ✓ Term⇥Term is inductively defined by:

i) x ��! x

ii) M ��! N) �x.M ��! �x.N

iii) V ��! V 0) unit V ��! unit V 0

iv) M ��!M 0 and V ��! V 0)M ? V ��!M 0 ? V 0

v) M ��!M 0 and V ��! V 0) unit V ? �x.M ��!M 0[V 0/x]

vi) M ��!M 0)M ? �x.unit x ��!M 0

By (i) - (iv) above, relation ��! is reflexive and coincides with its com-
patible closure. Also �!�c,id✓ ��!; intentionally, this is not the case w.r.t.
the whole �!.

Lemma 5.5. For M,M 0 2 Com and V, V 0 2 Val and every variable x, if
M ��!M 0 and V ��! V 0, then M [V/x] ��!M 0[V 0/x].

13

Proof. By an easy induction on the definition of M ��! M 0 and V ��!
V 0.

Now, by means of Lemma 5.5 one easily proves that ��! ✓ ⇤�!�c,id .

The next step in the proof is to show that the relation ��! satisfies the
triangle property TP :

8P 9P ⇤ 8Q. P ��! Q) Q ��! P ⇤ (11)

where P, P ⇤, Q 2 Term. TP implies the diamond property DP, which for
��! is:

8P,Q,R. P ��! Q & P ��! R) 9P 0. Q ��! P 0 & R ��! P 0 (12)

In fact, if TP holds then we can take P 0 ⌘ P ⇤ in DP, since the latter only
depends on P . We then define P ⇤ in terms of P as follows:

i) x⇤ ⌘ x

ii) (�x.M)⇤ ⌘ �x.M⇤

iii) (unit V)⇤ ⌘ unit V ⇤

iv) (unit V ? �x.M)⇤ ⌘M⇤[V ⇤/x]

v) (M ? �x.unit x)⇤ ⌘M⇤, if M 6⌘ unit V for V 2 Val

vi) (M ? V)⇤ ⌘M⇤ ? V ⇤, M 6⌘ unit W for W 2 Val and V 6⌘ �x.unit x

Lemma 5.6. For all P,Q 2 Term, if P ��! Q then Q ��! P ⇤, namely ��!
satisfies TP.

Proof. By induction on P ��! Q. The base case x ��! x follows by x⇤ ⌘ x.
All remaining cases follow by the induction hypotheses; in particular if P ⌘
unit V ?�x.M ��!M 0[V 0/x] ⌘ Q because M ��!M 0 and V ��! V 0, then by
induction M 0 ��!M⇤ and V 0 ��! V ⇤, so that M 0[V 0/x] ��!M⇤[V ⇤/x] ⌘ P ⇤

by Lem. 5.5.

According to [21], Def. 3.1.11, a notion of reduction R is said to be
confluent or Church-Rosser, shortly CR, if

⇤�!R satisfies DP; more explicitly
for all M,N,L 2 Com:

M
⇤�!R N & M

⇤�!R L) 9M 0 2 Com. N
⇤�!R M 0 & L

⇤�!R M 0

14

Corollary 5.7. The notion of reduction �c [id is CR.

Proof. As observed above�!�c,id✓ ��!, henceM
⇤�!�c,id N impliesM ��!+

N , where ��!+ is the transitive closure of ��!, and similarly M ��!+ L. By
Lemma 5.6 ��! satisfies TP, hence it satisfies DP. By an easy argument (see
e.g. [21] Lemma 3.2.2) we conclude that N ��!+ M 0 and L ��!+ M 0 for
some M 0, from which the thesis follows by the fact that ��! ✓ ⇤�!�c,id .

To prove confluence of comp (more properly of its contextual closure) we
use Newman Lemma (see [21], Prop. 3.1.24). A notion of reduction R is
weakly Church-Rosser, shortly WCR, if for all M,N,L 2 Com:

M �!R N & M �!R L) 9M 0 2 Com. N
⇤�!R M 0 & L

⇤�!R M 0

Lemma 5.8. The notion of reduction comp is WCR.

Proof. It su�ces to show the thesis for the critical pair M1 �!comp M2 and
M1 �!comp M3 where:

M1 ⌘ ((L ? �x.M) ? �y,N) ? �z.P
M2 ⌘ (L ? �x.M) ? �y.(N ? �z.P)
M3 ⌘ (L ? �x.(M ? �y.N)) ? �z.P

Then in one step we have:

M2 �!comp L ? �x.(M ? �y.(N ? �z.P)) ⌘M4

but
M3 �!comp L ? �x.((M ? �y.N) ? �z.P) �!comp M4

where the two reduction steps are necessary.

Recall that a notion of reduction R is strongly normalizing, shortly SN, if
there exists no infinite reduction M �!R M1 �!R M2 �!R · · · out of any
M 2 Com.

Lemma 5.9. The notion of reduction comp is SN.

Proof. Given M 2 Com let’s denote by the same M the expression obtained
by marking di↵erently all occurrences of ? in M , say ?1, . . . , ?n. We say that
?i is to the left to ?j in M if there exists a subterm L ?j V of M such that

15

?i occurs in L. Finally, let’s denote by]M the number of pairs (?i, ?j) such
that ?i is to the left to ?j in M .

If a term includes an comp-redex (L ?i �x.N) ?j �y.P , which is contracted
to L ?i �x.(N ?j �y.P), then ?i is to the left to ?j in the redex, but not in the
contractum. Also it is easily seen by induction on terms that, if ?i is not to
the left to ?j in M and M �!comp N , the same holds in N .

It follows that, if M �!comp N then]M >]N , hence comp is SN.

Corollary 5.10. The notion of reduction comp is CR.

Proof. By Lem. 5.8, 5.9 and by Newman Lemma, stating that a notion of
reduction which is WCR and SN is CR.

Finally we show that �!�c,id and �!comp commute. The following defi-
nitions are from [25], Def. 2.7.9. Two relations �!1 and �!2 over Com are
said to commute if, for all M,N,L:

N 1
⇤ �M

⇤�!2 L) 9P 2 Com. N
⇤�!2 P 1

⇤ � L

Relations �!1 and �!2 strongly commute if, for all M,N,L:

N 1 �M �!2 L) 9P 2 Com. N
=�!2 P 1

⇤ � L

where
=�!2 is �!2 [=, namely at most one reduction step.

Lemma 5.11. Reductions �!�c,id and �!comp commute.

Proof. By Lemma 2.7.11 in [25], two strongly commuting relations commute,
and commutativity is clearly symmetric; hence it su�ces to show that

N �c,id �M �!comp L) 9P 2 Com. N
=�!comp P �c,id

⇤ � L.

We can limit the cases to the critical pairs, that are exactly those in examples
5.1, 5.2 and 5.3, which commute.

Theorem 5.12 (Confluence). The notion of reduction �C = �c [id [comp
is CR.

Proof. By the commutative union lemma (see [25], Lem. 2.7.10 and [21],
Prop. 3.3.5, where it is called Hindley-Rosen Lemma), if�!�c,id and�!comp

and are both CR (Cor. 5.7 and 5.10), and commute (Lem. 5.11), then
�!�C = �!�c,id [�!comp is CR.

Consequence of Theorem 5.12 is the unicity of the normal form of a term,
if any. Also, by construction and Proposition 3.4, convertible terms, related
by the reflexive, symmetric and transitive closure =�C of �!�C, namely its
convertibility relation, are equated in any model of �u

c .

