7,247 research outputs found

    Interventions to Regulate Confusion during Learning

    Get PDF
    Confusion provides opportunities to learn at deeper levels. However, learners must put forth the necessary effort to resolve their confusion to convert this opportunity into actual learning gains. Learning occurs when learners engage in cognitive activities beneficial to learning (e.g., reflection, deliberation, problem solving) during the process of confusion resolution. Unfortunately, learners are not always able to resolve their confusion on their own. The inability to resolve confusion can be due to a lack of knowledge, motivation, or skills. The present dissertation explored methods to aid confusion resolution and ultimately promote learning through a multi-pronged approach. First, a survey revealed that learners prefer more information and feedback when confused and that they preferred different interventions for confusion compared to boredom and frustration. Second, expert human tutors were found to most frequently handle learner confusion by providing direct instruction and responded differently to learner confusion compared to anxiety, frustration, and happiness. Finally, two experiments were conducted to test the effectiveness of pedagogical and motivational confusion regulation interventions. Both types of interventions were investigated within a learning environment that experimentally induced confusion via the presentation of contradictory information by two animated agents (tutor and peer student agents). Results showed across both studies that learner effort during the confusion regulation task impacted confusion resolution and that learning occurred when the intervention provided the opportunity for learners to stop, think, and deliberate about the concept being discussed. Implications for building more effective affect-sensitive learning environments are discussed

    Knowledge Elicitation Methods for Affect Modelling in Education

    Get PDF
    Research on the relationship between affect and cognition in Artificial Intelligence in Education (AIEd) brings an important dimension to our understanding of how learning occurs and how it can be facilitated. Emotions are crucial to learning, but their nature, the conditions under which they occur, and their exact impact on learning for different learners in diverse contexts still needs to be mapped out. The study of affect during learning can be challenging, because emotions are subjective, fleeting phenomena that are often difficult for learners to report accurately and for observers to perceive reliably. Context forms an integral part of learnersā€™ affect and the study thereof. This review provides a synthesis of the current knowledge elicitation methods that are used to aid the study of learnersā€™ affect and to inform the design of intelligent technologies for learning. Advantages and disadvantages of the specific methods are discussed along with their respective potential for enhancing research in this area, and issues related to the interpretation of data that emerges as the result of their use. References to related research are also provided together with illustrative examples of where the individual methods have been used in the past. Therefore, this review is intended as a resource for methodological decision making for those who want to study emotions and their antecedents in AIEd contexts, i.e. where the aim is to inform the design and implementation of an intelligent learning environment or to evaluate its use and educational efficacy

    Promoting Learning by Inducing and Scaffolding Cognitive Disequilibrium and Confusion through System Feedback

    Get PDF
    Learners frequently experience uncertainty about how to proceed during learning. These experiences cause learners to enter a state of cognitive disequilibrium and its affiliated affective state of confusion. Cognitive disequilibrium and confusion have been found to frequently occur during complex learning and provide opportunities for deeper learning. In the current thesis, a learning environment that induces confusion was investigated. In the environment, learners engaged in a dialogue on scientific reasoning with an animated pedagogical agent. Confusion was induced through false feedback provided by the tutor agent (e.g., when learners responded correctly and were told their response was incorrect). Self-reports of confusion during the training session indicated that false feedback was an effective method for inducing confusion. False feedback was also found to increase learnersā€™ ability to apply this knowledge to new and novel situations, under certain conditions. Implications for the design of learning environments are also discussed

    Affective modelling and feedback in programming practice systems

    Get PDF
    ęŒ‡å°Žę•™å“”ļ¼šč§’怀

    Integrating Socially Assistive Robots into Language Tutoring Systems. A Computational Model for Scaffolding Young Children's Foreign Language Learning

    Get PDF
    Schodde T. Integrating Socially Assistive Robots into Language Tutoring Systems. A Computational Model for Scaffolding Young Children's Foreign Language Learning. Bielefeld: UniversitƤt Bielefeld; 2019.Language education is a global and important issue nowadays, especially for young children since their later educational success build on it. But learning a language is a complex task that is known to work best in a social interaction and, thus, personalized sessions tailored to the individual knowledge and needs of each child are needed to allow for teachers to optimally support them. However, this is often costly regarding time and personnel resources, which is one reasons why research of the past decades investigated the benefits of Intelligent Tutoring Systems (ITSs). But although ITSs can help out to provide individualized one-on-one tutoring interactions, they often lack of social support. This dissertation provides new insights on how a Socially Assistive Robot (SAR) can be employed as a part of an ITS, building a so-called "Socially Assistive Robot Tutoring System" (SARTS), to provide social support as well as to personalize and scaffold foreign language learning for young children in the age of 4-6 years. As basis for the SARTS a novel approach called A-BKT is presented, which allows to autonomously adapt the tutoring interaction to the children's individual knowledge and needs. The corresponding evaluation studies show that the A-BKT model can significantly increase student's learning gains and maintain a higher engagement during the tutoring interaction. This is partly due to the models ability to simulate the influences of potential actions on all dimensions of the learning interaction, i.e., the children's learning progress (cognitive learning), affective state, engagement (affective learning) and believed knowledge acquisition (perceived learning). This is particularly important since all dimensions are strongly interconnected and influence each other, for example, a low engagement can cause bad learning results although the learner is already quite proficient. However, this also yields the necessity to not only focus on the learner's cognitive learning but to equally support all dimensions with appropriate scaffolding actions. Therefore an extensive literature review, observational video recordings and expert interviews were conducted to find appropriate actions applicable for a SARTS to support each learning dimension. The subsequent evaluation study confirms that the developed scaffolding techniques are able to support young childrenā€™s learning process either by re-engaging them or by providing transparency to support their perception of the learning process and to reduce uncertainty. Finally, based on educated guesses derived from the previous studies, all identified strategies are integrated into the A-BKT model. The resulting model called ProTM is evaluated by simulating different learner types, which highlight its ability to autonomously adapt the tutoring interactions based on the learner's answers and provided dis-engagement cues. Summarized, this dissertation yields new insights into the field of SARTS to provide personalized foreign language learning interactions for young children, while also rising new important questions to be studied in the future

