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THE COMPLEXITY OF THE LIST PARTITION
PROBLEM FOR GRAPHS∗

KATHIE CAMERON† , ELAINE M. ESCHEN‡ , CHı́NH T. HOÀNG§ , AND R. SRITHARAN¶

Abstract. The k-partition problem is as follows: Given a graph G and a positive integer k,
partition the vertices of G into at most k parts A1, A2, . . . , Ak, where it may be specified that Ai

induces a stable set, a clique, or an arbitrary subgraph, and pairs Ai, Aj (i �= j) be completely
nonadjacent, completely adjacent, or arbitrarily adjacent. The list k-partition problem generalizes
the k-partition problem by specifying for each vertex x, a list L(x) of parts in which it is allowed to
be placed. Many well-known graph problems can be formulated as list k-partition problems: e.g.,
3-colorability, clique cutset, stable cutset, homogeneous set, skew partition, and 2-clique cutset. We
classify, with the exception of two polynomially equivalent problems, each list 4-partition problem
as either solvable in polynomial time or NP-complete. In doing so, we provide polynomial-time
algorithms for many problems whose polynomial-time solvability was open, including the list 2-
clique cutset problem. This also allows us to classify each list generalized 2-clique cutset problem
and list generalized skew partition problem as solvable in polynomial time or NP-complete.

Key words. graph partition, list partition, complexity, algorithm
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DOI. 10.1137/060666238

1. Introduction. The problem of partitioning the vertex-set of a graph subject
to a given set of constraints on adjacencies between vertices in two distinct parts,
or among vertices within a part, is fundamental and ubiquitous in algorithmic graph
theory. For example, the problem of testing whether graph G is bipartite is equivalent
to testing whether the vertex-set of G can be partitioned into parts A1 and A2 such
that each Ai is a stable set; here we have no constraint on the adjacencies between
vertices in A1 and vertices in A2. A graph is a split graph [28] if its vertex-set can
be partitioned into a clique and a stable set. As the definition itself suggests, testing
whether graph G is a split graph is another partition problem where we do not restrict
the adjacencies between vertices placed in different parts of the partition. On the other
hand, testing whether graph G is a complete tripartite graph is equivalent to testing
whether the vertex-set of G can be partitioned into parts A1, A2, and A3 such that
each Ai induces a stable set, and between vertices in parts Ai, Aj , i �= j, we have
all possible edges; hence, the relationship between vertices placed in distinct parts is
relevant here.
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1.1. The problem. In general, we can ask whether the vertex-set of a graph
can be partitioned into at most k parts, A1, A2, . . . , Ak, subject to constraints that
require “no edges,” “all edges,” or “no restriction” between vertices placed in parts
Ai and Aj ; when i = j, the resulting constraint is on the subgraph induced by Ai.
We can specify the required constraints on the partition via a symmetric k×k matrix
M over {0, 1, ∗}. The natural interpretation is as follows: for i �= j, if Mi,j = 0
(resp., 1, *), then we require “no edges” (resp., “all edges”, “no restriction”) between
vertices placed in part Ai and vertices placed in part Aj ; if Mi,i = 0 (resp., 1, *), then
we require Ai to be a stable set (resp., clique, arbitrary subgraph). An M-partition
of graph G then is a partition of the vertex-set of G into at most k parts so that
all the constraints specified by M are respected. The M-partition problem asks the
following: “Given G and a symmetric k× k matrix M over {0, 1, ∗}, does G admit an
M -partition?”. Many well-known graph theoretic problems are specific instances of
the M -partition problem. For example, the 3-colorability problem is an M -partition
problem where M is a 3 × 3 matrix with zeros on the main diagonal and asterisks
everywhere else. Testing whether a graph is a split graph is asking whether the graph
has an M -partition where M is a 2 × 2 matrix with a zero and one on the diagonal
and asterisks everywhere else.

Feder et al. [22] introduced the M -partition problem and also generalized it to
the list M-partition problem. In the list M -partition problem, in addition to being
given graph G and a symmetric k× k matrix M over {0, 1, ∗}, for each vertex v of G,
we are given a list L(v) that is a nonempty subset of {A1, A2, . . . , Ak}. The problem
asks the following: “Does G admit an M -partition in which each vertex v of G is
assigned to a part in L(v)?”.

Many well-known graph problems can be formulated as list M -partition problems:
e.g., list k-coloring, clique cutset, stable cutset, homogeneous set, skew partition, and
2-clique cutset. We study the list M -partition problems when M has dimension 4
with the goal of classifying them according to their complexity. Figure 1.1 illustrates
the matrices corresponding to some of the problems we discuss.

1.2. Main results. In the following discussion, we use A,B,C,D to denote the
parts of the M -partition problem. Let the stubborn problem be the list M -partition
problem where MA,A = 0, MB,B = 0, MD,D = 1, MA,C = MC,A = 0, and all
other entries are asterisks (see Figure 1.1). The complement problem is obtained by
interchanging the zeros and ones in the matrix. When M has dimension 4, we classify,
with the sole exception of the stubborn problem and its complement, each list M -
partition problem as either solvable in polynomial time or NP-complete. In doing so,
we provide polynomial-time algorithms for many problems whose polynomial-time
solvability was open. For example, we settle the open problem posed by Feder et al.
[22] as to the existence of a polynomial-time algorithm to find a 2-clique cutset in a
graph by providing a polynomial-time algorithm for the list 2-clique cutset problem.
A 2-clique cutset is a cutset that induces the union of two cliques (or, equivalently,
induces a bipartite graph in the complement).

Suppose P is an M -partition problem. A generalized P problem is an M ′-partition
problem where M ′ is obtained from M by changing some asterisks to either 0 or
1. Among other results, we prove that any list generalized 2-clique cutset problem
(i.e., M ′

A,A = 1, M ′
B,B = 1, M ′

C,D = M ′
D,C = 0, and the other entries are 0, 1,

or ∗) is solvable in polynomial time, unless it contains the complement of the 3-
colorability problem, in which case it is NP-complete. This implies that the list
strict 2-clique cutset problem is polynomial-time solvable, and via this we provide
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⎦

split graph 3-colorability clique cutset stable cutset homogeneous set

⎡
⎢⎢⎣

∗ ∗ 0 0
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⎤
⎥⎥⎦

⎡
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∗ 1 ∗ ∗
1 ∗ ∗ ∗
∗ ∗ ∗ 1
∗ ∗ 1 ∗

⎤
⎥⎥⎦

⎡
⎢⎢⎣

∗ 1 ∗ ∗
1 ∗ ∗ ∗
∗ ∗ ∗ 0
∗ ∗ 0 ∗

⎤
⎥⎥⎦

stable cutset pair 2K2 skew partition

⎡
⎢⎢⎣

1 0 ∗ ∗
0 1 ∗ ∗
∗ ∗ ∗ 0
∗ ∗ 0 ∗

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 ∗ ∗ ∗
∗ 1 ∗ ∗
∗ ∗ ∗ 0
∗ ∗ 0 ∗

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 ∗ 0 ∗
∗ 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ 1

⎤
⎥⎥⎦

strict 2-clique cutset stubborn
2-clique cutset problem

Fig. 1.1. Some M-partition problems.

a polynomial-time algorithm to find a strict 2-clique cutset. A strict 2-clique cutset
is a cutset that induces the disjoint union of two cliques (or, equivalently, induces a
complete bipartite graph in the complement). We also classify each list generalized
skew partition problem as solvable in polynomial time or NP-complete.

1.3. Significance. Many important graph decomposition problems can be for-
mulated as M -partition problems with additional constraints imposed on the parts.
Indeed, the eventual resolution of the Strong Perfect Graph Conjecture by Chud-
novsky et al. [5] relies in part on three types of decompositions (a type of skew cutset
partition and two generalizations of the homogeneous set partition) that can be for-
mulated as M -partition problems with constraints. Such extra constraints typically
are that certain parts be nonempty, have at least a given number of vertices, induce
subgraphs that have at least one edge, etc. As discussed later, an instance of the M -
partition problem with additional constraints can be reduced to a set of instances of
the list M -partition problem. Thus, the list M -partition problem provides a flexible
model to capture extra constraints placed on the required partition.

Every list M -partition problem with M of dimension 4 was classified by Feder
et al. [22] as either ‘solvable in quasi-polynomial time’ or NP-complete. Here, quasi-

polynomial time is complexity of O(nc logtn), where t and c are positive constants and n
is the number of vertices in the input graph. Complete classification into polynomial-
time solvable and NP-complete problems has been obtained for the list M -partition
problem under several restrictions on M : when M is a matrix over {0, ∗}, {1, ∗}, or
{0, 1} [16, 19, 20, 22], has dimension 4 and does not contain an asterisk on the main
diagonal [22], is the matrix for skew partition [15], has dimension 3 [22], and, trivially,
when M has dimension 2. We complete this dichotomy classification (polynomial-
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time solvable and NP-complete) for all problems when M has dimension 4, with the
exception of the stubborn problem (see Figure 1.1) and its complement. Further, when
M has dimension 4, we give polynomial-time algorithms for many list M -partition
problems that were previously not known to be solvable in polynomial time [22]. The
techniques we employ, obtained by strengthening the techniques used in [15], are
general enough that they may prove useful in solving other decomposition problems.
For instance, we develop tools that are applicable to list M -partition problems of any
dimension.

In general, such dichotomy (into polynomial-time solvable and NP-complete prob-
lems) results are uncommon. However, Feder and Vardi [26] have made a dichotomy
conjecture in the context of constraint-satisfaction problems which has generated con-
siderable interest and has been proven in several special cases [17]. It is noted in
[17, 22] that general list M -partition problems are similar to, but not exactly the
same as, list constraint-satisfaction problems. It was conjectured in [22] that every
list M -partition problem (with no restriction on dimension of M) is either solvable
in quasi-polynomial time or NP-complete. This “quasi-dichotomy” has since been
established by Feder and Hell [17].

We show that all the quasi-polynomial-time cases of the Feder et al. [22] quasi-
dichotomy result for the list M -partition problem when M has dimension 4 are ac-
tually polynomial-time solvable, with the single exception of the stubborn problem
(and its complement), for which the best known complexity remains quasi-polynomial
time. There is no NP-complete problem that is known to have a quasi-polynomial-
time solution, and it is generally believed that problems solvable in quasi-polynomial
time are unlikely to be NP-complete. A polynomial-time solution for the stubborn
problem, if one exists, appears to be difficult and to require methods different from
those presented here and those in [17, 22].

Next, we remark on the attention that the stubborn problem has received subse-
quent to the appearance of a preliminary version of this paper in [4]. Feder and Hell
have independently identified the so-called “edge-free three-coloring problem” (see
[17]), in their attempt to classify certain list partition and list constraint satisfaction
problems, whose complexity has also eluded classification. Further, it is shown in [17]
that the two problems are closely related and also that the latter problem is at least
as hard as the stubborn problem. Finally, in a recent work in [24], it was shown that

each of these two problems can be solved in O(nO( log n
log log n )) time, thus improving the

bound of O(nO(log n)) established in [22]. This remains the current best complexity
for solving the stubborn problem.

1.4. Background and previous work. Feder et al. [22] introduced the M -
partition problem and, motivated by the need to capture additional restrictions on
the contents of individual parts or the connections between parts, generalized it to
the list M -partition problem. Lists also facilitate solving problems by recursing to
subproblems with modified lists. We use this technique, which was also employed in
the algorithms of [15, 22]. The list M -partition problem generalizes the M -partition,
list k-coloring, and list homomorphism (cf. below) problems. An instance of the M -
partition problem with certain additional constraints (that certain parts be nonempty,
have at least a given number of vertices, induce subgraphs that have at least one
edge, etc.) can be reduced to a set of instances of the list M -partition problem. In
this manner, the list M -partition problem provides a flexible model to capture extra
constraints on the required partition. Many well-known graph theoretic problems
correspond to M -partitions with additional constraints. We elaborate on this notion
next.
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A clique cutset in a graph is a cutset that induces a clique. It is easy to see that
a connected graph has a clique cutset if and only if its vertex-set can be partitioned
into parts A, B, and C, such that C is a clique, there are no edges between parts A
and B, and, further, each part is nonempty. For a graph G on n vertices, the clique
cutset problem can be reduced to O(n3) instances of the list M -partition problem,
where M is the matrix corresponding to the clique cutset problem, as follows: in order
to handle the restriction that each of the parts A, B, and C be nonempty, for each
triple x, y, z of vertices, we construct an instance with L(x) = {A}, L(y) = {B},
L(z) = {C}, and the list for any other vertex is {A,B,C}. G has a clique cutset if and
only if some such instance has a valid list M -partition. We note that finding a clique
cutset and decomposing a graph via clique cutsets have applications in algorithmic
graph theory [7, 28], and efficient algorithms exist for these problems [28, 33, 35, 36].