16

6. Intersection types for �u
c

Intersection types are an extension of Curry’s simple type assignment
system to untyped �-terms, obtained by adding new types � ^ �0 to be as-
signed to terms that have both type � and �0. Intersection types assignment
systems form a whole family in the literature; of special interest to us is the
system in [26], usually called BCD: see [13] part III. In BCD is introduced a
notion of subtyping together with a universal type !, that can be assigned
to any term, leading to a notion called below type theory.

Definition 6.1 (Intersection types and Type theories). A language of inter-
section types T is a set of expressions �, �0, . . . including a constant ! and
closed under the intersection type constructor: � ^ �0.

An intersection type theory (shortly a type theory) is a pair Th = (T ,)
where T is a language of intersection types and  a pre-order over T such
that ! is the top, ^ is idempotent and commutative, and

� ^ �0  �,
�  �0 �  �00

�  �0 ^ �00

A type theory is a presentation of a meet-semilattice with ! as top ele-
ment; in particular ^ turns out to be monotonic. Di↵erent type theories give
rise to di↵erent structures and hence to di↵erent type systems. We adapt
BCD type theory to the case of �u

c , where two sorts of types correspond to
the two sorts of terms.

Definition 6.2 (Intersection types for values and computations). Let TypeVar
be a countable set of type variables, ranged over by ↵:

ValType : � ::= ↵ | � ! ⌧ | � ^ � | !V (value types)

ComType : ⌧ ::= T � | ⌧ ^ ⌧ | !C (computation types)

Intersection types from Def. 6.2 are better understood as predicates of
values and computations, respectively, or as refinement types of the two types
of �u

c , that is, using the notation in [27], � @ D = D ! TD in case of values,
and ⌧ @ TD in case of computations.

In the definition of language ValType and consequently ComType the set
of TypeVar (also called atoms) is left unspecified and it is a parameter.

17

Definition 6.3 (Type theories ThV and ThC). The intersection type theories
ThV = (ValType,V) and ThC = (ComType,C) are the least type theories
such that:

� V !V !V V !V ! !C

(� ! ⌧) ^ (� ! ⌧ 0) V � ! (⌧ ^ ⌧ 0)
�0 V � ⌧ C ⌧ 0

� ! ⌧ V �0 ! ⌧ 0

⌧ C !C T � ^ T �0 C T (� ^ �0)
� V �0

T � C T �0

Remark 6.4. Writing =V for V \ �1
V and similarly =C, we see that all

the axioms but � V !V and ⌧ C !C are actually equalities. In particular, if
⌧ 6=C !C then for a finite set of �i we have ⌧ =C

V
i T �i =C T (

V
i �i).

Type theories ThV and ThC depend on each other. Except for the distinc-
tion among value and computation types, theory ThV is exactly the same as
the type theory of BCD. Theory ThC treats T as a type modality and as a
morphism of meet-semilattices: hence it is monotonic and preserves meets.
An important feature is that T!V is strictly less than !C in general; this is
consistent with the interpretation of T!V as the largest type of convergent
terms. Indeed in Corollary 8.8 we shall prove that !C C T!V is not deriv-
able from the system in Definition 6.3 by exhibiting a type interpretation
such that this inequation doesn’t hold.

Lemma 6.5. If ⌧ 2 ComType is such that ⌧ 6=C !C then for some � 2
ValType we have ⌧ =C T �; hence ⌧ C T!V.

Proof. By induction over ⌧ . The only non trivial case is when ⌧ ⌘ ⌧1 ^ ⌧2.
From ⌧1 ^ ⌧2 6=C !C it follows that at least one of them is di↵erent than !C:
if say ⌧1 =C !C then ⌧1 ^ ⌧2 =C ⌧2 6=C !C so that ⌧2 =C T �2 by induction.
Finally, if both ⌧1 and ⌧2 are not equated to !C then by induction ⌧1 ^ ⌧2 =C

T �1 ^ T �2 =C T (�1 ^ �2) C T!V, for some �1, �2 2 ValType.

We are now in place to introduce the type assignment system for �u
c .

Definition 6.6 (Type assignment). A basis is a finite set of typings � =
{x1 : �1, . . . xn : �n} with pairwise distinct variables xi, whose domain is the
set dom (�) = {x1, . . . , xn}. A basis determines a function from variables to
types such that �(x) = � if x : � 2 �, �(x) = !V otherwise.

18

A judgment is an expression of either shapes: � ` V : � or � `M : ⌧ . It
is derivable if it is the conclusion of a derivation according to the rules:

x : � 2 �
(Ax)

� ` x : �

�, x : � `M : ⌧
(! I)

� ` �x.M : � ! ⌧

� ` V : �
(unit I)

� ` unit V : T �

� `M : T � � ` V : � ! ⌧
(! E)

� `M ? V : ⌧

where �, x : � = � [{x : �} with x : � 62 �, and the rules:

� ` P : !
(!)

� ` P : � � ` P : �0

� ` P : � ^ �0
(^I)

� ` P : � �  �0

� ` P : �0
()

where either P 2 Val , ! ⌘ !V, �, �0 2 ValType and =V or P 2 Com,
! ⌘ !C, �, �0 2 ComType and =C.

In the proof texts we write � ` V : � and � ` M : ⌧ to mean that these
judgments are derivable. Because of rule (!), it is not true in general that
if � ` P : � then FV(P) ✓ dom (�); however under the same hypothesis we
have that � � FV(P) ` P : �, where, for X ✓ Var, � � X = {x : � | x : � 2
� & x 2 X} (the restriction of � to X).

Among the elementary properties of the system, we state the admissibility
of the following rules.

Lemma 6.7 (Weakening and Strengthening). The following rules are ad-
missible:

� ` P : � � ✓ �0

(W)
�0 ` P : �

�, x : � ` P : � �0 V �
(S)

�, x : �0 ` P : �

where P 2 Term and � is either in ValType or in ComType according to the
sort of P .

Proof. Admissibility of rule (W) is proved by a straightforward induction
over the derivation of � ` P : �. Concerning rule (S) we also reason by
induction over the derivation of �, x : � ` P : �, where x is not bound in P
as it is element of dom (�, x : �). It follows that in the derivation the only
judgements in which x is the subject of the right hand side typing are either

19

instances of rule () or instances of (Ax), that is of the shape �0, x : � ` x : �
for some �0 ◆ �. In the first case the thesis follows by induction. In the
second case we obtain a new reduction with the same conclusion by replacing
(Ax) by the inference

(Ax)
�0, x : �0 ` x : �0 �0 V �

()
�0, x : �0 ` x : �

7. Subject reduction and expansion

In this section we establish the minimal requirement for a sound type sys-
tem, namely that types are preserved by reductions. Moreover, we prove that
types are preserved by subject expansion, which is a characteristic property
of intersection type systems with universal type !.

The next lemma is an extension of the analogous property of BCD type
system, also called Inversion Lemma in [13] 14A.1.

