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INHERITANCE AS IMPLICIT COERCION 

Val Breazu-Tannen Thierry Coquund Carl A. Gunter Andre Scedrov2 

Abstract. We present a method for providing semantic interpretations for languages with a type system 
featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun 
of Cardelli and Wegner, which we interpret via a lranslation into an extended polymorphic lambda 
calculus. Our goal is to interpret inheritances in Fun via coercion functions which are definable in 
the target of the translation. Existing techniques in the theory of semantic domains can be then used 
to interpret the extended polymorphic lambda calculus, thus providing many models for the original 
language. This technique makes it possible to model a rich type discipline which includes parametric 
polymorphism and recursive types as well as inheritance. 

A central difliculty in providing interpretations for explicit type disciplines featuring inheritance in 

the sense discussed in this paper arises from the fact that programs can type-check in more than one 

way. Since interpretations follow the type-checking derivations, coherence theorems are required: that 

is, one must prove that the meaning of a program does not depend on the way it was type-checked. 

The proof of such theorems for our proposed interpretation are the basic technical results of this 

paper. Interestingly, proving coherence in the presence of recursive types, variants, and abstract types 

forced us to reexamine fundamental equational properties that arise in proof theory (in the form of 

commutative reductions) and domain theory (in the form of strict vs. non-strict functions). 

1 Introduction 

In this paper we will discuss an approach to the semantics of a particular form of inheritance which has 

been promoted by John Reynolds and Luca Cardelli. This inheritance system is based on the idea that 

one may axiomatize a relation 5 between type expressions in such a way that whenever the inheritance 
judgement s 5 t is provable for type expressions s and t, then an expression of type s can be "considered 

as" an expression of type t. This property is expressed by the inheritance rule (sometimes also called the 

subsumption rule), which states that if an expression e is of type s and s 5 t, then e also has type t. The 

consequences from a semantic point of view of the inclusion of this form of typing rule are significant. 

It is our goal in this paper to look carefully at what we consider to be a robust and intuitive approach to 

systems which have this form of inheritance and examine in some detail the semantic implications of the 

inclusion of inheritance judgements and the inheritance rule in a type discipline. 

Several attempts have been made recently to express some of the distinctive features of object-oriented 

programming, principally inheritance, in the framework of a rich type discipline which can accommodate 
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strong static type-checking. This endeavor searches for a language that offers some of the flexibility of 

object-oriented programming [GR83] while maintaining the reliability, and sometimes increased efficiency 

of programs which type-check at compile-time (see [BBG88] for a related comparison). 

A type system of Reynolds introduced in [Rey80] captured some basic intuitions about inheritance 

relations between familiar type expressions built from records, variants (sums) and higher types. A 

language which exploited this form of type discipline was developed by Cardelli in [Car84, Car88al 

where the first attempt was made to describe a rigorous form of mathematical semantics for such a system. 

His approach uses ideals and it is shown that the type discipline is consistent with the semantics in the 

sense that type-checking is shown to "prevent type errors". Subsequent work has aimed at combining 

inheritance with richer type disciplines, in particular featuring parametric potymolphisrn. One direction 

of research [Wan87, JM88, OB88, Sta881, has investigated expressing inheritance and type inference 

mechanisms, similarly to the way in which parametric polymorphism is expressed in ML-like languages. 

Another direction of research investigates expressing inheritance through explicit subtyping mechanisms 

which are part of the type-checking systems, such as in Cardelli and Wegner's language Fun [CW85] 

and further work [Car88b, Car89a. CM891. Cardelli and Wegner sketch a model for Fun based on ideals. 

An extensional model for Fun was subsequently described by Bruce and Longo [BL88]. Their model 

interprets inheritances as identity relations between partial equivalence relations (PER'S). Another model 

of Fun, using the interval interpretation of Cartwright [Car851 has been given by Martini [Mar88]. In 

Martini's semantics, inheritance is interpreted as a form of inclusion between intervals. This model also 

includes a general recursion operator for functions (but not types). 

In this paper we present a novel approach to the problem of developing a simple mathematical 

semantics for languages which feature inheritance in the sense of Reynolds and Cardelli. The form of 

semantics that we propose will take a significant departure from the characteristic shared by the semantics 

mentioned above. We will not attempt to model inheritance as a binary relation on a family of types. In 

particular, our interpretation will not use anything like an inclusion relation between types. Instead, we 

interpret the inheritance relation between type expressions as indicating a certain coercion which remains 

implicit in instances in which the inheritance is used in type-checking. We show how these coercions 

can be made explicit using definable terms of a calculus without inheritance, and thus depart from the 

"relational" interpretation of the inheritance concept. Using this idea, we are able to show how many of 

the models of polymorphism and recursive types which have no relevant concept of type inclusion, can 

nevertheless be seen as models for a calculus with inheritance. 

We illustrate our approach on the language Fun of Cardelli and Wegner extended with recursive types 

but, the kind of results we obtain are non-trivial for any calculus that combines inheritance, parametric 

polymorphism, and recursive types. The method we propose proceeds first with a translation of Fun into 

an extended polymorphic lambda calculus with recursive types. As we mentioned above, this translation 

interprets inheritances in Fun as coercionfunctions already definable in the extended polymorphic lambda 

calculus. Then, we can use existing techniques for modeling polymorphism and recursion (such as those 

described in [ABL86, Gir86, CGW87, CGW891) to interpret the extended polymorphic lambda calculus, 

thus providing models for the original language with inheritance. This method achieves simultaneous 

modeling of parametric polymorphism, recursive types, and inheritance. In the process, the paradigm 



"inheritance as definable coercion" proves itself remarkably robust, which makes us confident that it will 

apply to a large class of rich type disciplines with inheritance. 

The paper is divided into seven sections. Following this introduction, the second section provides 

some general examples and motivation to prepare the reader for the technical details in the subsequent 

sections. The third section discusses how our semantics applies to a calculus SOURCE which has 

inheritance, exponentials, records, generics and recursive types. We show how this is translated into a 

calculus TARGET without inheritance and state our results about the coherence of the translation. We 

hope that the results in this simpler setting will help the reader get an idea of what our program is before 

we proceed to a more interesting calculus in the remainder of the paper. The fourth section is devoted to 

developing a translation for an expanded calculus which adds variants. Fundamental equational properties 

of variants lead us to develop a target language which has a type of coercions. The fifth section, which 

contains the difficult technical results of the paper, shows that our translation is coherent. In the sixth 

section we discuss mathematical models for the full calculus. Since most of the work has already been 

done, we are able to produce many models using standard domain-theoretic techniques. The concluding 

section makes some remarks about what we feel has been achieved and what new challenges still need 

to be confronted. 

2 Inheritance as implicit coercion. 

A simple analogy will help explain our translation-based technique. Consider how the ordinary untyped 
A-calculus is interpreted semantically in such sources as [Sco80, Mey82, Koy82, Bar841. One begins 

by postulating the existence of a semantic domain D and a pair of arrows Q: D  t ( D  t D )  and 

Q:  ( D  t D )  t D such that @ o !€f is the identity on D t D. Certain conditions are required of D t D 

to insure that "enough" functions are present. To interpret an untyped A-term, one defines a translation 

M H M* on terms which takes an untyped term M and creates a typed term M*. This operation is 

defined by induction: 

r for a variable, x* = x:  D, 

r for an application, M ( N ) *  = @(M*) (N*)  and, 

r for an abstraction, (Ax.  M)* = @(Ax: D. M * )  

(where we use = for syntactic equality of expressions). For example, the familiar term 

translates to 

W A f :  D. @(*(Ax: D. @ ( f  ) (Q(x) (x ) ) ) ) (Q(Ax:  D. Q ( f  ) ( Q ( x ) ( x ) ) ) ) ) .  

The fact that the latter term is unreadable is perhaps an indication of why we use the former term in which 
the semantic coercions are implicit. Nevertheless, this translation provides us with the desired semantics 

for the untyped term since we have converted that term into a term in a calculus which we know how 



to interpret. Of course, this assumes that we really do know how to provide a semantics for the typed 

calculus supplemented with triples such as D, @, Q. Moreover, there are some equations we must check 

to show that the translation is sound. But, at the end of the day, we have a simple, intuitive explanation 

of the interpretation of untyped A-terms based on our understanding of a certain simply typed A-theory. 

In this paper we show how a similar technique may be used to provide an intuitive interpretation for 

inheritance, even in the presence of parametric polymorphism and type recursion. As mentioned earlier, 

our interpretation is carried out by translating the full calculus into a calculus without inheritance (the 

target calculus) whose semantics we already understand. However, our idea differs significantly from the 

interpretation of the untyped A-calculus as described above in at least one important respect: typically, 

the coercions (such as and Q above) which we introduce will be definable in the target calculus. Hence 

our target calculus needs to be an extension of the ordinary polymorphic A-calculus with records, variants, 

abstract types, and recursive types. But it need not have any inheritance. 

From this lead, we may now propose a way to explain the semantics of an expression in a language 

with inheritance. Our semantics interprets typing judgements, i.e. assertions I' I- e:  s  that expression e has 

type s  in context r. Ordinarily such a judgement is assigned a semantics inductively in the proof of the 

judgement using the typing rules. However, the system we are considering may also include instances 

of the inheritance rule which says that if e has type s  and s  is a subtype of t, then e has type t. How 

are we to relate the interpretation of the type expressions s  and t so that the meaning of e can be viewed 

as living in both places? Our proposal: the proof that s  is a subtype of t generates a coercion P from 

s  into t. The inheritance (subsumption) rule is interpreted by the application of the coercion P to the 

interpretation of e as an element of s. It will be seen below that this technique can be made to work 

very smoothly since the language we are interpreting may have a familiar inheritance-free fragment in 

which coercions such as P can be defined. In effect, we can therefore "project" the language onto an 

inheritance-free fragment of itself. 

For further illustration, let us now look at an example which combines parametric polymorphism 

and inheritance. In the polymorphic A-calculus, it is possible to form expressions in which there are 

abstractions over type variables. For example, the term e = Aa. Ax: a .  x is an operator which takes a 

type s  as an argument and returns the identity function Ax: s. x on that type as a value. The type of e is 

indicated by the expression Va. a + a. Semantically, one may think of the meaning of this expression 

as an indexed product where a ranges over all types. Although this explanation is a bit too simple as it 

stands, it does help with the basic intuition. If one wishes to make an abstraction over the subtypes of 

a given type, one may use the concept of a bounded quantification [CW85]. Consider, for example, the 

term 

e' = Aa 5 (1: s) .  Ax: a. (2.1) 

where {I: s )  is a record expression which has one field, labelled 1, with type s. The expression e' denotes 

an operator which takes a subtype t of {I: s )  (we write t 5 (1: s) )  and returns as value a function from t 

to s. (The reader should not confuse a, a type variable, with t, a type expression.) Intuitively, a subtype 

of (1: s )  is a record which has an I field whose type is a subtype of s. The type of e' is indicated by 

the expression u' = Va 5 {I: s).  a + s. How should we think of this type semantically? Taking an 

analogy with the intuitive semantics of polymorphic quantification, we want to think of the meaning of 



u1 as some kind of indexed product. But indexed over what? In this paper we argue that one may get an 

intuitive semantics of bounded quantification by thinking of a type expression such as u' as a family of 

types indexed over coercions (i.e. certain functions) from a type a into the type s. 
To support this intuition we must explain the meaning of the application el(t) of the expression el to 

a type expression t which is a subtype of {I: s). The key fact is this: given type expressions v and w and 

a proof that v is a subtype of w, there is a canonical coercion from v into w. Hence, the application el(t) 

has, as its meaning, the element of t + s obtained by applying the meaning of el-which is an element 

of an indexed product--to the canonical coercion from t to {I: s}. This leads us to consider u1 as the 

type 
Va. (a o+{l:s}) + a + s 

where a o-+{I: s} is a "type of coercions". In category-theoretic jargon: the meaning of a bounded 

quantification with bound v will be an adjoint to a fibration over the slice category over v. This follows 

the analogy with models of polymorphism which are based on adjoints to fibrations over the category of 

all domains (as in [CGW89] for example). 

