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Abstract 

Statman's 1-Section Theorem [17] is an important but little-known result in the model the- 
ory of the simply-typed A-calculus. The 1-Section Theorem states a necessary and sufficient 
condition on models of the simply-typed A-calculus for determining whether pq-equational rea- 
soning is complete for proving equations that hold in a model. We review the statement of the 
theorem, give a detailed proof, and discuss its significance. 

1 Introduction 

The theory of the simply-typed A-calculus forms the foundation of call-by-name functional lan- 
guages. The simply-typed A-calculus comes equipped with an equational theory-the (P) and 
(q) axioms together with the usual rules of equality-and a n  independently-characterizable class 
of models. The equations (P) and (7 )  are sound for proving facts in models, viz., an equation 
derivable from the axioms is valid in all models. A more general fact encompassing soundness 
is completeness: an equation between simply-typed A-terms is provable via Pq-reasoning iff the 
equation holds in all models. An arbitrary model of the simply-typed A-calculus may, of course, sat- 
isfy more equations than those provable from (0) and (7). Here we shall discuss a simple necessary 
and sufficient criterion for determining whether the equational theory of a single model, or more 
generally a class of models, is captured completely by Pq-equality. The criterion, due t o  Richard 
Statman, is crystallized in the 1-Section Theorem. Part  of our purpose here will be t o  state the 
theorem and present a rigorous proof: although it is cited in [17] and follows from results in [16], a 
complete proof has never appeared in the literature. Statman's criterion may be easily applied t o  a 
host of models, and we will demonstrate its applicability to  show the completeness of ,@reasoning 
for some of the more familiar models of the simply-typed A-calculus. 

It is not hard to  find a model that  satisfies exactly the equations provable from ( P )  and (q). 
One can construct such a model B out of Pq-equivalence classes of open terms; the (,b) and '(i) 
axioms are crucial in verifying that  B is a model. Note that  the non-soundness direction of the 
completeness theorem above follows as a corollary: if an equation is not provable from (0 )  and (q), 
there is a model, namely B, that  denies the equation. But this "term model" has little independent 

'This research was partially supported by an ONR grant number N00014-88-K-0557, NSF grant number CCR- 
8912778, NRL grant number N00014-91-J-2022, and NOSC grant number 19-920123-31. 
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interest beyond proving the completeness theorem. Another model, definable without reference to 
the (p)  and (7) axioms, is the full set-theoretic model S over N, defined 

S L = N  

ST'" = [ST + S"] 

where [A  + B] is the set of all total functions from A to  B. From a mathematical point of view, the 
model S is important precisely because it contains all the higher-order functions one may encounter 
in mathematical statements and proofs. Of course, not all the functions in S are definable in the 
simply-typed A-calculus, since the set of simply-typed A-terms is countable and the set of elements 
in S is uncountable. For those functions that are definable, Pq-equality is complete: 

Theorem 1.1 (Friedman [4]) M =p, N iff S + M = N .  

Thus, if we wish to prove a fact about A-definable functions in S ,  we may substitute pq-reasoning 
(which is decidable, cf. [I]) for denotational reasoning. 

S is but one example of a model for which pq-reasoning is complete; standard denotational 
models of functional languages provide more examples. In denotational models, we usually use 
posets instead of sets and continuous functions rather than set-theoretic functions. Continuity 
allows an easy interpretation of recursion present in most programming languages [5]. The model 
N built out of all continuous functions over the base Scott domain NI is a familiar example of a 
denotational model for the language PCF [9, 151. More formally, 

Jv = NI 

NT'" = [NT +, N"]  

where NI is the poset of natural numbers ordered discretely with an element I ordered below every 
element of N, and [NT +, N"]  is the Scott domain of continuous functions from NT to Nu ordered 
pointwise [5]. Then 

Theorem 1.2 (Plotkin [lo]) M =p, N iffni (= M = N .  

Classes of models can also be complete for pq-equational reasoning: 

Theorem 1.3 (Plotkin [8]) M = p ,  N iff in all models M with finite base type, M M = N .  

In particular, showing that M = N holds in all models with finite base type can be established by 
showing that A4 = p ,  N. 

The original proofs of Theorems 1.1 and 1.2, and 1.3 proceed quite differently: the proofs of the 
first two construct logical relations between the term model and the model in question, while the 
proof of the third relies on certain combinatorial facts about A-terms. In fact, the combinatorial 
arguments may be adapted to prove Theorems 1.1 and 1.2. (The logical relation argument has 
important uses in other contexts, cf. [ l l ,  121.) The combinatorial argument is essentially captured 
by Statman's 1-Section Theorem, which states that if a certain algebra can be faithfully embedded 
in the first-order part of a class of models-in a sense to be made more precise in Section 3-then 
pq-equational reasoning is complete for proving all equations in the class of models. Section 4 
describes a detailed proof of the 1-Section Theorem, showing how the combinatorial structure of 
the required embedded algebra can be used to deduce completeness. 
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Table 1: Syntactic formation rules of the simply-typed A-calculus. 

- 

The importance of the 1-Section Theorem lies not in its statement but in its applicability. In 
Section 5, we show how the 1-Section Theorem can be used to  prove Theorems 1.1, 1.2, and 1.3. 
We also show how these, and other similar theorems, can be used in reasoning about functional 
programming languages. Finally, Section 6 concludes the paper with a discussion of some open 
problems. 