Lemma 7.1 (Generation lemma). Assume that � 6= !V and ⌧ 6= !C, then:

i) � ` x : � , �(x) V �

ii) � ` �x.M : � ,
9I, �i, ⌧i. 8i 2 I. �, x : �i `M : ⌧i &

V
i2I �i ! ⌧i V �

iii) � ` unit V : ⌧ , 9I, �i 8i 2 I. � ` V : �i &
V

i2I T �i C ⌧

iv) � `M ? V : ⌧ ,
9I, �i, ⌧i. 8i 2 I. � `M : T �i & � ` V : �i ! ⌧i &

V
i2I ⌧i C ⌧

Proof. The implications (are immediate. To see the implications) we
reason by induction over the derivations, by distinguishing the cases of the
last rule. Parts i) and ii) are the same as for ordinary intersection types and
�-calculus; part iii) is immediate by the induction hypothesis, hence we treat
part iv) only.

If the last rule in the derivation of � `M ? V : ⌧ is (! E) just take I as
a singleton set. If it is () then the thesis follows immediately by induction
and the transitivity of C. Finally, suppose that the derivation ends by

� `M ? V : ⌧ 0 � `M ? V : ⌧ 00
(^I)

� `M ? V : ⌧ 0 ^ ⌧ 00

20

and ⌧ ⌘ ⌧ 0 ^ ⌧ 00. Then by induction we have

9I, �0i, ⌧ 0i . 8i 2 I. � `M : T �0i & � ` V : �0i ! ⌧ 0i &
^

i2I

⌧ 0i C ⌧ 0

and

9J, �00j , ⌧ 00j . 8j 2 J. � `M : T �00j & � ` V : �00j ! ⌧ 00j &
^

j2J

⌧ 00j C ⌧ 00

From this the thesis immediately follows by observing that
^

i2I

⌧ 0i C ⌧ 0 &
^

j2J

⌧ 00j C ⌧ 00)
^

i2I

⌧ 0i ^
^

j2J

⌧ 00j C ⌧ 0 ^ ⌧ 00.

We observe that the statements of Lem. 7.1 could be stronger, since
whenever we say that if � ` P : � then �0 ` Q : �0 it is always the case
that the derivation of the latter judgment is a subderivation of the former.
Furthermore the inverse of all implications hold.

The following lemma, necessary to the subsequent proofs, establishes a
fundamental property of intersection type theories including arrow types,
known as extended applicative type structures, or EATS [28]. It has been
stated the first time in [26], 2.4 (ii), and it has been widely covered for inter-
section type theories in [13] with the name �-soundness (Definition 14A.4).

Lemma 7.2. Let ⌧ 6=C !C, then:
^

i2I

(�i ! ⌧i) V � ! ⌧ , 9J ✓ I. J 6= ; & � V

^

j2J

�j &
^

j2J

⌧j C ⌧

Proof. By induction over the definition of V and C.

Lemma 7.3 (Substitution lemma). If �, x : � ` M : ⌧ and � ` V : � then
� `M [V/x] : ⌧ .

Proof. By induction over the derivation of �, x : � `M : ⌧ . For the induction
to go through, one has to show the auxiliary statement that if �, x : � ` W : �0

for some W 2 Val then � ` W [V/x] : �0. Details are routine.

Theorem 7.4 (Subject reduction). If � ` M : ⌧ and M �! N then � `
N : ⌧ .

21

Proof. Let us assume that ⌧ 6= !C since the thesis is trivial otherwise. The
proof is by induction over the definition of M �! N , using Lem. 7.1. We
treat just the interesting cases.

Case (�c): then M ⌘ unit V ? (�x.M 0) and N ⌘ M 0[V/x]. From the
hypothesis � ` M : ⌧ , by iii) and iv) of Lem. 7.1 we have that there
exist a finite set I and types �i, �0i and ⌧i for all i 2 I such that:

1. � ` V : �0i with �0i  �i;

2. � ` �x.M 0 : �i ! ⌧i with
V

i2I ⌧i C ⌧

By ii) of the same lemma for all i 2 I there is Ji such that for all j 2 Ji:

3. �, x : �ij `M : ⌧ij with
V

j2Ji �ij ! ⌧ij V �i ! ⌧i

In virtue of Lem. 7.2, we may assume w.l.o.g that the non empty Ji
have been chosen so that �i V

V
j2Ji �ij and

V
j2Ji ⌧ij C ⌧i for all

i 2 I.

It follows that �0i V �i V �ij for all i and j so that by (1) we have
� ` V : �ij by rule (). It follows by Lem. 7.3 and (1) that � `
M 0[V/x] : ⌧ij; now

V
i2I

V
j2Ji ⌧ij C ⌧ , so that � ` M 0[V/x] : ⌧ by

repeated applications of rule (^I) and ().

Case (comp): then M ⌘ (L ? �x.M 0) ? �y.N 0 and N ⌘ L ? �x.(M 0 ? �y.N 0)
where x 62 FV(N 0). As before from � ` M : ⌧ and Lem. 7.1 we know
that there exist I, �i, ⌧i such that for all i 2 I:

4. � ` L ? �x.M 0 : T �i

5. � ` �y.N 0 : �i ! ⌧i with
V

i2I ⌧i C ⌧

From (4) it follows that for all i 2 I there are Ji, �ij, ⌧ij such that for
all j 2 Ji:

6. � ` L : T �ij

7. � ` �x.M 0 : �ij ! ⌧ij with
V

j2Ji ⌧ij C T �i

Reasoning as in case (�c), we obtain from (7) that for all j 2 Ji there
exist Kj, �ijk, ⌧ijk s.t.

8. �, x : �ijk `M 0 : ⌧ijk with
V

k2Kj
�ijk ! ⌧ijk V �ij ! ⌧ij

22

Assuming as before that the Ji and the Kj have been suitably chosen,
by Lem. 7.2 we have that

9. �i V

V
j2Ji �ij and

V
j2Ji ⌧ij C T �i

10. �ij V

V
k2Kj

�ijk and
V

k2Kj
⌧ijk C ⌧ij

Therefore, for all i, j, k we have �ij V �ijk and ⌧ijk C T �i; hence from
(8) by (S) and () we have �, x : �ij `M 0 : T �i. On the other hand by
admissibility of rule (W), from (5) and the fact that x 62 FV (N 0), we
have that �, x : �ij ` �y.N 0 : �i ! ⌧i. Hence for all i:

� ` L : T �ij

�, x : �ij `M 0 : T �i �, x : �ij ` �y.N 0 : �i ! ⌧i

�, x : �ij `M 0 ? �y.N 0 : ⌧i

� ` �x.(M 0 ? �y.N 0) : �ij ! ⌧i

� ` L ? �x.(M 0 ? �y.N 0) : ⌧i

Now the thesis follows by rules (^I) and (), using
V

i2I ⌧i C ⌧ .

Case id is immediate from Lem. 7.1; all cases dealing with the compatible
closure are easy consequences of the induction hypotheses.

Toward the proof of subject expansion, we need a lemma that is the
inverse of Lem. 7.3.

Lemma 7.5 (Expansion Lemma). If � ` P [V/x] : � with V 2 Val , P 2
Term and either � 2 ValType or � 2 ComType according to the sort of P ,
then then there exists � 2 ValType such that:

� ` V : � and �, x : � ` P : �

Proof. If � is either !V or !C then the thesis is trivial. Otherwise, let us
assume w.l.o.g. that x 62 FV(P [V/x]) [dom (�) and that V is free for x
in P , that is FV(V) \ BV(P) = ;, which is a necessary condition for the
substitution P [V/x] to be capture avoiding. Then we proceed by induction
over P [V/x], and by cases of P .

