8 research outputs found

    What is the Benefit of Code-domain NOMA in Massive MIMO?

    Full text link
    In overloaded Massive MIMO systems, wherein the number K of user equipments (UEs) exceeds the number of base station antennas M, it has recently been shown that non-orthogonal multiple access (NOMA) can increase performance. This paper aims at identifying cases of the classical operating regime K < M, where code-domain NOMA can also improve the spectral efficiency of Massive MIMO. Particular attention is given to use cases in which poor favorable propagation conditions are experienced. Numerical results show that Massive MIMO with planar antenna arrays can benefit from NOMA in practical scenarios where the UEs are spatially close to each other.Comment: To appear at the 2019 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2019), 5 pages, 5 figure

    A White Paper on Broadband Connectivity in 6G

    Get PDF
    Executive Summary This white paper explores the road to implementing broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, to support broadband connectivity at railway speeds up to 1000 km/h. To achieve these goals, not only the terrestrial networks will be evolved but they will also be integrated with satellite networks, all facilitating autonomous systems and various interconnected structures. We believe that several categories of enablers at the infrastructure, spectrum, and protocol/algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric and scalable cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be used for pushing the peak rates of point-to-point links. The latter path will lead to THz communications complemented by visible light communications in specific scenarios. At the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latencies, higher reliability, and reduced complexity. Different options will be needed to optimally support different use cases. The resource efficiency can be further improved by using various combinations of full-duplex radios, interference management based on rate-splitting, machine-learning-based optimization, coded caching, and broadcasting. Finally, the three levels of enablers must be utilized not only to deliver better broadband services in urban areas, but also to provide full-coverage broadband connectivity must be one of the key outcomes of 6G

    Power efficient designs for 5G wireless networks

    Get PDF
    In this dissertation, to step forward towards green communication, we study power efficient solutions in three potential 5G wireless networks, namely an asynchronous multicarrier two-way Amplify-and-Forward (AF) relay network, a multi-carrier two-way Filter-and-Forward (FF) network, and a massive Multiple Input Multiple Output (MIMO) network using the Non-Orthogonal Multiple Access (NOMA) scheme. In the first network, two transceivers using the Orthogonal Frequency Division Multiplexing (OFDM) scheme communicate through multiple relays in an asynchronous manner. As an attempt to design a simple solution, we assume the AF protocol at the relays. We jointly design the power allocation and distributed beamforming coefficients to minimize the total transmission power subject to sum-rate constraints. We propose an optimal semi-closed form solution to this problem and we show that at the optimum, the end-to-end channel has only one non-zero tap. To extend the first work to high data-rate scenarios, we consider a second relaying-based network which consists of two OFDM-based transceivers and multiple FF relays. We propose two approaches to tackle a total transmission power minimization problem: a gradient steepest descent-based technique, and a low-complexity method enforcing a frequency-flat Channel Impulse Response (CIR) response at the optimum. As the last network, we consider a massive MIMO-NOMA network with both co-located and distributed structures. We study the joint problem of power allocation and user clustering to minimize the total transmit power subject to QoS constraints. We propose a novel clustering algorithm which groups the correlated users into the same cluster and has an unique ability to automatically switch between using the spatial-domain-MIMO and the power-domain-NOMA. We show that our proposed method can substantially improve the feasibility probability and power consumption performance compared to existing methods
    corecore