Variables x : a, where i E N Constants cU : a ,  where c E C 

M : v  M : ( T + u )  N : T  
A-abstraction Application 

(Ax:. M) : (T --+ v )  ( M  N )  : v 

2 Review of the simply-typed A-calculus 

We first briefly review the syntax, semantics, and equational theory of the simply-typed A-calculus. 
The reader familiar with the simply-typed A-calculus may care to  skim this section in order t o  
understand the notation we use. 

2.1 Syntax 

Each term in the simply-typed A-calculus comes with a simple type. Simple types are defined 
inductively to  be the base type 1, usually taken to be the type of natural numbers, and (r -t v), 
the type of functions from T t o  v, where r and v themselves are types. For readability, we often drop 
parentheses from types with the understanding that  -t associates t o  the right, e.g., (L -t (L -t 1)) is 
abbreviated (1 + i -+ 1). This convention implies that  any simple type a can be written uniquely 
in the form (al --+ a;? -t . . .a, + L )  for some n 2 0. 

The set of simply-typed terms is parameterized by a signature, which is just a set of typed 
constants. The set of simply-typed terms over the signature C, together with their types, is defined 
in Table 1. We adopt many of the standard notational conventions of the A-calculus from [I]. For 
instance, the usual definitions of free and bound variables are used and F V ( M )  denotes the set 
of free variables of M. Terms are identified up to  renaming of bound variables, and are denoted 
by the letters M ,  N ,  P, Q, S, and T. Parentheses may be dropped from applications under the 
assumption that  applica.tion a.ssociates to  the left, i .e . ,  (A4 N P) is short for ((A4 N )  P). We will 
also drop types from variables whenever the types are unimportant or can be deduced from the 
context, and use the letters u ,  u, W, x, y ,  and z to  denote variables. Finally, syntactic substitution 
is written M [ x  := N],  where the substitution renames the bound variables of M t o  avoid capturing 
the free variables of N .  
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2.2 S e m a n t i c s  via e n v i r o n m e n t  m o d e l s  

Although there are other equivalent definitions of models, here we assign meaning to  terms using 
environment models [4, 6, 71. Environment models have two components, the first of which is a 
type frame: 

Def ini t ion 2.1 A t y p e  f r a m e  is a tuple 

({Mu : a a type), {ApT*" : r,  v types)), 

where each Mu is a nonempty set and ApT*" : MT" x M7 + Mu. The components of a type 
frame must also obey the extensional i ty  p roper ty :  for any f , g  E MT'", f = g iff for a11 d, 
Ap'fu( f ,  d) = Ap'lu(g, d). 

Intuitively, ApTlU is an abstract "application" function for applying elements in the set MTdU t o  
elements in the set Mr. The extensionality property states that the set M7"' can be regarded as 
a set of total functions from MT t o  M u ;  the most familiar type frames are constructed out of total 
functions. 

The second component of an environment model is a meaning function MI.] that  assigns 
elements of a type frame t o  terms. Since there is no way to  assign a meaning to  an open term a 
priori, an e n v i r o n m e n t  is used t o  assign meaning to  free variables. 

Def ini t ion 2.2 Let M be a type frame. An M - e n v i r o n m e n t  p is a map from variables to  
elements of M that  respects types, i.e., p(xa) E Ma. 

We use the notation p[xT H d] for a new environment that  maps xT to  d and every other variable y 

t o  P(Y). 

Def ini t ion 2.3 An e n v i r o n m e n t  m o d e l  over a signature C is a type frame M with a meaning 
function M[.] defined inductively on the structure of terms as follows: 

MI[x"IP = p(xU> 
M[ca]p = Z(cu) 

MU(M N)ilp = Ap(MilMIp7 MIINDP) 
M([Ax7. M]p = f ,  where Ap(f,d) = M[M]p[xT o dl 

where Z : C -+ M is a constant interpretation function that respects types, i.e., for all cu E C, 
Z(cu) E Mu. 

Equations are interpreted in the obvious way in environment models: for any environment model M,  
we write M + M = N iff for all environments p, M[M]p = M[N]p. 

Not every type frame is an environment model, since the definition requires the existence of 
an appropriate meaning for each A-abstraction. Some standard examples of environment models 
were given in the introduction. Another example is the type frame consisting of all set-theoretic 
functions over a base set X, defined by 

X" x 
X"" = [X7 + XU] 

Ap(f, d) = f ( d ) -  

There are other ways of defining environment models other than by explicit constructions. For 
example, we may construct a direct product out of a class of models. 
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Definition 2.4 Let { M o , M 1 , M 2 , .  . .) be a countable (possibly finite) class of models over a 
signature C. Then the direct product of {Mi) is a tuple ({M"),{Apa~r)) with 

Mu = {(ao,al,a2, ...) : a ; E M ; }  

A ~ ( ( f 0 ,  fl,. . .), (ao,a1,. .)I = (A~o(fo ,ao) ,A~l ( f l ,  a l l ,  . .  .) 
We could, of course, generalize the definition to uncountable direct products, but we will only need 
countable direct products here. It is important to  note that this construction always yields a model. 