Case P ⌘ x: then � is some � 2 ValType; since clearly x[V/x] ⌘ V then
� ` V : � by the hypothesis, and �, x : � ` x : � by (Ax), where �, x : �
is a basis since x 62 dom (�).

23

Case P ⌘ y 6⌘ x: then we trivially have y[V/x] ⌘ y, so that we obtain the
thesis by taking � ⌘ !V.

Case P ⌘ �y.M : then P [V/x] ⌘ �y.(M [V/x]); in particular since free
variables in V cannot be caught in P [V/x] by the binding �y, we freely
assume that y 62 FV(V). From the hypothesis � ` �y.(M [V/x]) : �,
by ii) of Lem. 7.1, it follows that there exist I and �i, ⌧i such that
�, y : �i `M [V/x] : ⌧i for all i 2 I and

V
i2I �i ! ⌧i V �.

By induction for all i 2 I there exist �0i such that �, y : �i ` V : �0i and
�, y : �i, x : �0i ` M : ⌧i. Since y /2 FV(V), from �, y : �i ` V : �0i we
obtain � ` V : �0i. Taking � =

V
i2I �

0
i we obtain � ` V : � by rule

(^I) and �, y : �i, x : � ` M : ⌧i by (S). ; on the other hand we get
�, x : � ` �y.M : �i ! ⌧i for all i 2 I by rule (! I) and (^I). Hence
we conclude by rule ().

Case P ⌘ unit W : then P [V/x] ⌘ unit (W [V/x]) and the thesis follows by
iii) of Lem. 7.1 and the induction hypothesis.

Case P ⌘M ?W : then P [V/x] ⌘ (M [V/x])? (W [V/x]). By iv) of Lem. 7.1
and induction, there exist I and �i, ⌧i and �01, �

0
2 such that � ` V : �0j,

�, x : �0j `M : T �i and �, x : �0j ` W : �i ! ⌧i for all i 2 I and j = 1, 2,
such that

V
i2I ⌧i C �. Take � = �01 ^ �02: then � ` V : � by (^I) and

�, x : � ` M : T �i and �, x : � ` W : �i ! ⌧i for all i 2 I by (S). Now
�, x : � `M ?W : � follows by (! E), (^I) and ().

Theorem 7.6 (Subject expansion). If � ` N : ⌧ and M �! N then � `
M : ⌧ .

Proof. The proof is by induction over M �! N , assuming that ⌧ 6=C !C.
The only interesting cases are the following.

Case (�c): thenM ⌘ unit V ?(�x.M 0) andN ⌘M 0[V/x]. By Lem. 7.5 there
exists � such that � ` V : � and �, x : � `M 0 : ⌧ . Then � ` unit V : T �
by rule (unit I) and � ` �x.M 0 : � ! ⌧ by rule (! I). We conclude
that � ` unit V ? (�x.M 0) : ⌧ by rule (! E).

Case (comp): then M ⌘ (L ? �x.M 0) ? �y.N 0 and N ⌘ L ? �x.(M 0 ? �y.N 0).

24

By iv) of Lem. 7.1, from � ` N : ⌧ there exist I, �i, ⌧i such that for
all i 2 I we have � ` L : T �i, � ` �x.(M 0 ? �y.N 0) : �i ! ⌧i andV

i2I ⌧i C ⌧ . By ii) of Lem. 7.1 for all i 2 I there exist Ji, �ij, ⌧ij such
that �, x : �ij ` M 0 ? �y.N 0 : ⌧ij and

V
j2Ji �ij ! ⌧ij V �i ! ⌧i. From

this and by iv) of Lem. 7.1, for all j 2 Ji there are Kj, �ijk, ⌧ijk such
that for all k 2 Kj we have �, x : �ij ` M 0 : T �ijk and �, x : �ij `
�y.N 0 : �ijk ! ⌧ijk and

V
k2Kj

⌧ijk C ⌧ij.

Now, by Lem. 7.2, from
V

j2Ji �ij ! ⌧ij V �i ! ⌧i we have that there
exists ; 6= J 0

i ✓ Ji such that for all j 2 J 0
i , �i V �ij and ⌧ij C ⌧i.

Hence we obtain that T �i C T �ij so that � ` L : T �ij, for all i
and the appropriate j. On the other hand by rule (! I) we know
that � ` �x.M 0 : �ij ! T �ijk, so that by rule (! E) we deduce
� ` L ? �x.M 0 : T �ijk, for all i and the appropriate j, k.

From �, x : �ij ` �y.N 0 : �ijk ! ⌧ijk and the fact that x 62 FV(�y.N 0)
we have that � ` �y.N 0 : �ijk ! ⌧ijk, that combined with the above,
yields � ` (L ? �x.M 0) ? �y.N 0 : ⌧ijk by rule (! E). But we know thatV

j2J 0
i ,k2Kj

⌧ijk C

V
j2J 0

i
⌧ij C ⌧i, for all i 2 I: thus the thesis follows

by (^I) and () since
V

i2I ⌧i C ⌧ .

8. Convergence

Operational semantics of �-calculi, as well as of programming languages,
consists of giving meaning to terms via a definition of their execution. This
can be done either by a small-step reduction relation (more precisely by
considering some reduction strategy), or via an evaluation relation of terms
to their values, often called convergence predicate. Both are examples of
structural operational semantics in Plotkin’s sense [29], but serve di↵erent
purposes. Instead of describing the evaluation process in detail, which is also
defined on open (sub)-terms, convergence is a relation among “programs”,
that are closed terms, and their equally closed values. Having treated reduc-
tion for �u

c , we now introduce a convergence predicate, whose definition is
inspired by the analogous relation for the call-by-value �-calculus.

Henceforth in this section, terms are closed if not otherwise stated. Let
Com0 and Val 0 be the set of closed computations and values, respectively.

25

Definition 8.1 (Convergence). The convergence relation + ✓ Com0 ⇥ N ⇥
Val 0, is defined as follows:

unit V +0 V
M +m V 0 N [V 0/x] +n V

M ? (�x.N) +m+n+1 V

Notation:
M + V , 9n.M +n V

M + , 9V.M + V

The notation M +n V could have been written as M +n unit V , in the sense
that a term of the shape unit V is a sort of weak normal form of M w.r.t. the
reduction �! which is defined among computations, not among computation
and values. By choosing the definition above we intend to emphasize that
unit V is the “trivial” computation of V , that is terminated; in the context of
�c this is not the same as V , and we want to save the idea that convergence
relates programs, namely computations, to their results, that are values. The
two concepts are related as stated in the lemma:

Lemma 8.2. M + V)M
⇤�! unit V

Proof. By hypotheses M + V , that is M +n V for some n 2 N. Then
we reason by induction over n. If n = 0 then M ⌘ unit V and trivially
unit V

⇤�! unit V .
Otherwise M ⌘M 0 ? �y.N +n V and for some W 2 Val 0:

M 0 +p W N [W/y] +q V

M 0 ? �y.N +n V
where n = p+ q + 1

By induction M 0 ⇤�! unit W and N [W/y]
⇤�! unit V so that

M 0 ? �y.N
⇤�! unit W ? �y.N �! N [W/y]

⇤�! unit V.

The inverse implication does not hold. Indeed if N �! N 0 then
unit (�x.N) �! unit (�x.N 0), that is �x.N 0 is a more refined value than
�x.N ; however, unit (�x.N) 6+ �x.N 0. We can only prove the weaker state-
ment in the next lemma, which nonetheless su�ces.