Although we believe that the translation just illustrated is intuitive, we need to show that it is coherent. 
In other words, we must show that the semantic function is well defined. The need for coherence comes 

from the fact that a typing judgement may have many different derivations. In general, it is customary to 
present the semantics of typed lambda calculi as a map defined inductively on type-checking derivations. 

Such a method would therefore assign a meaning to each derivation tree. We do believe though, that 

the language consists of the derivable typing judgements, rather than of the derivation trees. For many 

calculi, such as the simply typed or the polymorphic lambda calculus, there is at most one derivation for 
any typing judgement. Therefore, in such calculi, giving meaning to derivations is the same as giving 

meaning to derivable judgements. But for other calculi, such as Martin-Liif s Intuitionistic Theory 

@TI') [Mar841 (see [Sa188]), and the Calculus of Constructions [CH88] (see [Str88]), and-of  immediate 
concern to us-Xardelli and Wegner's Fun, this is not so, and one must prove that derivations yielding the 

same judgement are given the same meaning. This idea has also appeared in the context of category theory 

and our use of the term "coherence" is partially inspired by its use there, where it means the uniqueness 

of certain canonical morphisms (see e.g. [KL71] and [LP85]). Although we have not attempted a rigorous 

connection in this paper, the possibility of unifying coherence results for a variety of different calculi 

offers an interesting direction of investigation. In the case of Fun, we show the coherence of our semantic 

approach by proving that translations of any two derivations of the same typing judgement are equated in 
the target calculus. 

Hence, the coherence of a given translation is a property of the equational theory of the target calculus. 

When the target calculus is the polymorphic lambda calculus extended with records and recursive types, 

the standard axiomatization of its equational theory is sufiicient for the coherence theorem. But when 
we add variants, the standard axiomatization of these features, while sufficient for coherence, clashes 

with the standard axiomatization of recursive types, yielding an inconsistent theory (see [Law69, HP89al 
for variants, that is, coproducts). The solution lies in two observations: (1) the (too) strong axioms are 

only needed for "coercion terms", and (2) in the various models we examined these coercion terms have 

special interpretations (such as strict, or linear maps), so special in fact, that they satisfy the corresponding 



restrictions of the strong axioms! Correspondingly, one has to restrict the domains over which "coercion 

variables" can range, which leads naturally to the type of coercions mentioned above. 

3 lkanslation for a fragment of the calculus 

For pedagogical reasons, we begin by considering a language whose type structure features function 

spaces (exponentials), record types, bounded generic types (an inheritance-generalized form of universal 

polymorphism), recursive types, and, of course, inheritance. In the next section we will enrich this calculus 

by the addition of variants. As we have mentioned before, this leads to some (interesting) complications 

which we avoid by restricting ourselves to the simpler calculus of this section. Since the calculus in the 

next section is stronger, we omit details for the proofs of results in this section. They resemble the proofs 

for the calculus with variants, but the calculations are simpler. Rather than generate four different names 

for the calculi which we shall consider in this section and the next we simply refer to the calculus with 

inheritance as SOURCE and the inheritance-free calculus into which it is translated as TARGET. The 

fragment of the calculus which we consider in this section is fully described in the appendices to the 

paper. 

We provide semantics to SOURCE via a tramlation into a language for which several well-understood 

semantics already exist. This "target" language, which we shall call TARGET, is an extension with record 

and recursive types of the Girard-Reynolds polymorphic lambda calculus (see [CGW87] for the semantics 

of TARGET). Therefore, SOURCE extends with inheritance and bounded generics TARGET, which is 

at its turn an extension of what Girard calls System F in [Gir86]. Our translation takes derivations of 

inheritance and typing judgements in SOURCE into derivations of typing judgements in TARGET. We 

translate the inheritance judgements of SOURCE into definable terms of TARGET which can be thought 

of as canonical explicit coercions. Bounded generics translate into usual generics, but of "higher" type, 

which take an additional argument which can be thought of as an arbitrary coercion. 

In arguing that this translation yields a semantics for SOURCE, we encounter, as mentioned in the 

introduction, an important complication: as we shall see, in SOURCE as well as in Fun, there may 

be several distinct derivations of the same typing judgement (or inheritance judgement, for that matter). 

We consider, however, the language to consists of the derivable typing judgements, rather than of the 

derivation trees. This distinction can be ignored in System F or TARGET, where there is at most one 

derivation for any typing judgements, so giving meaning to derivations is the same as giving meaning 

to derivable judgements. But for SOURCE and Fun, this is not so, and one must show that derivations 

yielding the same judgement are given the same meaning. This meaning is then defined to be the meaning 

of the judgement. This crucial problem was overlooked by publications on the semantics of inheritance 

prior to [BCGS89]. 

We solve the problem as follows. It turns out that our translation takes syntactically distinct deriva- 

tions of the same SOURCE judgement into syntactically distinct derivations in TARGET. But we give 

an equational axiomatization as an integral part of TARGET, and we show that our translation takes 

derivations of the same SOURCE judgement into derivations of provably equal judgements in TARGET. 

By this coherence result, any model of TARGET, being also a model of its equational theory, will provide 



a well-defined semantics for the derivable judgements of SOURCE. 

The source calculus. For notation, we will follow the spirit of Fun [CW85] making precise only the 

differences. The type expressions include type variables a and a distinguished constant Top. If s  and t  
are type expressions, then s  + t  is the type of functions from s  to t .  If s l ,  . . . , sn are type expressions, 

and l l , .  . . , I n  is a collection of distinct labels, then { I l :  s l ,  . . . , I , :  s , )  is a record type expression. We 

make the syntactic assumption that the order of the labels is irrelevant. If s  and t  are type expressions 

then Va 5 s .  t  is a bounded quantification which binds free occurrences of the variable a in the type 

expression t  (but not in s). Similarly, pa. t  is a recursive type expression in which the type variable a 

is bound in the type expression t .  Intuitively, pa. t  is the solution of the equation a = t .  We will use 

[ s /a ] t  for substitution. The raw terms of the language include (term) variables x, applications d(e) and 

lambda abstractions Ax: t .  e. An expression { I 1  = e l , .  . . , I ,  = en)  is called a record with fields l l  , . . . , in  
and the expression e.1 is the selection of the field 1 .  Again, we assume that the order of the fields of a 

record is irrelevant, but the labels must all be distinct. We also have bounded type abstraction Aa 5 t .  e  
and the corresponding application e( t ) .  To form terms of recursive type pa. t  we have intro expressions 

intro[pa. t ]e  and they are eliminated from the recursion by elim expressions elim e. See Appendix A to 

find a grammar for the type expressions and raw terms of the fragment. 

Raw terms are type-checked by deriving typing judgements, of the form I' I- e  : t  . where r is 

a context. Contexts are defined recursively as follows: 0 is a context; if I' is a context which does not 

declare a, and the free variables of t  are declared in I', then r ,  a < t  is a context; if I' is a context 

which does not declare x, and the free variables of t  are declared in I?, then I?, x: t is a context. The 

proof system for deriving typing judgments is the relevant fragment of the corresponding proof system 

for Fun (see [CW85] on pages 519-520) enriched with two type-checking rules for the introduction and 

elimination of recursive types [CGW87]. A complete list of these proof rules is in Appendix A under the 

heading Fragment. 
Among these proof rules, the following two illustrate the effect of inheritance on type-checking: 

[B-SPEC] 

They make use of inheritance judgements which have the form C I- s 5 t where C is an inheritance 
context. Inheritance contexts are contexts in which only declarations of the form a 5 t  appear. If I' is a 

context, we denote-by F teh inheritance context obtained from I' by erasing the declarations of the form 

x: t .  The proof system for deriving inheritance judgments is, with the exception of one rule, the same as 

the relevant fragment of the corresponding proof system for Fun (see [CW85], on page 519). In this paper 

we do not attempt to enrich it with any rule deriving inheritances between recursive types. A discussion 

of this issue appears in our conclusions. The Appendix contains a complete list of these proof rules too. 

In comparison with Fun, we would like to strengthen the rule deriving inheritances between bounded 



generics, and we are able to do so for some of our results. Where Fun had just 

(W-FORALL) 

we will consider 

(FOR ALL) 

This makes the system strictly stronger, allowing more inheritances to be derived, and thus more terms 

to type-check. 
Originally, we believed that coherence could be proved for a system that includes variants and the 

stronger rule (FORALL) [BCGS89]. In dealing with the case construct for variant types, however, our 

coherence proof uses an order-theoretic property (see Lemma 11) which fails for the stronger system for 

deriving inheritances that uses (FORALL) (for a counterexample, see Giorgio Gelli's dissertation [Ghe90]). 

Thus, we prove the coherence of the translation of variants (Theorem 13) only for the weaker system 
with (W-FORALL). Note, however, that we prove coherence in the presence of (FORALL) for the system 

without variants (Theorem 4) and for the system for deriving inheritances between types, including variant 

types (Lemma 9). 
Remark. Decidability of type-checking in the stronger system is a non-trivial question. The question 

whether an algorithm of Luca Cardelli will decide the provability of judgements in this calculus has only 

recently been settled by Ghelli [Ghe90]. 

The salient feature of bringing inheritance into a type system is that (in given contexts) terms will not 
have a unique type any more. For example, due to the rule 

(Top) C I- t < Top 

where the free variables of t are declared in C, by [INH], all terms that type-check with some type will 

also type-check with type Top. This makes it possible to define ordinary generics as syntactic sugar: 

Va. t !Zf VaSTop.  t . 
The proof system for SOURCE, while quite intuitive, allows for the following complication: there may 

be more than one derivation of the same typing judgement. In fact, we only need record types, (RECD), 

[VAR], [SEL] and [INH] (see Appendix) to provide such an example: in the context x :  {El : Top, l2 : Top) , 
we can either directly derive by [SEL] x. l l  : Top , or we can derive by [VAR] x : {El: Top, E z :  Top) , 
then by (RECD) and [INH] x : {El: Top) , and finally by [SEL] x.l l  : Top . In view of this, for any 
semantics given by "induction on the rules", one needs to prove that derivations of the same judgement 

have the same meaning. 

The target calculus. As mentioned before, TARGET is the Girard-Reynolds polymorphic lambda calculus, 
enriched with record and recursive types [CGW87, BC88, CGW891. Here, we present it as a simplification 

of SOURCE. m e s  are given by 



and terms by 

x 1 M ( N )  ( Ax: t .  M 1 Aa. M I M ( t )  I {I1 = M I , .  . . ,In = M n )  I M.1 1 intro[pz. t ] M  I elim M 

For n = 0 we get the the empty record type 1 ef {} and the empty record, for which we will keep 

the notation {} . Typing contexts are the obvious simplification of contexts in which only typing 
judgements occur (there is no inheritance relation in TARGET). The rules for deriving typing judgements 

in the fragment of TARGET discussed in this section can be found in Appendix B. The following is a 

well-known fact: 

Proposition 1 In TARGET, derivations of typing judgements are unique. 

Proof: All the "elimination" rules, [APPL], [SEL], [SPEC], and [R-ELIM] are "cut" rules, in the sense 

that there is information in the premisses that does not appear in the conclusion. Consequently, they 

should in principle cause problems for the uniqueness of derivations. However, the lost information is 

always in the type part, and types "should" be unique. This suggests the strengthening of the induction 

hypothesis, which then passes trivially through these "cut" rules. 

One proves therefore that for any two derivations A l  and A 2 ,  if Al  ends in T t- M : t l  and A 2  
ends in T I- M : t 2  then Al = A 2  (in particular, tl = t 2  ). 