Proposition 2.5 If M is the countable direct product of a class of models {Mo,  M 1 , M 2 , .  . .} over 
a signature C, then M is a model over the same signature in which 

M b M = N i$ for all i, Mi 'F M = N. 

Proof: First we need to  verify that M is indeed a type frame, and so we need to  show that 
application in the structure is extensional. To that end, consider any f = ( fo, f l ,  f2 , .  . .) and 
g = (g0,g1,g2, ...) in the set MT'". If f = g, then it is easy to see that Ap(f,d) = Ap(g,d) 
for any d E M r .  If f # g, then for some i, fi # g;. Since Mi is a type frame, there exists an 
element d; E MI such that Api (  f;, d;) # Api(gi, d;). For all j # i, pick any dj E M 3 ,  and let 
d = (do, d l , .  . . , d;-1, di, di+l,. . .). Then 

Therefore, M obeys the extensionality property. 
To see that M is a model, define 

where p;(x) = d; if p(x) = (do,dl,d2,. . .). We claim that this matches the inductive definition of 
the meaning function in Definition 2.2; the proof is a straightforward induction on terms. Finally, 
we must show that M + M = N iff for all i, Mi 'F M = N ,  which follows easily from the definition 
of b.. 

2.3 Pq-equat iona l  t h e o r y  

Reasoning about equalities of A-terms can also be done purely syntactically. The equational theory 
of the simply-typed A-calculus appears in Table 2. All equational theories include the axiom ( r e n  
and the rules (symm), which axiomatize = as an equivalence relation; the rules (cong) and ( t )  
similarly allow substitution of equals for equals. The only other axioms of the theory are ( P )  and 
(q), which can be justified by examining the intended class of models defined above. We write 
M =p, N when M and N are provably equivalent using the axioms and rules of Table 2. 

The equational axioms of (P) and (7) may be directed into a rewrite system. Table 2 also 
defines the rewriting relation +p,. We write M +p, N if M rewrites to N in 0 or more steps, 
and say that a term M is in normal form if M +p, N for any N [I]. An important fact about 
normal forms is summarized by the following proposition: 

Proposition 2.6 Suppose M and N are terms of the same type in Pv-normal form, and M # N. 
Then M #p, N. 
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Table 2: Equational and rewrite systems o f  the simply-typed A-calculus. Each term appearing in 
these rules must be a well-formed term o f  the simply-typed A-calculus. 

Equational System 

Rewrite System 

7 

( P )  ( (Ax.  M )  N )  = M [ x  := N ]  

( r l )  ( A x . M x )  = M ,  i f x # F V ( M )  
(refr) M = M  

M = N  M = N  N = P  
(symm) N = M  (trans) M = P  

M = N  P = Q  
( t )  

M = N  
(eOng)  

( M  P )  = ( N  Q )  (Ax. M )  = (Ax. N )  

((Ax.  M )  N )  +p,  M [ x  := N ]  
(Ax. M x )  +p, M ,  if x # F V ( M )  

M -+p, N M +p,  N 
( M P ) + p , ( N P )  ( P M ) + p , ( P N )  

M -0, N 
(Ax. M )  -+p, (Ax. N )  



The proposition follows easily from the Church-Rosser Theorem for the simply-typed A-calculus 

[I ,  7, 181. 
For the proofs in this paper, we will use e x t e n d e d  07-normal  f o r m s  instead of 0.17-normal 

forms. 

Definit ion 2.7 A term M of type (a l  --+ . . . -+ a, + L) is in e x t e n d e d  0 7 - n o r m a l  f o r m  if M 
has the form 

Ax:'. . . .Ax?. u (MI x1 . . .2,). . . (Mk 21.. . x,) 

where k, n 3 0, u is either a variable or constant, and each Mi is in extended 07-normal form. 

Extended 07-normal forms are called @-normal forms in [16]. Closed extended 07-normal forms 
are easier t o  induct upon than &-normal forms, because the constituent terms MI , .  . . , Mk are also 
closed extended 07-normal forms. It is also appropriate to  call these terms "normal forms" due to  
the following proposition: 

P r o p o s i t i o n  2.8 For any M ,  there exists a unique extended ,f?~-normal form N such that M =pq 

N .  

Proof :  By the Strong-Normalization Theorem for -+p, in the simply-typed A-calculus, there ex- 
ists a term MI in 07-normal form such that M +p, MI. Note that  MI must have the form 
Axl. . . . Ax,. u M1 . . . MI, where each M j  is in 07-normal form and u is a variable or constant. If 
M has type ( a l  -+ . . . -+ a, -+ . . . -+ a, -+ L), first let 

Each M I , .  . . , MI,  x ~ + ~ ,  . . . , x, may be turned into a closed term by A-abstracting over all the 
variables X I , .  . . , x,, resulting in the term 

MI" = Ax1. . . . Ax,. u ((AS. MI)  5) .  . . ((A?. M l )  5) .  . . ((A?. xm+i)  2). . . ((XZ. x,) 5). 

where M =p, M"' . The terms (AZ. Adi) and (AZ. xj )  may be then be turned into extended pq- 
normal forms recursively; the process eventually terminates a t  a extended ,077-normal form that is 
07-equivalent t o  M .  