26

Lemma 8.3. M
⇤�! N and N + V) 9W. M + W and unit W

⇤�!
unit V .

Proof. By induction over the length of M
⇤�! N . If it is 0 then M ⌘ N

and the thesis is trivial. Suppose that M �! N 0 ⇤�! N for some N 0. Then
by induction N 0 + W 0 for some W 0 s.t. unit W 0 ⇤�! unit V . Although the
lemma is about closed terms, when going through the cases we have to deal
with open terms as well; therefore we strengthen the thesis as follows. Let
[~U/~x] be the simultaneous substitution of all variables ~x by the closed values
~U . Then we show:

if M [~U/~x]
⇤�! N [~U/~x] and N [~U/~x] + V for some substitution

[~U/~x] closing both M and N then M [~U/~x] + W and unit W
⇤�!

unit V for some W .

To avoid using heavy notation, we shall keep implicit the reference to the
substitution [~U/~x] in all cases but in the last one, where it is needed.

In the following if V ⌘ �x.P then we abbreviate V [W] ⌘ P [W/x], and
similarly for other values that are not a variable. The proof proceeds by a
secondary induction over the definition of M �! N 0.

M ⌘ unit W ? V 0 �! V 0[W] ⌘ N 0: then by definition of the predicate +:

unit W +0 W V 0[W] +p W 0

unit W ? V 0 +p+1 W
0

M ⌘ N 0 ? �x.unit x �! N 0: then we have

N 0 +p W 0 unit W 0 +0 W 0

N 0 ? �x.unit x +p+1 W
0

M ⌘ (L ? �x.M 0) ? �y.P �! L ? �x.(M 0 ? �y.P) ⌘ N 0, where x 62 FV(P).
Then N 0 + W 0 implies that, for some values U,W 00

L + U

M 0[U/x] + W 00 P [W 00/y] + W 0

M 0[U/x] ? �y.P + W 0

L ? �x.(M 0 ? �y.P) + W 0

27

where M 0[U/x] ? �y.P ⌘ (M 0 ? �y.P)[U/x] since x 62 FV(P). This can
be rearranged into

L + U M 0[U/x] + W 00

(L ? �x.M 0) + W 00 P [W 00/y] + W 0

(L ? �x.M 0) ? �y.P + W 0

In the remaining cases M ⌘ ChM 0i �! ChN 00i ⌘ N 0 because M 0 �! N 00.

M ⌘ M 0 ? U �! N 00 ? U ⌘ N 0. By principal induction N 0 + W 0 and
W 0 ⇤�! V . Then 9W̄ .N 00 + W̄ and U [W̄] + W 0, so that M 0 + V̄ for
some V̄ s.t. unit V̄

⇤�! unit W̄ by secondary induction. This implies
unit U [V̄]

⇤�! unit U [W̄]. From U [W̄] + W 0 by secondary induction
we obtain that U [V̄] + Ū for some Ū s.t. unit Ū

⇤�! unit W 0. Then we
conclude that M 0 ? U + Ū and unit Ū

⇤�! unit V .

M ⌘ L ? �x.M 0 �! L ? �x.N 00 ⌘ N 0. By principal induction N 0 + W 0 and
W 0 ⇤�! V , so that by definition of + there exists U such that L + U
and N 00[U/x] + W 0.
From M 0 �! N 00 it follows that M 0[U/x] �! N 00[U/x], where [U/x]
is a closing substitution of M 0, N 00 since M,N 0 and U are closed, and
hence FV(M 0) [FV(N 00) ✓ {x}. Therefore by secondary induction
M 0[U/x] + Ū for some Ū s.t. unit Ū

⇤�! unit W 0. In conclusion,
(L ? �x.M 0) + Ū and unit Ū

⇤�! unit V .

Theorem 8.4. M + , 9V. M ⇤�! unit V

Proof. Immediate consequence of Lemma 8.2 and Lemma 8.3.

In view of Theorem 8.4, the predicate M + is non trivial. Indeed consider
the closed term:

⌦C ⌘ unit (�x.unit x ? x) ? (�x.unit x ? x)

that is a translation of the well known term ⌦ ⌘ (�x.xx)(�x.xx) from ordi-
nary �-calculus. Then the only reduction out of ⌦C is

⌦C �! (unit x ? x)[�x.unit x ? x/x] ⌘ ⌦C by �c

28

which is not of the shape unit V for any V 2 Val , hence ⌦C 6+. The main
purpose of this section is to show that typing in our system characterizes
convergent terms. We say that ⌧ 2 ComType is non trivial if ⌧ 6=C !C. Then
we want to show:

Theorem 8.5 (Convergence characterization). For all M 2 Com0 we have:

M + , 9 non trivial ⌧. `M : ⌧.

Towards the proof, and following the pattern of Tait’s computability
method, we introduce some auxiliary notions.

Definition 8.6. Let I : TypeVar ! PVal 0 be a map; then define |�|I ✓
Val 0 and |⌧ |I ✓ Com0 by induction as follows:

i) |↵|I = I(↵)

ii) |� ! ⌧ |I = {V 2 Val 0 | 8M 2 |T �|I . M ? V 2 |⌧ |I}

iii) |T �|I = {M 2 Com0 | 9V 2 |�|I .M + V }

iv) |!V|I = Val 0 and |!C|I = Com0

v) |� ^ �0|I = |�|I \ |�0|I and |⌧ ^ ⌧ 0|I = |⌧ |I \ |⌧ 0|I.

Lemma 8.7. Let I be arbitrary. Then:

i) � V �0) |�|I ✓ |�0|I

ii) ⌧ C ⌧ 0) |⌧ |I ✓ |⌧ 0|I

Proof. By checking axioms and rules in Definition 6.3. The only non trivial
cases concern the arrow and T -types.

Let V 2 |(� ! ⌧1) ^ (� ! ⌧2)|I = |� ! ⌧1|I \ |� ! ⌧2|I , then for all
M 2 |T �|I we have M ? V 2 |⌧i|I for both i = 1, 2; hence M ? V 2
|⌧1|I \ |⌧2|I = |⌧1 ^ ⌧2|I .

Suppose that �1 V �2 and let M 2 |T �1|I ; then there exists V 2 |�1|I such
that M + V . By induction |�1|I ✓ |�2|I so that immediately we have
M 2 |T �2|I .

29

Let M 2 |T �1 ^ T �2|I = |T �1|I \ |T �2|I . Then there exists V1 2 |�1|I
and V2 2 |�2|I such that M + V1 and M + V2. By Lemma 8.2 we
have M

⇤�! unit Vi for both i = 1, 2 and these terms are in normal
form; hence V1 ⌘ V2 by Theorem 5.12. It follows that there exists a
unique V 2 |�1|I \ |�2|I = |�1 ^ �2|I such that M

⇤�! unit V , hence
M 2 |T (�1 ^ �2)|I .

Suppose that �2 V �1 and ⌧1 C ⌧2. Let V 2 |�1 ! ⌧1|I and M 2 |T �2|I ; by
the above M 2 |T �1|I so that M ?V 2 |⌧1|I . By induction |⌧1|I ✓ |⌧2|I
hence M ? V 2 |⌧2|I so that V 2 |�2 ! ⌧2|I by the choice of M .

Corollary 8.8. A type ⌧ 2 ComType is non trivial if and only if ⌧ C T!V.