The proof can be done straightforwardly, either by induction on the maximum of the heights of A l  

and A2,  or on the sum of those heights, or even on the structure of M (with a bit of reformulation). ( 

A technical point: it turns out that type decorations are unnecessary on "elimination" constructs, but 

they are in fact necessary on some "introduction" constructs, such as lambda abstraction and the recursive 

type construct intro[]. Later on, with the addition of variants in section 4, we will find that we need to 

differ with [CW85], and decorate with types the constructs that "inject" into variant types (see Appendix 

B). 
Equations are derived by a proof system (see [CGW87, BC88, CGW891) which contains rules like re- 

flexivity, symmetry, transitivity, congruence with respect to function application, closure under functional 

abstraction (I), congruence with respect to application to types, closure with respect to type abstraction 

(type I). There are also the {BETA} and {ETA} rules for both functional and type abstraction, rules 

saying that intro[ ] and elim are inverse to each other, as well as 

{RECD-BETA) { l l = M l ,  ..., ln=Mn} . l i  = Mi 

where n 2 1, and 

{RECD-ETA} . {I1=M.I1 ,..., l,=M.Zn} = M 

where M : {I l :  s l ,  . . . , l ,:  s , )  .The last rule gives, for n = 0, the equation {) = M which makes 1 
into a terminator. Under our interpretation, the type Top will be nothing like a "universal domain" which 

can be used to interpret Type:Type [CGW89, GJ901. On the contrary, it will be interpreted as a one point 

domain in the models we list below! 



The translation. For any SOURCE i t e m  we will denote by i t e m *  its translation into TARGET. We 

begin with the types. Note the translation of bounded generics and of Top. 

d ~ f  d 3  a* - a (11: 81 , .  . . , In :  s,)* - {11 : s;, . . . , ln: 3:) 

Top* %f 1 dzf (Va 5 s. t)* - Va. ( a  + s*) - t* 

def s*+t*  d& ( s - t ) *  = (pa.  t)* - pa.t* 

One shows immediately that ([s /a]t )*  G [s*/a]t* . We extend this to contexts and inheritance contexts, 

which translate into just typing contexts in TARGET. 

0* +gf 0 g,* % 0 
dzf d& ( I ? ,  a l t ) *  - I?*, a,  f:a-t* ( C ,  a<t)* - C * ,  a ,  f :a- t*  

dzf (r, ~ : t ) *  - r*, ~ : t *  

where f is a fresh variable for each a. 

Next we will describe how we translate the derivations of judgments of SOURCE. The translation 

is defined by recursion on the structure of the derivation trees. Since these are freely generated by the 

derivation rules, it is sufficient to provide for each derivation rule of SOURCE a corresponding rule 

on trees of TARGET judgments. It will be a lemma (Lemma 2 to be precise) that these corresponding 

rules are directly derivable in TARGET, therefore the translation takes derivations in SOURCE into 

derivations in TARGET. 
A SOURCE derivation yielding an inheritance judgment C t- s 5 t is translated as a tree of 

TARGET judgments yielding C* I- P : s* - t* . We present three of the rules here; the full list for 

the fragment appears in Appendix C. The coercion into Top is simply the constant map: 

(TOP)* C* I- Ax: t*. {) : t*-1 

To see how coercion works on types, assume that we are given a coercion P:  s - t from s into t and a 

coercion Q:  u - v from u into v. Then it is possible to coerce a function f :  t - u into a function from 

s to v as follows. Given an argument of type s ,  coerce it (using P )  into an argument of type t .  Apply 

the function f to get a value of type u. Now coerce this value in u into a value in v by applying Q. This 

describes a function of the desired type. More formally, we translate the (ARROW) rule by 

C* I- R : (t* - u*) - (s* + v*) 

def where R = Xr: t* - u*. P ;  z;  Q . (We use ; as shorthand for composition. For example, P ;  z ;  Q 

above stands for Ax: s*. Q ( z ( P ( x ) ) )  where x is fresh.) Now, to translate the rule (FORALL) which 

describes the inheritance relation for the bounded quantification we view the quantification as ranging 

over a type together with a coercion from that type into the bound: 

(FOR ALL)* 
C* I- R : (Va. ( a  - t*)  - u*) - (Va. ( a  - s*) - v*) 

where R ef X Z :  (Va. ( a -  t*)+ u*). Aa. X f :  a-  s*. Q(z (a) (  f ;  P ) )  



Now, a SOURCE derivation yielding an typing judgment r I- e : t is translated as a tree of 

TARGET judgments yielding I'* k M : t* . For example, the inheritance rule is translated by simply 

making the inheritance coercion "explicit": 

[INH] * 

The specialization of a bounded quantification is more subtle. The variable is instantiated by substituting 

the type expression to which the abstraction is applied, but then the coercion from the argument type to 

the bound type must be passed as an argument to the resulting function: 

The remaining rules for translating the fragment are given in Appendix C. It is possible to check that the 

translated rules are derivable in the target language: 

Lemma 2 The rules (TOP)* - (TRANS)* and [VARI* - [INHI* are directly derivable in TARGET. 1 

Coherence of the translation. For any derivation A in SOURCE, let A* be the TARGET derivation 

into which it is translated. The central result about inheritance judgements says that, given a judgement 

s 5 t and a pair of proofs Al and A2 of this judgement, the coercions induced by these two proofs are 

provably equal in the equational theory of TARGET. More formally, we have the following: 

Lemma 3 (Coherence of the translation of inheritance) Let Al and A2 be hvo SOURCE derivations 

of the same inheritance judgement, C I- s 5 t . Let A;, A; yield (coercion) terms PI, P2. Then, 

PI = P2 is provable in TARGET. 

The central result about typing judgements says that, given a judgement e: t and a pair of proofs Al 
and A2 of this judgement, the translations of these proofs end in sequents (translations of e: t) which are 

provably equal in the equational theory of TARGET, i.e. we have: 

Theorem 4 (Coherence) Let Al and A2 be two SOURCE derivations yielding the same typing judgement, 

I' I- e : t . Let A;, A; yield terms MI, M2. Then, MI = M2 is provable in TARGET. 

The proofs of the lemma and theorem are almost as difficult as the ones we shall give for the corresponding 

results in the full language. Since the proofs of these results for the fragment follow similar lines to the 

proofs for the full language we omit the proofs of Lemma 3 and Theorem 4 in favor of the proofs of 

Lemma 9 and Theorem 13 below. 

4 Between incoherence and inconsistency: adding variants 

The calculus described so far does not deal with a crucial type constructor: variants. In particular, it is very 

useful to have a combination of variant types with recursive types. On the other hand, the combination 

of these operators in the same calculus is also problematic, especially for the equational theory. The 



situation is familiar from both domain theory and proof theory. In this section we propose an approach 

which will suffice to prove the coherence theorem which we need to show that our semantic function is 

well-defined. 

We extend the type formation rules of SOURCE by adding variant type expressions: [ I l  : t l  , . . . , I,:  t ,] 
where n > 1. We also extend the term formation rule by the formation of variant terms i l l :  t l ,  . . . , 1; = 

e ,  . . . , I , :  t ,]  and the case statement: 

The inheritance judgement derivation rules are extended correspondingly with the rule: 

( v m )  C t - S l  S t l  C  t- s ,  5 t ,  
C I- [ I 1 : s l , .  . . , l p : s p ]  5 [ l l : t l , .  . . , l p : t p , .  . . , l q : t q ]  

Note the "duality" between this rule and the inheritance rule (RECD) for records (see Appendix A). While 

a record subtype has more fields, a variant subtype has fewer variations (summands). 

Like before, we intend to translate this calculus into a calculus without inheritance and, naturally, 

we extend TARGET with variants (see Appendix B). Note how the syntax of variant injections differs 

from [CW85]. This is in order for the resulting system to enjoy the property of having unique type 

derivations: the proof of Proposition 1 extends immediately to the variant constructs. Most importantly, we 

must extend the equational theory of TARGET in a manner that insures the coherence of our translation. 

It is here that we encounter an interesting problem which readers who know domain theory will find 

familiar. The following two axioms hold in a variety of models: 

{VART-BETA) caSe in j , , (M;)o f l1+Fl ,  . . . , [ , + I ? ,  = F i ( M i )  

where Fl : t l  + t , .  . . , F, : t ,  + t ,  Mi : ti and injl. is shorthand for 

Ax: t i .  [11:  t l ,  . . . , l i  = 5 , .  . . , I n :  t n ] .  

{VART-ETA) case M  of 1 ,  + inj,, , . . . , 1, + inj," = M 

where M  : [ 1 1 :  t l ,  . . . , 1,: t,] . Unfortunately, these two axioms do not suffice to prove all the 

identifications required by the coherence of our translation! 

To see the problem, we start with an example. In SOURCE, suppose that t  5 s  is derivable 

in the context ?, and that we have a derivation A  of I' t- e : [ 1 1 :  t l ,  12:  t 2 ]  and derivations Ai  of 

I' I- f ;  : ti + t ,  i = 1,2. Consider then the following two SOURCE derivations of the typing 

judgement I' I- case e  of 1, + f l ,  12 + f 2  : s  . 
1. by A, A,, A 2  and the rule [CASE], one deduces r I- case e of I 1  + f l  ,12 + f2  : t .  Since 

t- t  5 s  by hypothesis, one infers by inheritance I' I- case e of Z 1  + f l  , Z 2  + f2  : s .  

2. from f I- t  <_ s  we can deduce f t- ( t ;  + t )  5 ( t i  + s ) .  Hence, by inheritance 

from A;, one deduces I' I- fi : t ;  + s .  Then, from A and by the rule [CASE], one deduces 

I' t- case e of l l + f 1 , l 2 +  f 2  : s.  



The coherence property requires that these two derivations have provably equal translations. With the 

obvious translation for the variant type constructor and the rules [VART] and [CASE] (see Appendix C) 

and with the translation of the rules [INH], (ARROW) and (REFL) as in Section 3, this comes down to 

the following identity 

P(case M of l l+Fl,l2+F2) = case M of I I + ( F I ; P ) , ~ ~ + ( F ~ ; P )  

where P : t* + s* is a "coercion term", M : [ I 1 :  t;,12:t;] , F; : tr + t* , i = 1,2  . Thus, we are 

tempted to postulate 

{VART-CRN?} P(case M of I l  + Fl, . . . , 1, + Fn) = case M of 21 + Fl; P, . . . , I ,  + Fn; P 

where M :  [ I l :  t l ,  . . . , I,: t,], Fl: t l  + t ,  . . . , F,: t ,  + t ,  P:  t + s . This equation follows from the 

equation that axiomatizes variants analogously to coproducts: 

{VART-COP? } Q ( M )  = case M of ll + (injll ; Q ) ,  . . . , I ,  + (injln; Q) 

where M :  [I l  : tl , . . . , I,: t,], Q : [ I 1  : t l  , . . . , 1, : t,] + t . More precisely, it is possible to check that the 

system {VART-BETA}+{VART-COP} is equivalent to {VART-BETA}+{VART-CRN}+{VART-ETA}. 
However, it is known [Law69, HP89al that {VART-BETA}+{VART-COP) is inconsistent with the exis- 

tence of fixed-points. In fact, this may be refined: 

Proposition 5 The system {VART-BETA)+{VART-CRN} is (equationally) inconsistent with the existence 

of faxed-points. 