To prove uniqueness, suppose M and N are in extended 07-normal form and M =p, N; we 
will show tha.t M = N by induction on M .  In the basis, M = Axl. . . . Ax,. u where u is a variable 
or constant of type L. Now because N is in extended 07-normal form, 

But note that  M and N must have the same 07-normal form by Proposition 2.6; thus, v = u and 
hence since u is of base type, k = 0. Thus, M = N. In the induction case, suppose 

where each M j  is in extended &-normal form. Since M and N have the same 07-normal form 
by Proposition 2.6, N must have the form Axl. . . . Ax,. u (N1 x l  . . . x,) . . . (Nk X I  . . . x,) where 
M j  =pq Nj. Since M j  and Nj are in extended 07-normal form, by induction M j  = Nj. Thus, 
M = N as desired. W 
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3 Statement of the Theorem 

Suppose two closed terms M and N are not equivalent in a model M; then by the extensionality 
property, one may find arguments in the model driving MUM] and M[[N] to different base type 
elements in the model. Thus, in order for Pq-reasoning to be complete for a model, there must be 
"enough elements'' in the model to distinguish all terms that are not Pq-equivalent. Informally, the 
1-Section Theorem states a condition on the combinatorial structure of a model M that guarantees 
that M has enough elements. This condition is stated in the form of whether a certain algebra can 
be faithfully embedded in M. 

Recall that an a lgebra  A = (A, fa, f i , .  . .) over an algebraic signature {Fa, F l , .  . .) is a tuple 
comprised of a carrier set A together with functions 

where n;  2 0 is the arity of F;. Here we have taken the liberty of currying the function symbols in 
anticipation of incorporating them into the A-calculus. One familiar example is algebra (N, 0 ,  +) 
over the signature (0, +), where 0 is the number zero and + is the curried addition function. 
An algebraic  equa t ion  is an equation involving algebraic terms with variables, and an algebra 
satisfies an algebraic equation t l  = t 2 ,  written A + t l  = t 2 ,  if for any instantiation of the variables 
by elements of the carrier of A, the equation holds in A. For instance, (N, 0 ,  +) + (+ x y) = 

(+ Y 2). 

Given a model of the simply-typed A-calculus, we may extend it to model of an algebraic 
signature. A model MI is an extension of M if M and M' are based on the same type frame, 
and Mi extends the interpretation Z of constants in M to a new interpretation Zi _> Z. When an 
extension preserves the equalities of an algebra, the algebra is faithfully embedded in the model. 

Definition 3.1 Let A be an algebra over the function symbols F; of arity n;  2 0. Suppose M is 
an environment model. Then A is faithfully embedded  in  M if there exists an extension M' of 
M such that M' gives meaning to  all the function symbols F;, and for any algebraic terms tl and 
t 2  (possibly involving variables), MI + t l  = t 2  iff A + tl  = ta. 

We are now ready to give the statement of the 1-Section Theorem. Let 7 be the free closed 
term algebra on a single binary constant F and a single nullary constant C. In computer science 
terminology, the carrier set of 7 can be described by the context-free grammar 

T ::= C ( ( F T  T )  

where 7 + To = Tl iff To and Tl  are syntactically equivalent. The name 7 stands for "tree 
algebra", since the elements in the algebra denote binary trees. 

S ta tman ' s  1-Section T h e o r e m  3.2 Let C be a class of models over the empty signature. Then 
,@-equality completely axiomatizes the valid equations of C i f S 7  can be faithfully embedded i n  some 
countable direct product of models in  C .  

The name of the 1-Section Theorem comes from the fact that an algebra is embeddable in the 
first-order part-the 1-section-of a model. 
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4 Proof of the Theorem 

One direction of the l-Section Theorem follows fairly straightforwardly from the fact that  there are 
only a countable number of equations at  any given type. 

Proof of Theorem 3.2, (e): Suppose =p, is complete for the valid equations in the class of 
models C (over the empty signature). Let Eo, E l ,  E 2 , .  . . be an enumeration of equations of the 
form 

AgL-L-L. AxL. t ,  a - - AgL'L-L. AxL. t; 

where t; and t: are syntactically different terms in the grammar 

t ::= x 1 (g t t).  

Note that  the terms in each equation E; are in pq-normal form, and hence by Proposition 2.6 
each equation E; is not provable by pq-equational reasoning. Since =p, is complete for C, for every 
equation Ed there exists a model A; E C such that  M i  k E;. In particular, there exist fi E M$'"L 
and c; E Mt such that  

Ap; (Ap; (Mi[AgL'L'L. AxL. ti]], fi),  c,) # APE (Api (Mi[AgL'L'L. AxL. t:], f i ) ,  ci). 