A 2-clique cutset is a cutset that is the union of two cliques (equivalently, the set
of vertices in the cutset induces a bipartite graph in the complement). As illustrated
in Figure 1.1, if parts A and B correspond to the two cliques whose union disconnects
part C from part D, then whether a graph admits a 2-clique cutset is again an
instance of the M -partition problem with the extra stipulation that each part be
nonempty. Hayward and Reed [29] conjectured that every (even hole)-free graph (a
graph that does not contain any induced cycle on an even number of vertices ≥ 4) that
is not a complete graph contains a vertex whose neighborhood can be partitioned into
two cliques. This conjecture implies that an (even hole)-free graph G has chromatic
number at most 2ω(G), where ω(G) is the clique number of G. Hoàng [31] proposed
the weaker conjecture that (even hole)-free graphs different from a clique have a
2-clique cutset. Feder et al. [22] provided the first subexponential-time (but, not
polynomial-time) algorithm to solve the list M -partition problem where M is the
matrix for a 2-clique cutset, and hence, they also solved the 2-clique cutset problem
in subexponential time. They posed the question [22] of the existence of a polynomial-
time algorithm for the problem, which is answered in the affirmative here. We note
that (even hole)-free graphs can be recognized in polynomial time [8, 9].

Analogous to a clique cutset, if we require the cutset to induce a stable set, then we
get the stable cutset problem. A skew partition of a graph is a partition of its vertex-
set into nonempty parts A, B, C, and D such that there are all possible edges between
parts A and B and there are no edges between parts C and D. These problems are M -
partition problems with the added constraint that each part be nonempty. Both the
stable cutset and skew partition problems play prominent roles in the area of perfect
graph theory. The interest in the stable cutset problem was motivated by Tucker’s
result [34] that a minimal imperfect graph, other than a chordless odd cycle, cannot
contain a stable cutset. Chvátal conjectured [6] that a minimal imperfect graph does
not admit a skew partition. Skew partitions played an important role in the proof
of the Strong Perfect Graph Conjecture by Chudnovsky et al. [5]; this work also
proved Chvátal’s conjecture. Testing whether a graph has a stable cutset is known
to be NP-complete [14]. However, Feder et al. [22] gave the first subexponential-time
algorithm for the (list) skew partition problem. A polynomial-time algorithm for the
(list) skew partition problem was developed subsequently by de Figueiredo et al. [15].

In certain other M -partition problems, there are constraints that there be at least
a certain number of vertices in some parts. A homogeneous set or module in a graph
is a set C of vertices such that C has at least two, but not all, of the vertices of the
graph, and every vertex not in C is either adjacent to all the vertices in C, or none
of the vertices in C. Among vertices not in C, if A is the set of vertices that are
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adjacent to all the vertices in C, and B is the set of vertices that are adjacent to
none of the vertices in C, then testing for the presence of module is an M -partition
problem with the additional requirements that |C| ≥ 2 and A ∪ B is nonempty.
We can reduce the homogeneous set problem for a graph G on n vertices to O(n3)
instances of the list M -partition problem, where M is the matrix corresponding to
the homogeneous set problem, as follows: for each triple x, y, z of vertices, we set
L(x) = {C}, L(y) = {C}, and L(z) = {A,B}, the list of any other vertex to {A,B,C},
and check if any such instance has a valid list M -partition. Testing for the presence
of modules and decomposition of a graph via modules have important applications in
algorithmic graph theory, and efficient algorithms exist for these problems [10, 28, 32].

Feder et al. [22] studied the list M -partition problem with the goal of classifying
matrices M into those for which the problem is efficiently solvable and those for which
an efficient solution is perhaps unlikely. Next, we present results known on restricted
versions of the list M -partition problem and then results known on the general list
M -partition problem.

A k-coloring of graph G is the same as an M -partition of G where M (with
dimension k) has zeros along the main diagonal and all other entries are asterisks.
Therefore, the k-colorability problem is an M -partition problem where M is obtained
from the 0-1 adjacency matrix of a complete (loopless) graph on k vertices by replacing
every 1 with an asterisk. The more general H-coloring problem [30] is derived when
M is obtained from the adjacency matrix of an arbitrary graph in the same way. More
precisely, in the H-coloring problem [30], also called the homomorphism problem, given
graph G and a specific graph H (possibly containing loops), we are asked whether it
is possible to partition V (G) into parts Au, u ∈ V (H), such that Au is a stable set
when u does not have a loop in H, and there are no edges between parts Ax and Ay

whenever xy /∈ E(H). The H-coloring problem is solvable in polynomial time when
H is bipartite or when H contains a loop, and is NP-complete otherwise [30].

The list H-coloring problem [16, 19, 20] is the list version of the H-coloring
problem where, in addition to being given G and H, for each vertex v of G we are
given a list, L(v) which is a subset of V (H). The problem then asks whether there is
an H-coloring subject to the additional restriction that each vertex v of G is placed
in a part Ay such that y ∈ L(v). Just as the list coloring is a special case of list
H-coloring (when H is a complete graph with no loops), list H-coloring is a special
case of list M -partition where the matrix M is obtained from the adjacency matrix
of the graph H by replacing every 1 with an asterisk.

In a sequence of papers [16, 19, 20], it was established that every list H-coloring
problem (namely, every list M -partition problem where M is a matrix over {0, ∗}) is
either solvable in polynomial time or NP-complete. The complement M of a matrix
M over {0, 1, ∗} is obtained from M by interchanging the zeros and ones and leaving
the asterisks unchanged. Since the list M -partition problem for G, where M is a
matrix over {1, ∗}, is essentially the same as the list M -partition problem for the
complement of G, it follows that every list M -partition problem, where M is a matrix
over {1, ∗}, is also either solvable in polynomial time or NP-complete. See Figure 1.1
for definitions of the problems in the following theorems.

Theorem 1.1 (see [16, 19, 20]). If M is a matrix over {0, ∗} or {1, ∗}, then the
list M-partition problem is either solvable in polynomial time or NP-complete.

The following corollary can be derived from [16, 19, 20].

Corollary 1.2 (see [16, 19, 20, 21]). If M is a matrix over {0, ∗} or {1, ∗}
and has dimension 4, then the list M -partition problem is solvable in polynomial time,
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except when M contains the matrix for 3-coloring, stable cutset, or their complements,
or M is the matrix for stable cutset pair, 2K2, or their complements, in which cases
the problem is NP-complete.

Feder et al. [22] proved the following three theorems.

Theorem 1.3 (see [22]). When M has dimension 3, the list M -partition problem
is solvable in polynomial time, except when M is the matrix for 3-coloring, stable
cutset, or their complements, in which cases the problem is NP-complete.

Theorem 1.4 (see [22]). When M has dimension 4 and does not contain a ∗ on
the main diagonal, the list M -partition problem is solvable in polynomial time, except
when M contains the matrix for 3-coloring, or its complement, in which cases the
problem is NP-complete.

Theorem 1.5 (see [22]). When M has dimension 4, the list M -partition problem
is solvable in quasi-polynomial time or NP-complete.

Feder et al. [22] also showed that if M is a matrix over {0, 1}, then the list M -
partition problem is polynomial-time solvable. When M has dimension 2, the problem
can be reduced to the 2-satisfiability problem and solved in polynomial time using
the algorithm of [1].

It was conjectured in [22] that every list M -partition problem (with no restriction
on dimension of M) is either solvable in quasi-polynomial time or NP-complete, and
this now has been shown to be the case by Feder and Hell [17]. In a recent work [17],
it has been shown that every list M -partition problem for directed graphs is either
solvable in quasi-polynomial time or NP-complete. Further, when M has dimension
at most 3, the quasi-polynomial cases of the list M -partition problem for directed
graphs are now known to be polynomial-time solvable [25].

We close this section by referring the reader to [22] for a fine exposition on other
graph theoretic problems that can be modeled as list M -partition problems.

2. Tools. We borrow some tools from [15] and [22]. For a vertex v of graph G,
N(v) denotes the set of vertices adjacent to v in G, i.e., N(v) is the set of neighbors
of v in G.

A basic strategy that we employ, much akin to [22] and [15], is replacing an
instance I of the list M -partition problem on graph G by a polynomially bounded
number of instances I1, I2, . . . , Ip such that

• The answer to I is “yes” if and only if the answer to some Ik is “yes.”

Moreover, each instance Ik satisfies at least one of the following:
• The longest list of I is missing in Ik.
• The number of distinct lists in Ik is fewer than the number of distinct lists

in I.
• Ik is an instance of the list M ′-partition problem for graph H where H is an

induced subgraph of G and M ′ is a principal submatrix of M .
• Ik is easy to resolve.

Next we reproduce and summarize the tools from [22] that we use in this regard.

Tool 1. An instance of the list M-partition problem in which the list for every
vertex of the input graph has size at most two, is solvable in polynomial time.

Justification. Such a problem can easily be modeled as an instance of the 2-
satisfiability problem (2-SAT) and solved using the algorithm in [1].

In the course of dealing with an instance of the list M -partition problem, our
methods might decide to place a particular vertex in a specific part of the partition
(either because the list of the vertex has size one, or this is one of the many possibilities
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that will be tried). The following tool addresses how the instance can then be “cleaned
up” to account for the placement of the vertex without altering the outcome.

Tool 2. Suppose we have an instance of the list M-partition problem on graph
G with lists L, and suppose we decide to place vertex v in part X. Let L′ be the lists
obtained from L as follows: for all parts Y such that MX,Y = 0, remove Y from the
lists of neighbors of v. For all parts Y such that MX,Y = 1, remove Y from the lists
of nonneighbors of v. Then there is a list M-partition of G with respect to lists L and
with v in X if and only if there is a list M-partition of G-v with respect to lists L′.

Tool 3. Suppose we have an instance of the list M-partition problem for a graph
on n vertices where MX,Y = 0 and MX,Z = 1. Then we can replace the instance with
a set of instances consisting of one instance in which no vertex has X in its list, and
at most n other instances in each of which no vertex has both Y and Z in its list such
that the original instance admits a list M-partition if and only if some new instance
does.

Justification. If the original instance were to admit a list M -partition, then the
possibilities are that either some vertex that had X in its list is placed in part X, or
no vertex that had X in its list is placed in part X. The latter case can be covered by
creating an instance by deleting X from every list. The former case can be covered
by creating, for each vertex v that has X in its list, an instance by placing v in X
and then applying Tool 2.

Following the terminology used in [22], we say part X dominates part Y in matrix
M , if for every part Z (including X and Y ), we have MX,Z = MY,Z or MX,Z = ∗.

Tool 4. Suppose we have an instance of the list M-partition problem on graph
G with lists L, and part X dominates part Y in M. Let L′ be the lists obtained from L
by removing Y from any list that also contains X. Then there is a list M-partition of
G with respect to lists L if and only if there is a list M-partition of G with respect to
lists L′.

Justification. If part X dominates part Y in matrix M , then in any list M -
partition of G, a vertex in part Y can also be placed in part X.

Again, following the terminology in [22], we say that a k × k matrix M contains
a p× p matrix M ′, p ≤ k, if M ′ is a principal submatrix of M .

Tool 5. If M contains M ′ and the list M ′-partition problem is NP-complete,
then the list M-partition problem is also NP-complete.

Justification. Clearly, any polynomial-time algorithm for the list M -partition
problem can be used, without any changes, to solve the list M ′-partition problem in
polynomial time.