Proof: The "categorical" equation { VART-COP } may be thought of as an "induction" principle 

on a sum: it reduces the proof of an equation P ( M )  = Q ( M ) ,  M:[l l : t1 ,12:t2] ,  to the proofs of 

P(injll ( 2 ) )  = Q(injll ( x ) ) ,  for x: t l  and P(inj12(x)) = Q(inj12(x)), for x: t2. Indeed, we have P ( M )  = 

case M of 1, + A X .  P(injll ( x ) ) ,  l2 + A X .  P(injlz(x)) and Q ( M )  = case M of l1 + A X .  Q(inj l l (z)) ,  l2 + 
Ax. Q(inj12(x)). Given a type t ,  it is possible to define a "negation-like" operation on [11: t ,  12: t ]  by 

n e g ( M )  = case M of Il + Ax.inj12(x), l2 + Ax.injll ( x ) .  Given x,  y: t ,  it is easy enough to define an oper- 

ation f ( M ,  N ) :  t ,  for M ,  N :  [ I l :  t ,  12:  t ]  in such a way that f (injll ( u ) ,  injll ( u ) )  = f (inj12 ( v ) ,  inj12 (v)) = x, 
and f (injll ( u ) ,  inj12 ( v ) )  = f (inj12 ( v ) ,  injll ( u ) )  = y. We deduce then from the "induction principle" that 

f ( M ,  M )  = 2,  and f ( M ,  n e g ( M ) )  = y, identically for M :  [ I l :  t ,  12:  t ] ,  hence the (equational) inconsis- 

tency when we have a fixed-point combinator. 

The fact that we can use instead of {VART-COP?} + {VART-BETA} the weaker system {VART- 

BETA} + {VART-CRN?} comes simply from the fact that we can "relativise" this reasoning to the 

elements of [11 : t , 12: t ]  of the form case M of injIl inj12, elements that satisfy the equation { VART-ETA 

1. I 

Thus, a naive approach gives us an unattractive choice between incoherence and inconsistency! We 

are saved from this by the observation that, at least in the example above, we do not seem to need the 

"full" usage of {VART-CRN} but only those instances in which P is a term coming out of a translation 



of an inheritance judgement, i.e., a "coercion term". Such terms are much simpler than general terms. 

In particular, we note that in models based on continuous maps, such terns denote strict maps, and in 

models based on stable maps, they denote linear maps. Appropriate constructions for interpreting variants 

can be given in both cases, such that {VART-CRN} is sound, as long as P ranges only over strict (or 

linear) maps. 

Maintaining the same philosophy to our approach as in Section 3 we will try to abstractly embody 

in TARGET a sufficient amount of formalism to insure the provable coherence of our translation. Thus, 

the previous discussion of variants leads us to introduce a new type constructor s w t  , the type of 

"coercions" from s to t .  Consequently, the coercion assumptions a 5 t  that occur in inheritance contexts 

must translate to variables ranging over types of coercions f:  a cw t* . As a consequence, the translation 

of bounded quantification must change: 

(Va5s.t) '  %f Va. ( ( a a s * ) + t * )  

In order to express the correct versions of {VART-CRN), we introduce a family of constants in TARGET 

called coercion-coercion combinators. With this, we have 

{VART-CRN) ~ ( P ) ( c a s e  M of ll + Fl,  . . . ,in * Fn) = case M of 11 * Fl; ~ ( p ) ,  . . . , I n  * Fn; L ( P )  

where M : [ l l : t l  ,..., l,:tn], F l : t l+t  ,..., Fn:tn+t ,  P : t c w s .  
(the complete list is in Appendix B). 

In order to translate all inheritance judgements into coercion terms, we add a special set of constants 

(coercion combinators) that "compute" the translations of the rules for deriving inheritance judgements. 

To prove coherence, we axiomatize the behavior of the L-images of these combinators. For example, 

the coercion combinator for the rule (ARROW) takes a pair of coercions as arguments and yields a new 

coercion as value: 

Since (ARROW) is a rule scheme, we naturally have a fhly of such combinators, indexed by types. 

To simplify the notation, these types will be omitted whenever possible. The equational property of the 

arrow combinator is given in terms of the coercion coercer: 

where P:  s o+ t ,  Q:  u o+ v. For the rule (TRANS), we introduce 

which, of course, behaves like composition, modulo the coercion coercer: 



where P: r M s ,  Q : s M t. The combinator for the rule (FORALL) is the most involved: 

forall[s, t ,  a ,  u ,  v ]  : ( S  M t )  +Va. ( ( a  cw s )  + ( u  cw v)) + (Va. ( ( a  M t )  + u )  M Va. ( ( a  M s )  + v ) )  

with the equational axiomatization 

~ ( f o r a l l ( P ) ( W ) )  = Xz: (Va. ( a  M t )  + u) .  h a .  X f :  a M s. L(W(a)(  f ) ) (z (a) ( t rans(  f ) ( P ) ) )  

where P :  s  M t ,  W :  Va. ( a  M s )  + ( u  M v). Of course, we have gone to the extra inconvenience of 

introducing the type of coercions in order to provide a satisfactory account of variants. These require a 

scheme of combinators having the types: 

And it is now possible to assert a consistent equation 'for these combinators: 

1(vart(R1) . . (R,)) = X W :  [ I1:  s l , .  . . ,I,: s,]. case w of I1 + L ( R I ) ;  injll,. . . , I ,  =+ L(R,); injlp 

where R1: sl o-, t l ,  . . . , R,: s, M t, . In order to prove equalities between terms of coercion type one 

uses the following rule: 

{IOTA-INJ) 

which asserts that L is an injection. In fact, all of the models we give below will interpret L as an inclusion. 

It is natural to ask whether the coercion coercer L could have been omitted from the calculus in favor of 

a rule: 
P:sO+t 
P : s  + t '  

This would have the unfortunate consequence that a typing judgement e: s would no longer uniquely 

encode its proof and the coherence question would therefore arise again! The other combinators and their 

equational properties are described in Appendix B. 

We are now ready to explain how to translate our full language SOURCE (complete with variants) 

into the language TARGET (with the coercion coercer and combinators). For starters, the inheritance 

judgement for the h c t i o n  space is simply translated using the arrow combinator: 

(ARROW) * 
C t t -  P : s * ~ t *  C * t - Q : u * c + v t  
C* t- arrow(P)(Q)  : (t* + u*) M ( S *  + v*) 

The translation of an inheritance between quantified types takes the induced coercion and a polymorphic 

function as its arguments: 

C* t- P :  s * ~ t *  C*, a ,  f:ao+s* I- Q : U * M V *  
(FORALL)* 

C* I- forall(P)(Aa. X f :  a M s*. Q )  : Va. ( ( a  M t * )  + u*)  cw Va. ( ( a  cw s*) + v*)  

Other inheritance judgements are similarly translated. The real work is being done by equational properties 

of the combinators. 



The proofs of typing judgements are translated in a manner quite similar to how they were translated 

in the fragment. For example, 

is affected only by indicating that the map into the bound must be a coercion. The inheritance rule is 

translated by 

[INH] * 

since a coercion cannot be applied until it is made into a function by an application of the coercion 

coercer. The full description of the translation of the full language is given in Appendix C. We now turn 

to the proof of the central technical results of the paper. 

5 Coherence of the translation for the full calculus 

In this section we prove first the coherence of the translation of inheritance judgements. This result is 

then used to show the coherence of the translation of typing judgements. 

The main cause for having distinct derivations of the same inheritance judgements is the rule (TRANS). 

Our strategy is to show that the usage of (TRANS) can be coherently postponed to the end of deriva- 

tions (Lemma 6), and then to prove the coherence of the translation of (TRANS)-postponed derivations 

(Lemma 8). 
We introduce some convenient notations for the rest of this section. For any derivation A in SOURCE, 

let A* be the TARGET derivation into which it is translated. We will write C I- TO < . . . < r,  

instead of C I- ro 5 r l  ,. . . , C I- T , - ~  5 T ,  . The composition of coercions given by trans occurs 

so often that we will write P @ Q instead of trans(P)(Q) . It is easy to see, making essential use 

of the rule {IOTA-INJ}, that @ is provably associative. We will take advantage of this to unclutter the 

notation. We will also write I instead of ref1 . Again it is easy to see that I is provably an identity 

for @ , that is, I @ M = M @ I = M is provable in TARGET. 

Lemma 6 For any SOURCE derivation A yielding the inheritance judgement C I- s 5 t , there 

exist types 1-0,. . . , r ,  such that s - TO , T, - t ,  and (TRANS)-free derivations Al,  . . . , A, yielding 
respectively 

C I- To < < r,  

Moreover, ifthe translations A*, A;, . . . , A: yield respectively the (coercion) terms C* I- P : s* c+ t* , 

C* I- PI : T: w T;  ,. . . , C* I- P, : T : - ~  c-+ T: then 

is provable in TARGET 



Proof: By induction on the height of the derivation A. The base is trivial since derivations consisting of 

instances of (TOP), (VAR), or (REFL) are already (TRANS)-free. We present the more interesting cases 

of the induction step. 

Suppose A ends with an application of (ARROW). By induction hypothesis there are (TRANS)-free 

derivations for 

s = 1-0 < 5 r,  = t  and u =  wo 5 5 w, = v 

(for simplicity, we omit the context). From these, using (REFL) and (ARROW) we get (TRANS)-free 

derivations for 

(This is not most economical: one can get a derivation requiring only max(m, n), rather than m + n, steps 

of (TRANS) at the end.) Proving the equality of the corresponding translations uses the associativity of 

@ and the fact that I acts like an identity, as well as 

which can be verified, in view of {IOTA-INJ), by applying L to both sides, resulting in a simple {BETA)- 

conversion. 

Suppose A ends with an application of (FORALL). By induction hypothesis there are (TRANS)-free 

derivations for 

C I- s  = ro 5 ... 5 r,  = t  and C,a<s I- u = wo 5 ... 5 w, E v 

From these, using (REFL) and (FORALL) we get (TRANS)-free derivations for 

Proving the equality of the corresponding translations uses 

forall(P)(Aa. X f :  a cw s. Q )  @ forall(R)(Aa. Xg: a o-, t .  S )  = 

= forall(R @ P)(Aa. Xg: a cw t .  [g O R/ f ] Q  O S )  

and which can be verified by applying L to both sides. 

Suppose A ends with an application of (VART). By induction hypothesis there are (TRANS)-free 

derivations for 
1 1 - 

S1 = To 5 . 5 rnl = tl 

sp = rg < 5 rP E t p  
np 

(for simplicity, we omit the context). From these, using (REFL) and (VART) we get (TRANS)-free 

derivations for 



. . . 5 111 : rk l ,  . . . , lp: rZp] [ll : t i , .  . . , lp: t p ]  5 [11 : t l ,  . . . , lp: t p ,  . . . , zq: t q ]  . 
Proving the equality of the corresponding translations uses 

(3 vart(p1) - . . ( P p )  @ vart(Q1) - - . (Q,) = vart(pl@ Q l )  . . (P,  @ Q p )  ( p  < q). 

To verify this, let L be the left hand side of the equation, R the right hand side and let w be a fresh variable. 

By extensionality (or {ETA) and {XI)) and by {IOTA-INJ), it is sufficient to show L ( L ) ( w )  = L(R)(w) .  

By {VAKI'-COP), this follows from 

case w of 11 + (inj,, ; L(L) ) ,  . . . , lp  + (injlp; L ( L ) )  = case w of ll + (inj,, ; L ( R ) ) ,  . . . , lP + (inj,p; L (R) )  

which is readily verified. 

When A ends with (TRANS), we just concatenate the chains of (TRANS)-free derivations and the 

equality of the translations is an immediate consequence of the associativity of @. 

The following is used to handle one of the cases in Lemma 8 below. 

Lemma 7 For any two derivations, A yielding C I- s 5 t and O yielding C ,  a 5 t t u 5 v , there 

exists a derivation C yielding C ,  a 5 s t u 5 v such that height(C) = max(height(A), height ( O ) )  . 
Moreover, if the translations A*, O* , C* yield respectively 

then 

C*,  a,  f :a -s*  I- R = [ f  @ P/g]Q 

is provable in TARGET. 

Proof: By induction on the height of 0 . 1  

Lemma 8 Let Al, . . . , A, be (TRANS)-free derivations in SOURCE yielding respectively C I- so < 
. . . 2 s ,  and el,  . . . ,en be (TRANS)-free derivations yielding respectively C I- to < . . . < t ,  . 
Let the translations A;, . . . , A:, @;, . . . ,O: yield respectively the (coercion) terms 

I f so  = to and s ,  = t ,  then 

is provable in TARGET. 

