63 research outputs found

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Making Dollars and Sense Out of Cloud Computing Surfing the Wave of Cloud Computing VolP Meets the Cloud A Quick Look at Cloud Computing in Higher Education,2012 Cloud Computing: ls the Forecast Bright or Overcast? Cloud E-Mail Momentum Swells Institutional Excellence Award lndividual Awards President\u27s Message From the Executive Director Q&A with the CI

    Leveraging Kubernetes in Edge-Native Cable Access Convergence

    Get PDF
    Public clouds provide infrastructure services and deployment frameworks for modern cloud-native applications. As the cloud-native paradigm has matured, containerization, orchestration and Kubernetes have become its fundamental building blocks. For the next step of cloud-native, an interest to extend it to the edge computing is emerging. Primary reasons for this are low-latency use cases and the desire to have uniformity in cloud-edge continuum. Cable access networks as specialized type of edge networks are not exception here. As the cable industry transitions to distributed architectures and plans the next steps to virtualize its on-premise network functions, there are opportunities to achieve synergy advantages from convergence of access technologies and services. Distributed cable networks deploy resource-constrained devices like RPDs and RMDs deep in the edge networks. These devices can be redesigned to support more than one access technology and to provide computing services for other edge tenants with MEC-like architectures. Both of these cases benefit from virtualization. It is here where cable access convergence and cloud-native transition to edge-native intersect. However, adapting cloud-native in the edge presents a challenge, since cloud-native container runtimes and native Kubernetes are not optimal solutions in diverse edge environments. Therefore, this thesis takes as its goal to describe current landscape of lightweight cloud-native runtimes and tools targeting the edge. While edge-native as a concept is taking its first steps, tools like KubeEdge, K3s and Virtual Kubelet can be seen as the most mature reference projects for edge-compatible solution types. Furthermore, as the container runtimes are not yet fully edge-ready, WebAssembly seems like a promising alternative runtime for lightweight, portable and secure Kubernetes compatible workloads

    A manifesto for future generation cloud computing: research directions for the next decade

    Get PDF
    The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to address issues such as scalability, elasticity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then offers research directions for the next decade, thus helping in the realisation of Future Generation Cloud Computing

    Building the Infrastructure for Cloud Security

    Get PDF
    Computer scienc

    Service Quality and Profit Control in Utility Computing Service Life Cycles

    Get PDF
    Utility Computing is one of the most discussed business models in the context of Cloud Computing. Service providers are more and more pushed into the role of utilities by their customer's expectations. Subsequently, the demand for predictable service availability and pay-per-use pricing models increases. Furthermore, for providers, a new opportunity to optimise resource usage offers arises, resulting from new virtualisation techniques. In this context, the control of service quality and profit depends on a deep understanding of the representation of the relationship between business and technique. This research analyses the relationship between the business model of Utility Computing and Service-oriented Computing architectures hosted in Cloud environments. The relations are clarified in detail for the entire service life cycle and throughout all architectural layers. Based on the elaborated relations, an approach to a delivery framework is evolved, in order to enable the optimisation of the relation attributes, while the service implementation passes through business planning, development, and operations. Related work from academic literature does not cover the collected requirements on service offers in this context. This finding is revealed by a critical review of approaches in the fields of Cloud Computing, Grid Computing, and Application Clusters. The related work is analysed regarding appropriate provision architectures and quality assurance approaches. The main concepts of the delivery framework are evaluated based on a simulation model. To demonstrate the ability of the framework to model complex pay-per-use service cascades in Cloud environments, several experiments have been conducted. First outcomes proof that the contributions of this research undoubtedly enable the optimisation of service quality and profit in Cloud-based Service-oriented Computing architectures

    A decision framework to mitigate vendor lock-in risks in cloud (SaaS category) migration.

    Get PDF
    Cloud computing offers an innovative business model to enterprise IT services consumption and delivery. However, vendor lock-in is recognised as being a major barrier to the adoption of cloud computing, due to lack of standardisation. So far, current solutions and efforts tackling the vendor lock-in problem have been confined to/or are predominantly technology-oriented. Limited studies exist to analyse and highlight the complexity of vendor lock-in problem existing in the cloud environment. Consequently, customers are unaware of proprietary standards which inhibit interoperability and portability of applications when taking services from vendors. The complexity of the service offerings makes it imperative for businesses to use a clear and well understood decision process to procure, migrate and/or discontinue cloud services. To date, the expertise and technological solutions to simplify such transition and facilitate good decision making to avoid lock-in risks in the cloud are limited. Besides, little research investigations have been carried out to provide a cloud migration decision framework to assist enterprises to avoid lock-in risks when implementing cloud-based Software-as-a-Service (SaaS) solutions within existing environments. Such decision framework is important to reduce complexity and variations in implementation patterns on the cloud provider side, while at the same time minimizing potential switching cost for enterprises by resolving integration issues with existing IT infrastructures. Thus, the purpose of this thesis is to propose a decision framework to mitigate vendor lock-in risks in cloud (SaaS) migration. The framework follows a systematic literature review and analysis to present research findings containing factual and objective information, and business requirements for vendor-neutral interoperable cloud services, and/or when making architectural decisions for secure cloud migration and integration. The underlying research procedure for this thesis investigation consists of a survey based on qualitative and quantitative approaches conducted to identify the main risk factors that give rise to cloud computing lock-in situations. Epistemologically, the research design consists of two distinct phases. In phase 1, qualitative data were collected using open-ended interviews with IT practitioners to explore the business-related issues of vendor lock-in affecting cloud adoption. Whereas the goal of phase 2 was to identify and evaluate the risks and opportunities of lock-in which affect stakeholders’ decision-making about migrating to cloud-based solutions. In synthesis, the survey analysis and the framework proposed by this research (through its step-by-step approach), provides guidance on how enterprises can avoid being locked to individual cloud service providers. This reduces the risk of dependency on a cloud provider for service provision, especially if data portability, as the most fundamental aspect, is not enabled. Moreover, it also ensures appropriate pre-planning and due diligence so that the correct cloud service provider(s) with the most acceptable risks to vendor lock-in is chosen, and that the impact on the business is properly understood (upfront), managed (iteratively), and controlled (periodically). Each decision step within the framework prepares the way for the subsequent step, which supports a company to gather the correct information to make a right decision before proceeding to the next step. The reason for such an approach is to support an organisation with its planning and adaptation of the services to suit the business requirements and objectives. Furthermore, several strategies are proposed on how to avoid and mitigate lock-in risks when migrating to cloud computing. The strategies relate to contract, selection of vendors that support standardised formats and protocols regarding data structures and APIs, negotiating cloud service agreements (SLA) accordingly as well as developing awareness of commonalities and dependencies among cloud-based solutions. The implementation of proposed strategies and supporting framework has a great potential to reduce the risks of vendor lock-in