Recall that the complement M of matrix M is obtained from M by replacing
every 0 with a 1, every 1 with a 0, and leaving the asterisks unchanged.

Tool 6. Graph G admits a list M-partition with respect to lists L if and only if
the complement of G admits a list M -partition with respect to the lists L.

The following lemmata can be extracted from the details in [15]; however, they
are not explicitly presented as lemmata there. We state them explicitly and present
their proofs in their entirety for the sake of completeness. For simplicity of exposition
(as was done in [15]) we use the constant 1/10 (and the related constants 7/10, 8/10,
and 9/10) in the following lemmata. However, this can be replaced by any constant
1/c (and the related constants replaced by (c− 3)/c, etc.) such that c ≥ 5.

With respect to graph G and vertex-subset O of G, O denotes the subgraph
induced by O in G, the complement of G.

Lemma 2.1 (see [15]). Let G be a graph on n vertices and W be the set of those
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vertices of G whose degree is more than 9n
10 . If |W | > 9n

10 , then there is a linear time
algorithm that

• either finds pairwise disjoint vertex subsets O, T , and NT of G such that
|O| + |NT | ≥ n

10 , |T | ≥ n
10 , O is connected, there are all possible edges

between O and T , and each vertex in NT is nonadjacent to a vertex of O,
• or finds disjoint vertex subsets O∗, T ∗ of G such that |O∗| ≥ n

10 , |T ∗| ≥ 7n
10 ,

and there are all possible edges between O∗ and T ∗.

Proof. Consider the following algorithm that partitions a subset W ′ of W into
sets O, T , and NT , where |W ′| > 8n

10 . The algorithm starts with a single vertex in
set O and attempts to grow the set.

Algorithm α.
Input:

W ′ ⊆ W such that |W ′| > 8n
10 .

pick vertex u ∈ W ′;
O = {u};
T = N(u) ∩W ′;
NT = W ′ − T − {u};
repeat

pick v ∈ NT ;
move v from NT to O;
move T\N(v) from T to NT

until (|O| + |NT | ≥ n
10 ) or (NT = ∅)

We first set W ′ = W and invoke Algorithm α. As u is nonadjacent to fewer
than n

10 vertices of G (hence, of W ′), initially |NT | < n
10 . Suppose the algorithm

stops with |O| + |NT | ≥ n
10 . As v is nonadjacent to fewer than n

10 vertices of G (and
hence, of W ′), fewer than n

10 new vertices were moved into O ∪NT during the final
iteration. Therefore, n

10 ≤ |O| + |NT | < 2n
10 and |T | ≥ (|W ′| − 2n

10 ) ≥ (8n
10 − 2n

10 ) ≥ n
10 .

Further, as any vertex v moved into O is nonadjacent to some vertex of O, O remains
connected. Clearly, there are all possible edges between O and T and every vertex in
NT is nonadjacent to some vertex in O. Therefore, the sets O, T , and NT meet the
conditions of the lemma.

On the other hand, suppose the algorithm stops with |O|+|NT | < n
10 and NT = ∅;

clearly, |O| < n
10 and W was partitioned into O and T , and there are all possible edges

between O and W\O. We then apply the following algorithm to find the desired sets.

Algorithm β
Input:

O ⊆ W such that |O| < n
10 and there are all possible edges between O

and W\O.

O∗ = O;
W ′ = W\O∗;
repeat

Apply Algorithm α to W ′ to partition it into sets O, T , and NT ;
if (|O| + |NT | ≥ n

10 ) then
stop /* O, T , and NT are as desired */
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else
{

O∗ = O∗ ∪O;
W ′ = W\O∗

}
until (|O∗| ≥ n

10 );
T ∗ = W\O∗

Note that as Algorithm β begins, |W ′| > 8n
10 ; also, there are all possible edges

between O∗ and W\O∗. If the algorithm stops with |O| + |NT | ≥ n
10 , then we have

found appropriate sets O, T , and NT . Otherwise, |O| < n
10 and W ′ is partitioned

into O and T . This implies that at the end of each iteration, there are all possible
edges between O∗ and W\O∗. If |O∗| < n

10 (and hence, the loop does not terminate),
then |W ′| > 8n

10 for the next iteration, satisfying the precondition for Algorithm α.
Suppose Algorithm β stops with |O∗| ≥ n

10 ; then, at the end of the penultimate
iteration, |O∗| < n

10 . Since the set O of vertices added to O∗ during the final iteration
has fewer than n

10 vertices, when the algorithm stops, |O∗| < 2n
10 . Taking T ∗ = W\O∗

then guarantees that |T ∗| ≥ (|W | − |O∗|) ≥ ( 9n
10 − 2n

10 ) ≥ 7n
10 and there are all possible

edges between O∗ and T ∗. Finally, the algorithms can easily be implemented to run
in linear time.

Lemma 2.2 (see [15]). Let G be a graph on n vertices with a partition of its
vertex set into sets S1, S2 with |S1| = n1 and |S2| = n2. Let X1 be the set of those
vertices in S1 each of which has fewer than n2

10 neighbors in S2. If |X1| ≥ n1

2 , then
there is a linear time algorithm that finds vertex subsets O, M , and NM of G such
that

1. O ⊆ X1,
2. S2 is partitioned into M and NM ,
3. there are no edges between O and M ,
4. every u ∈ NM has a neighbor u′ ∈ O, and
5. either 2n2

5 ≤ |M | ≤ n2

2 and |NM | ≥ n2

2 , or |O| ≥ n1

10 and |M | > n2

2 .

Proof. We apply the following linear time algorithm to grow the set O ⊆ X1

starting with a single vertex in O while partitioning S2 into sets M and NM .

Algorithm γ
Input:

Sets S1, S2, and X1 as specified in Lemma 2.2.

pick vertex u ∈ X1;
O = {u};
NM = N(u) ∩ S2;
M = S2\NM ;
repeat

pick v ∈ (X1\O);
move v to O;
move N(v) ∩M from M to NM

until (|M | ≤ n2

2 ) or (|O| ≥ n1

10 )

It is evident from Algorithm γ that there are no edges between O and M , and
every vertex in NM has a neighbor in O. As u is adjacent to fewer than n2

10 vertices
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of S2, initially |M | > 9n2

10 . Suppose |M | ≤ n2

2 when the algorithm stops. Since v is
adjacent to fewer than n2

10 vertices of S2 (hence, of M), fewer than n2

10 vertices were
moved from M to NM during the final iteration. Therefore, |M | > (n2

2 − n2

10 ), and we

have 2n2

5 ≤ |M | ≤ n2

2 . As M and NM partition the set S2, we also have |NM | ≥ n2

2 ,
as desired. On the other hand, suppose the algorithm stops with |M | > n2

2 and
|O| ≥ n1

10 . The conditions of the lemma are then trivially met.

Lemma 2.3 (see [15]). Let G be a graph on n vertices with a partition of its vertex
set into sets S1, S2 with |S1| = n1 and |S2| = n2. Let W1 be the set of those vertices
in S1 each of which has more than 9n1

10 neighbors in S1 and more than 9n2

10 neighbors

in S2. Let W2 be the set of those vertices in S2 each of which has more than 9n2

10

neighbors in S2 and more than 9n1

10 neighbors in S1. If |W1| > 9n1

10 and |W2| > 9n2

10 ,
then there is a linear time algorithm that

• either finds pairwise disjoint vertex subsets O, T , and NT of G such that
1. O is connected,
2. there are all possible edges between O and T ,
3. each vertex in NT is nonadjacent to a vertex in O,
4. |T ∩ S1| ≥ n1

10 ,
5. |T ∩ S2| ≥ n2

10 , and
6. either |O ∩ S1| + |NT ∩ S1| ≥ n1

10 , or |O ∩ S2| + |NT ∩ S2| ≥ n2

10 ,
• or finds disjoint vertex subsets O∗, T ∗ of G such that

1. either O∗ ⊆ S1 and |O∗| ≥ n1

10 , or O∗ ⊆ S2 and |O∗| ≥ n2

10 ,
2. |T ∗ ∩ S1| ≥ n1

10 ,
3. |T ∗ ∩ S2| ≥ n2

10 , and
4. there are all possible edges between O∗ and T ∗.

Proof. We begin by noting that the proof of Lemma 2.3 is similar in principle
to that of Lemma 2.1. Let W = (W1 ∪ W2), and therefore, |W ∩ S1| > 9n1

10 and

|W ∩ S2| > 9n2

10 .

Consider the following algorithm that partitions a subset W ′ of W into sets O,
T , and NT , where |W ′ ∩ S1| > 8n1

10 and |W ′ ∩ S2| > 8n2

10 . The algorithm starts with
a single vertex in set O and attempts to grow the set.

Algorithm δ
Input:

W ′ ⊆ W such that |W ′ ∩ S1| > 8n1

10 and |W ′ ∩ S2| > 8n2

10 .

pick vertex u ∈ W ′;
O = {u};
T = N(u) ∩W ′;
NT = W ′ − T − {u};
repeat

pick v ∈ NT ;
move v from NT to O;
move T\N(v) from T to NT

until (|O ∩ S1| + |NT ∩ S1| ≥ n1

10 ) or (|O ∩ S2| + |NT ∩ S2| ≥ n2

10 ) or (NT = ∅)

We first set W ′ = W and invoke Algorithm δ. As u is nonadjacent to fewer than
n1

10 vertices of S1 (hence, of W ′ ∩ S1) and fewer than n2

10 of vertices of S2 (hence, of
W ′ ∩ S2), initially |NT ∩ S1| < n1

10 and |NT ∩ S2| < n2

10 .

Suppose when the algorithm stops, ((|O∩S1|+|NT∩S1| ≥ n1

10 ) or (|O∩S2|+|NT∩
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S2| ≥ n2

10 )) is true; without loss of generality, assume that |O∩S1|+|NT∩S1| ≥ n1

10 . As
v is nonadjacent to fewer than n1

10 vertices of S1 (hence, of W ′∩S1), fewer than n1

10 new
vertices were moved into (O ∩ S1) ∪ (NT ∩ S1) during the final iteration. Therefore,
|O ∩ S1| + |NT ∩ S1| < 2n1

10 . For similar reasons, |O ∩ S2| + |NT ∩ S2| < 2n2

10 .

Hence, |T ∩ S1| ≥ (|W ′ ∩ S1| − (|O ∩ S1| + |NT ∩ S1|)) ≥ ( 8n1

10 − 2n1

10 ) ≥ n1

10 and

|T∩S2| ≥ (|W ′∩S2|−(|O∩S2|+|NT∩S2|)) ≥ ( 8n2

10 − 2n2

10 ) ≥ n2

10 . Further, as any vertex

v moved into O is nonadjacent to some vertex of O, O remains connected. Clearly,
there are all possible edges between O and T and every vertex in NT is nonadjacent
to some vertex in O. Therefore, the sets O, T , and NT meet the conditions of the
lemma.

On the other hand, suppose the algorithm stops with |O ∩ S1|+ |NT ∩ S1| < n1

10 ,
|O ∩ S2| + |NT ∩ S2| < n2

10 , and NT = ∅; clearly, |O ∩ S1| < n1

10 , |O ∩ S2| < n2

10 , W is
partitioned into O and T , and there are all possible edges between O and W\O. We
then apply the following algorithm to find the desired sets.

Algorithm ε
Input:

O ⊆ W such that |O ∩ S1| < n1

10 and |O ∩ S2| < n2

10
and there are all possible edges between O and W\O.