Proof: We begin with the following remarks: 

a If one of so, . . . , s,, to,  . . . , t ,  is Top then the desired equality holds. Indeed, then s, = Top = 
t ,  and the equality follows from the identity 

(4) P 5 top 

which is verified by applying L to both sides (recall that 1 is a terminator). 



a Those derivations among Al,.  ..,A,, 0 1 , .  . . ,0, which consist entirely of one application of 

(REFL) can be eliminated without loss of generality. Indeed, the corresponding coercion term is 1 

which acts as an identity for 0. 

r If none of the derivations among Al, . . . , A,, 0 1 , .  . . ,On consists of just (TOP), then those deriva- 

tions which consist of just (VAR) can also be eliminated without loss of generality. Indeed, once 

we have eliminated the (REFL)'s, the (VAR)'s must form an initial segment of both Al, .. . ,Am 
and O1, .  . . ,On because whenever s 5 a is derivable, s must also be a type variable. Let's say 

that so - ao,. . . ,s,  = a,-1 , ( p  5 m), where Al, .. . ,A, are all the derivations consisting of just 

(VAR), and also that to = bo, . . . , t ,  - b,-l , ( q  5 n),  where 0 1 , .  . . ,0, are all the derivations 

consisting of just of (VAR). Then, a0 5 a1 , . . . , a,-1 5 s, as well as bo 5 bl , . . . , b,-15 t ,  must all 

occur in C. But a0 so = to = bo so by the uniqueness of declarations in contexts, a1 = bl,. . . , 
etc. Suppose p < q. Then, s, G b, is a variable. Since A,+l can't be just a (REFL) or a (TOP) is 

must be a (VAR) contradicting the maximality of p. Thus p = q and s, - t ,  and the (VAR)'s can 

be eliminated. 

We proceed to prove the lemma by induction on the maximum of the heights of the derivations 

A,, . . . , A,, ol7..  . , 0,. The basis of the induction is an immediate consequence of the remarks above. 

For the induction step, in the view of the remarks above, we can assume without loss of generality 

that none of the derivations is just a (TOP), (VAR), or (REFL). Consequently, Al, . .  . ,Am, O1 , .  . . ,0, 
must all end with the same rule, depending on the type construction used in so G to . 

If all derivations end in (ARROW), the desired equality follows from the induction hypothesis, the 

associativity of @ and the equation (1). Similarly for (VART) using the equation (3). The desired equality 

in the case (FORALL) follows from the induction hypothesis using Lemma 7, from the associativity of 

@ and from the equation (2). The remaining cases are straight-forward. I 

This gives us the coherence of the translation of inheritance judgements. To state it we need some 

terminology. We say that two SOURCE derivations which yield the same judgement are congruent if 

their translations in TARGET yield provably equal terms. We will write Al 2 A2 for congruence of 

derivations. It is easy to check that S is in fact a congruence with respect to the operations on derivations 

induced by the rules. 

Lemma 9 (Coherence of the translation of inheritance) If Al and A2 are two SOURCE derivations 

yielding the same inheritance judgement then Al A2 (their translations yield provably equal terms in 

TAR GET). 

Proof: Immediate consequence of Lemmas 6 and 8 1 

Before we turn to the coherence of the translation of typing judgements, we will note a few facts 

about inheritance judgements that follow from Lemma 6 and that will be invoked subsequently. These 

facts are closely related to the remarks opening the proof of Lemma 8. 

Remark 10 If C k s 5 t  is derivable, s  = a , a type variable, and t f a then 



l i f  t  = b , also a type variable, there must exist type variables ao, . . . , a,  , n 2 1 such that 

a = a o ,  b-a, ,and a;-l<a; ~ C , i = l ,  ..., n ;  

l if t is not a type variable, there must exist type variables aa, . . . , a, , n > 0 and a type u such that 

a G a0 , <a;  E C ,i = 1, ... , n ,  a ,  I u  E C , and C t- u  5 t (of course, this is trivial 

when t  = Top ); 

I f  C I- s  < t  is derivable, and s is not a type variable variable, then t cannot be a type variable, and 

if moreover t f Top , then s  and t  must both have the "same" outermost type constructor (as detailed 

exhaustively below) and 

l if s =  sl+s2 and t = t l + t 2  then C I- tl I sl and C t- s2 5 t 2 ;  

l i f  s  = V a < s l . s 2  and t = V a 5 t l . t 2  then C I- tl 5 sl and C ,  a<t l  I- s2 5 t 2 ;  

l if s  and t are both recursive types then they must be identical; 

if s [I l:s1 ,..., l p : s p ]  and t  = [11:tl, ..., lq:t ,]  thenp < qand C I- s l  < t l  , ... ,C I- 
< t SP - P .  

We turn now to the coherence of the translation of typing judgements, which is the central technical 

result of the paper. As explained in section 3, we weaken the system by replacing the rule (FORALL) 

with (W-FORALL) (see Appendix A). With this, we have the following order-theoretic property about 

the inheritance judgments, which fails in the presence of (FORALL). The property asserts the existence 

of conditional greatest lower bounds and of least upper bounds. 

Lemma 11 Replace (FORALL) with (W-FORALL). Let C be an inheritance context and let t l ,  t2 be types. 

I .  I f  there is an r with C I- r 5 ti , ( i  = 1,2)  , then there exists a type t l  ll t 2  such that 

l C I- t l n t 2  I t i ,  ( i = 1 , 2 )  and 

f o r a n y s s u c h t h a t C I -  s < t ; , ( i = 1 , 2 ) w e b e  C t- s I t 1 n t 2 . 1  

2. There is a rype t l  U t 2  such that 

l C I- t ;  5 t l U t 2 ,  ( i =  1 ,2 )  and 

l foranyssuchthat C I- t; < s ,  ( i = 1 , 2 )  w e b e  C I- t 1 U t 2  5 s . 1  

Proof: Because of the contravariance property of the first argument of the function space operator manifest 

in the rule (ARROW), we will prove items 1 and 2 simultaneously. In view of Lemma 6, it is sufficient 

to work with proofs where all instances of (TRANS) appear at the end. Since moreover any two types 

have a common upper bound, Top, the statement of the lemma is equivalent to the following formulation: 

For any Al,.  . . ,Am, (TRANS)-free derivations in SOURCE yielding respectively C I- uo < 
. . . < urn and any O1, .  . . ,On,  (TRANS)-free derivations yielding respectively C I- vo I . 5 

V n  9 



I .  if uo = vo, and let tl - urn and t2 - v,, then there is a type tl  n t2 having the properties in item 1 

of the lemma; 

2. i f u ,  = v,, and let t l  = u0 and t2  = vo, then there is a type t l  U t2  having the properties in item 2 

of the lemma. 

This is shown by induction on the maximum of m, n and of the heights of A1,. . . ,Am, 0 1 , .  . . ,On. 

To be able to apply the induction hypothesis, a case analysis is performed, depending on the structure of 

tl and t2. We will only look at a few illustrative cases. The facts listed in Remark 10 and the reasoning 

that produced these facts as well as the remarks opening the proof of Lemma 8 are used throughout. 

For example, if t l  is a type variable in item 1, then u; is also a type variable for each i, and 

u; - 1 5 u i ~ C , i = l , . . . ,  n.Then,oneof  C I- uo 5 5 urn or C I- vo 5 ... 5 v , ,  
must be an initial segment of the other, so tl and t2 are comparable and t l  n t 2  can be taken as the smaller 

among them. For item 2, if tl is a type variable, then uo 5 u1 E C and, by induction hypothesis (m 

decreases), tl U t 2  can be taken to be u1 U t2. 

As another example, suppose that in item 1 tl has the form Va 5 s. rl. If uo = vo is a type variable, 

then uo 5 u1 E C and vo 5 vl E C hence u1 = vl and we can apply the induction hypothesis 
by eliminating Al, 0 1 .  Assume that u0 = vo is not a type variable. By Remark 10 (simplified to take 

into account the weakening of (FORALL)), it must have the form Va 5 s. r. Again by Remark 10 t2  is 

either Top or has the form Va 5 s. r2. If t2 = Top then tl n t2 can be taken to be t l .  Otherwise, 

there are (TFL4NS)-free derivations A:, . . . , A:, yielding C ,  a 5 s I- ub . . . < u:, and 

0:, . . . ,0; yielding respectively C ,  a 5 u I- vh 5 - . 5 vk where ub = vk and u k  = rl 

and vh = r2, and where each of .these derivations has strictly smaller height than the corresponding one 

among Al,  . . . , A m ,  0 1 , .  . . ,en. By induction hypothesis we get a type rl n r2, and we can then take 

tl n t 2  to be Va 5 s. rl n 7-2. This calculation makes clear where our proof breaks down if we were to use 

the more general rule (FORALL) instead of (W-FORALL). Indeed, if the bounds on the type variables 

were allowed to differ, as in the more general case, we would be unable to apply the induction hypothesis 

since the two contexts would differ between the 0 ' s  and the A's. 

We omit the remaining cases, which use similar ideas. 1 

We will use this property in the proof of Lemma 12, which is a slightly stronger result than the actual 

coherence of the translation of typing judgements. Of course, the strengthening is exploited in a proof by 

induction. First we introduce a definition and more convenient notations. For derivations yielding typing 

judgements we define the essential height which is computed as the usual height, with the proviso that 

[INH] and the rules yielding inheritance judgements do not increase it. We will also use a special notation 

for describing "composition" of derivations via the rules. We explain this notation through two examples. 

If C  yields I' I- e : s and O yields I- s 5 t , then [INH] ( C ,  0)  yields I' I- e : t . If A 

yields r , x : s  I- e : t  then [ABS](A> yields I' I- X x : s . e : s + t .  
In preparation for the proof of the next lemma, we have two remarks. 

a We have the following congruence 

[INH] ( [INH] ( C , 01) ,  0 2 )  [INH] ( C  , (TRANS) ( 0 1  , 0 2 ) )  . 



This follows from the fact that L(Q)(L(P)(M)) = L(P @ Q)(M) which is immediately verified. 

Any SOURCE derivation is congruent to a derivation of the form [INH] ( A ,  0) where A does 

not end with an application of the [INH] rule. This follows from .the previous remark and, in the 

case when the original derivation did not end in [INH], from 

A E [INH] ( A ,  (REFL)) 

which in turn follows from M = L(I)(M). 

Lemma 12 Replace (FORALL) with (W-FORALL). For any two SOURCE derivations, A; yielding r I- 
e : t; , ( i  = 1,2) , there exists a type s, a derivation C yielding F t- e : s and two derivations 0; 
yielding I- s 5 t; , ( i  = 1,2) such that 

A; E [INH] ( C ,  0;) , (i = 1,2). 

Proof: By induction on the maximum of the essential heights of Al,  A,. In view of the previous remarks, 

it is sufficient to prove the statement of the lemma assuming that neither Al nor A2 ends in [INH] (but 

we retain the actual statement of the lemma in the induction hypothesis). For such derivations, Al and 

A2 must end with the same rule (which rule, depends on the structure of e). We do a case analysis 

according to this last rule, and we include here only the cases which we believe are important for the 

understanding of the result (even if their treatment is straightforward) as well as some cases which are 

particularly complex. We will call the type s , whose existence is the essence of the result, the common 

type. 
Rule [VAR]. It must be the case that tl = t2 = T where x: T occurs in I'. Consequently, the 

treatment of this rule is trivial: take the common type to be T , C = [VAR] , and 0 1  = O2 = (REFL) . 
The introduction rules are quite simple and we illustrate them with the rule [ABS]. Suppose that 

A; = [ABS] ( A: ) and that A; yields I' I- Ax: s. e : s + t; (s is the same since it appears in the 

term), thus A: yields I', x: s I- e : t; , ( i  = 1,2) . Apply the induction hypothesis to A:, A; obtaining 

r,  C' ,0',, 0 5. Also by induction hypothesis, 

A; [ABS] ( [INH] ( C' , 0:) ) , (i = 1,2). 

