11,150 research outputs found

    The Complexity of the List Partition Problem for Graphs

    Get PDF
    The k-partition problem is as follows: Given a graph G and a positive integer k, partition the vertices of G into at most k parts A1, A2, . . . , Ak, where it may be specified that Ai induces a stable set, a clique, or an arbitrary subgraph, and pairs Ai, Aj (i≠j) be completely nonadjacent, completely adjacent, or arbitrarily adjacent. The list k-partition problem generalizes the k-partition problem by specifying for each vertex x, a list L(x) of parts in which it is allowed to be placed. Many well-known graph problems can be formulated as list k-partition problems: e.g., 3-colorability, clique cutset, stable cutset, homogeneous set, skew partition, and 2-clique cutset. We classify, with the exception of two polynomially equivalent problems, each list 4-partition problem as either solvable in polynomial time or NP-complete. In doing so, we provide polynomial-time algorithms for many problems whose polynomial-time solvability was open, including the list 2-clique cutset problem. This also allows us to classify each list generalized 2-clique cutset problem and list generalized skew partition problem as solvable in polynomial time or NP-complete

    On complexity of optimized crossover for binary representations

    Get PDF
    We consider the computational complexity of producing the best possible offspring in a crossover, given two solutions of the parents. The crossover operators are studied on the class of Boolean linear programming problems, where the Boolean vector of variables is used as the solution representation. By means of efficient reductions of the optimized gene transmitting crossover problems (OGTC) we show the polynomial solvability of the OGTC for the maximum weight set packing problem, the minimum weight set partition problem and for one of the versions of the simple plant location problem. We study a connection between the OGTC for linear Boolean programming problem and the maximum weight independent set problem on 2-colorable hypergraph and prove the NP-hardness of several special cases of the OGTC problem in Boolean linear programming.Comment: Dagstuhl Seminar 06061 "Theory of Evolutionary Algorithms", 200

    Optimal Recombination in Genetic Algorithms

    Full text link
    This paper surveys results on complexity of the optimal recombination problem (ORP), which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results

    An exactly solvable random satisfiability problem

    Full text link
    We introduce a new model for the generation of random satisfiability problems. It is an extension of the hyper-SAT model of Ricci-Tersenghi, Weigt and Zecchina, which is a variant of the famous K-SAT model: it is extended to q-state variables and relates to a different choice of the statistical ensemble. The model has an exactly solvable statistic: the critical exponents and scaling functions of the SAT/UNSAT transition are calculable at zero temperature, with no need of replicas, also with exact finite-size corrections. We also introduce an exact duality of the model, and show an analogy of thermodynamic properties with the Random Energy Model of disordered spin systems theory. Relations with Error-Correcting Codes are also discussed.Comment: 31 pages, 1 figur
    • …
    corecore