J∗ = O;
W ′ = W\J∗;
repeat

Apply Algorithm δ to W ′ to partition it into sets O, T , and NT ;
if (|O ∩ S1| + |NT ∩ S1| ≥ n1

10 ) or (|O ∩ S2| + |NT ∩ S2| ≥ n2

10 ) then
stop /* O, T , and NT are as desired */

else
{

J∗ = J∗ ∪O;
W ′ = W\J∗

}
until (|J∗ ∩ S1| ≥ n1

10 ) or (|J∗ ∩ S2| ≥ n2

10 );
if (|J∗ ∩ S1| ≥ n1

10 ) then
O∗ = J∗ ∩ S1

else
O∗ = J∗ ∩ S2;

T ∗ = W\J∗

Note that as Algorithm ε begins, |W ′∩S1| > 8n1

10 and |W ′∩S2| > 8n2

10 ; also, there
are all possible edges between J∗ and W\J∗. If the algorithm stops with ((|O∩S1|+
|NT ∩ S1| ≥ n1

10 ) or (|O ∩ S2| + |NT ∩ S2| ≥ n2

10 )) being true, then we have found
appropriate sets O, T , and NT . Otherwise, |O ∩ S1| < n1

10 , |O ∩ S2| < n2

10 , and W ′

is partitioned into O and T . This implies that at the end of each iteration, there are
all possible edges between J∗ and W\J∗. If |J∗ ∩ S1| < n1

10 and |J∗ ∩ S2| < n2

10 (and

hence, the loop does not terminate), then |W ′∩S1| > 8n1

10 and |W ′∩S2| > 8n2

10 for the
next iteration, satisfying the precondition for Algorithm δ. Without loss of generality,
suppose the loop in Algorithm ε terminates with |J∗ ∩ S1| ≥ n1

10 ; then, at the end
of the penultimate iteration, |J∗ ∩ S1| < n1

10 and |J∗ ∩ S2| < n2

10 . Since the set O of
vertices added to J∗ during the final iteration has fewer than ni

10 vertices of Si, i = 1, 2,
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|J∗ ∩ Si| < 2ni

10 for i = 1, 2. Taking T ∗ = W\J∗ and O∗ = (J∗ ∩ S1) then guarantees
that |T ∗ ∩S1| ≥ (|W ∩S1| − |J∗ ∩S1|) ≥ n1

10 , |T ∗ ∩S2| ≥ (|W ∩S2| − |J∗ ∩S2|) ≥ n2

10 ,
and there are all possible edges between O∗ and T ∗.

3. Three procedures. We assume the input is a graph G = (V,E) with the
adjacency requirements on the parts Ai and a set Φ of lists L(v). We consider the
instance Φ as a partition of V into at most 2k − 1 sets SL, indexed by the nonempty
subsets L of Z = {A1, A2, . . . , Ak}. That is, SL is the set of vertices with list L. For
example, if L(v) = {A1, A2}, then v ∈ S{A1,A2}. For simplicity we will drop the set
brackets in the subscript, i.e., SA1A2 = S{A1,A2}. SL(Φ) refers to the set SL defined by
Φ. When the context is clear, we write SL = SL(Φ). When we say Φ has a solution,
it is assumed the parts are A1, A2, . . . , Ak.

Throughout the algorithms used in the proof of the main theorem in section 4,
Properties 1 and 2 below are always satisfied by the partition of V according to the
sets SL.

Property 1. If the algorithm returns a partition and v is in SL, then the returned
part Ai containing v is a part in L.

Property 2. If v ∈ SL for some L, then for each Ai ∈ L and each SAj , v
is adjacent (resp., nonadjacent) to all vertices in SAj whenever MAi,Aj = 1 (resp.,
MAi,Aj

= 0). (It is possible that i = j.)
Often, we replace an instance Φ by a set of instances {Φ1,Φ2, . . . ,Φp} such that

Φ has a solution if and only if some Φi has a solution. In this case, we say the set of
instances {Φ1,Φ2, . . . ,Φp} is equivalent to Φ.

Let X ⊆ SL and Ai ∈ L. In creating a new instance Φj from Φ, we often say
X drops (part) Ai. By this we mean for each vertex v ∈ X, L(v) = L − {Ai}, and,
consequently, SL(Φj) = SL(Φ) −X,SL−{Ai}(Φj) = SL−{Ai}(Φ) ∪X and SL′(Φj) =
SL′(Φ) for all other subsets L′ of Z. When we say X gets the list Ai we mean X
drops all parts except Ai (i.e., X ⊆ SAi

(Φj)).
The reduction operation. Whenever a new instance Φj is created, a set

SAi
(Φj) may be a proper superset of SAi

(Φ), and in any solution of Φj we must
have SAi

(Φj) ⊆ Ai for all i. If some v ∈ SL(Φj), where Ai ∈ L, is not adjacent to all
vertices in SAj (Φj) and MAi,Aj = 1, then v cannot be in part Ai in any solution. So
we can reduce to a new problem where v drops the part Ai. In the case that L is a
singleton set, Φj has no solution. The case where MAi,Aj = 0 is handled in a similar
way. It is easy to see that after O(n) similar reductions, we obtain an equivalent
instance satisfying Property 2, or halt because Φj has no solution.

We refer to parts Ai, Aj such that MAi,Aj
= 1 (MAi,Aj

= 0) as true partners (false
partners). We use partner without qualification to refer to a true or false partner. Note
that a part can be its own partner.

The following two procedures (1 and 2) generalize two procedures in [15]. These
generalizations are necessary for the proof of our main result in section 4. Also,
these procedures are applicable to more general list partition problems than 4-part
problems.

Remark. As in the lemmata of section 2, we assume k ≤ 10 and use the cor-
responding constant 1/10 (and the related constants 7/10, 8/10, and 9/10) in the
following procedures. However, for arbitrary dimension k, the constant 1/10 can be
replaced by any constant 1/c (and the related constants replaced by (c − 3)/c, etc.)
such that c ≥ max{5, k}. Thus, these procedures are applicable to partition problems
of any dimension k. The procedures are applied recursively to a given instance Φ to
generate an equivalent set of instances (cf. Notes 1, 2, and 3). Taking c = max{5, k}
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minimizes the number of instances generated for any k.

Procedure 1.

Input: An instance Φ of the list M -partition problem with set Z of parts A1, A2, . . .,
Ak, and a set L ⊆ Z such that SL �= ∅ and the parts Ai ∈ L can be put into sets U
and F such that U �= ∅,F �= ∅, U ∪F = L, but U ∩F may or may not be empty, and
the following properties hold:

(a) Clique structure. U = {U1, U2, . . . , Uu}. If |U| = 1, then MU1,U1
= 1;

otherwise MUiUj = 1 for all i and j, i �= j, except possibly when i = u − 1
and j = u. If MUu−1,Uu �= 1, then MUu−1,Uu−1 = MUu,Uu = 1.

(b) F = {F1, . . . , Ff}. If |F| = 1, then MF1,F1 = 0; otherwise MFi,Fj = 0 for all
i, j, i �= j, except possibly when i = f − 1 and j = f . If MFf−1,Ff

�= 0, then
MFf−1,Ff−1

= MFf ,Ff
= 0.

As noted above, lists satisfying property (a) are said to have the clique structure.

Output: A set of at most k instances, {Φ1,Φ2, . . .}, that is equivalent to Φ, and such
that for each i, |SL(Φi)| ≤ 9

10 |SL(Φ)|, or a proof that Φ has no solution.

Note 1. Given an instance Φ, applying Procedure 1 to Φ produces at most k
instances Φi with |SL(Φi)| ≤ 9

10 |SL(Φ)|. Thus, given an instance Φ on a graph G with
n vertices (with k ≤ 10), recursively applying Procedure 1 produces a polynomial
number of instances Φ′ for which SL(Φ′) = ∅, and the set of instances produced
is equivalent to Φ. It is easy to see that the number of instances Φ′ is at most

k
log 10

9
n

= n
log 10

9
k
. We shall refer to this process as eliminating the set SL.

Details of Procedure 1. Let n = |SL(Φ)|. Any partner referred to here is a
partner in L.

Case 1. There is a vertex v in SL such that n
10 ≤ |SL ∩N(v)| ≤ 9n

10 .

To cover the possibility that v is placed in part Ai in the solution, we generate
instances Φi, i = 1, . . . , k, by setting SAi(Φi) = {v} ∪ SAi(Φ) and reducing so that
Property 2 holds. If Ai ∈ U , then the nonneighbors of v must drop the part p(Ai)
(hence, they cannot remain in SL) where p(Ai) is the true partner of Ai. Since there
are at least n

10 nonneighbors of v, |SL(Φi)| ≤ 9n
10 . Similarly, if Ai ∈ F , then the

neighbors of v must drop the part p(Ai) where p(Ai) is the false partner of Ai; hence,
|SL(Φi)| ≤ 9n

10 . Clearly, the set of instances {Φ1, . . . ,Φk} is equivalent to Φ.

We may now assume that every vertex in SL has more than 9n
10 neighbors or fewer

than n
10 neighbors in SL.

Let W = {v ∈ SL : |SL ∩N(v)| > 9n
10 } and X = {v ∈ SL : |SL ∩N(v)| < n

10}.
Case 2. |X| ≥ n

10 and |W | ≥ n
10 .

In any solution to Φ, |Ai ∩ SL(Φ)| ≥ n
k ≥ n

10 for some Ai; thus, we generate an
instance for each Ai to cover the possibility that Ai is such a part. If |Ai∩SL(Φ)| ≥ n

10
and Ai has a true (false) partner p(Ai), then p(Ai) ∩ X = ∅ (p(Ai) ∩ W = ∅).
Properties (a) and (b) ensure that each Ai has either a true or false partner p(Ai).
Thus, for i = 1, . . . , k, generate Φi in which X drops p(Ai), if p(Ai) is a true partner;
otherwise, generate Φi in which W drops p(Ai). For each i, |SL(Φi)| ≤ 9n

10 , and the
set of instances {Φ1, . . . ,Φk} is equivalent to Φ.

Case 3. |W | > 9n
10 .

By Lemma 2.1, we can either

(i) find pairwise disjoint subsets O, T,NT of SL such that O is connected,
|O| + |NT | ≥ n

10 , |T | ≥
n
10 , there are all possible edges between O and T , and each

vertex in NT is nonadjacent to some vertex in O, or
(ii) find disjoint subsets O∗ and T ∗ of SL such that |O∗| ≥ n

10 , |T ∗| ≥ 7n
10 , and

there are all possible edges between O∗ and T ∗.
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Case (i). We create an instance ΦAi
for each part Ai of L as follows. First, for

each Ai of F −U with false partner p(Ai), construct ΦAi by making T drop the part
p(Ai).

Now, we may assume that the remaining parts in L can be named U1, U2, . . . , Ul

so that they have the clique structure. We create instances as follows:

1. If l = 1, then MU1,U1
= 1. If |O| > 1, do not create a new instance. Otherwise,

create instance ΦU1 by placing the only vertex of O in part U1 and making
NT drop part U1.

2. If l ≥ 2 and MUi,Uj
= 1 for all j �= i, create, for each i, ΦUi

from Φ by making
O ∪NT drop every part Uj , j �= i.

3. If l ≥ 2 and MUiUj
�= 1 for some i, j, then we must have {i, j} = {l − 1, l}

and MUl−1,Ul−1
= MUl,Ul

= 1. Test whether O has a unique partition into
two cliques K1,K2. If not, do not create a new instance (see the explanation
below). Otherwise, create two instances Φ1, Φ2 as follows. In Φ1, K1 gets
the list Ul−1 (it drops all other parts) and K2 gets the list Ul; for each vertex
x in NT , x drops part Ul−1 if x is nonadjacent to some vertex in K1, or x
drops part Ul if x is nonadjacent to some vertex in K2. The instance Φ2 is
defined similarly with K1 getting list Ul and K2 getting list Ul−1.

We now show that the set of new instances is equivalent to Φ. Suppose there is a
solution A1, . . . , Ak to Φ. It must be the case that for some i, O ∩Ai �= ∅. If there is
an Ai in F − U with a false partner p(Ai) such that O ∩Ai �= ∅, then T ∩ p(Ai) = ∅;
this eventuality is covered by ΦAi

.

Now suppose there is no part in F − U that has nonempty intersection with O.
Let the parts not in F − U be U1, . . . , Ul (if they exist). These parts must have the
clique structure. If l = 1, then we have MU1,U1

= 1 and O ⊆ U1 in the solution. Since
O is connected, it follows that when |O| > 1, there is no solution. Otherwise, the only
vertex in O must go to part U1. As no vertex in NT can now be in part U1, NT must
drop the part U1; this eventuality is covered by the instance ΦU1 .