    Automated Bidding in Computing Service Markets. Strategies, Architectures, Protocols

    Get PDF
    This dissertation contributes to the research on Computational Mechanism Design by providing novel theoretical and software models - a novel bidding strategy called Q-Strategy, which automates bidding processes in imperfect information markets, a software framework for realizing agents and bidding strategies called BidGenerator and a communication protocol called MX/CS, for expressing and exchanging economic and technical information in a market-based scheduling system

    Top-Ten IT Issues, 2014: Be the Change You See

    Get PDF

    Development and management of collective network and cloud computing infrastructures

    Get PDF
    In the search and development of more participatory models for infrastructure development and management, in this dissertation, we investigate models for the financing, deployment, and operation of network and cloud computing infrastructures. Our main concern is to overcome the inherent exclusion in participation in the processes of development and management and in the right of use in the current dominant models. Our work starts by studying in detail the model of Guifi.net, a successful bottom-up initiative for building network infrastructure, generally referred to as a community networks. We pay special attention to its governance system and economic organisation because we argue that these are the key components of the success of this initiative. Then, we generalise our findings for any community network, aiming at becoming sustainable and scalable, and we explore the suitability of the Guifi.net model to the cloud computing infrastructure. As a result of both, we coin the attribute extensible to refer to infrastructure that is relatively easy to expand and maintain in contrast to those naturally limited or hard to expand, such as natural resources or highly complex or advanced artificial systems. We conclude proposing a generic model which, in our opinion, is suitable, at least, for managing extensible infrastructure. The Guifi.net model is deeply rooted in the commons; thus, the research in this field, in general, and Elinor Ostrom’s work, in particular, have left a profound imprint in our work. Our results show that the \guifinet model meets almost entirely the principles of long-enduring commons identified by E. Ostrom. This work has been developed as an industrial doctorate. As such, it combines academic research with elements of practice and pursues an effective knowledge transfer between academia and the private sector. Given that the private sector’s partner is a not-for-profit organisation, the effort to create social value has prevailed over the ambition to advance the development of a specific industrial product or particular technology.En la recerca i desenvolupament de models més participatius per al desenvolupament i gestió d'infraestructura, en aquesta tesi investiguem sobre models per al finançament, desplegament i operació d'infraestructures de xarxa i de computació al núvol. La nostra preocupació principal és fer front a l’exclusió inherent dels models dominants actualment pel que fa a la participació en els processos de desenvolupament i gestió i, també, als drets d’us. El nostre treball comença amb un estudi detallat del model de Guifi.net, un cas d'èxit d'iniciativa ciutadana en la construcció d'infraestructura de xarxa, iniciatives que es coneixen com a xarxes comunitàries. En fer-ho, parem una atenció especial al sistema de governança i a l’organització econòmica perquè pensem que són els dos elements claus de l'èxit d'aquesta iniciativa. Tot seguit passem a analitzar d'altres xarxes comunitàries per abundar en la comprensió dels factors determinants per a la seva sostenibilitat i escalabilitat. Després ampliem el nostre estudi analitzant la capacitat i el comportament del model de Guifi.net en el camp de les infraestructures de computació al núvol. A resultes d'aquests estudis, proposem l'atribut extensible per a descriure aquelles infraestructures que són relativament fàcil d'ampliar i gestionar, en contraposició a les que o bé estan limitades de forma natural o be són difícils d'ampliar, com ara els recursos naturals o els sistemes artificials avançats o complexos. Finalitzem aquest treball fent una proposta de model genèric que pensem que és d'aplicabilitat, com a mínim, a tot tipus d'infraestructura extensible. El model de Guifi.net està fortament vinculat als bens comuns. És per això que la recerca en aquest àmbit, en general, i els treballs de Elinor Ostrom en particular, han deixat una forta empremta en el nostre treball. Els resultats que hem obtingut mostren que el model Guifi.net s'ajusta molt bé als principis que segons Ostrom han de complir els béns comuns per ser sostenibles. Aquest treball s'ha desenvolupat com a doctorat industrial. Com a tal, combina la investigació acadèmica amb elements de practica i persegueix una transferència efectiva de coneixement entre l'àmbit acadèmic i el sector privat. Ates que el soci del sector privat és una organització sense ànim de lucre, l’esforç per crear valor social ha prevalgut en l’ambició d’avançar en el desenvolupament d'un producte industrial específic o d'una tecnologia particula
    corecore