We claim that the right hand side is congruent to 

[INH] ( [ABS] ( C' ) , (ARROW) ( (REFL) , 0:)) . 

This implies that the statement of the lemma holds for Al, A2, with common type s + r , with 

C G [ABS] ( C' ) , and with 0; = (ARROW) ( (REFL) , O:), (i = 1,2). The congruence claim follows 

from 

AX: S. L(P)(M) = ~(arrow(I)(P)(A~: S .  M )  

which is readily verified. 

Rule[B-SPEC]. To simplify the notation, we omit the contexts. Suppose that A; = 
[B - SPEC] (A: ,  Z;) and that A; yields e(r) : [r/a]ti (r is the same since it appears in the term and 



we can take the bound variable to be the same without loss of generality), thus A: yields e : Va 5 s;. t ;  

and E; yields r  5 s; , ( i  = 1,2) . Apply the induction hypothesis to A:, A: obtaining w, C', O',, 0;. 
Also by induction hypothesis, 

(5) Ai [B  - SPEC] ( [INH] ( C' , 0:) , E;) , ( i  = 1,2). 

Since w 5 V a  5 s;. ti , ( i  = 1,2)  it follows from Remark 10 (simplified to take into account 
the weakening of (FORALL)) that there must exist types u, v  such that si = u , a  5 s; I- v 5 
ti , ( i  = 1 , 2 )  and w 5 Va 5 u. v  are derivable. It follows that r  5 u , and, by Lemma 7, that 

a  5 r  t- v 5 t; , ( i  = 1 ,2 )  are derivable. Next, we will use the following sublemma: 

Sublemma For any derivation A yielding C, a  5 r  t- s  5 t  there exists a derivation C 

yielding C I- [ r / a ] s  5 [r /a] t  such that, if the translations A*, C* yield respectively 

C*,  a ,  f :  a  o+ r* t- P : s* cw t* , C* t- Q : [r*/a]s* c+[r*/a]t* 

then 

C* I- Q = (Aa .  X f :  a  o+ r*. P ) ( r * ) ( I )  

is provable in TARGET. I 

The sublemma is proved by induction on the height of A and is omitted. The sublernrna allows us to 

obtain [ r / a ] v  5 [rlal t;  from a  5 r  l- v  5 t ;  , ( i  = 1 ,2 )  . Let Oi be some derivation of 

[ r /a]v  5 [r /a] t ;  , ( i  = 1 ,2 )  . Let E be some derivation of T 5 u . Let R be some derivation of 

w 5 Va 5 u. v  . One can readily verify that the right hand side of (5) is congruent to 

[INH] ( [B  - SPEC] ( [INH] ( C' R )  , Z) , O i )  

This implies that the statement of the lemma holds for Al, A2, with common type [ r / a ] v  , with 
C = [B - SPEC] ( [INH] ( C' , R )  , "z) , and with 0; being just O;, (i = 1,2). (Note. There is no 

difficulty in dealing with (FORALL) instead of (W-FORALL) here: si G u would be simply replaced 

by si 5 u .) 

Rule[R-ELIM]. Suppose that A; [ R  - ELIM] ( A{ ) and that A; yields r t- 
elim e : [pa;. t i /ai]t;  , thus A: yields I' I- e : pa;. t ;  , (i  = 1,2); .  Apply the induction hy- 

pothesis to A', , A', obtaining st ,  C', 0',, 0;. Also by induction hypothesis, 

A ;  r [R - ELIM] ( [INH] ( C' , 0:) ) , ( i  = 1,2) .  

Since s' 5 pa;. t; , (i  = 1,2)  are derivable, it follows from Remark 10 that there must exist a ,  t 
such that pa;. t; = pa. t , ( i  = 1,2)  and s' 5 pa. t are derivable. Let 0' be any derivation of 

s' 5 pa. t  . Since by Lenlma 9, 0; % 0: 2 O' , the statement of the lemma holds with common type 

[pa. t / a ] t  , with C = [ R  - ELIM] ( [INH] ( C' , 0') ) , and with O; = ( R E F L )  , (i = 1,2). 
Rule[CASE]. Again, to simplify the notation, we omit the contexts. Suppose that A; z 

[CASE] ( A : ,  A;;, . . . , Adi) and that A; yields case e of I1 + f l y . .  . ,ln + fn : t; , thus A: 



yields e : [ I l :  t l ; ,  . . . , 1,: t,;] , and A:; yield f j  : tj; + ti , ( j  = 1,  . . . , n ) ,  ( i  = 1,2)  . Apply 

the induction hypothesis to A:, A', obtaining s ,  C', O:, O',. Also apply the induction hypothesis, to 

AS1, A:, obtaining s j ,  Cg, O i l ,  Oi2  , ( j  = 1,. . . , n) . By induction hypothesis, 

(6) A; [CASE] ( [INH] ( C' , 0;) , [INH] ( , 0:;) , . ., [INHI ( 0;;)) , ( i  = 192)- 

Since s 5 [ I l :  t l; ,  . . . , 1,: t,;] , (i = 1,2) are derivable, it follows again from Remark 10 that there 

must exist m 5 n and types r l , .  . . , r ,  such that rl I t l i , .  . . , r ,  I tmi , ( i  = 1,2) and 

s 5 [11: r l ,  . . . , 1,: r,] are derivable. Again similarly, for each of j  = 1, .  . . , n, , since sj  5 tj;  t 
ti , ( i  = 1 ,2 )  are derivable, there must exist u j ,  vj  such that t j ;  5 uj  and vj < ti , ( i  = 1 ,2 )  as 
well as s j  5 uj  t vj are derivable. Thus, we can derive rj  5 tji 5 uj , ( j  = 1,. . . , n), ( i  = 1 ,2 )  . 
However, the fact that the vj 's  may be distinct causes a problem when we want to apply [CASE].  This 

is resolved by Lemma 11. Since n > 1 , there exists a common lower bound of t l  and t 2  (say v l )  

hence v G t l  fl t2 exists and we can derive vj  5 v 5 ti , ( j  = 1, .  . . , n) ,  (i  = 1 ,2 )  . We 

conclude that there exists a derivation ON of s 5 [ I l :  u l , .  . . , I,: u,] , that there exist derivations Oy of 

sj  5 uj  + v , ( j  = 1,. . . , n )  and that there exist derivations 0; of v 5 t ;  , ( i  = 1 ,2 )  . With these, 

we claim that the right hand side of (6) is congruent to 

[INHI ( [CASE] ( [INH] ( C' , 0") , [INH] ( C', , 0;) , . . . , [INH] ( Ch , 0;)) , 0;) , 
This implies that the statement of the lemma holds for Al, A2, with common type v , with C = 
[CASE] ( [INH] ( C' , Of') , [INH] ( C: , 0':) , . . . , [INH] ( Ck , 0;)) , and with 0; being just O;,  ( i  = 

1, 2). 
To prove the congruence claim we introduce notations for certain derivations of inheritance judgements 

whose existence we have established. For each j  = 1 , .  . . , n , i = 1,2 , let Ej; be some derivation for 

t j ;  5 uj  . Then, ( A R R O W )  ( Z j ;  , 0,) is a derivation for uj  t v 5 t j ;  t ti . By Lemma 9 we have 

(7) 05, E ( T R A N S )  ( Oy , ( A R R O W )  ( I j ; ,  0;)) 

Let Z be some derivation of s < [ l l : r l , .  ..,l,:r,] . For each j  = 1,. . . ,m , i = 1,2, let Rj ;  be 
some derivation for rj  5 t j;  . By Lemma 9 we have 

(8) 0: ( T R A N S )  ( I ,  ( V A R T )  (a1; ,  . . . , a,; )) 

and 

(9) 0" E ( T R A N S )  ( E , ( T R A N S )  ( ( V A R T )  ( R1; , . . . , R,; ) , ( V A R T )  ( El; , . . . , En; ))) . 

With these, the congruence claim follows from 

= ~(T)(case  ~ ( P O v a r t ( Q l ) .  . (Qm)avar t (S1)  . . . ( S , ) ) ( M )  of 11 + 1(R1)(Fl) ,  . . . , In + 1(Rn)(Fn))  . 
By (3) and {VART-CRN) the right hand side equals 

and the equality is readily verified. I 



Theorem 13 (Coherence) Replace (FORALL) with (W-FORALL). IfAl and A2 are two SOURCE deriva- 
tions yielding the same typing judgement then Al 2 A2 (their translations yield provably equal terms in 
TARGET). 

Proof: Take tl  = t z  in Lemma 12. By Lemma 9, 0 1  %! O2 . It follows that Al zi A2 . I 

6 Models 

So far we have not actually given a model for the language SOURCE. In this section we correct this 

omission. However, it is a central point of this paper that there is basically nothing new that we need 
to do in this section, since calculi satisfying the equational theory of TARGET have been thoroughly 

studied in the literature on the semantics of type systems. Domain-theoretic semantics suggests natural 

candidates for a special class of maps with the properties needed to interpret the operators -t and o+. 

Here we present list some of these semantic solutions; all of which apply to abstract types as well as to 

variants. A syntactic version could also be given by a syntactic translation into an extension of the target 

calculus of section 2, which expresses the properties mentioned above and the consistency of which is 

ensured by our semantic considerations. 

The domain-theoretic interpretations that we have examined so far are summarized in the following 

table. The necessary properties for all but the last row can be found in [1T87, HP89b1, [CGW89],[ABL86], 

[CGW87], and [Gir87] respectively. The properties needed for the last row can be checked in a manner 

similar to [Gir87]. 

By a bistrict map of lattices we mean a continuous map which preserves both bottom and top elements. 

A separated sum of lattices L and M  is the disjoint sum of L and M  together with new top and bottom 

elements. Note that the category of Scott domains (finitary projections, respectively) and strict maps does 

have finite coproducts, given by coalesced sums of domains, and this implies that the required equation 

TYPES 

Algebraic lattices 

Scott domains 

Finitary projections 

dI domains 

coherent spaces 

dI domains 

{VART-CRN?) P ( c ~ s ~  M o f I l + F l ,  ... ,In+Fn) = Case M o f I l + F l ; P  ,..., l ,+Fn;P 

holds if P  is a strict map (in fact, a separated sum of domains A and B is just the coalesced sum of the 

lifted domains A* and B*). Furthermore, it may be checked that strictness is preserved by the formation 

of coercion maps from given ones according to the coercion rules given in section 3 and at the beginning 

of this section. This model satisfies also {VART-BETA)+{VART-ETA). An important property used in 

the case of Scott domains (finitary projections, respectively) is that the continuous maps from C to D 

TERMS 

continuous maps 

stable maps 

COERCIONS 

bistrict maps 

strict maps 

strict stable maps 

linear maps 

VARIANTS 

sep sum of lattices 

separated sums 

!A@!B 



are in one-to-one correspondence with the strict maps from Cl to D. Analogous remarks hold for stable 

maps and linear maps, with !C instead of CI (see [Gir89], Chapter 8). 

From a category-theoretic point of view, the main point is that we are dealing with two categories, 

one a reflective subcategory of the other, i.e. the inclusion functor has a left adjoint. The subcategory 

contains all objects of the larger category. While the larger category is cartesian closed, the reflective 

subcategory (in which our coercions live) does have coproducts. 

From a proof-theoretic point of view, it is interesting to note that our solution is similar to the treatment 

of proof-theoretic commutation rules for disjunction (see [Tro73], 4.1.3, on page 279 for a presentation 

of commutation rules). The so-called commutation rules for sums in proof theory are closely related to 

the equations {VART-CRN?) where P is an "evaluation" map (see the Appendix B of [Gir88]). 