Now suppose l ≥ 2. For any Ui that is a true partner of all Uj with j different
from i, if O ∩ Ui �= ∅, then (as O is connected) O ⊆ Ui. Since no member of NT can
now be placed in a part that is a true partner of Ui, it follows that NT must drop all
parts Uj with i �= j; this eventuality is covered by ΦUi .

Last, we consider the case MUl−1,Ul−1
= MUl,U1 = 1 and every vertex in O belongs

to Ul−1 ∪ Ul. Since O is connected, O must be partitioned uniquely into two cliques
K1,K2; otherwise, there is no solution. We see that every vertex in NT must drop a
part (Ul−1 or Ul); this eventuality is covered by Φ1 and Φ2.

Case (ii). We construct two new instances from Φ as follows. Choose an Ai that
has a false partner p(Ai) and create Φ1 by making T ∗ drop p(Ai); then create Φ2

by making O∗ drop Ai. This can be justified as follows. In any solution to Φ, if
Ai ∩O∗ �= ∅, then T ∗ ∩ p(Ai) = ∅; otherwise, O∗ ∩Ai = ∅.

Case 4. |X| > 9n
10 .

This case is similar to Case 3 with G replaced by G and M replaced by M .

It is easily verified that in each instance Γ created, |SL(Γ)| ≤ 9
10 |SL(Φ)|. If no new

instances are produced by the above analysis, then Φ has no solution. This completes
the description of Procedure 1.

Procedure 2.

Input: Instance Φ of the list M -partition problem with set Z of parts A1, . . . , Ak, and
two sets L and R, which are subsets of Z, such that SL �= ∅, SR �= ∅, L �⊆ R, R �⊆ L,
and we can write L = {L1, L2, . . . Lp} (p ≥ 3) and R = {R1, R2, . . . , Rq} (q ≥ 3) so
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that
1. each Li has a partner in R,
2. each Ri has a partner in L,
3. some Li has a true partner in R (equivalently, some Ri has a true partner in

L),
4. some Li has a false partner in L ∪R,
5. some Rj has a false partner in L ∪R,
6. for each i, if Li has no false partner in R, then Li has a true partner in L,
7. for each i, if Ri has no false partner in L, then Ri has a true partner in R,
8. if the set F of parts in L that have no true partners in R is not empty, then

there is a part Rj that is a false partner of all parts in F ,
9. if the set H of parts in R that have no true partners in L is not empty, then

there is a part Li that is a false partner of all parts in H,
10. if the set U of parts of L∪R that have no false partners in L∪R is not empty,

then the parts in U must have the clique structure, each of them has a true
partner in L and in R, and the two parts in U that are not true partners (if
they exist) must belong to L ∩R.

Output: A set of at most 2k instances {Φ1,Φ2, . . .} that is equivalent to Φ, and
such that for each i, |SL(Φi)| |SR(Φi)| ≤ 9

10 |SL(Φ)| |SR(Φ)|, or a proof that Φ has no
solution.

Note 2. Given an instance Φ on a graph G with n vertices (with k ≤ 10) that
satisfies the conditions of Procedure 2, recursively applying Procedure 2 produces a
polynomial number of instances Φ′ for which SL(Φ′) = ∅ or SR(Φ′) = ∅, and the set
of instances produced is equivalent to Φ. It is easy to see that the number of instances

Φ′ is at most (2k)
log 10

9
n2

= n
2log 10

9
2k

.
Details of Procedure 2. Write S1 = SL, S2 = SR. Let n1 = |S1| and n2 = |S2|.

For a vertex v ∈ S1 ∪ S2, let di(v) = |N(v) ∩ Si|, i = 1,2.
Case 1. There is a vertex v in S1 with n2

10 ≤ d2(v) ≤ 9n2

10 .
For each Li ∈ L, let p(Li) be a partner of Li in R. For each Li ∈ L, construct an

instance Φi from Φ as follows. If Li is a true partner of p(Li), then S2 −N(v) drops
the part p(Li); otherwise, S2 ∩N(v) drops part p(Li). It is a routine matter to verify
that the set of new instances is equivalent to Φ.

Case 1′. There is a vertex v in S2 with n1

10 ≤ d1(v) ≤ 9n1

10 .
This case is symmetric to Case 1.
Case 2. Every vertex v in S1 satisfies d2(v) <

n2

10 or d2(v) >
9n2

10 . Every vertex v

in S2 satisfies d1(v) <
n1

10 or d1(v) >
9n1

10 .
Define four sets as follows:

X1 =

{
v ∈ S1|d2(v) <

n2

10

}
, X2 =

{
v ∈ S2|d1(v) <

n1

10

}
,

W1 =

{
v ∈ S1|d2(v) >

9n2

10

}
, W2 =

{
v ∈ S2|d1(v) >

9n1

10

}
.

There are three cases to consider.
Case 2.1. |X1|, |W1| ≥ n1

10 .
Create q new instances from Φ as follows. For each Rj ∈ R, let p(Rj) be a partner

of Rj in L. If p(Rj) is a true (resp., false) partner of Rj , then Φj is obtained from
Φ by making X1 (resp., W1) drop the part p(Rj). This is justified as follows. In any



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

916 CAMERON, ESCHEN, HOÀNG, AND SRITHARAN

solution to Φ some Rj must have |Rj ∩ S2| ≥ n2

q ≥ n2

k ≥ n2

10 ; if MRj ,p(Rj) = 1 (resp.,

0), then X1 ∩ p(Rj) = ∅ (resp., W1 ∩ p(Rj) = ∅). Thus, the q new instances cover all
the eventualities.

Case 2.1′. |X2|, |W2| ≥ n2

10 .
This case is symmetric to Case 2.1.
Case 2.2. |X1| > 9n1

10 .
Find the sets O,M , and NM as defined by Lemma 2.2.
Suppose first that |O| ≥ n1

10 and |M | > n2

2 . Replace Φ by two new instances
Φ1,Φ2 as follows. Let Li be a part with a true partner p(Li) in R. Φ1 is obtained
from Φ by making M drop the part p(Li) and Φ2 is obtained from Φ by making O
drop the part Li. This can be justified as follows. Consider any solution of Φ. If
O ∩Li �= ∅, then no vertex of M can be in part p(Li); otherwise, no vertex of O is in
part Li. Thus, the two new instances Φ1,Φ2 cover all the eventualities.

Now, we may assume that 2n2

5 ≤ |M | ≤ n2

2 and |NM | ≥ n2

2 . Let L+ be the set
of parts in L that have a true partner p(Li) in R. Construct at most |L+| + 1 new
instances as follows. For each Li ∈ L+, construct ΦLi

from Φ by making M drop the
part p(Li). If L−L+ �= ∅, then there is a part Rj in R that is a false partner of each
part in L − L+; construct a new instance Φ′ from Φ by making NM drop the part
Rj . This can be justified as follows. Consider any solution of Φ. For any Li in L+, if
O ∩ Li �= ∅, then M ∩ p(Li) = ∅. If O ∩ Li = ∅ for all Li in L+, then the vertices of
O must be in parts in L − L+, so NM ∩Rj = ∅.

Case 2.2′. |X2| > 9n2

10 . This case is symmetric to Case 2.2.

Case 2.3. |W1| > 9n1

10 , |W2| > 9n2

10 .

Suppose there is a vertex v ∈ W1 with d1(v) ≤ 9n1

10 . Let L− be the set of parts
in L that have a false partner p(Li) in R. Note that each part Li ∈ L − L− has a
true partner p(Li) in L. Construct p new instances, corresponding to each of the p
parts of L that v can be placed in, as follows. For each Li ∈ L−, construct ΦLi from
Φ by making S2 ∩N(v) drop p(Li). For each Li ∈ L − L−, construct ΦLi from Φ by
making S1 −N(v) drop p(Li). A routine argument shows the set of p new instances
is equivalent to Φ.

A symmetrical argument settles the case in which there is a vertex v ∈ W2 with
d2(v) ≤ 9n2

10 .

Now, we may assume that each v ∈ Wi has di(v) > 9ni

10 , for i = 1, 2. By
Lemma 2.3, we can find either the sets (a) or the sets (b) as follows.

(a) Pairwise disjoint vertex subsets O, T , and NT of S1 ∪ S2 such that all the
following hold:
(a) O is connected.
(b) There are all possible edges between O and T .
(c) Each vertex in NT is nonadjacent to some vertex in O.
(d) |T ∩ S1| ≥ n1

10 .
(e) |T ∩ S2| ≥ n2

10 .
(f) Either |O ∩ S1| + |NT ∩ S1| ≥ n1

10 or |O ∩ S2| + |NT ∩ S2| ≥ n2

10 .
(b) Disjoint vertex subsets O∗, T ∗ of S1 ∪ S2 such that all the following hold:

(a) Either O∗ ⊆ S1 and |O∗| ≥ n1

10 , or O∗ ⊆ S2 and |O∗| ≥ n2

10 .
(b) |T ∗ ∩ S1| ≥ n1

10 .
(c) |T ∗ ∩ S2| ≥ n2

10 .
(d) There are all possible edges between O∗ and T ∗.

Case (a). Consider the case |O∩S1|+ |NT ∩S1| ≥ n1

10 . (The case |O∩S2|+ |NT ∩
S2| ≥ n2

10 is symmetric.) Construct at most p + q new instances from Φ as follows.
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For each part Ai in L∪R with a false partner p(Ai) in L∪R, create ΦAi
by making

T ∩ S1 drop the part p(Ai) if p(Ai) ∈ L, or T ∩ S2 drop part p(Ai) if p(Ai) ∈ R.

Now, the remaining parts of L ∪ R (if they exist) can be named U1, U2, . . . , Ul

such that condition 10 of Procedure 2 is satisfied. We create instances as follows:

1. If l = 1, then MU1,U1
= 1. If |O| > 1, do not create a new instance. Otherwise,

create instance Φ1 as follows. Let v be the single member of O. If v ∈ S1

and U1 ∈ L, then v gets label U1 and NT ∩ S1 drops part U1. If v ∈ S2 and
U1 ∈ R, then v gets label U1 and NT ∩ S1 drops a part Aj ∈ L such that
MU1,Aj = 1. If neither of these conditions are satisfied, do not create a new
instance.

2. If l ≥ 2 and MUi,Uj
= 1 for all j �= i, define ΦUi

from Φ as follows. First,
suppose Ui ∈ L. If Ui is also in R or if O∩S2 = ∅, then define ΦUi by making
O get the list Ui and NT ∩ S1 drop a part Aj ∈ S1 such that MUi,Aj =
1; otherwise, create no new instance (Φ would not have a solution in this
eventuality). Now, suppose Ui ∈ R − L. If O ∩ S1 = ∅, then make NT ∩ S1

drop a part Aj ∈ S1 such that MUi,Aj
= 1; otherwise, make no new instance

(Φ would not have a solution in this eventuality).
3. If l ≥ 2 and MUi,Uj �= 1 for some i, j, then we must have {i, j} = {l − 1, l},

MUl−1,Ul−1
= MUl,U1 = 1. Test whether O has a unique partition into two

cliques K1,K2 (if this is not the case then we do not create a new instance,
see the explanation below). We define two instances Φ1, Φ2 as follows. In Φ1,
K1 gets the list Ul−1 (it drops all other parts), K2 gets the list Ul; for each
vertex x in NT , x drops the part Ul−1 if x is nonadjacent to some vertex in
K1, or x drops the part Ul if x is nonadjacent to some vertex in K2. The
instance Φ2 is defined similarly with K1 getting list Ul and K2 getting list
Ul−1.

We now show that the set of new instances are equivalent to Φ. Suppose there is
a solution A1, . . . , Ak to Φ. It must be the case that for some i, O ∩Ai �= ∅. If there
is a part Ai ∈ L ∪ R with a false partner p(Ai) ∈ L ∪ R such that O ∩ Ai �= ∅, then
T ∩Sj ∩ p(Ai) = ∅, where j = 1 if p(Ai) ∈ L and j = 2 if p(Ai) ∈ R. This eventuality
is covered by ΦAi .