    The Multimodal Tutor: Adaptive Feedback from Multimodal Experiences

    Get PDF
    This doctoral thesis describes the journey of ideation, prototyping and empirical testing of the Multimodal Tutor, a system designed for providing digital feedback that supports psychomotor skills acquisition using learning and multimodal data capturing. The feedback is given in real-time with machine-driven assessment of the learner's task execution. The predictions are tailored by supervised machine learning models trained with human annotated samples. The main contributions of this thesis are: a literature survey on multimodal data for learning, a conceptual model (the Multimodal Learning Analytics Model), a technological framework (the Multimodal Pipeline), a data annotation tool (the Visual Inspection Tool) and a case study in Cardiopulmonary Resuscitation training (CPR Tutor). The CPR Tutor generates real-time, adaptive feedback using kinematic and myographic data and neural networks

    Motivational Scaffolding, Politeness, and Writing Center Tutoring

    Get PDF

    Psychophysiological analysis of a pedagogical agent and robotic peer for individuals with autism spectrum disorders.

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by ongoing problems in social interaction and communication, and engagement in repetitive behaviors. According to Centers for Disease Control and Prevention, an estimated 1 in 68 children in the United States has ASD. Mounting evidence shows that many of these individuals display an interest in social interaction with computers and robots and, in general, feel comfortable spending time in such environments. It is known that the subtlety and unpredictability of peopleā€™s social behavior are intimidating and confusing for many individuals with ASD. Computerized learning environments and robots, however, prepare a predictable, dependable, and less complicated environment, where the interaction complexity can be adjusted so as to account for these individualsā€™ needs. The first phase of this dissertation presents an artificial-intelligence-based tutoring system which uses an interactive computer character as a pedagogical agent (PA) that simulates a human tutor teaching sight word reading to individuals with ASD. This phase examines the efficacy of an instructional package comprised of an autonomous pedagogical agent, automatic speech recognition, and an evidence-based instructional procedure referred to as constant time delay (CTD). A concurrent multiple-baseline across-participants design is used to evaluate the efficacy of intervention. Additionally, post-treatment probes are conducted to assess maintenance and generalization. The results suggest that all three participants acquired and maintained new sight words and demonstrated generalized responding. The second phase of this dissertation describes the augmentation of the tutoring system developed in the first phase with an autonomous humanoid robot which serves the instructional role of a peer for the student. In this tutoring paradigm, the robot adopts a peer metaphor, where its function is to act as a peer. With the introduction of the robotic peer (RP), the traditional dyadic interaction in tutoring systems is augmented to a novel triadic interaction in order to enhance the social richness of the tutoring system, and to facilitate learning through peer observation. This phase evaluates the feasibility and effects of using PA-delivered sight word instruction, based on a CTD procedure, within a small-group arrangement including a student with ASD and the robotic peer. A multiple-probe design across word sets, replicated across three participants, is used to evaluate the efficacy of intervention. The findings illustrate that all three participants acquired, maintained, and generalized all the words targeted for instruction. Furthermore, they learned a high percentage (94.44% on average) of the non-target words exclusively instructed to the RP. The data show that not only did the participants learn nontargeted words by observing the instruction to the RP but they also acquired their target words more efficiently and with less errors by the addition of an observational component to the direct instruction. The third and fourth phases of this dissertation focus on physiology-based modeling of the participantsā€™ affective experiences during naturalistic interaction with the developed tutoring system. While computers and robots have begun to co-exist with humans and cooperatively share various tasks; they are still deficient in interpreting and responding to humans as emotional beings. Wearable biosensors that can be used for computerized emotion recognition offer great potential for addressing this issue. The third phase presents a Bluetooth-enabled eyewear ā€“ EmotiGO ā€“ for unobtrusive acquisition of a set of physiological signals, i.e., skin conductivity, photoplethysmography, and skin temperature, which can be used as autonomic readouts of emotions. EmotiGO is unobtrusive and sufficiently lightweight to be worn comfortably without interfering with the usersā€™ usual activities. This phase presents the architecture of the device and results from testing that verify its effectiveness against an FDA-approved system for physiological measurement. The fourth and final phase attempts to model the studentsā€™ engagement levels using their physiological signals collected with EmotiGO during naturalistic interaction with the tutoring system developed in the second phase. Several physiological indices are extracted from each of the signals. The studentsā€™ engagement levels during the interaction with the tutoring system are rated by two trained coders using the video recordings of the instructional sessions. Supervised pattern recognition algorithms are subsequently used to map the physiological indices to the engagement scores. The results indicate that the trained models are successful at classifying participantsā€™ engagement levels with the mean classification accuracy of 86.50%. These models are an important step toward an intelligent tutoring system that can dynamically adapt its pedagogical strategies to the affective needs of learners with ASD
    • ā€¦
    corecore