7 Conclusions and directions for further investigation 

The development of calculi for the representation of inheritance polymorphism and the semantics of such 

calculi is a growing and dynamic area of research investigation in programming languages. We expect 

that the calculi considered in this paper are only a small sample of what is yet to be developed. In this 

section we will speculate on a few of the most important directions for further development which will 

play a significant role in future work of the authors of this paper in particular and the research community 

in general. 

Partial Equivdence Relations. Much of the research on the semantics of the system which we have 

considered has been based on the use of PER'S as described by Bruce and Longo [BL88]. It is therefore 

worthwhile to compare the approach in this paper to this alternative approach. There is an evident means 

of carrying out a technical comparison: since the PER model interprets the calculus TARGET, it also 

interprets SOURCE via our translation. But the semantics in [BL88] gives the interpretation (without 

recursion) directly using PER'S. Could these two interpretations be the same? For a certain fragment 

of SOURCE (including recursion but not bounded quantification), Cardone has recently answered the 

question in the affirmative for his form of semantics [Car89b] (where coherence is not an issue because 

the interpretation of a judgement e: s is given as the equivalence class, in s, of the interpretation of the 

erasure of e-hence the meaning is not defined inductively on a derivation). For the full calculus the 

answer is still unknown as this paper is being written. Arnadio's thesis contains some results about the 

relationship between explicit coercions and PER inclusion [Ama91]. 

Equational Theory. The reader has probably noted that we have never offered an equational theory for 

SOURCE, only one for TARGET. At the current time, the proper equational theory for SOURCE is still 

a subject of active research. However, our translation does suggest an equational theory. One can prove 

that two terms of SOURCE are equal by showing that their translations are equivalent in the equational 

theory for TARGET. Any of the models we have proposed will satisfy the resulting equational theory. 

(Whether this is also true of the interpretation of [BL88] may follow if this interpretation is the same as 

ours.) Since our translation is computable, it follows that this reflected equational theory for SOURCE 

is recursively enumerable; it is natural to ask for a reasonable axiomatization of this theory. Note, for 



example, if e = e': s holds in SOURCE and s 5 t, then e = e': t also holds in the reflected theory. 

There are probably many similarly interesting derived equational rules. 

Recursion Any attempt to provide a model for a calculus which combines inheritance and recursion must 

deal with the seemingly contradictory semantic characteristics of inheritance and recursion at higher types. 

Ordinarily, the rule for inheritance between exponentials (function spaces) is given as follows: 

where s,  t ,  u, v are type expressions and 5 is the relation of inheritance (reading s 5 t as " s  inherits 

from t"). Note, in particular, the contravariance in the first argument of the -+ operator. In contrast, 

semantic domains which solve recursive domain equations such as D = D + D are generally constructed 

using a technique-adjoint pairs to be precise-which make it possible to "order" types using a concept 

of approximation based on the rule 

where 6 = (4L, 4R)  and $J = ( $ J L ,  $ J R )  are adjoint pairs and q5 + $J is the adjoint pair ( A  f.  ?,hL o 

f o q5R, X f. ?,hR o f o q5L). Note, for this case, the covariance in the first argument of the -+ operator. 

Because of this difference, models such as the PER interpretation of Bruce and Longo [BL88], which pro- 

vides a semantics for inheritance and parametric polymorphism, do not evidently extend to a semantics 

for recursive types. To provide for recursive types under this interpretation M. Coppo and M. Zac- 

chi [Cop85, CZ861 utilize an appeal to the structure of the underlying universal domain, which is itself an 

inverse limit which solves a recursive equation. R. Amadio [Arna89, Ama901 and F. Cardone [Car89b] 

have explored this approach in considerable detail. There has also been progress on understanding the 

solution of recursive equations over domains internally to the PER model which should provide further 

insights [FMRS89, Fre891. On the other hand, models such as those of Girard [Gir86] and Coquand, 

Gunter and Winskel [CGW87, CGW891, which handle parametric polymorphism and recursive types, do 

not provide an evident interpretation for inheritance. It has been the purpose of this paper to resolve this 

problem by an appeal to the paradigm of "inheritance and implicit coercion". However, this leaves open 

the question of how recursive types can be treated with this technique if one is to include a more powerful 

set of rules for deriving inheritance judgements between recursive types. 

One complicating problem is to decide exactly what form of inheritance between recursive types is 

desired. For example, it seems very reasonable that if s is a subtype of t then the type of lists of s's 

should be a subtype of lists of t's. This is not actually derivable in the inheritance system described in 

this paper since there are no rules for inheritance between recursive types. But care must be taken: if s is 

a subtype if t then is the solution of the equations a = a -+ s be a subtype of the solution of a = a + t? 

There are several possible approaches to answering this question. The PER interpretation provides a good 

guide: we can ask whether the solutions of these two equations have the desired relation in the PER 

model. Concerning the coercions approach we are forced to ask whether there is any intuitive coercion 

between these two types. If there is, we have not seen it! It is reasonable to conjecture that inheritance 



relations derived using the following rule will be acceptable: 

C , a < T o p  I- s 5 t 
C I- pa.s 5 pa. t 

where types s and t have only positive occurrences of the variable a. Unfortunately, this misses many 

interesting inheritance relations that one would like to settle. Discussions of this problem will appear 

in several future publications on this subject. A rather satisfactory treatment using coercions has been 

described in [BGS89] by using the "Amber rule" of Cardelli [Car86]. 

Operational semantics. Despite its importance there is virtually no literature on theoretical issues concem- 

ing the operational semantics of languages with inheritance polymorphism. In particular, at the time we are 

writing there are no published discussions of the relationship (if any!) of the denotational models which 

have been studied to the intended operational semantics of a programming language based on the models. 

In fact, the operational semantics of no existing "practical" programming language is based on the kind 

of semantics discussed in this or any of the other papers on the semantics of Fun. This is because there 

is a divergence between the "traditional" style of semantics for the A-calculus and the way the evaluation 

mechanisms of modem functional programming languages actually work. In particular, no functional 

programming language in common use evaluates past a lambda abstraction. Hence the identification of 

the constantly divergent function with the divergent element will cause the denotational semantics to fail 

to be computationally adequate with respect to the evaluation. Another related problem concerns the use 

of the p-rule and call-by-value evaluation. Many of the functional programming languages now in use 

evaluate all actual function parameters. This evaluation strategy immediately causes the full @-rule to 

fail. For example, the application of a constant function to a divergent argument will diverge in general. 

Semantically, this means that terms of higher type must be interpreted as strict functions. In a subsequent 

paper [BGS90], three of the authors of the current document have explored the operational semantics of 

inheritance with a coercion semantics in a call-by-value setting. The results there are intuitively pleasing, 

but there is much more that needs to be done. This direction of investigation offers several opportunities 

for practical applications of the specification and implementation of compilers and interpreters for new 

languages with inheritance. 

Existentiah. We have omitted discussion of existentials in this paper. We believe that the coherence resuIts 

we have described will extend to a suitable interpretation of the existential types using the equational 

theory for weak sums, but did not choose to involve ourselves in additional cases that this would mean 

for our proofs. 

Order-sorted algebra. The use of coercions in a first-order setting has been investigated in work of 

J. A. Goguen, J-P. Jouannaud and J. Meseguer on order-sorted algebras [GJM85, GM]. In particular, the 

implementation of OBJ2 utilized a form of "inheritance as implicit coercion" approach. Related work by 

Bruce and Wegner appears in [BW90]. 

Abstract coherence. Since there are many different calculi for which a coherence theorem is interesting, 

it is very useful to have a more abstract theory from which special instances of coherence can be derived, 

thus making coherence a more routine part of a semantic theory for an inheritance calculus such as 



the one we have discussed. We mentioned earlier that coherence was an issue in category theory and 

this might provide a framework for a more general theory. (Although, the results on coherence in the 

category theory literature are insufficient for the results of this paper so further extensions will be needed). 

Using rewriting techniques, Curien and Ghelli have developed a type-theoretic approach to the abstract 

coherence problem for F< - which is a subsystem of SOURCE featuring only function and bounded generic 

types [CG90]. It would be interesting to see this technique extended to all of SOURCE, especially in 

view of the complications we encountered with variants. 

Subtyping of bounded quantification. Our main coherence result was proved for a weaker version of the 

system, one that uses the rule (W-FORALL) instead of (FORALL) (see Appendix A). We believe that 

this is only a technical restriction that arose from our particular proof, and that coherence holds for the 

stronger system. A proof would however require a way to circumvent the usage of Lemma 11 in the 

treatment of the [CASE] rule in Lemma 12, since Lemma 11 fails when (FORALL) is postulated (for a 

counterexample, see Giorgio Gelli's dissertation [GhegO]). Perhaps greatest lower bounds and least upper 

bounds can be replaced by some canonical choice of lower and upper bounds, a choice that may result 

from the derivation of the typing judgement itself. 

Record update. For practical applications of calculi such as Fun, a particularly important problem concerns 

the semantics of "record update". The idea is this: given a function f :  s + t and a record e with a field 

1 of type s, we would like to modify or update the 1 field of e by replacing e.1 by f ( e . l )  without 

losing or modifLing any of the other jieldr of e .  The development of calculi which can deal with this 

form of polymorphism and the ways in which Fun and related languages can be used to represent similar 

techniques are an object of considerable current investigation. One recent effort in this direction is [CM89] 

but several other efforts are under way. Despite its importance we have not explored this issue in this 

paper since the discussion about it is very unsettled and it will merit independent treatment at a later date. 

We believe that the "inheritance as implicit coercion" method is quite robust. For example, it easily 

extends to accommodate "constant" inheritances between base types, such as int 5 real , as long 

as coherence conditions similar to the ones arising in the proofs of the relevant lemmas in this paper 

hold between the the constant coercions which interpret these inheritances. Moreover, we expect that our 

methods will extend to the functional part of Quest [Car89a] and to the language described in [CM89], 

using the techniques of Coquand [Coq88] and Lamarche [Lam88]. Current work on inheritance and 

subtyping such as [CHC90] and [MitgO] will provide new challenges. We do not claim that every 

interesting aspect of inheritance can necessarily be handled in this way. However, our treatment, by 

showing that inheritance can be uniformly eliminated in favor of definable coercion, provides a challenge 

to formalisms which purport to introduce inheritance as a fundamentally new concept. Moreover, our 

basic approach to the semantics of inheritance should provide a useful contrast with other approaches. 
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Appendix A : The language SOURCE 

Type expressions: 
Fragment: a I Top I s+t I { l l : s l  ,..., lm:sm}  I V a 5 s . t  I pa.t 

Variants: ( [ l l : t l , . .  . , ln:tn] 

where a ranges over type variables, m, n 2 1, and, in b'a 5 s.  t  , a cannot be free in s. We will use 

[ s /a] t  for substitution. 

Raw terms: 
Fragment: 

x  ( d(e )  I Ax: t .  e  I {II = e l , .  . . , I ,  = e m )  1 e.1 I h a  s t .  e  ( e ( t )  I introba. t ]e  I elim e  

Variants: 
I [ l l : t l  ,..., I;=e ,..., ln:tn] I c a s e e o f l 1 + f l  ,..., I,+ f, 

where x  ranges over (term) variables and m, n 2 1. (Note the type decorations on variant "injections"; 

this is necessary for the uniqueness of type derivations in the inheritance-less system and it differs 

from [CWSS].) 

Raw terms are type-checked by deriving typing judgements, of the form I' t- e : t . where I' is 

a context. Contexts are defined recursively as follows: 0 is a context; if I' is a context which does not 

declare a,  and the free variables of t  are declared in r ,  then r ,  a 5 t is a context; if I' is a context 

which does not declare x, and the free variables of t are declared in I', then I', x :  t is a context. The 

proof system for deriving typing judgements makes use of inheritance judgements which have the form 

C I- s  < t where C is an inheritance context. Inheritance contexts are contexts in which only 

declarations of the form a < t  appear. If r is a context, we denoted by the inheritance context obtained 

from r by erasing the declarations of the form x:  t. 