Proof. By contradiction, if T!V =C !C then |T!V|I = |!C|I for any I by ii)
of Lem. 8.7. But |T!V|I = {M 2 Com0 | M+} 6= Com0 = |!C|I since ⌦C 6+.
The remaining part of the thesis now follows from Lem. 6.5.

⇤

We are now in place to show the only if part of Theorem 8.5.

Lemma 8.9. M +) 9 non trivial ⌧. `M : ⌧

Proof. If M + then M
⇤�! unit V for some V 2 Val 0 by Lemma 8.2; now

` V : !V so that ` unit V : T!V by rule (unit I); it follows that ` M : T!V

by Theorem 7.6, where T!V is non trivial by Cor. 8.8.

We say that a subset X ✓ Com0 is saturated if for all M 2 Com0, M �!
N and N 2 X imply M 2 X.

Lemma 8.10. For all ⌧ 2 ComType and I the set |⌧ |I is saturated.

Proof. By induction over ⌧ . The case ⌧ ⌘ !C is trivial; the case ⌧ ⌘ ⌧1 ^ ⌧2
is immediate by induction. Let ⌧ ⌘ T �: then by hypothesis there exists
V 2 |�|I such that N+ V . By Lem. 8.2 we have that N

⇤�! unit V so that
M

⇤�! unit V and we conclude by Lem. 8.3.

Lemma 8.11. Let � `M : ⌧ where � = {x1 : �1, . . . , xk : �k} and M 2 Com.
For any V1, . . . , Vk 2 Val 0 and I, if Vi 2 |�i|I for all i = 1, . . . , k then
M [V1/x1] · · · [Vk/xk] 2 |⌧ |I.

30

Proof. We strength the thesis by adding that if � ` W : � for W 2 Val , then
W [V1/x1] · · · [Vk/xk] 2 |�|I under the same hypotheses. Then we reason by
simultaneous induction over the derivations of � ` M : ⌧ and � ` W : �.
The cases of (Ax) and (!) are straightforward; cases (unit I) and (^I) are
immediate by induction; case () follows by induction and Lemma 8.7. Let
us abbreviate M [~V /~x] ⌘M [V1/x1] · · · [Vk/xk] and similarly for W [~V /~x].

Case (! I): then the derivation ends by:

�, y : �0 `M 0 : ⌧ 0
(! I)

� ` �y.M 0 : �0 ! ⌧ 0

where W ⌘ �y.M 0 and � ⌘ �0 ! ⌧ 0. Let M 00 ⌘ M 0[~V /~x] and assume
that y 62 ~x; to prove that (�y.M 0)[~V /~x] ⌘ �y.M 00 2 |�0 ! ⌧ 0|I we have
to show that N ? �y.M 00 2 |⌧ 0|I for all N 2 |T �0|I .
Now if N 2 |T �0|I then there exists V 0 2 |�0|I such that N + V 0.
This implies that the hypothesis that Vi 2 |�i|I for all xi : �i 2 �
now holds for the larger basis �, y : �0 so that by induction we have
M 00[V 0/y] 2 |⌧ 0|I . But

N ? �y.M 00 ⇤�! (unit V 0) ? �y.M 00 �!M 00[V 0/y]

and the thesis follows since |⌧ 0|I is saturated by Lemma 8.10.

Case (! E): then the derivation ends by:

� `M 0 : T � � ` W 0 : � ! ⌧

� `M 0 ?W 0 : ⌧

where M ⌘ M 0 ? W 0. Let M 00 ⌘ M 0[~V /~x] and W 00 ⌘ W 0[~V /~x], so
that (M 0 ? W 0)[~V /~x] ⌘ M 00 ? W 00. By induction M 00 2 |T �|I and
W 00 2 |� ! ⌧ |I and the thesis follows by definition of the set |� ! ⌧ |I .

We can now finish the proof of Theorem 8.5.

Proof. By Lem. 8.9 it remains to show that if ` M : ⌧ for some non trivial
⌧ then M +. Since M 2 Com0 and the basis is empty, the hypothesis of
Lem. 8.11 are vacuously true, so that we have M 2 |⌧ |I for all I. On the
other hand, by Cor. 8.8, we know that ⌧ C T!V since ⌧ is non trivial. By
Lem. 8.7 it follows that M 2 |⌧ |I ✓ |T!V|I = {N 2 Com0 | N+} and we
conclude.

31

9. Related work and further developments

Since Moggi’s seminal papers [1, 2], a substantial body of research has
been carried out about the computational �-calculus and usage of the con-
cept of monad, both in theory and in practice of functional programming
languages. Here, because of the large bibliography on the subject, we shall
limit ourself, referring just to the closest related works.

The computational �-calculus has been constructed as the theory of a cat-
egorical model; similarly in section 2, we base the definition of the �u

c -calculus
on strong monads over concrete ccc’s possessing a call-by-value reflexive ob-
ject. As remarked, models having unit and bind as primitive operators are
rather di↵erent than Moggi’s �c-models: this is discussed in [19], where in
particular the concept of a C-monad seems the appropriate generalization of
our functional monad, which is based on a self enriched, concrete ccc.

The calculus �u
c in section 3 is similar to Wadler’s one in [4], but it includes

terms like unit x ? x, the minimal version of self-application, that obviously
has no typed correspondent. Moggi’s type free calculus in [1] §6, called �c

(a name we have been using here for Moggi’s typed calculus) is clearly the
ancestor of �u

c , but the usage of unit and bind in place of the let-constructor is
not a little change. On the one hand we can define reduction by orienting the
three monad laws: this is simpler than having six rules plus ⌘ as in Moggi’s
case. On the other hand, relating the two calculi is not straightforward.
Indeed the untyped �c includes application of arbitrary terms and admits
terms like let x = M in N for non value N ; also sorts are not preserved by
reduction, and a non-value may reduce to a value, as in call-by-value �-
calculus: however, if this is not disturbing in case of the latter, it produces a
semantic mismatch when monads are involved, since D and TD are di↵erent
domains in general.

In [16] we define a translation p·q : �u
c ! �c, where pM ? V q is equal to

(let x = pMq in pV qx); this preserves conversion, but not reduction. In the
opposite direction, we have a translation x·y : �c ! �u

c that is as xny = xnyC
and xvy = unit xvyV where in Moggi’s terms n is a non value, v is a value and
the translations xnyC and xvyV into Com and Val respectively are mutually

32

defined. E.g. in case of the let-expressions we have four clauses:

xlet x = n in n0yC = xnyC ? �x.xn0yC
xlet x = v in n0yC = unit xvyV ? �x.xn0yC
xlet x = n in vyC = xnyC ? �x.unit xvyV
xlet x = v in v0yC = unit xvyV ? �x.unit xv0yV

This translation preserves reduction when ⌘ is dropped from reduction in the
untyped �c; otherwise we must add ⌘c to �C, hence losing confluence.

By this, both the confluence proof of �c in [10] §8.3, where it is called
comp, and the proof by checking critical pair using the tool PolySOL in [12],
cannot be used in our case, and we prefer to prove confluence of �C from
scratch, although following a standard pattern: see e.g. [11]. Confluence
of comp is established in [10] via a translation from a call-by-need linear
�-calculus, but without ⌘, facing a similar di�culty as we mention here at
the end of section 4.