Now suppose there is no part with a false partner that has nonempty intersection
with O. Let U1, . . . , Ul be the parts of L∪R with no false partners in L∪R (if they
exist). These parts must have the clique structure. If l = 1, then we have MU1,U1 = 1
and O ⊆ U1 in the solution. Since O is connected, it follows that if |O| > 1, there is
no solution in this eventuality. Therefore, O has exactly one vertex v and it is in S1

or S2. If v ∈ S1, there is a solution only if U1 ∈ L and v is placed in U1. Then no
vertex of NT ∩ S1 can be in U1. If v ∈ S2, there is a solution only if U1 ∈ R and v is
placed in U1. Then no vertex of NT ∩ S1 can be in a part that is a true partner of
U1. In this case, since |O ∩ S1| = 0, we have |NT ∩ S1| ≥ n1

10 .

We can now assume l ≥ 2. Consider a Ui that is a true partner of all Uj with j
different from i. If O ∩ Ui �= ∅, then we have O ⊆ Ui. If Ui ∈ L, then for there to
be a solution with O ⊆ Ui, we must have either Ui ∈ R or O ∩ S2 = ∅ (or both). If
Ui ∈ R−L, then for there to be a solution with O ⊆ Ui, we need O ∩ S1 = ∅, and in
this case we have |NT ∩ S1| ≥ n1

10 . This eventuality is covered by ΦUi .

Last, we consider the case MUl−1,Ul−1
= MUl,U1 = 1 (both belong to L ∩ R by

condition 10 of Procedure 2) and every vertex in O belongs to Ul−1 ∪ Ul. Since O
is connected, there is a unique partition of O into two cliques K1,K2 (if this is not
the case, then this eventuality has no solution and so we do not need to create a new
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instance). Since every vertex x in NT is nonadjacent to some vertex in O, x must
drop part Ul−1 or Ul; it follows that this eventuality is covered by Φ1, Φ2.

Case (b). Consider the case O∗ ⊆ S1, |O∗| ≥ n1

10 . (The case O∗ ⊆ S2, |O∗| ≥ n2

10
is symmetric.) We construct two new instances from Φ as follows. Choose an Li ∈ L
that has a false partner p(Li) ∈ L∪R and create ΦLi by making T ∗∩S1 drop p(Li) if
p(Li) ∈ L, or by making T ∗ ∩ S2 drop p(Li) if p(Li) ∈ R. Then create Φ′ by making
O∗ drop Li. This can be justified as follows. In any solution to Φ, if for some Li ∈ L
we have Li ∩O∗ �= ∅, then T ∗ ∩ Sj ∩ p(Li) = ∅, where j = 1 if p(Li) ∈ L and j = 2 if
p(Li) ∈ R; otherwise, O∗ ∩ Li = ∅.

It is easily verified that in each instance Γ created, |SL(Γ)| |SR(Γ)| ≤
9
10 |SL(Φ)| |SR(Φ)|. If no new instances are produced by the above analysis, then Φ
has no solution. This completes the description of Procedure 2.

Procedure 3. We note that our Procedure 3, in principle, is the same as Proce-
dure 4 in [15].
Input: Instance Φ of the list M -partition problem with set Z of parts A1, . . . , Ak,
and two sets L and R, which are subsets of Z, such that SL �= ∅, SR �= ∅, L �⊆ R,
R �⊆ L, and we can write L = {L1, L2} and R = {R1, . . . , Rq} (q ≥ 2) so that L1 has
a false partner in R and L2 has a true partner in R.
Output: The set of instances {Φ1,Φ2} that is equivalent to Φ, and such that
|SL(Φi)| |SR(Φi)| ≤ 9

10 |SL(Φ)| |SR(Φ)|, or a proof that Φ has no solution.
Note 3. Given an instance Φ on a graph G with n vertices that satisfies the

conditions of Procedure 3, recursively applying Procedure 3 produces a polynomial
number of instances Φ′ for which SL(Φ′) = ∅ or SR(Φ′) = ∅, and the set of instances
Φ′ is equivalent to Φ. It is easy to see that the number of instances Φ′ is at most

(2)
log 10

9
n2

= n
2log 10

9
2
.

Details of Procedure 3. Write S1 = SL, S2 = SR. Let n1 = |S1| and n2 = |S2|.
For a vertex v ∈ S1 ∪ S2, let di(v) = |N(v) ∩ Si|, i = 1, 2. Let p(Li) ∈ R be the
partner of Li, i = 1, 2.

Case 1. There is a vertex v in S1 with n2

10 ≤ d2(v) ≤ 9n2

10 .
Construct two instances from Φ corresponding to v being placed in Li, i = 1, 2.

One instance is constructed by making S2 ∩N(v) drop the part p(L1) and another is
constructed by making S2−N(v) drop the part p(L2). It is a routine matter to verify
that the set of new instances is equivalent to Φ.

Case 2. Every vertex in SL satisfies d2(v) <
n2

10 or d2(v) >
9n2

10 .
Define two sets as follows:

X1 =

{
v ∈ S1|d2(v) <

n2

10

}
, W1 =

{
v ∈ S1|d2(v) >

9n2

10

}
.

There are two cases to consider.
Case 2.1. |X1| ≥ n1

2 .
Find the sets O,M , and NM as defined in Lemma 2.2.
Suppose first that |O| ≥ n1

10 and |M | > n2

2 . Replace Φ with two new instances
Φ1,Φ2 constructed as follows. Φ1 is obtained from Φ by making M drop the part
p(L2); Φ2 is obtained from Φ by making O drop the part L2. This can be justified
as follows. Consider any solution of Φ. If O ∩ L2 �= ∅, then no vertex in M can be in
part p(L2); otherwise, no vertex of O is in L2. Thus, the two new instances Φ1,Φ2

cover all the eventualities.
Now, we may assume that 2n2

5 ≤ |M | ≤ n2

2 and |NM | ≥ n2

2 . Replace Φ with
two new instances Φ1,Φ2 constructed as follows. Φ1 is obtained from Φ by making
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M drop the part p(L2) and Φ2 is obtained from Φ by making NM drop the part
p(L1). This can be justified as follows. Consider any solution of Φ. If O ∩ L2 �= ∅,
then no vertex in M can be in part p(L2). Otherwise, no vertex of O is in part L2;
hence, every vertex of O is placed in L1. Since every vertex in NM has a neighbor
in O, this implies NM ∩ p(L1) = ∅. Thus, the two new instances Φ1,Φ2 cover all the
eventualities.

Case 2.2. |X1| < n1

2 ; hence, |W1| ≥ n1

2 .
Observe that in this situation, with respect to the adjacencies in the complement

of the graph under consideration, we have |X1| ≥ n1

2 . Therefore, we can construct a
set of two instances equivalent to Φ in this case by using the logic for Case 2.1 in the
complement of the given graph using M and by simply reversing the roles played by
L1 and L2.

Finally, it can be easily verified that for each instance Γ created, |SL(Γ)| |SR(Γ)| ≤
9
10 |SL(Φ)| |SR(Φ)|. If no new instances are produced by the above analysis, then Φ
has no solution. This completes the description of Procedure 3.

4. The main theorem. In this section we focus on the main result of the paper
which concerns all list M -partition problems where M is a symmetric 4×4 matrix over
{0, 1, ∗}. In the following we will refer to the four parts of the partition as A,B,C, and
D. Recall from section 1 that the stubborn problem is the list M -partition problem
where MA,A = 0, MB,B = 0, MD,D = 1, MA,C = MC,A = 0, and all other entries are
asterisks (see Figure 1.1). The stubborn problem has been shown to be solvable in
quasi-polynomial time in [22]; hence, it is unlikely to be NP-complete.

Theorem 4.1. Suppose M with dimension 4 is neither the matrix for the stub-
born problem nor its complement. Then the list M-partition problem is solvable in
polynomial time or NP-complete. In particular, the list M -partition problem is solv-
able in polynomial time, except when M contains the matrix for 3-colorability, stable
cutset, or their complements, or M is the matrix for stable cutset pair, 2K2, or their
complements, in which cases the problem is NP-complete.

In proving Theorem 4.1 we employ the tools and procedures described in the
previous sections. Given an instance I of the list M -partition problem, Procedures 1,
2, and 3 are recursively applied to create a polynomial number of new instances Ii that
together are equivalent to the given instance. The resulting instances Ii are each such
that there is a list L for which the set of vertices SL(Ii) with list L is empty, whereas
SL(I) was not empty. Care must be taken in applying the procedures and tools not
to recreate vertices with list L and thus, reintroduce SL into subsequent instances
of the problem. This can happen as a result of the procedures and tools themselves
or the reduction operation that is applied whenever a new instance is created. If
any list is (re-)introduced, this list will be a proper subset of a list involved in the
operation. This can be easily verified by examining the details of the procedures and
the reduction operation.

For simplicity, we write L (without set brackets) for SL; for example, ABC =
SABC . Theorem 4.1 will be proved via a sequence of lemmata, similar to the treatment
in [22].

Proof of Theorem 4.1. If M is a matrix over {0, ∗} or {1, ∗}, the result follows from
Corollary 1.2 [16, 19, 20, 21]. We can therefore assume that M has at least one 0 and
at least one 1. By Theorem 1.3, the only 3-part subproblems that are NP-complete
are the stable cutset problem, the 3-colorability problem and their complements, and
all others are solvable in polynomial time. By Tool 5, if M contains the matrix for
any of these NP-complete subproblems, then the problem is NP-complete. Otherwise,
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the following lemmata show that the problem can be reduced to a polynomial number
of instances that are together equivalent to the given instance, and such that each
instance can be solved in polynomial time. The NP-completeness results we employ
are well known [14, 27].

The next two lemmata cover the cases when M has an off-diagonal 0 and an
off-diagonal 1.

Lemma 4.2. Suppose MA,B = 1 and MC,D = 0. Then the list M -partition
problem is solvable in polynomial time or NP-complete.

Proof. Recall Notes 1, 2, and 3. Given the original instance I, if ABCD is
not empty, we recursively apply Procedure 1 with L = {A,B,C,D}, U = {A,B},
and F = {C,D} to obtain a polynomial number of instances Ii that together are
equivalent to I such that, for each i, ABCD(Ii) = ∅. We now consider the instances
Ii.

For each instance Ii, first recursively apply Procedure 2 with L = {A,B,C} and
R = {A,B,D}, and then (working in G using M) recursively apply Procedure 2 to
the resulting instances with L = {A,C,D} and R = {B,C,D} to obtain a polynomial
number of instances Jj that together are equivalent to Ii and such that, for each j,
either ABC(Jj) = ∅ or ABD(Jj) = ∅, and either ACD(Jj) = ∅ or BCD(Jj) = ∅.

We now consider the resulting instances Jj . There are four types:
1. ABC,ACD �= ∅,
2. ABC,BCD �= ∅,
3. ABD,ACD �= ∅,
4. ABD,BCD �= ∅.

Since the four types are symmetric, we only need to consider instances Jj of type
1. In this case the possible remaining nonempty sets are ABC, ACD, AB, AC,
AD, BC, BD, CD. Recursively, apply Procedure 3 to each Jj and then to the
resulting instances with pairs L,R, in the following sequence: step (a) L = {B,D}
and R = {A,C,D}, step (b) L = {B,D} and R = {A,B,C}, step (c) L = {A,D}
and R = {A,B,C}, until one of the two sets involved is empty. This will produce
(and will be justified shortly) a polynomial number of instances Kk that together are
equivalent to Jj and such that each instance Kk has possible remaining nonempty
sets as in one of the following cases:

Case 1. AB, AC, AD, BC, BD, CD,
Case 2. ABC, AB, AC, BC, CD,
Case 3. ABC, ACD, AB, AC, AD, BC, CD.
After step (a), the new instances Kk either have BD = ∅ (Case 3) or ACD = ∅.

After step (b), we have either ABC = ∅ (Case 1) or BD = ∅ (Case 3 again). In the
latter case, we proceed to step (c), after which we have either AD = ∅ (Case 2) or
ABC = ∅ (Case 1). (Note that if there are vertices with lists of length 3, then the
reduction operation may produce a vertex with a list of length 1 or 2 that can be
derived from the length 3 list by dropping parts.)

