146 research outputs found

    3D oceanographic data compression using 3D-ODETLAP

    Get PDF
    This paper describes a 3D environmental data compression technique for oceanographic datasets. With proper point selection, our method approximates uncompressed marine data using an over-determined system of linear equations based on, but essentially different from, the Laplacian partial differential equation. Then this approximation is refined via an error metric. These two steps work alternatively until a predefined satisfying approximation is found. Using several different datasets and metrics, we demonstrate that our method has an excellent compression ratio. To further evaluate our method, we compare it with 3D-SPIHT. 3D-ODETLAP averages 20% better compression than 3D-SPIHT on our eight test datasets, from World Ocean Atlas 2005. Our method provides up to approximately six times better compression on datasets with relatively small variance. Meanwhile, with the same approximate mean error, we demonstrate a significantly smaller maximum error compared to 3D-SPIHT and provide a feature to keep the maximum error under a user-defined limit

    Identifying Purpose Behind Electoral Tweets

    Full text link
    Tweets pertaining to a single event, such as a national election, can number in the hundreds of millions. Automatically analyzing them is beneficial in many downstream natural language applications such as question answering and summarization. In this paper, we propose a new task: identifying the purpose behind electoral tweets--why do people post election-oriented tweets? We show that identifying purpose is correlated with the related phenomenon of sentiment and emotion detection, but yet significantly different. Detecting purpose has a number of applications including detecting the mood of the electorate, estimating the popularity of policies, identifying key issues of contention, and predicting the course of events. We create a large dataset of electoral tweets and annotate a few thousand tweets for purpose. We develop a system that automatically classifies electoral tweets as per their purpose, obtaining an accuracy of 43.56% on an 11-class task and an accuracy of 73.91% on a 3-class task (both accuracies well above the most-frequent-class baseline). Finally, we show that resources developed for emotion detection are also helpful for detecting purpose

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Impact of COVID-19 on iot adoption in healthcare, smart homes, smart buildings, smart cities, transportation and industrial IoT

    Get PDF
    COVID-19 has disrupted normal life and has enforced a substantial change in the policies, priorities and activities of individuals, organisations and governments. These changes are proving to be a catalyst for technology and innovation. In this paper, we discuss the pandemic's potential impact on the adoption of the Internet of Things (IoT) in various broad sectors namely healthcare, smart homes, smart buildings, smart cities, transportation and industrial IoT. Our perspective and forecast of this impact on IoT adoption is based on a thorough research literature review, a careful examination of reports from leading consulting firms and interactions with several industry experts. For each of these sectors, we also provide the details of notable IoT initiatives taken in wake of COVID-19. We also highlight the challenges that need to be addressed and important research directions that will facilitate accelerated IoT adoption.Comment: This is the version accepted at Sensors 202

    Impact of Positioning Technology on Human Navigation

    Get PDF
    In navigation from one place to another, spatial knowledge helps us establish a destination and route while travelling. Therefore, sufficient spatial knowledge is a vital element in successful navigation. To build adequate spatial knowledge, various forms of spatial tools have been introduced to deliver spatial information without direct experience (maps, descriptions, pictures, etc.). An innovation developed in the 1970s and available on many handheld platforms from the early 2000s is the Global Position System (GPS) and related map and text-based navigation support systems. Contemporary technical achievements, such as GPS, have made navigation more effective, efficient, and comfortable in most outdoor environments. Because GPS delivers such accurate information, human navigation can be supported without specific spatial knowledge. Unfortunately, there is no universal and accurate navigation system for indoor environments. Since smartphones have become increasingly popular, we can more frequently and easily access various positioning services that appear to work both indoors and outdoors. The expansion of positioning services and related navigation technology have changed the nature of navigation. For example, routes to destination are progressively determined by a “system,” not the individual. Unfortunately we only have a partial and nascent notion of how such an intervention affects spatial behaviour. The practical purpose of this research is to develop a trustworthy positioning system that functions in indoor environments and identify those aspects those should be considered before deploying Indoor Positioning System (IPS), all towards the goal of maintaining affordable positioning accuracy, quality, and consistency. In the same way that GPS provides worry free directions and navigation support, an IPS would extend such opportunities to many of our built environments. Unfortunately, just as we know little about how GPS, or any real time navigation system, affects human navigation, there is little evidence suggesting how such a system (indoors or outdoors) changes how we find our way. For this reason, in addition to specifying an indoor position system, this research examines the difference in human’s spatial behaviour based on the availability of a navigation system and evaluates the impact of varying the levels of availability of such tools (not available, partially available, or full availability). This research relies on outdoor GPS, but when such systems are available indoors and meet the accuracy and reliability or GPS, the results will be generalizable to such situations