Define M to be the countable direct product of the models Ao, A1, Az, . . . and set 

It is not hard to check that  M Ei for every i 2 0. Let M' be the extension of M such that  

M'[[FL+L+L ] = f and A'[CL] = c. By the construction, for every pair of distinct terms To and TI 
in the grammar T above, M1[To] # A1[T1]. Thus, the algebra 7 is faithfully embedded in some 
countable direct product (namely M )  of the elements of C as desired. 1 

The PI-oof of the (+) direction of Theorem 3.2 is more difficult but more interesting. Given a 
countable direct product M of models into which the tree algebra 7 can be faithfully embedded 
and an equation M = N which is not provable by pq-reasoning, we wish to  show that  the model 
M denies the equation M = N .  The essential idea is to show that  M and N can be transformed 
into closed terms of type ((L + L + L) + L -. L) that  are not pq-equivalent: 

Lemma 4.1 Suppose M and N are closed terms over the empty signature of type a and M #p, N .  
Then there exists a closed term P (over the empty signature) of type (a + (L + L + L )  + L + L) 
such that (P  M )  #@, ( P  N) .  

The main combinatorial arguments lie in the proof of this lemma, which we shall explicate shortly. 
The interesting direction of the 1-Section Theorem is then relatively easy to  deduce from Lemma 4.1. 

Proof of Theorem 3.2,  (e): Suppose the tree algebra 7 can be faithfully embedded in the 
countable direct product M ,  and suppose M and N are terms of type a such that  M Z p ,  N .  Let 
{xo7 X I , .  . . ,x,) be the set of free variables appearing in M and N ,  and let M '  = (Axo. . . . Ax,. M )  
and similarly let N' = (Axo. . . . Ax,. N). We will show that M M' = N'. 
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By Lemma 4.1, choose a closed term P of type ( a  --, (1 --, L + 1) --, L -. 1) such that 
( P  MI) Zp, ( P  N'). Let M" be the pq-normal form of ( P  MI), and similarly let N" be the 
pq-normal form of (P N'). Since M" and N" are closed, 

M" = Xg"'"'" Ax'". Mo 

N" = Xg"'"'" AxL. No 

where Mo and No are Pq-normal forms of base type involving only the free variables g and x. Since 
M" #@, N", it must be the case that Mo # No. We claim that Mo and No are terms in the syntax 
t above. The proof of the claim is a little induction on the size of the term Mo (and similarly for 
No). In the basis, Mo has size 1 and hence Mo must be x. In the inductive case, Mo has size greater 
than 1 and must therefore be an application (Po P I . .  . Pr), where Po is a X-abstraction or variable; 
i t  cannot be a X-abstraction because Mo has type 1. Since Mo is in pq-normal form, Po must be a 
variable, and since the only free variables in Mo are g and x,  Mo = (g MA M:). By induction, MA 
and M: must be in the syntax t ,  so hJo is. 

Let f E ML'L'L and c E ML be the elements in M that we use to embed the algebra I. Then 
Ap(Ap(M([M"IJ, f ) , c )  and Ap(Ap(MIN1'], f ) , c )  must be different elements in the model, since Mo 
and No are different terms in the grammar t. Thus, M M" = N", from whence it follows that 
M MI = N'. . 

In order to complete the proof of the l-Section Theorem, we are left with proving Lemma 4.1. 
In outline, we first prove a restricted version of Lemma 4.1, where the terms M and N to be 
distinguished only take arguments of first-order type, i.e., those with type (1 --t . . . --t L). We 
then show, for the more general case when M and N's arguments are not of first-order type, how 
to reduce the problem to terms that take arguments of only first-order type. In proving the two 
lemmas, we will always assume that the terms are in extended Pq-normal form, which we may 
assume without loss of generality by Proposition 2.8. 

We begin by establishing the first claim. 

L e m m a  4.2 (S t a tman  [16]) Suppose M # N are closed extended pq-normal forms of type 

where each a; is a first-order type. Then there is a closed L of type ( a  --, (L + L --, 1) --t i + 1 )  

where (L M )  #@, (L N).  

Proof: Given M # N in extended pq-normal form, our goal is to find an appropriate L. In fact, 
the definition of L, which is done in two stages, will only depend on the types of M and N.  First, 
pick any variables g"'""" and x' ,  and define 

Suppose the type ai = (1 + . . . + L) with ( k  + 1) occurrences of 1; then define 

i f k = O  
Pi = 

Xy;. . . . Xy;. g i (g yl (g yz (. . . (g yk -~  yk) . . .))) otherwise 
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and finally set L = Xwu. Xg"'"'". Ax" w PI . . . P,. 
We claim that ( L  M )  #p, ( L  N ) .  The proof goes by induction on the extended pq-normal 

forms of M and N. In the basis, M = (Ax;'. . . .Ax:. x l )  and N = (Ax:'. . . . Ax:". 54) where 
i # j. Then calculating, 

( L  A4) =p, Xg. A X .  M P I . .  . P, 

=p, Xg. Ax. Pi 

=p, Xg. Ax. i 

and similarly, (L  M )  =p, Xg. Ax. j .  Since both i and j are terms in pq-normal form and i # j, 
i #p, j by Proposition 2.6. Thus, ( L  M )  #p, ( L  N )  as desired. 