Now we consider the instances Kk.
Case 1. This case can be formulated as a 2-satisfiability problem (2-SAT) and

solved in polynomial time (see Tool 1).
Case 2. In the case that MA,C = 1 or MB,C = 1, we recursively apply Procedure 3

with L = {C,D} and R = {A,B,C}. This will create instances in each of which either
ABC is empty or CD is empty. In the former case, the problem reduces to 2-SAT.
In the latter case, in every instance created there is no vertex with a list containing
part D. Thus, the problem is reduced to a 3-part list M -partition problem (3-part
problem).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE COMPLEXITY OF THE LIST PARTITION PROBLEM 921

If MA,C = 0 (MB,C = 0), we recursively apply Procedure 1 with L = {A,B,C},
U = {A,B}, and F = {A,C} (L = {A,B,C}, U = {A,B}, and F = {B,C}). This
will create instances in which ABC is empty, and thus, the problem is reduced to
2-SAT.

Therefore, we can now assume that MA,C = MB,C = ∗.
If MC,C = 1, by Tool 3, we create one instance in which no vertex has part C in

its list, and at most n instances in each of which no vertex has both C and D in its
list. In these cases, the problem is reduced to a 3-part problem.

If MC,C = 0, then we recursively apply Procedure 1 with L = {A,B,C}, U =
{A,B}, and F = {C}. This will create instances which can be solved using 2-SAT.

Hence, we can now assume that MC,C = ∗.
If MA,A = 0 (MB,B = 0), by Tool 3, we create one instance in which no vertex

has part A (part B) in its list, and at most n instances in each of which no vertex has
both A and B in its list. In these cases, the problem is reduced to 2-SAT.

If MA,A = ∗, then as MC,C = MA,C = ∗, the instance can be solved trivially
by first placing the vertices whose lists contain A in part A, and then placing any
remaining vertices whose lists contain C in part C. Similarly, if MB,B = ∗, the
problem can be solved trivially.

So, we can now assume that MA,A = MB,B = 1.

If MB,D = 0 (MA,D = 0), then C dominates B (C dominates A). We can then
use Tool 4 to derive an equivalent instance where no vertex has the list ABC, and
hence can be solved using 2-SAT.

If MB,D = 1 (MA,D = 1), by Tool 3, we create one instance in which no vertex
has part D in its list, and at most n instances in each of which no vertex has both B
and C (both A and C) in its list. In these cases, we either have an instance that is a
3-part problem or can be solved using 2-SAT.

We finally can assume that MA,D = MB,D = ∗. Since B dominates A, we can
use Tool 4 to derive an equivalent instance where no vertex has the list ABC, and
hence, can be solved using 2-SAT.

Case 3. Suppose we are able to produce an equivalent set of instances in each of
which ACD = ∅, and hence, the possible nonempty sets are ABC, AB, AC, AD, BC,
CD. Then, recursively applying Procedure 3 with L = {A,D} and R = {A,B,C}
will produce instances each of which either can be solved using 2-SAT or has AD = ∅,
which is settled by Case 2. A similar analysis can be made when an equivalent set of
instances can be produced in each of which ABC = ∅. Suppose ABC = ∅, recursively
applying Procedure 3 with L = {B,C} and R = {A,C,D} will produce instances each
of which either can be solved using 2-SAT or has BC = ∅. The latter case is reduced
to Case 2 by working in G in place of G and using M in place of M . Therefore, we
aim to produce equivalent instances in each of which either ABC = ∅ or ACD = ∅.

If MA,C = 0, then the lists L = {A,B,C} and R = {A,C,D} fail to satisfy the
conditions for Procedure 2. However, with respect to G and M , they do satisfy the
conditions for Procedure 2. Hence, we recursively apply Procedure 2 with L and R
in G using M to create instances in each of which either ABC = ∅ or ACD = ∅.

If MA,C = 1, then recursively apply Procedure 2 with L = {A,B,C} and R =
{A,C,D} to create instances in each of which either ABC = ∅ or ACD = ∅.

We can therefore assume that MA,C = ∗.
If MA,A = 0 (MB,B = 0), using Tool 3, we create one instance in which no vertex

has part A (part B) in its list, and at most n instances in each of which no vertex has
both A and B in its list; hence, ABC = ∅.
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If MA,A = 1, recursively apply Procedure 1 with L = {A,C,D}, U = {A}, and
F = {C,D} to produce instances in each of which ACD = ∅.

Therefore, we can assume that MA,A = ∗.
If MC,C = 1, using Tool 3, we create one instance in which no vertex has part C

in its list, and at most n instances in each of which no vertex has both C and D in
its list; hence, ACD = ∅.

If MC,C = 0, recursively apply Procedure 1 with L = {A,B,C}, U = {A,B}, and
F = {C} to produce instances in each of which ABC = ∅.

Therefore, we can assume that MC,C = ∗.
We now have instances in which MA,A = MC,C = MA,C = ∗. Such an instance

can be solved trivially by first placing the vertices whose lists contain A in part A,
and then placing any remaining vertices whose lists contain C in part C.

Recall that the list generalized P problem is the list M ′-partition problem where
M ′ is obtained from the matrix M for list partition problem P by changing some
asterisks to either 0 or 1.

Corollary 4.3. Each list generalized skew partition problem is solvable in poly-
nomial time, except when it contains the stable cutset problem or its complement, in
which cases the problem is NP-complete.

Proof. Observe (via Theorem 1.3) that the only possible 3-part subproblems that
are NP-complete are the stable cutset problem and its complement, and all others
are solvable in polynomial time. By Tool 5, if M contains the matrix for the stable
cutset problem or its complement, then the problem is NP-complete. Otherwise, the
problem is polynomial-time solvable by Lemma 4.2.

From here on, we write the proofs in an abbreviated style. When Tool 3 is applied
an instance that is a 3-part problem is always created; this will now be assumed and
not explicitly stated. The full details can be written in the same manner as the proof
of Lemma 4.2.

Lemma 4.4. Suppose MA,B = 0 and MA,D = 1. Then the list M -partition
problem is solvable in polynomial time or NP-complete.

Proof. Using Tool 3, either the problem is reduced to a 3-part problem (no A), or
no list contains {B,D}. Assuming the latter, the possible nonempty sets are ABC,
ACD, AB, AC, AD, BC, CD. By Lemma 4.2 we may assume MC,D �= 1 and
MB,C �= 0.

Suppose MA,C = 1. Then no list contains {B,C} (using Tool 3). Apply Proce-
dure 3 to the pair AB,ACD. If AB becomes empty, then we have a 3-part problem
on {A,C,D}. Otherwise, the instance can be solved using 2-SAT.

Suppose MA,C = 0, and no list contains {C,D} (using Tool 3). Apply Procedure 3
to the pair AD,ABC to get either 3-part problems or instances solvable using 2-SAT.
Therefore, MA,C = ∗.

If MC,D = 0, then no list contains {A,C} (using Tool 3) and we get instances
solvable using 2-SAT. Therefore, MC,D = ∗.

If MB,C = 1, then no list contains {A,C} (using Tool 3) and we get instances
solvable using 2-SAT. Therefore, MB,C = ∗.

If MC,C = ∗, then C dominates parts A,B, and D, and we get an instance solvable
using 2-SAT.

If MC,C = 0, apply Procedure 1 to ACD so that ACD becomes empty. Then
apply Procedure 3 to the pair AD,ABC. If ABC becomes empty, we get instances
solvable using 2-SAT. Otherwise, now apply Procedure 3 to the pair CD,ABC to get
3-part problems or instances solvable using 2-SAT.
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Now we have MC,C = 1. Apply Procedure 1 to ABC so that ABC becomes
empty. Then apply Procedure 3 to the pair AB,ACD. If ACD becomes empty, we
get instances solvable using 2-SAT. Otherwise, now apply Procedure 3 to the pair
BC,ACD to get 3-part problems or instances solvable using 2-SAT.

Graphs for which the vertex-set can be partitioned into two stable sets and two
cliques are called (2,2)-graphs. Brandstädt [2, 3] introduced this class and gave the
first polynomial-time algorithm for recognition. Recognition of (2,2)-graphs is the
M -partition problem where MA,A = 1, MB,B = 1, MC,C = 0, and MD,D = 0, and
all other entries are asterisks. The following result was proved in [22]; we provide a
proof using different techniques.

Lemma 4.5. All list generalized (2,2)-graph recognition problems are solvable in
polynomial time.

Proof. Repeatedly apply Procedure 1 to the following sets to eliminate them, one
by one: ABCD, ABC, ABD, ACD, BCD. Then use 2-SAT.

Based on the previous lemmata and Tool 6, we can now assume that 1 occurs only
on the diagonal and that the off-diagonal entries are either 0 or ∗. We first consider
the case that there are at least two 1’s on the diagonal.

Lemma 4.6. Suppose there are at least two 1’s on the diagonal and all off-
diagonal entries are ∗. Then the list M -partition problem is solvable in polynomial
time or NP-complete.

Proof. If one of the diagonal entries, say MA,A, is ∗, A dominates the other parts;
hence, the problem can be reduced to a 3-part problem on {B,C,D}. On the other
hand, suppose none of the diagonal entries are ∗. When there are two 1’s and two
0’s on the diagonal we get a problem solvable in polynomial time (see Lemma 4.5).
Otherwise, the problem is NP-complete via the complement of 3-colorability and
Tool 5. (This subcase is also covered by Theorem 1.4.)

We can now assume that there is at least one off-diagonal entry that is 0. The
next three lemmata cover the possible position of the off-diagonal 0 with respect to
the two or more 1’s assumed to be on the diagonal.

Lemma 4.7. Suppose all off-diagonal entries are 0 or ∗, MB,B = MD,D = 1,
and MA,C = 0. Then the list M -partition problem is solvable in polynomial time or
NP-complete.

Proof. Apply Procedure 1 to eliminate set ABCD.

Apply Procedure 1 to eliminate set ABC.

Apply Procedure 1 to eliminate set ACD.

Apply Procedure 2 to the pair ABD,BCD so that one of the sets is eliminated.

Assume BCD = ∅. (The other case is similar.)

Apply Procedure 3 to the pair BC,ABD so that one of the sets is eliminated.

Apply Procedure 3 to the pair CD,ABD so that one of the sets is eliminated.

We now can assume that the remaining nonempty sets are ABD, AB, AC, AD,
BD; otherwise, we can use 2-SAT.

If MA,B = 0, then, using Tool 3, no list contains {A,B}; we can now use
2-SAT.

If MA,D = 0, then, using Tool 3, no list contains {A,D}; we can now use 2-SAT.

Otherwise, the hypothesis of the lemma implies MA,B = MA,D = ∗.
If MA,A = 0, then apply Procedure 1 to ABD; we can now use 2-SAT.

If MA,A = 1, then, by Tool 3, no list contains {A,C}; we get a 3-part problem.

Therefore, MA,A = ∗.
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If MB,C = 0, then A dominates B and no list contains {A,B}; we can now use
2-SAT.

If MC,D = 0, then A dominates D and no list contains {A,D}; we can now use
2-SAT.

Otherwise, the hypothesis of the lemma implies MB,C = MC,D = ∗.
If MC,C = 0, then A dominates C and no list contains {A,C}; we get a 3-part

problem.

If MC,C = 1, then, by Tool 3, no list contains {A,C}; we get a 3-part problem.

Therefore, MC,C = ∗.
Place vertices with list AC in the part A to get a 3-part problem on {A,B,D} in

which A dominates other parts; we can now use 2-SAT.

Corollary 4.8. The list 2-clique cutset problem is solvable in polynomial time.

Proof. Lemma 4.7 covers the list 2-clique cutset problem: MB,B = MD,D = 1,
MA,C = MC,A = 0, and all other entries are asterisks. It can be verified (via Theo-
rem 1.3) that every 3-part problem produced in that case in the proof of Lemma 4.7
is solvable in polynomial time.

Corollary 4.9. Each list generalized 2-clique cutset problem is solvable in poly-
nomial time, except when it contains the complement of the 3-colorability problem, in
which case it is NP-complete.

Proof. Observe (via Theorem 1.3) that in this case the only possible 3-part sub-
problem that is NP-complete is the complement of 3-colorability, and all others are
solvable in polynomial time. By Tool 5, if M contains the matrix for the comple-
ment of 3-colorability, then the problem is NP-complete. Otherwise, the problem is
polynomial-time solvable by Lemmata 4.2, 4.4, and 4.7.

