19,165 research outputs found

    Abduction in Well-Founded Semantics and Generalized Stable Models

    Full text link
    Abductive logic programming offers a formalism to declaratively express and solve problems in areas such as diagnosis, planning, belief revision and hypothetical reasoning. Tabled logic programming offers a computational mechanism that provides a level of declarativity superior to that of Prolog, and which has supported successful applications in fields such as parsing, program analysis, and model checking. In this paper we show how to use tabled logic programming to evaluate queries to abductive frameworks with integrity constraints when these frameworks contain both default and explicit negation. The result is the ability to compute abduction over well-founded semantics with explicit negation and answer sets. Our approach consists of a transformation and an evaluation method. The transformation adjoins to each objective literal OO in a program, an objective literal not(O)not(O) along with rules that ensure that not(O)not(O) will be true if and only if OO is false. We call the resulting program a {\em dual} program. The evaluation method, \wfsmeth, then operates on the dual program. \wfsmeth{} is sound and complete for evaluating queries to abductive frameworks whose entailment method is based on either the well-founded semantics with explicit negation, or on answer sets. Further, \wfsmeth{} is asymptotically as efficient as any known method for either class of problems. In addition, when abduction is not desired, \wfsmeth{} operating on a dual program provides a novel tabling method for evaluating queries to ground extended programs whose complexity and termination properties are similar to those of the best tabling methods for the well-founded semantics. A publicly available meta-interpreter has been developed for \wfsmeth{} using the XSB system.Comment: 48 pages; To appear in Theory and Practice in Logic Programmin

    SLT-Resolution for the Well-Founded Semantics

    Full text link
    Global SLS-resolution and SLG-resolution are two representative mechanisms for top-down evaluation of the well-founded semantics of general logic programs. Global SLS-resolution is linear for query evaluation but suffers from infinite loops and redundant computations. In contrast, SLG-resolution resolves infinite loops and redundant computations by means of tabling, but it is not linear. The principal disadvantage of a non-linear approach is that it cannot be implemented using a simple, efficient stack-based memory structure nor can it be easily extended to handle some strictly sequential operators such as cuts in Prolog. In this paper, we present a linear tabling method, called SLT-resolution, for top-down evaluation of the well-founded semantics. SLT-resolution is a substantial extension of SLDNF-resolution with tabling. Its main features include: (1) It resolves infinite loops and redundant computations while preserving the linearity. (2) It is terminating, and sound and complete w.r.t. the well-founded semantics for programs with the bounded-term-size property with non-floundering queries. Its time complexity is comparable with SLG-resolution and polynomial for function-free logic programs. (3) Because of its linearity for query evaluation, SLT-resolution bridges the gap between the well-founded semantics and standard Prolog implementation techniques. It can be implemented by an extension to any existing Prolog abstract machines such as WAM or ATOAM.Comment: Slight modificatio

    Counting Incompossibles

    Get PDF
    We often speak as if there are merely possible people—for example, when we make such claims as that most possible people are never going to be born. Yet most metaphysicians deny that anything is both possibly a person and never born. Since our unreflective talk of merely possible people serves to draw non-trivial distinctions, these metaphysicians owe us some paraphrase by which we can draw those distinctions without committing ourselves to there being merely possible people. We show that such paraphrases are unavailable if we limit ourselves to the expressive resources of even highly infinitary first-order modal languages. We then argue that such paraphrases are available in higher-order modal languages only given certain strong assumptions concerning the metaphysics of properties. We then consider alternative paraphrase strategies, and argue that none of them are tenable. If talk of merely possible people cannot be paraphrased, then it must be taken at face value, in which case it is necessary what individuals there are. Therefore, if it is contingent what individuals there are, then the demands of paraphrase place tight constraints on the metaphysics of properties: either (i) it is necessary what properties there are, or (ii) necessarily equivalent properties are identical, and having properties does not entail even possibly being anything at all

    FO(FD): Extending classical logic with rule-based fixpoint definitions

    Get PDF
    We introduce fixpoint definitions, a rule-based reformulation of fixpoint constructs. The logic FO(FD), an extension of classical logic with fixpoint definitions, is defined. We illustrate the relation between FO(FD) and FO(ID), which is developed as an integration of two knowledge representation paradigms. The satisfiability problem for FO(FD) is investigated by first reducing FO(FD) to difference logic and then using solvers for difference logic. These reductions are evaluated in the computation of models for FO(FD) theories representing fairness conditions and we provide potential applications of FO(FD).Comment: Presented at ICLP 2010. 16 pages, 1 figur

    Towards a unified theory of logic programming semantics: Level mapping characterizations of selector generated models

    Full text link
    Currently, the variety of expressive extensions and different semantics created for logic programs with negation is diverse and heterogeneous, and there is a lack of comprehensive comparative studies which map out the multitude of perspectives in a uniform way. Most recently, however, new methodologies have been proposed which allow one to derive uniform characterizations of different declarative semantics for logic programs with negation. In this paper, we study the relationship between two of these approaches, namely the level mapping characterizations due to [Hitzler and Wendt 2005], and the selector generated models due to [Schwarz 2004]. We will show that the latter can be captured by means of the former, thereby supporting the claim that level mappings provide a very flexible framework which is applicable to very diversely defined semantics.Comment: 17 page

    Epistemic Foundation of Stable Model Semantics

    Full text link
    Stable model semantics has become a very popular approach for the management of negation in logic programming. This approach relies mainly on the closed world assumption to complete the available knowledge and its formulation has its basis in the so-called Gelfond-Lifschitz transformation. The primary goal of this work is to present an alternative and epistemic-based characterization of stable model semantics, to the Gelfond-Lifschitz transformation. In particular, we show that stable model semantics can be defined entirely as an extension of the Kripke-Kleene semantics. Indeed, we show that the closed world assumption can be seen as an additional source of `falsehood' to be added cumulatively to the Kripke-Kleene semantics. Our approach is purely algebraic and can abstract from the particular formalism of choice as it is based on monotone operators (under the knowledge order) over bilattices only.Comment: 41 pages. To appear in Theory and Practice of Logic Programming (TPLP
    corecore