The main inspiration for our intersection type system is [13]. In [16] we
study the type interpretation over a �u

c -model, which is problematic since
it is not inductive. We show there that if the equation (5) is solved in a
category of algebraic domains by the inverse limit construction, then such
interpretation, which we call monadic, exists, and the type system is sound
and complete w.r.t. monadic type interpretations.

Intersection types have been used in [30] in a �-calculus with side e↵ects
and reference types. In their work a problem appears, since left distributivity
of the arrow over intersection (a rule in [13], that is an axiom of the theory
ThV in Definition 6.3 above) is unsound. This is remedied by restricting
intersection introduction to values. However, Davies and Pfenning’s work is
not concerned with monads, so that value and non-value terms and types are
of the same sorts. On the contrary, by working in a system like in Definition
6.6, these types are distinct: we conjecture that, if actual definitions of unit
and bind for the state monad are consistent with their typings, a type system
can be constructed that is an instance of ours, such that it is sound without
imposing any ad hoc constraint.

The convergence relation in section 8 is the adaptation of a similar con-
cept introduced in [14, 15] for the lazy �-calculus, which represents the only
observable property in the definition of the applicative bisimulation. It shares
some similarity with the convergence relation considered in [8], where Abram-
sky’s idea is extended to a computational �-calculus very similar to �u

c . How-

33

ever, di↵erently than in Abramsky’s work and the relation in Definition 8.1,
the authors define their predicate as a relation among syntax and semantics,
co-inductively defining the interpretation of terms.

Theorem 8.5, characterizing convergent terms by non trivial typings, is
evidence of the expressive power of our system. However, since convergence
is undecidable, non-trivial typability in the system is also undecidable. If the
system should be useful in practice, say as a method for abstract interpre-
tation and static analysis or program synthesis, then restricted subsystems
should be considered, like bounded intersection type systems recently pro-
posed in [31, 32, 33].

Concerning future developments, we see at least three lines of research.
The type system we have presented is about a generic monad T : what about
typing calculi with specific monads, like partiality, exceptions, state, or input-
output? The question itself of what means to instantiate the �u

c -calculus
and the type assignment system to a particular one, knowing of su�cient
conditions guaranteeing that good properties studied here are inherited, is
both of theoretical and practical interest.

The �u
c -calculus is pure, namely without constants. To formalize data

types we need algebraic terms and suitable typing rules; in the framework of
intersection type systems, types provide a logical semantics to terms, which
is the consequence of type invariance under conversion, and, at the same
time, can be seen as a denotational semantics in the category of algebraic
domains: see the filter model construction in [13] and Abramsky’s domain
logic theory [34]. A natural question is then what kind of algebraic and
co-algebraic specifications and principles are sound in the logical semantics,
when induced by an intersection type system with monads.

The computational �-calculus has been proposed as a foundation for the
static analysis of e↵ectful calculi and programming languages. In [5], ex-
tended version of the previously published [35], this is compared to Lucassen
and Gi↵ord [36] and Talpin and Jouvelot [37] type and e↵ect discipline (see
[38] chap. 5 for an exposition, and the relation to other static analysis tech-
niques). The same topic has been treated by Benton and others in [6] and
[7]. While it is known that intersection types and abstract interpretation
are related, see [39] and [40], we don’t know of any research work relating
intersection types to e↵ect systems. Now that we have introduced inter-
section types for the computational �-calculi, we have the right theoretical
framework to investigate this topic.

34

10. Conclusion

We have studied how to transfer to the computational �-calculus, some
basic properties and theoretical results of the ordinary, untyped �-calculus.
This leads to a simplified syntax and axiomatization of reduction, together
with a Curry style, simple type assignment system, expressive enough to
characterize convergent terms by their typings.

Acknowledgments

The authors have been partially supported by COST Action: EUTypes
CA15123; and local funds of the University of Turin: Ricerca locale Linea
A (BERS-RILO-17-03) - Fondazioni logiche della computazione, Ricerca lo-
cale Linea A (PAOL-RILO-18-01) - Fondazioni logiche della computazione,
Ricerca locale 2019 Linea A (DE-U-RILO-19-01) - Logica della computazione.

Authors thank anonymous referees for their useful remarks and sugges-
tions.

References

[1] E. Moggi, Computational lambda-calculus and monads, in: Pro-
ceedings of the Fourth Annual Symposium on Logic in Computer
Science (LICS ’89), IEEE Computer Society, 1989, pp. 14–23. doi:
10.1109/LICS.1989.39155.

[2] E. Moggi, Notions of computation and monads, Inf. Comput. 93 (1991)
55–92. doi: 10.1016/0890-5401(91)90052-4.

[3] A. Filinski, Representing monads, in: Conference Record of
POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ACM Press, 1994, pp. 446–457. doi:
10.1145/174675.178047.

[4] P. Wadler, Monads for functional programming, in: Advanced Func-
tional Programming, First International Spring School on Advanced
Functional Programming Techniques, volume 925 of Lecture Notes in
Computer Science, Springer, 1995, pp. 24–52. doi: 10.1007/3-540-59451-
5 2.

35

http://doi.org/10.1109/LICS.1989.39155
http://doi.org/10.1109/LICS.1989.39155
http://doi.org/10.1016/0890-5401(91)90052-4
http://doi.org/10.1145/174675.178047
http://doi.org/10.1145/174675.178047
http://doi.org/10.1007/3-540-59451-5_2
http://doi.org/10.1007/3-540-59451-5_2

[5] P. Wadler, P. Thiemann, The marriage of e↵ects and monads, ACM
Trans. Comput. Log. 4 (2003) 1–32. doi: 10.1145/601775.601776.

[6] N. Benton, J. Hughes, E. Moggi, Monads and e↵ects, in: Applied
Semantics, International Summer School, APPSEM 2000, volume 2395
of Lecture Notes in Computer Science, Springer, 2002, pp. 42–122. doi:
10.1007/3-540-45699-6 2.

[7] N. Benton, A. Kennedy, M. Hofmann, L. Beringer, Reading, writing and
relations, in: Programming Languages and Systems, 4th Asian Sympo-
sium, APLAS 2006, Sydney, Australia, November 8-10, 2006, Proceed-
ings, volume 4279 of Lecture Notes in Computer Science, Springer, 2006,
pp. 114–130. doi: 10.1007/11924661 7.

[8] U. Dal Lago, F. Gavazzo, P. B. Levy, E↵ectful Applicative Bisimilarity:
Monads, Relators, and Howe’s Method, in: 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, IEEE Computer
Society, 2017, pp. 1–12. doi: 10.1109/LICS.2017.8005117.

[9] D. Scott, Relating theories of the �-calculus, in: R. J. Hindley, J. P.
Seldin (Eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism, Academic Press, 1980, pp. 403–450.

[10] J. Maraist, M. Odersky, D. N. Turner, P. Wadler, Call-by-name, call-
by-value, call-by-need and the linear lambda calculus, Theor. Comput.
Sci. 228 (1999) 175–210. doi: 10.1016/S0304-3975(98)00358-2.

[11] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, P. Wadler, The
call-by-need lambda calculus, in: Conference Record of POPL’95:
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 1995, ACM Press, 1995, pp. 233–246. doi:
10.1145/199448.199507.

[12] M. Hamana, Polymorphic rewrite rules: Confluence, type inference,
and instance validation, in: Functional and Logic Programming - 14th
International Symposium, FLOPS 2018, Proceedings, volume 10818 of
Lecture Notes in Computer Science, Springer, 2018, pp. 99–115. doi:
10.1007/978-3-319-90686-7 7.