In the induction case, there are three cases (up to symmetry) depending on the form of M 
and N :  

1. For some k 2 1, 

2. For some k , l  2 1 and i # j, 

3. For some k 2 1 

The first two cases can be argued similarly to  the basis; the only difficult case is the third case. By 
our hypothesis on the types of the terms M and N ,  the variable xQ' has a first-order type. Thus, 
( M j  2 1 . .  . x,) must have type L and hence M j  has type o. Likewise, N j  has type a. Thus, since 
M j  # N j ,  i t  follows from the induction hypothesis that  ( L  M j )  #p, ( L  N j ) .  Performing some 
calculation, 

(L  h$) =p, Xg.Xx. M j  PI ... P, 

( L  N j )  =p, Xg. Ax. Nj PI . . .  P, 

It therefore follows that ( M j  PI . . . P,) #p, ( N j  PI . . . P,). Thus, since 

( L  M )  =p,, Xg. AX.  M Pl . . . P, 

- -0, AS. Ax. 9 i (9 ( M l  F )  (9  (M2 F) (. - .  ( 9  (Mk-1 F )  (Mk F ) )  . . .))) 
( L  N )  =p, Xg. AX.  N P I . .  . P, 

=p, X9- Ax. 9 i (9 (N1 P )  (9  (N2 P )  (. . . (9  (Nk-l P )  (Nk P ) )  . . .))) 
it must be the case that ( L  M )  #p, ( L  N ) .  This completes the induction case and hence the proof 
of the lemma. W 
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Now our goal is to reduce the original problem to the statement of Lemma 4.2. Let X be the set 
of first-order variables and let AX be the set of simply-typed A-terms which contain no constants 
and whose only free variables are in X. The second lemma for proving Lemma 4.1 states that we 
may apply M and N to terms in this set to  arrive at inequivalent terms: 

Lemma 4.3 (Statman [16]) Suppose M,  N are closed extended pq-normal forms of type (al -+ 

. . . an + L ) ,  and M # N .  Then there exist terms V,  E Ax where 

( M  Vl . . . V,) fp, ( N  fi . . . V,). 

Proof: By induction on the extended Pq-normal form structure of both M and N.  In the basis, 
suppose M = AxT1. . . . Ax",". xt and N = Axyl. . . . Ax",". x; where by hypothesis, it must be the 
case that i # j. Pick distinct variables zh and 24, and let 

i f p = i  
i f p =  j 

Aw'. z; otherwise 

for any 1 < p 5 n. Then it is easy to see that ( M  Vl . . . V,) =p, zh and ( N  Vl . . . V,) =p, z4. Since 
both 26 and 24 are in pq-normal form and are distinct, ( M  Vl . . . V,) #p, (N TJ1 . . . V,). 

In the induction case, there are a number of cases depending on the form of M and N.  The 
only difficult case is when for some k > 1, 

for which we will need the induction hypothesis. Since M # N ,  it must be the case that M j  # Nj for 
some 1 < j 5 k. By induction, there exist terms Ul,. . . , U,, . . . ,Urn such that (Mi Ul . . . Urn) #p, 
(Nj  Ul . . .Urn), and both (Mi Ul . . .Urn) and (Nj  Ul . . .Urn) are of type L .  Choose fresh variables 
h6+L+A and yl , .  . . , yk, i .e . ,  variables not appearing free in any of the terms U1,. . . ,Urn. For any 
1 5 p 5 n, define 

Ayl. . . . Ayk. h (yj Un+l . . . Urn) (Ui yl . . . yk) if p = i 
otherwise 

The reader should convince himself that V ,  has the appropriate type. 
We just need to verify that ( M  Vl . . . V,) #p, ( N  Vl . . . V,). First, we do a little calculation: 

( 1 . . 1 )  =pv 14 (MI Vl . . . . . . (hJk Ifl . . . Vn) 

=pq (Ayl-. . Ayk- h (yj Un+1 . . Urn) (Ui yl . .  yk)) (MI Vl . . . Vn) . . . ( M k  Vl . . . Vn) 

=P, h (Mi Vl . . .Vn Un+l. - .  Urn) (Ui (MI Vl . . .Vn).  . . (Mk Vl . . . Vn)) 

Similarly, 

By way of contradiction, assume that ( M  Vl . . . Vn) =p, (N Vl . . . Vn). By Proposition 2.6, 
( M  Vl . . . Vn) and ( N  Vl . . . V,) have the same pq-normal form. It follows that 

(Mj  Vl . .  . Vn Un+l . . . Urn) =pq (Nj  Vl . . . Vn Un+l . . .  Urn). 
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Let H = XuL. XuL. v; then by A-abstracting over h in the two above terms and applying the result 
t o  H, we obtain 

But because we chose h to  be fresh with respect t o  the terms Ul, . . . ,Urn, h only occurs in the 
term V,. Calculating, 

Thus, 

It follows from Equation (1) that  

This contradicts our original choice of Ul, . . . , Urn, so ( M  Vl . . . Vn) #p, (N Vl . . . V,). This com- 
pletes the induction case and hence the proof. . 
Proof of Lemma 4.1: Suppose M and N have type a = (al  + . . . + a, + L) and M #p, N. 
By Proposition 2.8, we may assume without loss of generality that  M  and N are in extended 
pq-normal form and that  M  # N .  Thus, by Lemma 4.3, there exist terms V,  E Ax such that  
( M  Vl . . . V,) #p, ( N  Vl . . . V,). Let 21,. . . ,x, be all the free variables appearing in Vl,. . . ,Vn 
(which are necessa.rily of first-order type). Then 

These two terms have type r = (r l  + . . . -+ r, + L), where each r; is a first-order type. Thus, by 
Lemma 4.2, one can choose a term L of type ( r  i (L + L + L) -. L + L) such that  

Thus, let P = Ax". L (Axl.. ..Ax,. x Vl . . . V,); then ( P  M )  #p, ( P  N) .  . 
This completes the proof of the 1-Section Theorem. 