Rules for deriving inheritance judgements: 

Fragment: 

WAR) 

(ARROW) 

C I- t  5 Top 

where the free variables of t  are declared in C 



(FORALL) 

For Lemmas 11 and 12, and for Theorem 13 this is replaced with the weaker 

(W-FORALL) 

(TRANS) 

Variants: 

C I - t < t  

where the free variables of t  are declared in C 

Rules for deriving typing judgements: 

Fragment: 



[SELI 

[B-GEN] 

[B-SPEC] 

[R-INTRO] 

[R-ELIM] 

[INHI 

Variants: 

I' I- e  : [pa .  t / a ] t  
I' I- intro[pa. t ] e  : pa. t 

r t- e :  pa . t  
I' I- elim e : [pa.  t / a ] t  

I- e :  [ l 1 : t ,  1 I' I- fl : t l + t  r I- f,: t,+t 
[CASE] 

I' t- case e o f  11+ f l ,  ..., ln+ f, : t  



Appendix B: The language TARGET 

Type expressions: 
Fragment: a l s - - + t  I{bl:sl  ,..., l , : s , ) IVa . t (pa . t  
Variants: I [bl: t l , .  . . , ln: tn]  
Coercion space: 1 s ~ t  
when a ranges over type variables and n > 1. For m = 0 we get the empty record type 1 de' {I. 

Raw terms: 
Fragment: 

x ( M ( N )  I Ax: t .  M 1 (11 = M I , .  . . , I ,  = M,) I M.1 I Aa. M 1 M ( t )  I intro[pa. t ] M  ( elim M 

Variants: 
I [11 : t l  , . . . , I ;  = M ,  . . . , I,: t,] I case M of ll + Fl , . . . , I n  + Fn 

Coercion-coercion combinator: 

I Ls, t  

Coercion combinators: 

where x ranges over (term) variables and n 2 1: For m = 0 we get the empty record, for which we 

will keep the notation {) . We will usually omit the cumbersome type tags on the coercion(-coercion) 

combinators. We use [ N I X ]  M for substitution. 
Typing judgements, have the form T k M : t  , where T is a typing context. Typing contexts are 

defied recursively as follows: 0 is a context; if T is a context which does not declare a, then T ,  a  is 

a typing context; if T is a context which does not declare x, and the free variables of t  are declared in 

T ,  then T ,  x:  t is a typing context. 

Rules for deriving typing judgements: 

Fragment: 
Same as in Appendix A: [VAR] , [ABS] , [APPL] , [RECD] (in particular, for n = 0, T I- {) : 1 ) 

, [SELL 

T , a  I- M : t  
T I- Aa. M : Va. t  

[SPEC] 



Same as in Appendix A: [R-INTRO] , [R-ELIM]. 

Variants: 

Same as in Appendix A: [VART] , [CASE]. 

Coercion(-coercion) combinators: 
We omit the typing contexts to simplify the notation. 

arrow[s, t ,  U ,  V ]  : ( S  C+ t )  + ( U  C+ v)+ ( ( t  + U )  W ( S +  v ) )  

forall[s, t ,  a ,  u,  v ]  : ( s  w t )  + Va. ( ( a  M s )  + ( u  o+ v ) )  + (Va. ( ( a  o+ t )  + u )  - Va. ( ( a  - s )  + v ) )  

refl[t] : t - t  

Equational theory: 
Technically, equational judgements should all contain a typing context under which both terms in the 

equation typecheck with the same type [CGW87, BC88, CGW891. To simplify the notation, we will in 

most cases omit these contexts. 

Fragment: 
We omit the simple rules for reflexivity, symmetry, transitivity, and congruence with respect to 

function application, record formation, field selection, application to types, recursive type introduction, 

and recursive type elimination. 



{TYPE-XI} 

{BETA) 

{RECD-BETA) 

T I- Aa. M = Aa. N 

(Ax: s .  M ) ( N )  = [ N / x ] M  

where N : s . 

Ax: s .  M ( x )  = M 

where M : s t  t and x not free in M .  

{ I 1 = M 1 ,  ..., lm=Mm) . l ;  = M; 

where m 2 1, M l : t l , .  . . , M m : t m .  

{RECD-ETA) {Il = M.11,. . . , 1 ,  = M.1,) = M 

where M : { I l :  t l ,  . . . ,1,: t , }  . For m = 0, this rule gives {) = M which makes 1 into a 

terminator. 

{FORALL-BETA ) 

{FORALL-ETA) A a . M ( a )  = M 

where M : Va. t and a not free in M .  

{R-BETA) elim (intro[pa. t ] M )  = M 



where M : pa. t . 

{R-ETA} 

where M : [pa. t / a ] t  . 

Variants: 

We omit the simple rules for congruence with respect to variant formation, and case analysis. 

{VART-BETA} case inj,. ( M i )  of l1 + F ~ ,  . . . , I ,  + F, = F;(M;)  

where Fl : t l  + t ,  . . . , F, : t ,  + t ,  Mi : t;  and inj,. is shorthand for 

Xx:t;. [ l l : t l , .  . . , E ;  = x , .  . . ,l,:tn]. 

{VART-ETA ) case M of ll + injll,. . . , I ,  + inj,, = M 

where M : [ l l : t l , .  .. ,l,:t,]. 

{vART-CRN} ~ ( P ) ( c a s e  M of l1 + Fly . .  . , I n  + F,) = case M of 1, + Fl; L ( P ) ,  . . . , I ,  + F,; L ( P )  

where M : [ l l : t l , .  . . ,l ,:tn], F l : t l -+t , . .  . ,Fn:tn+t ,  P : t c w s .  

Alternatively, we could require instead of { VART-ETA } + { VART-CRN }: 

{VART-COP) L ( Q ) ( M )  = case M of  ll + (injll ; L(Q) ) ,  . . . , I ,  + (inj,,; L ( & ) )  

where M :  [ll: t l ,  . . . , I n :  t,], Q:  [11: t l ,  . . . , I,: t,] cw t . 

Coercion(-coercion) combinators: 

~(arrow(P) (Q) )  = X Z :  t -+ u. ( L ( P ) ) ;  Z ;  ( L ( Q ) )  

where P : s w t ,  Q : u c w v .  

1(recd(R1) . . . (R,))  = Xw: {11: s l ,  . . . ,l,: s,, . . . ,I,: s ~ } .  {11: ~ ( R ~ ) ( w . l ~ ) ,  . . . , 1,: ~ ( R ~ ) ( w . l ~ ) }  
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where R1:sl  o+tl,. . . , R p : s p ~ t p .  

~ ( f o r a l l ( P ) ( W ) )  = Xz: (Va. ( a  cw t )  -, u) .  ha .  X f :  a  cw S .  L ( W ( ~ ) (  f))(z(a)(trans( f ) ( P ) ) )  

where P : s w t ,  W : V a . ( a ~ s ) + ( u o - - , v ) .  

1(vart(R1) . . . (R,)) = X W :  [ I 1 :  s l , .  . . ,I,: sp] .  case w of  l1 + L ( R ~ ) ;  injll,. . . , I p  + 1(Rp); inj,, 

where R1:sl  o+tl , .  . . , R p : s p  m t , .  

where P: r o-i s ,  Q:  s  o+ t .  

{IOTA-INJ) 



Appendix C: The translation 

We present first the remaining of the translation of the fragment discussed in section 3. 

def where R = Aw: i l l :  s;, . . . , l p :  s;, . . . , lq: $1. {Il: Pl(w.l l) ,  . . . , lp:  PP(w.lp)} 

C* I- Xx:t*.x : t*-+t* 

where the free variables of t* are declared in C* 

The rules [VAR] , [ABS] , [APPL] , [RECD] , [SEL] , [R-INTRO] , [R-ELIM] are translated 

straightforwardly, see below. Here is the translation of the only other rule left (the translations of the 

other rules appears in section 3). 

[B-GEN] 

In the following, we present the translation for the full calculus. As before, for any SOURCE i t e m  

we will denote by i t e m *  its translation into TARGET . We begin with the types. Note the translation 

of bounded generics and of Top. 

def dzf a* - a (Va 5 s. t)* - Va. ( ( a  o+ s*)  + t*)  
d ~ f  dzf Top* - 1 (pa .  t)* - pa. t* 
def def 

( S  -+ t )* - S* + t* [ I 1 :  s l , .  . . , I n :  sn]* - [11: s;,  . . . , ln: s;] 
def { l l : s l , . .  .,ln:s,}* = { l l :s ; , . .  . , lm:s;} 

where s x t  de' {left:s,right:t).  



One shows immediately that ([s/a]t)* = [s*/a]t* . We extend this to contexts and inheritance 

contexts, which translate into just typing contexts in TARGET . 
0* &f 0 @* $f 0 

dzf (T, a<t)* - I", a, f : a a t *  (C,  a<t)* ef C*, a, f : a a t *  
def (r, x:t)* = r*, x:t* 

where f is a fresh variable for each (a,  f ). 
Next we will describe how we translate the derivations of judgments of SOURCE . The translation 

is defined by recursion on the structure of the derivation trees. Since these are freely generated by the 

derivation rules, it is sufficient to provide for each derivation rule of SOURCE a corresponding rule on 

trees of TARGET judgments. One then checks that these corresponding rules are directly derivable in 

TARGET (Lemma 14 below), therefore the translation takes derivations in SOURCE into derivations in 
TARGET. 

A SOURCE derivation yielding an inheritance judgment C t- s 5 t is translated as a tree of 

TARGET judgments yielding C* t- P : s* c+ t* . Here are the TARGET rules that correspond to the 

rules for deriving inheritance judgements in SOURCE. 

(TOP)* C* I- top:  t * w l  

(VAR)* C;, a, f : a w t * ,  C i  t- f :  a w t *  

(ARROW) * 
C* !- arrow(P)(Q) : (t* + u*) c+(s* + v*) 

C* t- P I :  s f c w t f  ... C* t- Pp : S ;  m t; 
(RECD)* C* t- recd(Pl). . . (P,) : { I , :  s f ,  . . . , I p :  s;, . . . , lq: s;} c+{l l :  t;, . . . , z P :  t;} 

C* t- P :  s*cwt* C*, a, f : a m s *  I- Q :  u*c+v* 
(FORALL)* 

C* t- forall(P)(Aa. A f :  a c+ s*. Q )  : Va. ( (a  m t*)  + u*) m Va. ( (a  m s*) + v*) 

C* t- P I :  s f m t f  ... C* t- Pp : S; m t; 
C* I- vart(Pl). . .(Pp) : [l l:s; , .  . . , l p : ~ ; ] ~ [ l l : t ; , .  . . , lp:t;, .  . . , lq:t;] 



where the free variables of t* are declared in C* 

A SOURCE derivation yielding an typing judgment r I- e : t  is translated as a tree of TARGET 
judgments yielding r* I- M : t* . Here are the TARGET rules that correspond to the rules for deriving 

typing judgements in SOURCE. 
The rules [VAR] , [ABS] , [APPL] , [RECD] , [SEL] , [R-INTRO] , [R-ELIM] , [VART] , [CASE] 

all have direct correspondents in TARGET so their translation is straightforward. We ilustrate it with 

two examples. 

r;, X A * ,  r; I- x : t* 

r * ,  x:s* I- M : t* 

Here is the translation of the other three rules. 

[B-GEN] 

[B-SPEC] * 

r* I- Aa. A f: a o+ s*. M : Va. ( ( a  o-, s*) -+ t * )  

[INHI* 
r * I - M : s *  ? * I - P : s * w t *  

r* I- L ( P ) ( M )  : t* 

Lemma 14 The rules (TOP)* - (TRANS)* and [VARI* - [ I N H I *  are directly derivable in TARGET . 1 
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