[13] H. P. Barendregt, W. Dekkers, R. Statman, Lambda Calculus with
Types, Perspectives in logic, Cambridge University Press, 2013.

36

http://doi.org/10.1145/601775.601776
http://doi.org/10.1007/3-540-45699-6_2
http://doi.org/10.1007/3-540-45699-6_2
http://doi.org/10.1007/11924661_7
http://doi.org/10.1109/LICS.2017.8005117
http://doi.org/10.1016/S0304-3975(98)00358-2
http://doi.org/10.1145/199448.199507
http://doi.org/10.1145/199448.199507
http://doi.org/10.1007/978-3-319-90686-7_7
http://doi.org/10.1007/978-3-319-90686-7_7

[14] S. Abramsky, The lazy lambda calculus, in: Research topics in func-
tional programming, Addison-Wesley Longman Publishing Co., Inc,
Boston, MA, USA, 1990, pp. 65–116.

[15] S. Abramsky, C.-H. Ong, Full abstraction in the lazy lambda calculus,
Inf. Comput. 105 (1993) 159–267. doi: 10.1006/inco.1993.1044.

[16] U. de’Liguoro, R. Treglia, Intersection types for the computational
lambda-calculus, CoRR abs/1907.05706 (2019). arXiv:1907.05706.

[17] S. MacLane, Categories for theWorking Mathematician, Graduate Texts
in Mathematics, 2 ed., Springer, 1997.

[18] P. Wadler, The essence of functional programming, in: Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1992, ACM Press, 1992, pp.
1–14. doi: 10.1145/143165.143169.

[19] J. Power, Models for the computational lambda-calculus, Electron.
Notes Theor. Comput. Sci. 40 (2000) 288–301. doi: 10.1016/S1571-
0661(05)80056-8.

[20] A. R. Meyer, What is a model of the lambda calculus?, Inf. Control. 52
(1982) 87–122. doi: 10.1016/S0019-9958(82)80087-9.

[21] H. Barendregt, The Lambda Calculus: its Syntax and Semantics, vol-
ume 103 of Studies in logic and the foundations of mathematics, revised
ed., North-Holland, 1985.

[22] G. D. Plotkin, Call-by-name, call-by-value and the lambda-
calculus, Theor. Comput. Sci. 1 (1975) 125–159. doi: 10.1016/0304-
3975(75)90017-1.

[23] M. Takahashi, Parallel reductions in lambda-calculus, Inf. Comput. 118
(1995) 120–127. doi: 10.1006/inco.1995.1057.

[24] Terese, Term rewriting systems, volume 55 of Cambridge tracts in the-
oretical computer science, Cambridge University Press, 2003.

[25] F. Baader, T. Nipkow, Term rewriting and all that, Cambridge Univer-
sity Press, 1998.

37

http://doi.org/10.1006/inco.1993.1044
http://arxiv.org/abs/1907.05706
http://doi.org/10.1145/143165.143169
http://doi.org/10.1016/S1571-0661(05)80056-8
http://doi.org/10.1016/S1571-0661(05)80056-8
http://doi.org/10.1016/S0019-9958(82)80087-9
http://doi.org/10.1016/0304-3975(75)90017-1
http://doi.org/10.1016/0304-3975(75)90017-1
http://doi.org/10.1006/inco.1995.1057

[26] H. Barendregt, M. Coppo, M. Dezani-Ciancaglini, A filter lambda model
and the completeness of type assignment, J. Symb. Log. 48 (1983) 931–
940. doi: 10.2307/2273659.

[27] P.-A. Melliès, N. Zeilberger, Functors are type refinement systems, in:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, ACM, 2015, pp.
3–16. doi: 10.1145/2676726.2676970.

[28] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, G. Longo, Extended type
structures and filter lambda models, in: G. Lolli, G. Longo, A. Marcja
(Eds.), Logic Colloquium 82, North-Holland, Amsterdam, the Nether-
lands, 1984, pp. 241–262.

[29] G. D. Plotkin, A structural approach to operational semantics, J. Log.
Algebraic Methods Program. 60-61 (2004) 17–139.

[30] R. Davies, F. Pfenning, Intersection types and computational e↵ects,
in: Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’00), ACM, 2000, pp. 198–208. doi:
10.1145/351240.351259.

[31] B. Düdder, M. Martens, J. Rehof, P. Urzyczyn, Bounded combinatory
logic, in: Computer Science Logic (CSL’12) - 26th International Work-
shop/21st Annual Conference of the EACSL, CSL 2012, volume 16 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp.
243–258. doi: 10.4230/LIPIcs.CSL.2012.243.

[32] A. Dudenhefner, J. Rehof, Intersection type calculi of bounded dimen-
sion, in: Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages, POPL 2017, ACM, 2017, pp. 653–665.
URL: http://dl.acm.org/citation.cfm?id=3009862.

[33] A. Dudenhefner, J. Rehof, Typability in bounded dimension, in:
32nd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2017, IEEE Computer Society, 2017, pp. 1–12. doi:
10.1109/LICS.2017.8005127.

[34] S. Abramsky, Domain theory in logical form, Ann. Pure Appl. Log. 51
(1991) 1–77. doi: 10.1016/0168-0072(91)90065-T.

38

http://doi.org/10.2307/2273659
http://doi.org/10.1145/2676726.2676970
http://doi.org/10.1145/351240.351259
http://doi.org/10.1145/351240.351259
http://doi.org/10.4230/LIPIcs.CSL.2012.243
http://dl.acm.org/citation.cfm?id=3009862
http://doi.org/10.1109/LICS.2017.8005127
http://doi.org/10.1109/LICS.2017.8005127
http://doi.org/10.1016/0168-0072(91)90065-T

[35] P. Wadler, The marriage of e↵ects and monads, in: Proceedings of the
third ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’98, ACM, 1998, pp. 63–74. doi: 10.1145/289423.289429.

[36] J. M. Lucassen, D. K. Gi↵ord, Polymorphic e↵ect systems, in: Confer-
ence Record of the Fifteenth Annual ACM Symposium on Principles of
Programming Languages, San Diego, California, USA, January 10-13,
1988, ACM Press, 1988, pp. 47–57. doi: 10.1145/73560.73564.

[37] J. Talpin, P. Jouvelot, The type and e↵ect discipline, Inf. Comput. 111
(1994) 245–296. doi: 10.1006/inco.1994.1046.

[38] F. Nielson, H. R. Nielson, C. Hankin, Principles of program analysis,
Springer, 1999. doi: 10.1007/978-3-662-03811-6.

[39] T. Jensen, Conjunctive Type Systems and Abstract Interpretation of
Higher-order Functional Programs, Journal of Logic and Computation
5 (1995) 397–421. doi: 10.1093/logcom/5.4.397.

[40] M. Coppo, A. Ferrari, Type inference, abstract interpretation and
strictness analysis, Theor. Comput. Sci. 121 (1993) 113–143. doi:
10.1016/0304-3975(93)90086-9.

39

http://doi.org/10.1145/289423.289429
http://doi.org/10.1145/73560.73564
http://doi.org/10.1006/inco.1994.1046
http://doi.org/10.1007/978-3-662-03811-6
http://doi.org/10.1093/logcom/5.4.397
http://doi.org/10.1016/0304-3975(93)90086-9
http://doi.org/10.1016/0304-3975(93)90086-9