5 Corollaries of the 1-Section Theorem 

The significance of the 1-Section Theorem lies in its corollaries. Here we give some examples of 
models that  satisfy the criterion of the 1-Section Theorem, and then briefly discuss applications of 
the theorem in the context of simply-typed call-by-name functional languages. 
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5.1 Models 

In most familiar models of the simply-typed A-calculus, it is easy to  check that Statman's 1-Section 
condition holds. For instance, recall the set-theoretic model S defined in the introduction: 

S" N 

ST-" = [ST - S"] 

Since SL'L'L contains all set-theoretic functions on the integers, it contains the function p, where 
p(x)(y) = 2"3Y for any natural numbers x and y. The function p is a pairing function; choosing this 
function for the representation of F and any natural number as the representation of C ,  we may 
faithfully embed 7 into S. Thus, by the 1-Section Theorem, Pr/-equality completely axiomatizes 
the valid equations in S, proving Theorem 1.1. 

The proof of Theorem 1.1 is much easier than the proof contained in [4], and may be easily 
adapted to  other situations as well. For instance, we may easily prove the following theorem: 

T h e o r e m  5.1 (Berger  & Schwichtenberg [2]) Suppose a model M provides meaning for ~ k l  
primitive recursive functions over the base type N. Then ,Or/-reasoning is complete for proving 
equations in M. 

This follows immediately from the fact that in any model M with representations for all the primi- 
tive recursive functions, the function p defined above is representable. Berger and Schwichtenberg's 
proof technique (which may be of independent interest) is completely different and much more 
complex, relying upon an "inverse" to an evaluation function. 

Even in models based on posets rather than sets, Statman's 1-Section condition is easy to  verify. 
Consider, for instance, the continuous model N defined in the introduction. Let the continuous 
function p' E [NI -, [NI t, NI]] be defined by 

I i f x = I o r y = I  
2x3Y otherwise 

Together with any natural number n E N, p' and n can be used to faithfully embed the algebra 7, 
and so Theorem 1.2 follows immedia.tely. Note that the same proof works for the model composed 
of all monotone  functions as well. 

The 1-Section Theorem applies to classes of models as well as single models. For instance, 
Theorem 1.3, which states that pr/-reasoning is complete for the class F of models with finite 
base type, follows as a corollary. To see this, note that for each distinct pair of terms t; and ti 
in the syntax t given above, there is a finite model Mi which distinguishes M; = Xg. Ax. t; and 
Ni = Xg. Ax. ti; the full set-theoretic model X over a finite base set X with 1x1 = the number of 
subterms of t ;  and t: is one choice for M;. Let f; and c; be the elements of M; used to distinguish 
M; and N;; then f = ( fo, f;, . . .) and c = (co, cl, . . .) serve for embedding the algebra 7 into 
the countable direct product of {Mo,  M I , .  . .). Thus, by the 1-Section Theorem, ,@reasoning is 
complete for 3. 

5.2 Implications for Programming Languages 

The 1-Section Theorem may also be applied to reasoning about programming languages based 
on the simply-typed A-calculus. Here we give some brief examples that show that pr/-equality is 
complete for reasoning about fragments of certain call-by-name languages. 
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One example of a language based on the simply-typed A-calculus is the language P C F  [15, 93. 
PCF without booleans includes constants for numerals, successor, predecessor, conditional, and 
fixpoint operators for recursion, where the conditional operator checks its first argument to  see if 
it is 0 and branches. A precise definition of the language and its interpreter may be found in [12]; 
importantly, applications are evaluated call-by-name. 

To the programmer, two pieces of PCF  code are "equivalent" if they can be used interchangeably. 
For closed terms of base type in PCF, two terms are interchangeable iff both diverge or both produce 
the same numeral when evaluated. This notion of equality tells us nothing about open terms or 
terms of higher-type, but we may extend the equality to general terms in the following natural 
manner: 

Definit ion 5.2 Two PCF  terms M and N are observationally congruent  (written M r p c ~  N)  
iff for any context C[.] ( a  term with a "hole") such that C[M] and C[N] are closed terms of base 
type, C[M] and C[N] either both diverge or both yield the same numeral. 

For instance, the two PCF  terms (Ax. pred (succ x)) and (Ax. x) are observationally congruent, since 
both are, in some sense, the identity function on the integers. 

PCF observational congruence is too complex to be axiomatized by any reasonable system. 
All partial recursive functions are representable in PCF in such a way that two partial recursive 
functions are equivalent iff their representations are equivalent. Thus, since equivalence of partial 
recursive functions cannot be axiomatized in an r.e. proof system, neither can observational con- 
gruence [15, 201. But if we are willing to settle for proving observational congruences among p u r e  
terms-those not involving the constants of PCF-we can obtain a complete proof system. The 
following remark is due to Albert Meyer: 

T h e o r e m  5.3 For two pure simply-typed terms M and N ,  M = p ,  N iff M E P C F  N .  