    The Exploitation of Data from Remote and Human Sensors for Environment Monitoring in the SMAT Project

    Get PDF
    In this paper, we outline the functionalities of a system that integrates and controls a fleet of Unmanned Aircraft Vehicles (UAVs). UAVs have a set of payload sensors employed for territorial surveillance, whose outputs are stored in the system and analysed by the data exploitation functions at different levels. In particular, we detail the second level data exploitation function whose aim is to improve the sensors data interpretation in the post-mission activities. It is concerned with the mosaicking of the aerial images and the cartography enrichment by human sensors—the social media users. We also describe the software architecture for the development of a mash-up (the integration of information and functionalities coming from the Web) and the possibility of using human sensors in the monitoring of the territory, a field in which, traditionally, the involved sensors were only the hardware ones.JRC.H.6-Digital Earth and Reference Dat

    Hardware Prototype for Wrist-Worn Simultaneous Monitoring of Environmental, Behavioral, and Physiological Parameters

    Get PDF
    We designed a low-cost wrist-worn prototype for simultaneously measuring environmental, behavioral, and physiological domains of influencing factors in healthcare. Our prototype continuously monitors ambient elements (sound level, toxic gases, ultraviolet radiation, air pressure, temperature, and humidity), personal activity (motion tracking and body positioning using gyroscope, magnetometer, and accelerometer), and vital signs (skin temperature and heart rate). An innovative three-dimensional hardware, based on the multi-physical-layer approach is introduced. Using board-to-board connectors, several physical hardware layers are stacked on top of each other. All of these layers consist of integrated and/or add-on sensors to measure certain domain (environmental, behavioral, or physiological). The prototype includes centralized data processing, transmission, and visualization. Bi-directional communication is based on Bluetooth Low Energy (BLE) and can connect to smartphones as well as smart cars and smart homes for data analytic and adverse-event alerts. This study aims to develop a prototype for simultaneous monitoring of the all three areas for monitoring of workplaces and chronic obstructive pulmonary disease (COPD) patients with a concentration on technical development and validation rather than clinical investigation. We have implemented 6 prototypes which have been tested by 5 volunteers. We have asked the subjects to test the prototype in a daily routine in both indoor (workplaces and laboratories) and outdoor. We have not imposed any specific conditions for the tests. All presented data in this work are from the same prototype. Eleven sensors measure fifteen parameters from three domains. The prototype delivers the resolutions of 0.1 part per million (PPM) for air quality parameters, 1 dB, 1 index, and 1 °C for sound pressure level, UV, and skin temperature, respectively. The battery operates for 12.5 h under the maximum sampling rates of sensors without recharging. The final expense does not exceed 133€. We validated all layers and tested the entire device with a 75 min recording. The results show the appropriate functionalities of the prototype for further development and investigations

    LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting

    Full text link
    Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning in capturing non-linear patterns of traffic data. However, the promising results achieved on current public datasets may not be applicable to practical scenarios due to limitations within these datasets. First, the limited sizes of them may not reflect the real-world scale of traffic networks. Second, the temporal coverage of these datasets is typically short, posing hurdles in studying long-term patterns and acquiring sufficient samples for training deep models. Third, these datasets often lack adequate metadata for sensors, which compromises the reliability and interpretability of the data. To mitigate these limitations, we introduce the LargeST benchmark dataset. It encompasses a total number of 8,600 sensors in California with a 5-year time coverage and includes comprehensive metadata. Using LargeST, we perform in-depth data analysis to extract data insights, benchmark well-known baselines in terms of their performance and efficiency, and identify challenges as well as opportunities for future research. We release the datasets and baseline implementations at: https://github.com/liuxu77/LargeST
    corecore