Lemma 4.10. Suppose all off-diagonal entries are 0 or ∗, MA,A = MB,B = 1,
and MA,C = 0. Then the list M -partition problem is solvable in polynomial time or
NP-complete.

Proof. Using Tool 3, no list contains {A,C}. The possible nonempty sets are
ABD, BCD, AB, AD, BC, BD, CD.

By previous lemmata, MC,D = ∗ and MD,D �= 1.

If MD,D = 0, then apply Procedure 1 to ABD. Then, apply Procedure 3 to the
pair AB,BCD. If BCD is eliminated we can use 2-SAT; otherwise, apply Procedure 1
to AD to get a 3-part problem.

Therefore, MD,D = ∗.
If MA,D = 0, then, using Tool 3, no list contains {A,D}. Apply Procedure 3 to

the pair AB,BCD to get a 3-part problem or we can use 2-SAT.

Therefore, MA,D = ∗.
If MB,D = 0, then, using Tool 3, no list contains {B,D}; we can now use 2-SAT.

Therefore, MB,D = ∗.
Now, D dominates the other parts; we get a 3-part problem.

Lemma 4.11. Suppose all off-diagonal entries are 0 or ∗, MA,A = MC,C = 1,
and MA,C = 0. Then the list M -partition problem is solvable in polynomial time or
NP-complete.

Proof. From previous lemmata, MA,B = MA,D = MB,C = MB,D = MC,D = ∗,
MB,B �= 1, and MD,D �= 1. Using Tool 3, no list contains {A,C}.

If MB,B = ∗, then B dominates other parts; we get a 3-part problem.

If MD,D = ∗, then D dominates other parts; we get a 3-part problem.

Therefore, MB,B = MD,D = 0.
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Apply Procedure 1 to ABD. Then, apply Procedure 1 to BCD; we can now use
2-SAT.

In the remaining case M has exactly one 1 and it is on the diagonal; say MD,D = 1.
Following [22], we define a separating statement for X = A,B, or C to be “MX,D = 0
or MX,X = 0.” We divide the remaining cases based on the number of separating
statements that hold being three, two, or at most one. The following four lemmata
cover the cases when three separating statements hold.

Lemma 4.12. Suppose the only 1 is at MD,D. If MA,A = MB,B = MC,C = 0,
then the list M -partition problem is solvable in polynomial time or NP-complete.

Proof. If the subproblem on the parts {A,B,C} corresponds to 3-colorability, then
we have an NP-complete problem by Tool 5. Therefore, without loss of generality, we
can assume MA,B = 0.

If MB,C = 0, then the following reduces the instance to 3-part problems: Apply
Procedure 1 to ABCD, apply Procedure 1 to ABD, apply Procedure 1 to ACD,
apply Procedure 1 to BCD, apply Procedure 1 to AD, apply Procedure 1 to BD,
and then apply Procedure 1 to CD.

Therefore, MB,C = ∗. Similarly, MA,C = ∗.
As there is a single 1 in M , each of MA,D and MB,D is constrained to be 0 or

∗. In any such case, A dominates B or B dominates A, and no list contains {A,B}.
Apply Procedure 1 to ACD. Then, apply Procedure 1 to BCD. We can now use
2-SAT.

Lemma 4.13. Suppose the only 1 is at MD,D. If MB,B = MC,C = MA,D = 0,
then the list M -partition problem is solvable in polynomial time or NP-complete.

Proof. Using Tool 3, no list contains {A,D}. The following will then produce
3-part problems on {A,B,C}: apply Procedure 1 to BCD, apply Procedure 1 to BD,
and then apply Procedure 1 to CD.

Lemma 4.14. Suppose the only 1 is at MD,D. If MC,C = MA,D = MB,D = 0,
then the list M -partition problem is solvable in polynomial time or NP-complete.

Proof. Using Tool 3, no list contains {A,D} and also no list contains {B,D}.
Apply Procedure 1 to CD to get 3-part problems on {A,B,C}.

Lemma 4.15. Suppose the only 1 is at MD,D. If MA,D = MB,D = MC,D = 0,
then the list M -partition problem is solvable in polynomial time or NP-complete.

Proof. Using Tool 3, no list contains {A,D}, no list contains {B,D}, and also no
list contains {C,D}. We get 3-part problems on {A,B,C}.

The next three lemmata cover the cases when exactly two separating statements
hold, say for A and B.

Lemma 4.16. Suppose the only 1 is at MD,D. If MA,D = MB,D = 0 and
MC,C = MC,D = ∗, then the list M -partition problem is solvable in polynomial time
or NP-complete.

Proof. Using Tool 3, no list contains {A,D} and also no list contains {B,D}.
C dominates D and no list contains {C,D}. We get 3-part problems on
{A,B,C}.

Lemma 4.17. Suppose the only 1 is at MD,D. If MA,A = MB,B = 0, MC,C =
MC,D = ∗, and the list M -partition problem is different from the stubborn problem,
then it is solvable in polynomial time or NP-complete.

Proof. If MA,C = MB,C = ∗, then C dominates all other parts, so we obtain a
3-part problem. Therefore, without loss of generality, assume MA,C = 0.

Suppose MB,C = 0. Then we can apply Procedure 1 to eliminate the following
sets in sequence: ABCD,ABD,ACD,BCD,AD,BD. Let X = AB and Y be the
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union of sets ABC,AC,BC, and CD (i.e., X is the set of vertices with list {A,B}
and Y is the set of vertices with any of the possible remaining lists). Suppose we had
u ∈ X and v ∈ Y such that u and v are adjacent. Since MA,C = MB,C = 0, in any
solution to the problem, v cannot be placed in part C. Therefore, by making such
vertices v drop the part C from their lists (hence, leave the set Y ), we get instances
where there are no edges between vertices in X and vertices in Y . We can then
solve such an instance by placing every vertex in Y in part C and testing whether X
induces a bipartite graph. Therefore, we can assume that MB,C = ∗ (and MA,C = 0).
C dominates A, so no list contains {A,C}.

Apply Procedure 1 to ABD, then to AD, and then to BD. The possible remaining
nonempty sets are BCD, AB, BC, CD.

If MA,B = 0, then C dominates B, so no list contains {B,C}; we can now use
2-SAT.

If MA,D = 0, then C dominates D, so no list contains {C,D}; we can now use
2-SAT.

If MB,D = 0, then (using Tool 3) no list contains {B,D}; we can now use 2-SAT.

Therefore, MA,B = MA,D = MB,D = ∗ and we are left with the stubborn
problem.

We note that the proof of Lemma 4.17 shows that the stubborn problem can be
reduced to an equivalent set of instances where for each instance the only possible
lists are A,B,C,D,AB,BC,CD, and BCD.

Lemma 4.18. Suppose the only 1 is at MD,D. If MA,D = MB,B = 0, MA,A =
MB,D = ∗, and MC,C = MC,D = ∗, then the list M -partition problem is solvable in
polynomial time or NP-complete.

Proof. Using Tool 3, no list contains {A,D}. Therefore, the possible remaining
nonempty sets are ABC, BCD, AB, AC, BC, BD, CD.

If MA,C = ∗ or MA,B = 0, then C dominates B, so no list contains {B,C}, and
we can use 2-SAT. Therefore, MA,C = 0 and MA,B = ∗.

If MB,C = ∗, then the subproblem on {A,B,C} is the stable cutset problem.
Therefore, MB,C = 0.

Apply Procedure 1 to BCD and then to BD. Now the possible remaining
nonempty sets are ABC, AB, AC, BC, CD. Let X = AB and Y be the union
of sets ABC,AC,BC, and CD (i.e., X is the set of vertices with list {A,B} and Y is
the set of vertices with any of the possible remaining lists). Suppose we had u ∈ X
and v ∈ Y such that u and v are adjacent. Since MA,C = MB,C = 0, in any solution
to the problem, v cannot be placed in part C. Therefore, by making such vertices
v drop the part C from their lists (hence, leave the set Y ), we get instances where
there are no edges between vertices in X and vertices in Y . We can then solve such
an instance by placing every vertex in Y in part C, and placing every vertex in X in
part A.

The only remaining case is when the only 1 is at MD,D and at most one separating
statement holds, say, for part A.

Lemma 4.19. Suppose the only 1 is at MD,D. If MB,B = MB,D = MC,C =
MC,D = ∗, then the list M -partition problem is solvable in polynomial time or NP-
complete.

Proof. Suppose MB,C = ∗. If MA,B = ∗ (MA,C = ∗), then B (C) dominates all
the other parts to yield a 3-part problem. On the other hand, if MA,B = MA,C = 0,
then rows B and C in M are identical; hence, parts B and C can be identified.

Therefore, we can assume MB,C = 0. We divide the cases based on the value of
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the triple (MA,A, MA,B , MA,C).
Case (∗, ∗, ∗). If MA,D = ∗, then A dominates all other parts to yield a 3-part

problem. Hence, MA,D = 0, and by Tool 3, no list contains {A,D}.
Apply Procedure 1 to BCD. Apply Procedure 3 to the pair BD, CD. Solve the

problem as follows: Place vertices with lists {A,B,C}, {A,B}, or {A,C} in part A.
Then, if BD is empty, place vertices with lists {B,C} or {C,D} in part C, and if CD
is empty, place vertices with lists {B,C} or {B,D} in part B.

Case (∗, 0, ∗). If MA,D = ∗, then rows A and C in M are identical; hence, parts
A, C can be identified. Therefore, we can assume MA,D = 0. Then, by Tool 3,
no list contains {A,D}. Also, C dominates A and no list contains {A,C}. Apply
Procedure 1 to BCD and then use 2-SAT.

Case (0, 0, 0), (0, 0, ∗). C dominates A, so no list contains {A,C}. Apply Proce-
dure 1 to ABD, then to BCD, and use 2-SAT.

Case (0, ∗, ∗). This case contains the stable cutset problem; hence, by Tool 5, it
is NP-complete.

Case (∗, 0, 0). Apply Procedure 1 to the following sets one by one: ABCD, ABD,
ACD, and BCD. If we had u ∈ AB (BC, AC) and v ∈ ABC such that u and v are
adjacent, then v must drop C (A, B, respectively) and leave ABC. Therefore, there
are no edges between ABC and any of AB, BC, or AC. Now, apply Procedure 3 to
AD, CD, then to AD, BD, and finally to CD, BD. We can now assume that exactly
one of AD, BD, CD is nonempty.

Suppose AD is nonempty. If MA,D = 0, then use Tool 3 to eliminate the set AD
and obtain a 3-part problem. If MA,D = ∗, then place vertices with list ABC in part
A and solve using 2-SAT. If BD is nonempty, then place vertices with list {A,B,C}
in part B and solve using 2-SAT. If CD is nonempty, then place vertices with list
{A,B,C} in part C and solve using 2-SAT.

Case (0, ∗, 0), (∗, ∗, 0). B dominates A, so no list contains {A,B}. Apply Proce-
dure 1 to ACD, then to BCD, and solve using 2-SAT.

Thus, Theorem 4.1 is proved via the following cases.
1. M is a matrix over {0, ∗} or {1, ∗}: Corollary 1.2.
2. M has at least one 0 and at least one 1:

2.1 M has an off-diagonal 0 and an off-diagonal 1: Lemmata 4.2 and 4.4.
2.2 M has 1 (resp., 0) only on the diagonal and all off-diagonal entries are

either 0 or ∗ (resp., 1 or ∗):
2.2.1 M has at least two 1’s (resp., 0’s) on the diagonal:

2.2.1.1 all off-diagonal entries are ∗: Lemma 4.6.
2.2.1.2 at least one off-diagonal entry is 0 (resp., 1): Lemmata 4.7, 4.10,

and 4.11.
2.2.2 M has exactly one 1 (resp., 0) on the diagonal: Lemmata 4.12

through 4.19.
Note added in proof. In recent related work the list partition problem on some

special classes of graphs [18, 23] and some specific graph partition problems with all
parts nonempty [11, 12, 13] have been studied.
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