The theorem follows from the fact that one can define a strict pairing function p" in PCF by 
the term (Ax'. AyL. (2"3Y)), where exponentiation and multiplication are defined from successor, 
predecessor, and recursion in the usual way. (Full recursion is, of course, unnecessary for defining a 
pairing function, e.g., a representation for addition and multiplication suffices [3].) Thus, the model 
constructed out of observational congruence classes of terms in PCF  (which can be verified to be a 
model) satisfies the conditions of the 1-Section Theorem, and hence observational congruence and 
,@equality of pure terms coincides. 

Theorem 1.2 also implies a similar fact for reasoning about a parallel version of PCF. Consider 
the usual PCF  language augmented with a "parallel or" constant por of type (L -+ L -+ L); por 
returns 0 if either of its arguments reduces to 0, 1 if both reduce to numerals not equal to  0, and 
diverges otherwise. We call the extended language Parallel PCF, or PPCF for short. We may 
extend the model N of continuous functions defined above to a model N' of P P C F  by interpreting 
the constants in the right way, and in this model, denotational equality coincides with observational 
congruence [9, 14, 191: 

T h e o r e m  5.4 For any P P C F  terms M and N ,  N' /= M = N ifS M - - p p c ~  N .  

Thus, it follows from Theorem 1.2 that 

T h e o r e m  5.5 For two pure simply-typed terms M and N ,  M =p, N in M ~ p p c ~  N .  
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Coupled with Theorem 5.3, Theorem 5.5 implies that among pure terms, sequential and parallel 
observational congruence theories coincide. 

The practical implications of Theorems 5.3 and 5.5 should be clear: for reasoning about pure 
terms, 07-equality proves all operationally valid equations. In more philosophical terms, 07- 
reasoning is the core of any reasoning system for these two languages. One may then extend 
the reasoning systems to include equations about successors and predecessors, or t o  more complex 
systems involving induction principles for reasoning about recursion. Such systems will necessarily 
be incomplete, but a t  the very least, the core of the reasoning system will be complete. 

6 Conclusion 

We have demonstrated the use of Statman's 1-Section Theorem in proving that  07-equality is 
complete for proving the valid equations in a model. Essentially, Statman's 1-Section Theorem 
isolates a single combinatorial argument for proving the completeness of 07-reasoning in a model 
of the simply-typed A-calculus. The combinatorial fact needed, that  a binary tree algebra can be 
faithfully embedded in the particular model, is quite easy t o  check, and thus Statman's 1-Section 
Theorem simplifies the proofs of many completeness results. 

The power of Statman's 1-Section Theorem is unquestionable, but one may well wonder whether 
a simpler version of the theorem is possible. For instance, the tree algebra might be unnecessary 
in the statement of the theorem; the unary algebra U,  whose elements are in the grammar 

and U1 =u U2 iff U1 and U2 are syntactically equivalent, may suffice. In other words, we could 
imagine that  it is sufficient to  embed the algebra U in a model in order for 07-reasoning to  be 
complete. This conjecture, however, is false: 

Theorem 6.1 (Subrahmanyam) There is a model M i n  which the algebra U can be faithfully 
embedded but whose valid equations are not coinpletely axiomatized by =p,. 

Proof: Consider the model M over the signature F"'", C q u i l t  in the following manner: 

1. Let Cu be the set of 07-equivalence classes of closed terms of type a ,  viz., 

Cu = {[MI : M is closed of type a ) ,  

where [MI = { N  : N is closed and M =p, N ) .  

2. Define the binary relations E" on elements of C" by induction on types as follows: 

[MI 2i1 [N] iff [MI = [N];  

[hl] 2iT'" [N]  iff for all [PI 2iT [Q], [hl PI 2i" [ N  Q]. 

3. Let Mu be the set of 2iu equivalence classes of terms; abusing notation, we write [MI for these 
equivalence classes. Finally, define application of these elements by Ap([M], [N]) = [ M  N]. 

It is easy to check that  M is a type frame (extensionality holds by construction) and a model. Note 
that  in M,  ea.ch elernent in M"'"'" has one of forrns 
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[Ax. Ay. F ( F  (. . . ( F  C )  ...))I, 

[Ax. Ay. F ( F  (. . . ( F  x ) .  . .))I, or 

[Ax. Ay. F ( F  (. . . (F y) .  . .))], 

where the number of leading F's  is > 0. Now consider the terms 

where f has type ( L  i L i L )  and x ,  y have type L. A simple case analysis shows that P and Q are 
equivalent in the model. Nevertheless, P #p, Q. H 

Other extensions to the 1-Section Theorem look much more promising. For example, we may 
consider adding first-order algebraic theories to  the simply-typed A-calculus, and ask when ( P ) ,  ( r l ) ,  
and the equations of the algebraic theory completely axiomatize the valid equations of the model. 
For instance, we could axiomatize the equations of the algebra (Pd, 0, +) by 

Preliminary results with Ramesh Subrahmanyam [13] give a version of the 1-Section Theorem for 
algebraic theories. Extensions to  when simply-typed A-calculus has a lazy or call-by-value selnantics 
are also being investigated. 
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